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Gain Spectra of Quantum Wires with Inhomogeneous 
Broadening 

HAL ZAREM, KERRY VAHALA, A N D  AMNON YARIV, FELLOW, IEEE 

Abstract-The effects of fabricational variations on the gain spectra 
of quantum wires are calculated within the limits of first order pertur- 
bation theory. Gain spectra and density of states for 50 A radius and 
150 A radius cylindrical quantum wires are calculated and plotted for 
several different fabrication tolerances. The wave functions for a finite, 
cylindrical potential are calculated and a quasi-critical radius, below 
which the carriers are weakly confined by the potential, is established. 
This sets a lower limit on quantum wire size. Upper limits on the size 
of quantum wells, quantum wires, and quantum boxes are also dis- 
cussed. The threshold current and differential gain of quantum wire 
lasers and quantum wire array lasers are calculated. These calcula- 
tions indicate a possible reduction in threshold current of one to two 
orders of magnitude as compared to the best quantum well lasers. 

I. INTRODUCTION 
N recent years it has been shown both theoretically and I experimentally that quantum well lasers have many ad- 

vantages over conventional lasers. These advantages, such 
as ultralow threshold current [ l ] ,  narrow linewidth [2], 
[3], reduced temperature dependence of the threshold cur- 
rent [4], and high modulation rate [2], [5] are related to 
the two-dimensional nature of the electrons in quantum 
wells. As the dimensionality is reduced from three to two, 
the density of states acquires a sharp edge on the low en- 
ergy side, increasing the number of states near the band 
edge. When these states are filled the gain spectrum is 
narrower. This is advantageous since we are generally 
concerned with peak gain and carriers contributing to gain 
in other spectral regions are wasted. As the dimensional- 
ity is further reduced to one or zero dimensions, giving 
quantum wires and quantum boxes, the density of states 
becomes even sharper and narrower. Theoretical investi- 
gations of the one-dimensional or zero-dimensional struc- 
tures, quantum wires and quantum boxes, have predicted 
further enhancements in many of these areas [2], [4], [6]. 
Gain calculations for quantum wires and quantum boxes 
predict large reductions in the threshold current. These 
calculations also indicate that such structures will have a 
higher differential gain leading to higher modulation rates. 
There have been several observations of quantum size ef- 
fects in quantum wires and quantum boxes [7]-[lo], but 
these structures are quite difficult to fabricate. Quantum 
well structures in high magnetic fields have been used to 
simulate some of these effects [2], [ 1 I]. 
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The technology used to fabricate quantum wells relies 
on growth techniques capable of atomic layer tolerances, 
leading to actual quantum well devices which exhibit 
nearly ideal properties. Confinement in directions other 
than the growth direction requires lithographic patterning 
and the best lithographic techniques have resolutims on 
the order of 10 nm. Quantum size effects are extremely 
sensitive to the dimensions of the confining structure. For 
these reasons, it is important to consider the effects of 
fabricational inhomogeneities on quantum wire and quan- 
tum dot structures. Variations in the size and shape of 
quantum wires or quantum dots will smear some of the 
sharpness out of the density of states of these structures, 
reducing some of the benefits of lower dimensionality. 
Inhomogeneities in quantum boxes have been considered 
recently and it was found that quantum box arrays with 
realistic fabrication tolerances are not well suited to high 
gain applications, but they may make possible very low 
threshold current lasers and may lead to optical amplifiers 
with improved noise characteristics [ 121. A critical ra- 
dius, below which no bound states exist for the quantum 
box, was also shown. 

In this paper, we investigate the properties of quantum 
wires, in particular, the effects of inhomogeneities on the 
density of states function and on gain are examined. The 
inhomogeneities are treated as a perturbation to an ideal 
wire and the perturbation energy is calculated to first or- 
der. The density of states for an array of wires with dif- 
ferent widths is calculated and is used to calculate the gain 
of sych a structure. Thois is done for cylindrical wires of 
50 A radius and 150 A radius with several different de- 
grees of inhomogeneity. The properties of a quantum wire 
laser are examined and we attempt to answer the question 
of whether quantum wires with realistic fabrication tol- 
erances can fulfill the expectations of lower threshold cur- 
rents and higher modulation rates. The finite barrier quan- 
tum wire is studied and a quasi-critical radius is 
established, below which, the carriers are weakly con- 
fined by the wire. Upper limits on the wire radius, deter- 
mined by the requirement that the energy subbands be 
separated by an energy greater than kBT. are also dis- 
cussed. 

