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Abstract—The millimeter-wave (mm-wave) frequency band has
emerged as a means to overcome current radio frequency spec-
tral limitations and represents an interesting solution to fulfill the
bandwidth and networking requirements of fifth generation (5G)
mobile communications and beyond. Photonic generation of these
frequencies holds advantages over electronic methods in terms of
cost and effective network distribution. Due to their coherent na-
ture, optical frequency combs (OFC) are a promising solution for
the efficient generation of mm-wave frequencies. The work outlined
examines the use of OFCs in a mm-wave radio-over-fiber (RoF) het-
erodyne system with regard to the specific requirements of a 5G
candidate waveform, universally filtered orthogonal frequency di-
vision multiplexing. Through experimentation and simulation, the
key limitations of linewidth, effective path length difference, and
relative intensity noise (RIN) are explored. Results are presented, in
terms of error vector magnitude (EVM), for a wide range of system
parameters highlighting important considerations to be taken in
designing future mm-wave RoF systems employing OFCs. Perfor-
mance of ∼5% EVM using single sideband modulation is achieved
for optimized system conditions and an RIN level of −132 dB/Hz.

Index Terms—5G, fronthaul, millimeter wave communications,
optical frequency combs, radio-over-fiber, UF-OFDM.

I. INTRODUCTION

M
OBILE communications networks will be required to

adapt in order to facilitate 5G and future mobile
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communications. Greatly increased network speeds will be re-

quired, as well a fundamental shift in the make up these net-

works. This will include ultra-dense (UD) antenna deployment

and vastly increased fiber penetration to these sites [1], which

will be necessary in order to deliver the types of high speed ser-

vices envisaged for the future connected society; virtual reality

(VR) applications, 4/8K high definition (HD) streaming, live

HD video editing etc.

The successful delivery of next generation services, to an

ever-increasing number of connected users and devices, will

depend highly on the available bandwidth in the wireless net-

work. This may be extremely difficult to facilitate given current

spectral occupancy. This has led to the emergence of mm-wave

(30 – 300 GHz) communications, which can provide large

amounts of available bandwidth, and hence, extremely high

channel capacity suitable for high data rate wireless transmis-

sion. These advantages have meant that mm-wave communica-

tions have come to be considered as a key enabling technology

for 5G and beyond [2].

The effective utilization of mm-wave frequencies for mobile

communications depends on the efficiency, in terms of both cost

and power, with which the carriers can be generated. Generation

of mm-wave signals in the electronic domain is hampered by

the cost and complexity of the components required and so pho-

tonic generation, i.e., optical heterodyne techniques, have been

proposed [3], [4]. Aside from the economic advantages, the

use of the optical domain for mm-wave signal generation natu-

rally lends itself to increased optical distribution through front-

haul and mid-haul networks - key optical networking structures

that enable increased centralization of resources and UD small

cell distribution. Furthermore, optical heterodyning offers scal-

ability as higher frequency generation can be easily facilitated

through the use of tunable optical sources.

Mm-wave generation in this way has been demonstrated using

many types of laser sources. Li et al. [5] employed two free-

running external cavity lasers (ECL) to achieve 60 Gb/s RoF

transmission of 64-quadrature amplitude modulation (QAM)

data, while Alavi et al. [6] presents the use of an extremely

low linewidth dual wavelength fibre laser to demonstrate multi-

carrier RoF transmission suitable for 5G applications. How-

ever, the complexities associated with these methods [7] have

contributed to the sustained interest in the use of OFCs as an
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economic and effective optical source enabling mm-wave RoF

communications [8]–[11].

Two common methods to generate OFCs are; the use of mode

locked laser (MLL) [12] diodes and optical gain-switching of

a laser diode [13]. MLLs suffer from large linewidth (MHz

range) and mode partition noise which can be imparted to the

heterodyne mm-wave signal [14], and, unlike combs generated

through gain-switching, they exhibit a fixed free spectral range

(FSR) which limits flexibility in the generated mm-wave carrier.

Our recent work, [7], has experimentally demonstrated the use

of an OFC generated through gain-switching for mm-wave RoF

transmission appropriate for 5G applications. It has highlighted

the heightened importance of coherence between optical carri-

ers given the relatively low baud rates associated with mobile

transmission.