11. SOLUTION TO THE TWO-DIMENSIONAL FINITE WELL 
PROBLEM 

A calculation of the electron and hole wave functions 
is necessary to obtain the position of the energy subbands. 
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In this paper, we have treated the case of a cylindrical 
wire rather than the, somewhat simpler, rectangular wire 
employed elsewhere. This potential is chosen since the 
Schroedinger equation can be separated in the case of a 
finite cylindrical potential but not for a finite rectangular 
potential. A proper treatment of the finite potential is nec- 
essary to investigate the possibility of a critical radius be- 
low which no bound states exist. Such a critical radius 
has been shown to exist for the quantum box 1121. In this 
section, we calculate the electron and hole wave functions 
using the effective mass approximation. Their behavior as 
the radius of the wire goes to zero is examined. 

In cylindrical coordinates the potential takes the simple 
form 

KPo 

Fig. 1 .  Graphical solution of the eigenvalue equation for the cylindrical 
potential. As the radius of the wire is reduced. the intersection moves 
toward the origin. 

For this potential the Schroedinger equation is easily 
solved, giving 

where J ,  ( k p )  is the Bessel function of order U = 0, f 1, 
f 2 ,  . . . , and K,(KP) is the modified Bessel function. 
The energy is given by 

h 2  
E = - ( k t , ,  + k t ) .  

2m (3 )  

The constants N ,  A ,  k, , , ,  and K,,, are determined by the 
normalization, the boundary condition at p = po, and the 
condition 

which comes directly from the Schroedinger equation. The 
radial momentum k,,, is a discrete variable whereas the 
axial momentum k, varies continuously to fill the energy 
spectrum. In accordance with convention 1131, k, ,  is the 
nth k value to satisfy the boundary conditions for J , .  In 
general there are an infinite number of k values for each 
U. In this treatment, only the first eight k values are con- 
sidered. This can be done with no loss of generality since 
we will only populate the first two or three subbands. 

There is no known way to solve fork,,, analytically but 
for Vo >> h 2 k ~ , / 2 m ,  the boundary condition J , (kpo)  = 
0 applies approximately and the zeros of J ,  are tabulated 
1131. As the radius of the wire becomes smaller, the sub- 
band energy is pushed up towards the top of the potential 
well and the above approximation is no longer valid. For 
small radius wires, the value of k,,, can be obtained by 
expanding J ,  ( k p )  and K,( KP) about the origin. The small 
argument expansions for J o  and KO are given by 
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CONFINEDHOLES .-A 
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Fig. 2.  Quasi-critical radius as a function of the bandgap discontinuity. 

Electrons and holes in quantum wires which are smaller than the quasi- 
critical radius are bound by the potential but are only weakly confined 
by i t .  

We use this to investigate the behavior of the ground 
state as the wire width goes to zero. Applying continuity 
at p = po gives 

Equations (4) and (6) are plotted in Fig. 1. The intersec- 
tion of the two curves gives the eigenvalues for k and K .  

It appears that (6) intersects the y-axis at kp  = $,  but, in 
fact, it has finite slope until it intersects the origin. As po 
approaches zero, the radius of the circle goes to zero and 
it is clear that there is always a bound state for the cylin- 
drical potential. However, from Fig. 1 we see that when 
the radius of the circle is less than $, K becomes small, 
indicating a weakly bound state. At this point it becomes 
improbable that the carrier remains in the wire. From this 
we define a quasi-critical radius 

(7 )  

KO = -In KP + * . * . (5b)  
below which the electron or hole is very weakly confined. 
Equation (7) is plotted in Fig. (2) as a function of Vo. We 
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have assumed effective masses of 0.067 m, for electrons 
and 0.45 ma for heavy holes. The conduction band offset 
was taken as 60 percent of the band-gap discontinuity. 
Due to the large difference in their effective masses, there 
are regions where the holes are confined by the potential 
but the electrons are not. In the GaAs/AlGaAs system, 
the region of weakly confiaed states may occur only in 
structures as small as 5-10 A in radius. At this point, the 
effective mass approximation may give only qualitative 
features. For quantum boxes, there exists a strict critical 
radius below which no bound states exist [ 121. The quasi- 
critical radius for quantum wires is a factor of T smaller 
than the critical radius for quantum boxes. 