The work presented in this paper expands on [7] to provide an

analysis, in terms of optimum operating conditions and system

limitations, on the use of OFCs generated by gain-switching for

mobile RoF mm-wave distribution. Our numerical simulations

and experimental testbed results encompass key factors associ-

ated with optical heterodyning, namely; the impact of optical

linewidth, effective path difference and relative intensity noise

(RIN). This work analyzes the impact of those factors which

are varied within the context of the implemented system to (i)

find system limitations, (ii) identify optimum operating condi-

tions and (iii) provide important design rules for the construc-

tion of futute RoF mm-wave systems employing OFCs. System

performance is evaluated, for the various tested operating condi-

tions, in terms of the received EVM of a 5G candidate waveform,

universally filtered orthogonal frequency division multiplexing

(UF-OFDM) which offers increased robustness to timing syn-

chronization and reduced out-of-band (OOB) emission com-

pared to conventional OFDM [15]. For optimum conditions

EVMs of around 5% are achieved for single sideband (SSB)

transmission using a complex optical (I/Q) modulator.

The remainder of the paper is outlined as follows: Section II

briefly describes the properties of the UF-OFDM waveform used

throughout the simulation and experimental work. Section III

describes the experimental setup and Section IV describes the

numerical simulation undertaken. Section V includes discus-

sion on the obtained performance with regard to the impact of

optical linewidth, and the impact of RIN for various OFC con-

figurations. Finally, Section VI outlines the conclusions of the

work.

II. UF-OFDM: A FIFTH GENERATION CANDIDATE WAVEFORM

UF-OFDM is a multi-carrier modulation scheme which is

considered to be a candidate waveform for 5G [16]. Like OFDM,

its implementation is (inverse) fast Fourier transform ((I)FFT)

based and involves the transmission of subcarriers, each typ-

ically modulated with QAM symbols. UF-OFDM lessens the

strict orthogonality requirements imposed by OFDM, by em-

ploying linear filtering of sub-bands of the transmitted sub-

carriers. Subcarriers in each sub-band (or resource block) are

orthogonal to each other, but not to subcarriers contained in

other sub-bands. Linear filtering leads to a much lower OOB

TABLE I
UF-OFDM SIGNAL PROPERTIES

emission and this results in a relaxation of synchronization re-

quirements [17]. Further discussion of UF-OFDM and other

‘OFDM inspired’ waveforms can be found in [16].

UF-OFDM bands with the properties outlined in Table I are

used throughout this work for data modulation.

III. EXPERIMENTAL SETUP

The optical heterodyne mm-wave experimental setup is

shown in Fig. 1. The system architecture is designed to replicate

a mobile fronthaul link where analog RoF signals are transmit-

ted from a central office (CO) through 25 km of standard single

mode fiber (SSMF) to a remote radio head (RRH)-though no

wireless transmission is performed.

The light source used is an OFC based on gain switching-

highlighted in green in Fig. 1. A 17.6 GHz sinusoid is used

to gain switch a distributed feed-back (DFB) laser resulting in

multiple, coherent, optical tones with a FSR of 17.6 GHz as

shown in Fig. 2. An ECL is set up so that optical injection of

the DFB may be performed. This offers a highly reduced comb

linewidth at the expense of higher system cost/complexity [18]

and is employed here for comparison with simulation results

relating to the impact of the optical linewidth. A detailed inves-

tigation into the coherence of a 60 GHz signal resulting from

the beating of two partially phase uncorrelated optical tones

generated using gain switched DFB may be found in [19]. A

wavelength selective switch (WSS) is used to select two optical

tones spaced by the required mm-wave frequency, in this case

52.8 GHz (which is three times the FSR of the OFC). An erbium

doped fiber amplifier (EDFA) is used to boost the power of the

optical carriers before the optical path is split in two using a

50:50 coupler.

A Tektronix arbitrary waveform generator (AWG) operating

at 20 GSa/s is used to generate five UF-OFDM bands at differ-

ent RF carrier frequencies centered around 2.05 GHz and with a

10 MHz guard band between each. Each band was constructed

with the properties outlined in Table I. One of the selected op-

tical tones from the OFC undergoes carrier suppressed single

sideband (CS-SSB) modulation using an electrical 90 degree

hybrid coupler and a complex (I/Q) optical modulator as illus-

trated in Fig. 1. A tunable optical delay line is inserted in the un-

modulated tone’s path. This is to allow the phase offset between

the two optical paths (due to path length difference including

the dispersive effect of the SSMF) to be pre-compensated for
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Fig. 1. Experimental heterodyne RoF mm-wave setup including figurative spectral representations of the heterodyne process. The setup is designed to resemble
an optical front-haul network eith consolidated equipment at the Central Office, and analog RoF transmission to a relatively simplistic Remote Radio Head.

Fig. 2. Experimentally measured OFC from a gain switched DFB laser, with
an FSR of 17.6 GHz. Operating conditions: 58 mA bias current, 22 dBm RF
drive.

optimum performance [7], [11], and swept to observe system

limitations.

The modulated and un-modulated tones are both passed

through an optical bandpass filter (OBPF) to increase the rejec-

tion of adjacent optical comb tones. The tones are then coupled

together, amplified to 7 dBm using an EDFA and transmitted

through the fiber. At the RRH side, a variable optical attenuator

(VOA) is used to restrict the input power to the 70 GHz PIN

photo-diode to 0 dBm. The optical components undergo photo-

mixing on the diode with the term of interest resulting from the

beating of the un-modulated optical tone and the UF-OFDM

data bands - produced at 54.8 GHz. This mm-wave signal is

amplified with a 60 GHz RF amplifier, transmitted through a

50 cm long waveguide and mixed down to the original RF fre-

quencies using a 52.8 GHz local oscillator (LO). The electrical

signal is band-pass filtered and captured using a Tektronix real

time oscilloscope (RTS) sampling at 50 GSa/s. De-modulation

and EVM calculations are performed off-line.

IV. NUMERICAL SIMULATION

The constructed system simulator is designed in Matlab and

closely resembles the experimental system shown in Fig. 1. This

way, the impacts on the system performance of the comb source

phase noise, and relative path delay between the modulated

and un-modulated carriers which beat on the photo-diode to

generate the mm-wave data, can be modeled. To simulate the

gain-switched comb source with 17.6 GHz FSR, we numerically

create an idealized comb source with nine equal-amplitude comb

tones. The condition for creating a frequency comb is that each

comb tone has exactly the same (i.e., correlated) phase noise

with a specified linewidth broadening of the tones. Therefore

we can write the optical field for the comb as

(

4
∑

k=−4

√
1 + nRIN · Ekexp

(

j2πk∆fFSR t
)

)

exp(ϕ(t)) (1)

where Ek represents the optical field amplitude of the kth comb

tone, therefore |Ek |2 represents the optical power of the kth
comb tone. ∆fFSR is the FSR of the comb source and taken to be

17.6 GHz throughout. The phase noise of the comb is contained

within the term ϕ(t). The calibrated random-walk phase noise

can be generated by firstly generating f̂(m) taking M samples

(one for each sampling point in the entire signal) taken from a

Gaussian distributed randomly generated waveform with zero-

mean and unity variance. The random walk phase noise at the

lth time step is then implemented by taking a scaled running
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Fig. 3. Simulated comb of ideal carrier with added arbitrary linewidth, filtered
tones and data (in red).

sum of f̂(m), [20],

ϕ(l) =
√

2πBots

l
∑

m=0

f̂(m) (2)

where Bo is the 3 dB linewidth and ts the signal sampling period

- taken to be 1 ps throughout the simulation. nRIN represents

the RIN of the OFC and is generated by taking

nRIN = hLPF ⊗
√

RINlin/ts · en (3)

where en are the samples taken from a unity variance, zero-

mean Gaussian distribution, RINlin is the the value of RINdB

in linear terms. These samples are band limited by convolution

with a 10 GHz low pass filter with the impulse response hLPF .

As in the experiment, two comb tones separated by 3

×∆fFSR are filtered out. We numerically implement Gaussian-

shaped OBPFs to filter two individual comb tones Ec1 and Ec2

spaced by 52.8 GHz - achieving the functionality of the WSS

in the experimental system. Fig. 3 shows the simulated optical

comb with 100 MHz linewidth (in black) and the filtered tones

(one with CS-SSB modulation) separated by the mm-wave fre-

quency of 52.8 GHz (red). The variable delay is implemented

by circularly shifting the numerical array representing the op-

tically band-passed field of the un-modulated comb tone by a

number of samples points that correspond to the chosen delay

Td . The other comb tone is modulated by driving a complex

I/Q modulator with the same UF-OFDM waveform outlined in

Section II. The biasing conditions of the simulated modulator

are set so that the optical field of Ec2 is modulated according to

the field of the driving signal, and SSB modulation of the opti-

cal carrier is achieved. The un-modulated and modulated comb

tones are then combined to form the composite optical signal.