111. ROUGHENED CYLINDERS 
In this section we treat the case of an imperfect quan- 

tum wire (Fig. 3 ) .  The wire is taken to have hard bound- 
aries with a potential step equal to V, but the potential is 
no longer a function only of po, but of all three coordi- 
nates. We assume that the wire is close enough to cylin- 
drical that the roughness may be treated as a perturbation 
of the form 

where 6p (6, z )  is an arbitrary, nonnegative function of 6 
and z whose magnitude is much less than po. We further 
require that 6~ vary on a scale which is smaller than the 
coherence distance of the electron. With this perturbation, 
the average radius of the cylinder is increased by an 
amount ( 6 p ( + ,  z )  ) 6 , 2  where ( )+,: denotes a spatial 
average over the coordinates + and z .  It is straightforward 
to show that application of first-order perturbation theory 
to the ground state gives 

where C 2  comes from the normalization of the Bessel 
function. In the limit as Vo goes to infinity, (9) becomes 

where 

is the energy of the first subband for the infinite barrier 
cylinder. To first order, the effect of the roughness is only 
through a change in the average radius. This implies that, 
to first order, quantum wires are insensitive to inhomo- 
geneities that do not effect the average radius ofJhe struc- 
ture. Therefore, a fabrication tolerance of 10 A may be 

FABRICATION TOLERANCE 

ROUGHENED IDEAL 

Fig. 3. The cross section of an ideal and a roughened quantum wire 

quite tolerable if the average radius does not change by 
more than a few angstroms from wire to wire. This does 
not apply if the perturbation varies with z on a scale which 
is large compared to the coherence length of the electron. 
Sections of the wire which are at least one coherence 
length apart can be considered as separate wires so that 
the averaging of 6p  should be done for zo < z < zo + I ,  
where I, is the coherence length of the electron. If we 
assume an intraband scattering time of 2 X 10-l3s [6] and 
thermal velocity, 1, is on the order of 800 A at room tem- 
perature. 

Equations (10) and (1 1) are general results in that they 
can be shown to hold for quantum wells and quantum 
boxes as well (with x i ,  replaced by the appropriate value 
for wells or  boxes) [12]. In the case of wells and boxes 
the confinement energy E, ,  is different, however. The 
confinement energy increases as the number of confined 
dimensions increases. For this reason, inhomogeneities 
will affect quantum boxes more severely than quantum 
wires and, likewise, quantum wires more severely than 
quantum wells. As the size of the structure is increased 
the confinement energy decreases, reducing the effect of 
inhomogeneities. The size can be increased only so far 
since the subbands must be separated by an energy which 
is greater than a few kB Tin order for quantum size effects 
to be realized. For all three low dimensionality structures, 
the subband energy has a p - 2  dependence. If we define 
A E  as the separation between the first and second sub- 
bands we can calculate the proportionality constant be- 
tween A E  and p -*. The results are shown in Table I where 
A E is calculated for several values of p with Vo = M and 
using a spherical potential for the quantum box and a cy- 
lindrical potential for the quantum wire. In Table I and 
all of the figures and calculations here, values of constants 
which are appropriate for GaAs are chosen. 

From (1 1) we see that a small change in radius d p  gives 
a change in subband energy 

Po 

which is the same as the result from the perturbation cal- 
culation. Comparing (10) and (12) we see that the effect 
on the subband energy of roughening the cylinders with 
an average roughness ( 6p )+,: is equivalent to changing 
the wire width by d p  = ( 6p )+,:. It should be noted that 
(12) is an upper limit since it applies for the case of an 
infinite barrier; the finite barrier case will produce a 
smaller shift because of the softer boundaries. In what 
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TABLE I 

SIZE QUANTUM WELLS, QUANTUM WIRES, A N D  QUANTUM BOXES I N  GaAs. 

A HALF WIDTH, WHEN A E  I S  SMALLER THAN k,T,  THERMAL BROADENING 
SMEARS OUT QUANTUM SIZE EFFECTS 

THE SEPARATION OF THE FIRST A N D  SECOND SUBBANDS FOR DIFFERENT 

THE PARAMETER p IS THE RADIUS, O R ,  IN THE CASE OF QUANTUM WELLS, 

AE (meV) 
Well Wire Box 

cb=conduction band 
vb=valence band 

follows we assume that we have an ensemble of wires 
with different values of ( 6p )+,;. In accordance with the 
central limit theorem we assume a Gaussian distribution 
of wire radii 

where po is the average wire radius and 6p is the standard 
deviation of ( 6 p  ) + , z .  The length of a typical semicon- 
ductor laser is several hundred times the coherence length 
of the electron so the gain of a single wire must be ob- 
tained by considering the gain of many wires each of 
length 1,. 

IV. GAIN SPECTRA 

The density of states for an ideal (unroughened) wire 
of radius po is 

m 

D ( E )  = ( m r / ~ h : ) l ’ 2  ( E  - ER - E/)-”2q/ (14)  
/ = I  a po 

where E is the energy of the transition, Eg is the band- 
gap, E/ is the position of the lth subband (the index Z is a 
combination of the indices n and U of the previous sec- 
tions), q1 is the degeneracy of the Zth subband ( qr = 1 for 
v = 0, qr = 2 otherwise) and m, = m,mh/(m,  + mh)  
where m, and mh are the masses of the electron and the 
hole, respectively. Equation (14) is plotted in Fig. 4 .  In 
Fig. 4 and all subsequent figures, values of the material 
parameters which are appropriate for GaAs are used. 
These values are: me = 0.067, mh = 0.45, Eg = 1.424. 
The subband positions El are calculated assuming an in- 
finite band-gap discontinuity. 

Changing the radius of a wire will affect the gain by 
moving the subband edge. We obtain a Gaussian distri- 

Photon Energy (eV) 

Fig. 4 .  The density of states for 50 A radius quantum wires wlthout in- 
homogeneous broadening. 

bution of subband energies by combining (12) and (13) 

where 6 E/ and E, are related to 6p and p through (10) and 
(1 1). The bulk density of states for the material is found 
by integrating (14) over all values of E/ weighted by (1 5) 
giving the inhomogeneous density of states 

m 1  I ’ 2  

D i n h ( E )  = ~ (7) 
/ = I  6 E  & 

-& ( E  - ER - E , ) - ’ ”  

The integral in (16) is evaluated numerically and the in- 
homogeneousodensity of states is plotted for wires of ra- 
dius p = 50 A in Fig. 5 .  The effects of the inhFmogene- 
ities are quite dramatic: for 6p = 2.5 A,  which 
corresponds to a monolayer variation in radius, the sub- 
bands are distinct and the density of states resembles tee 
ideal density of states of Fig. 4, whereas for 6p = 10 A 
all subband structure is washed out and the density of 
states resembles that of bulk material. As the subbands 
broaden, their peak value decreases since the area under 
each curve musd be the same. Fig. 6 shows the density of 
states for 150 A radius wires. The magnitude of the den- 
sity of st!tes is reduced by a factor of three as compared 
with 50 A wires. In general, the magnitude of the density 
of states will be inversely proportional to the radius of the 
wire if 6 p / p  is kept fixed (this follows directly from (16) 
when the dependence of E, and 6 E, on po is considered). 
The shape of these curves is the same as that of a 50 A 
wire with the same value of 6 p / p  except that the energy 
scale is differen! due to the different subband positions. 
For 6p  = 150 A the first and second subband are sepa- 
rated by only 18 meV. This means that at room temper- 
ature there will be substantial filling of the second sub- 
band when the first subband is partially filled, leading to 
increased threshold currents. 
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Photon Energy (eV) 

Fig. 5. The density of states for 50 A radius quantum wires with three 
different values Of the roughness parameter; 6p = 2.5 A ,  6p = 5.0 A ,  
and 60 = 10.0 A .  

Photon Energy (eV) 

Fig. 6. The density of states for 150 A radius quantumowires with two 
aifferent values of the roughness parameter; 6 p  = 15 A ,  and 6 p  = 30 
A .  

The density of states calculations shown in Figs. 5 and 
6 are the basis of the gain calculations to follow. The 
broadening caused by the inhomogeneities is, in all cases 
considered here, greater than or equal to "T2" broaden- 
ing. The gain is therefore given by 

where E is the dielectric constant of the material, p is the 
magnetic susceptibility, fc and A, are the Fermi distribu- 
tions for the conduction and valence bands, respectively, 
and d is the component of the dipole moment parallel to 
the electric field. A value of d / q  = 4 A has been as- 
sumed and any dependence of d on the orientation of the 
electric field with respect to the wire axis is ignored. The 
light hole band has also been ignored in the calculation. 
The overlap of the field with the gain region is not yet 
aFcounted for in these plots. The gain spectrum for a 50 
A radius wire has been plotted in Fig. 7 for carrier den- 
sities of 4 X IOl9  cmp3 and 8 X IO1* cm-3. As the carrier 
density is doubled, the peak gain increases almost pro- 
portionally, indicating that, even at this high carrier den- 
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Fig. 7. Gain as a function of photon energy for 50 A radius quantum wires 

and 8 X with 6 p  = 2.5 A at a carrier concentration of 4 X IO' '  
I O ' *  cm-3  