Fiber transmission through 25 km of SSMF was simulated by

modeling the propagation of the electric field using the non-

linear Schrödinger equation (NLSE), which was solved using

the split step Fouier method for ten steps per km over the length.

Photo-mixing of the optical components occurs at the modeled

high speed photo-diode to create an electrical mm-wave 5G

signal (carrier at 52.8 GHz). The electrical photo-current is

generated as:

Ipd = Rpd |Ec1(t − Td) + Ec2(t)|2 (4)

Fig. 4. Simulated generated mm-wave carrier and SSB OF-OFDM data bands.

where Rpd is the responsivity in A/W of the photo-diode. We

add the shot noise generated by the photo-diode with power

spectral density:

Ish = 2q〈Ipd〉. (5)

We can ignore the DC and low-frequency terms due to the

RF band-pass filtering of the modulated signal generated at

52.8 GHz. The detected photo-current of the mm-wave signal

centered at 52.8 GHz is effectively given by:

iRF(t) = RpdE∗
c1(t − Td)Ec2(t) (6)

We can see immediately from iRF(t) that the residual phase

noise transfer from the optical comb tones to iRF(t) can be

written as:

ϕRES(t) = ϕ(t) − ϕ(t − Td). (7)

Therefore, if the path delay difference for the two correlated

comb tones is zero, then the phase noise of the mm-wave signal

generated through photo-mixing is essentially zero, and hence

optimum system performance is achieved. Though, when the

delay between the two paths is not zero, the phase variance of

the difference between the phase terms is by definition, [21],

〈[ϕ(t) − ϕ(t − Td)2〉 = 2πBo |Td |. (8)

Therefore, the time delay between the optical tones reduces the

level of correlation between them leading to additional phase

noise on the generated RF signals - thus degrading system per-

formance. Fig. 4 shows the simulated generated mm-wave car-

rier and data where there is no inserted time delay, Td = 0
(i.e., perfect correlation between optical tones). From the

zoomed inset, the ‘delta function-like’ carrier can be observed

as this condition results in zero phase noise transfer to the mm-

wave carrier generated by the heterodyne technique.

The complete simulator allows us to understand the system

performance by being able to adjust the system parameters such

as the linewidth Bo and RIN level nRIN of the comb tones as

well as the effective path delay Td between the two filtered comb

tones. Excellent matching is achieved when the simulator is set

to match the experimental conditions under test, as shown in the

following sections.
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Fig. 5. Linewidth versus EVM when uncorrelated light sources are used for
heterodyning in the simulated mm-wave RoF system.

V. RESULTS AND DISCUSSION

A. Impact of Source Linewidth

For mobile communications typically employing multi-

carrier modulation with low subcarrier baud rates, potentially

less than 1 MHz, the photonic generation of a mm-wave carrier

with sufficiently low phase noise will be of paramount impor-

tance.

Considering the use of independent laser sources (i.e., laser

sources with uncorrelated phase noise) in a heterodyne system;