2000 

n 
'i 

Y C  5 
d 
C .- 

-2ooc 

Fig. 8. Gain as  a function of photon energy for 50 Amradius quantum wires 
with 6p = 2.5 A ,  6 p  = 5.0 A ,  and 6p = 10.0 A at a carrier concen- 
tration o f 4  x 1 0 ' ~  cm-'. 

sity, the carriers are going predominantly into the first 
subband. In Fig. 8 gain is calculated for the density of 
states functions of Fig. 5, showing the effects of increased 
inhomogeneities on the gain spectrum. All of the curves 
are for the same carrier density. Here, the benefits of a 
sharp density of states function are clear as the peak gain 
drops b,y roughly a factor of two when 6p goes from 2.5 
to 10 A .  Fig. 9 shows the dependence of peak gain on 
carrier density for these same wires. The gain rises steeply 
at first, but it begins to level off at around 7 x 10l8 cmP3 
as the first subband becomes full. At a carrier density of 
roughly 1.3 x 10l8 cm-3 the gain begins to rise sharply 
once again. It is at this point that the gain of the second 
subband exceeds that of the first. This has been observed 
experimentally in quantum well lasers [I41 and it is ac- 
companied by a large change in lasing wavelength: Curves 
similar to those of Figs. 8 and 9 but for 150 A radius 
wires are shown in Figs. looand 1 1. For any given carrier 
density, the gain of a 150 A wire is lower than that of a 
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Fig. I O .  Gain as a func!ion of photo! energy for 150 A radius quantum 
wires with 6p = 15 A ,  6p = 30 A ,  at a carrier concentration of 4 x 
IO" cm-' ,  and 150 A radius quantum wires with bp = 15 A at a carrier 
concentration o f 4  x 10'' cm-'. 
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Carrier Concentration ( ~ r n - ~ )  
Fig. I I .  Peak gain as a function of carrier concentration for the quantum 

wires of Fig. 6. The point of maximum gain per carrier density is given 
by the dashed tangent. 

50 A wire. This is due to two factors: first, the density 
of states is smaller for larger wires, and second, the sub- 
bands are separated by an energy which is less than k B T  
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so several subbands are being filled sim$taneously . Peak 
gain versus carrier density for the 150 A radius wires is 
plotted in Fig. 11. 

V.  LASING PROPERTIES 

So far, we have discussed the properties of quantum 
wires without considering the device in which they are to 
be imbedded. In this section, we consider the modal gain, 
threshold current, and the modulation rate for a quantum 
wire laser. 

The modal gain is obtained by multiplying the bulk gain 
for a wire by the confinement factor, which is a measure 
of the overlap of the optical field with the gain region. 
Switching to rectangular coordinates and keeping the cyl- 
inder axis as the z-axis, the confinement factor is a prod- 
uct of confinement factors for the x and y directions I?, 
and I',. For a single wire of 50 A radius, I', = I', = 0.04 
is a reasonable value [ 11. If we take a peak gain of 3000 
cm-' and the above confinement factors, the peak modal 
gain is Gmode = 4.8 cm- '  per wire. This is about enough 
gain to overcome the distributed losses so clearly we must 
employ an array of such quantum wires to make a laser. 