the phase noises from both lasers will add and the linewidth

of the mm-wave carrier will be the sum of the linewidths of

the two optical sources. The fact that the optical sources are

uncorrelated places a tight restriction on linewidth - in order to

produce a mm-wave carrier with tolerably low phase noise. In

the simulation, two independent optical sources were modeled

by restricting the optical carrier number to two and generating

both with the same 3 dB linewidth, Bo , though both sources

having uncorrelated phase noise. Fig. 5 shows the overall sim-

ulated system performance in terms of average received EVM

versus linewidth when two independent laser sources are used

in the mm-wave heterodyne system. The figure shows that for

the implemented system, with a moderate UF-OFDM subcar-

rier baud rate of 2 MHz, optical sources with a linewidth of

<30 and <70 kHz are required for performance on the 64 and

16-QAM forward error correction (FEC) thresholds, respec-

tively. These linewidths corresponds to 1.5% and 3.5% of the

subcarrier baud rate used (shown on the upper x-axis in the fig-

ure), respectively. Considering the requirements for a 64-QAM

multi-carrier scheme; for subcarrier baud rates of ≥1 MHz,

two independent ECLs (typical linewidth 10–20 kHz) may pro-

vide the necessary linewidth and tunability required for flexible

mm-wave signal generation. However, for mobile systems em-

ploying lower subcarrier baud rates with higher order modula-

tion, ECLs are incapable of providing the sub-kHz linewidth

necessary. This fact, coupled with their bulkiness and expense

will limit the feasibility of their implementation in future mm-

wave systems for mobile communications.

For transmitters employing coherent optical carriers, such as

an OFC, total cancellation of the mm-wave beat tone’s residual

Fig. 6. EVM versus relative delay for various linewidths (experimental and
simulation).

phase noise can be achieved provided that the optical carriers

experience the same path delay through the system (as indicated

by equation (7)). Our previous work has explored the use of

effective path length pre-compensation at the transmitter side

to ensure maximum correlation between optical carriers in a

mm-wave heterodyne system employing MHz linewidth OFCs

[7], [11]. Here, we analyze the performance of the constructed

system for varying effective path length differences between the

optical carriers, with regard to their linewidth.

Fig. 6 shows experimental and simulated system performance

when a relative delay between the optical carriers over a range

of ±210 ps (restricted to 0–210 ps in experimental testbed)

is introduced. Clearly, optimum performance is achieved for a

relative delay of 0 ps where both simulated and experimentally

received UF-OFDM signals exhibit an average EVM of ∼5%,

irrespective of OFC linewidth. The figure shows that the extent

to which performance is degraded, as relative delay increases,

depends on the linewidth of OFC comb tones. This can be

explained as the linewidth of the tones is inversely proportional

to their coherence time, and hence their correlation with respect

to a given delay, Td . This leads to the parabolic relationships

shown in Fig. 6. A delayed self-heterodyne technique [22] was

used to experimentally measure the linewidth of the OFC used

(see Fig. 2) which was found to be 100 MHz. When the comb

undergoes external injection from the ECL - for comparative

reasons - the linewidth reduces to 2 MHz. It is important to

note that, the OFC linewidth achieved when optical injection is

performed is highly dependent on the injection conditions, such

as power and wavelength detuning [23]. The master ECL in this

case had a linewidth of approximately 16 kHz.

The figure highlights a clear trade-off between the use of

higher linewidth OFCs, and the tolerance to effective path length

differences in the system (due to either transmitter/receiver de-

sign or fiber dispersion). Excellent matching between experi-

mental and simulated results is exhibited with average EVM

performance reaching the 64-QAM FEC threshold for a rel-

ative delay of about 90 ps in the 100 MHz linewidth cases.

This represents an effective optical path difference of less than

2 cm. EVMs for the 2 MHz linewidth cases do not exceed 6%

over the tested delay range, providing a system margin before

encountering the FEC threshold.
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Fig. 7. Optical spectra OFCs generated under various biasing and RF drive
signal conditions. (a) 50 mA bias current, 23.5 dBm RF drive, (b) 50 mA bias
current, 22 dBm RF drive, (c) 62 mA bias current, 19 dBm RF drive.

B. Impact of Relative Intensity Noise

RIN is a random fluctuation of the laser’s intensity with re-

spect to time. Our previous work has shown that the RIN trans-

ferred to the generated mm-wave tone, as a result of optical

hererodyning, impairs the performance of 60 GHz RoF systems

[24]. A detailed investigation of the impact of other amplitude

noise contributions can be found in [25].

In order to study the effects of RIN in this experimental

system, four OFCs were generated (shown in Figs. 2 and 7)

by using four sets of operating conditions; namely laser bias

current and the power of the RF drive signal used to perform gain

Fig. 8. Measured RIN profiles for the OFCs shown on Figs. 2 and 7.

switching (given in the captions in Figs. 2 and 7). Fig. 8 shows

the experimentally measured RIN profiles of one tone from each

tested OFC. Comb tones of the same OFC with similar power

levels exhibit similar RIN profiles. Both the bias current and

RF drive power affect the ‘depth’ of gain switching (i.e., the

proximity of the RF drive signal to the laser threshold current).