The threshold gain is given by 

where a is the distributed loss coefficient for the mode, 1 
is the length of the cavity, and R is the reflectivity of the 
mirrors. To estimate threshold current densities we as- 
sume values of a = 3 cm- ' ,  I = 300 pm, and R = 0.9. 
For these values, Gmoda,.th = 6.5 cm- ' .  To achieve the 
lowest threshold current, we want to pump the wires to 
the point of maximum gain per carrier density. This is the 
point on the peak gain versus carrier density curve whose 
tangent intersects the origin. From Fig. 9, we see that this 
occurs at a carrier density of approximate!y 5 x 10" cm-3 
for a 50 A radius wire with 6 p  = 2.5 A.  At this point, 
the gain in the wire is approximately 2250 cm- ' .  With 
the above confinement factors, a laser with two such wires 
would have a modal gain of 7.2 cm- ' ,  which is just above 
the estimated threshold gain. To arrive at a threshold cur- 
rent, a value of the carrier lifetime must be assumed. The 
effect of the two dimensional confinement on the carrier 
lifetime is not known, so bulk the carrier lifetime is used. 
If we assume a carrier lifetime of 3 ns [ 151, and 100 per- 
cent injection efficiency, this two-wire laser would have 
a threshold current of approximately 11 pA, which is 
nearly two orders of magnitude lower than the best quan- 
tum well lasep. When the same cpsiderations are ap- 
plied to a 50 A wire with 6 p  = 10 A, the optimal carrier 
density is approximately 6.5 x 10" cmP3, and a laser 
containing four such wires would have a threshold current 
of approximatelyd3 p A ,  which is still extremely low. In 
the case of 150 A radius wires, the confinement factors 
increase to I'y = I', = 0.12. Working backwards, if we 
assume a modal gain of 6.5 cm-I and the above confine- 
ment factors, the bulk gain requirement is only 450 cm- ' .  
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One wire can provide this gain and, under the same as- 
sumptions as above, the estimated threshold cy-rent is 34 
pA for the cases of 6p = 15 A and 6p  = 30 A (here, the 
effects of thermal broadening e?ceed those of ,,the in- 
homogeneities so both 6p = 15 A and 6 p  = 30 A wires 
behave the same at room temperature). It is clear that the 
threshold current does not suffer much as the fabrication 
tolerance requirements are relaxed. 

The modulation bandwidth is determined by the relax- 
ation oscillation corner frequency 

1 G‘P, ’ I2  
= 271. [,1 

where G‘ = d G / d n  is the differential gain, Po is the 
steady-state photon density in the cavity, and T~ is the 
photon lifetime [16]. Due to the sharpened density of 
states function, the differential gain for quantum wires 
should be higher than for bulk material. The differential 
gain can be found from Figs. 9 and 1 1. For the 50 A 
radius wires, the maximum differential gain is d G / d n  = 
1.0 x cm2 for 6p  = 2.5 and 
10 A, respectively. This is to be compared to a value of 
d G / d n  = 2.0 x cm2 for bulk GaAs, and dG/dn  
= 5.0 x cm2 for quantum wells [ 2 ] .  The differen- 
tial gain for the 150 A wires, as calculated from Fig. 11, 
is close to the bulk value. We see that the modulation 
bandwidth of the well fabricated wire is greater by a fac- 
tor of h than that of a laser with a bulk active layer, but 
that for more realistic fabrication tolerances the increased 
bandwidth disappears. 

cm2 and 2.2 x 

VI. CONCLUSION 

We have calculated the gain spectra of quantum wires 
accounting for fabricational inhomogeneities. The in- 
homogeneities were treated as a perturbation and it was 
found that to first order, the component of the perturba- 
tion which varies quickly compared to the coherence 
length of the carrier is averaged out and has no effect if 
the wire radius is chosen so that the roughness function 
has zero average. This indicates that the gain in quantum 
wires is somewhat insensitive to small scale inhomogene- 
ities. An ensemble of wires with differing widths was con- 
sidered and a bulk density of states and gain were calcu- 
lated from this. According to these calculations, quantum 
wires with realistic fabrication tolerances are advanta- 
geous for low threshold laser applications but unless they 
are fabricated with atomic layer precision, they will not 
display a large enhancement in modulation bandwidth. 

The wave functions for quantum wires have been ex- 
amined using a finite cylindrical potential and we found a 
quasi-critical radius, below which, the carriers are not 
confined by the potential, although, in a strict sense, the 
state is a bound state. This puts a lower limit on the radius 
of quantum wires. An upper limit on the wire size is given 
by the requirement that the subbands be separated by an 
energy greater than kB T and the effects of increasing the 

size and changing the number of quantized dimensions 
were tabulated for two-, one-, and zero-dimensional 
structure. 

As a result of these calculations, it is concluded that 
quantum wire lasers with realistic fabrication tolerances 
are promising structures for reduced threshold current. 
Reductions of one to two orders of magnitude over the 
best quantum well lasers are possible. Such large reduc- 
tions in threshold current could open new realms of ap- 
plications for semiconductor lasers. 
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