This results in OFCs with a varying number of comb tones and,

importantly, levels of RIN, as shown by Fig. 7 and corresponding

profile in Fig. 8. The greater the depth of gain switching, the

greater number of optical tones are generated, with a higher

level of RIN (and vice-versa).

This presents another interesting system trade off. At the

expense of increased RIN, a greater number of tones are at-

tained allowing flexibility in terms of; i) the tones which can

be selected for heterodyning and ii) the facilitation of increased

network functionality, by using the same OFC to provide optical

carriers for multiple mm-wave heterodyne receivers. It should

also be mentioned that OFC ‘flatness’ (i.e., the amount of comb

tones within a given power range) is often used to assess the

quality of optical combs, and depends greatly on the afore-

mentioned laser driving conditions. The requirement for comb

flatness, for heterodyne systems such as the one proposed in

this work, is lessened due to the fact that just two comb tones,

spaced by the desired mm-wave, are selected for heterodyning.

This widens the range of operating conditions which can be

successfully employed as evidenced by the following results.

Fig. 8 not only shows how RIN levels change for the driving

conditions but also how the profile changes with respect to fre-

quency. Over the relatively small bandwidth of the transmitted

UF-OFDM bands (centered around 2 GHz), the RIN profile can

be approximated as flat, and this is the approach taken in the sim-

ulation. However, Fig. 8 shows how the placement of the data

bands hold importance for system performance as, for the OFCs

tested, RIN levels between the frequencies of 2 and 4 GHz vary

by approximately 4-5 dB/Hz. By the same token, maximizing

data throughput by increasing signal bandwidths must be car-

ried out while remaining cognizant of the source RIN profiles in

order to maintain sufficient system performance, as investigated

in [24].

Fig. 9 shows the experimental ((a), (b)) and simulated

((c)–(d)) received constellation diagrams, and corresponding

EVMs of the first UF-OFDM band (centered at 1.7 GHz from

the mm-wave carrier), for the OFCs exhibiting the lowest and
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Fig. 9. Received experimental ((a),(b)) and simulated((c),(d)) constellations
for the UF-OFDM band centered at 1.7 GHz from the carrier. (a) 5.4% EVM,
RIN: −132 dB/Hz, (b) 7.7% EVM, RIN: −115 dB/Hz, (c) 5.2% EVM, RIN:
−132 dB/Hz, (d) 7.4% EVM, RIN: −115 dB/Hz.

highest levels of RIN. In all cases, the OFC was free running

(i.e., un-injected) and effective path lengths were matched for

optimum performance. The experimental performances of 5.4%,

6.2%, 7.1% and 7.7% EVM were in line with the corresponding

RIN measurements at the test frequency: −132, −125, −120

and −115 dB/Hz, respectively. Similar performances are at-

tained by simulation (examples in Fig. 9(c) and (d)) where a

smaller number of transmitted symbols were employed in order

to reduce computational complexity. Again, these results indi-

cate excellent matching between the constructed simulator and

the experimental testbed.

VI. CONCLUSION

The exploitation of available free spectrum and proliferation

of fiber connections to small cell sites have been identified as key

requirements for future networks. This will make the bandwidth

and services envisaged for 5G, and future mobile communica-

tions, a reality. Photonic based mm-wave communications can

help to satisfy these requirements by handling mobile data trans-

port efficiently through the synergy of the electronic and optical

domains. For future mobile mm-wave RoF systems employing

heterodyning, OFCs hold great potential as they provide a cost

effective and flexible means for the generation of suitable optical

carriers.

An optical heterodyne RoF mm-wave simulator has been

developed and excellent matching between simulated and ex-

perimental results is obtained. In both the experimental and nu-

merical systems, the transmission of five bands of UF-OFDM,

with an aggregate data rate of 4.56 Gb/s, using a complex

optical modulator to achieve SSB modulation, is successfully

demonstrated.

This work has shown that coherence between the transmit-

ted optical carriers is a highly advantageous feature of OFCs

for these systems, specifically considering the subcarrier baud

rates associated with mobile multi-carrier modulation schemes.

The work has highlighted the strict, and potentially inhibiting,

linewidth requirements placed on uncorrelated optical sources

for use in future heterodyne systems designed to transmit multi-

carrier mobile modulation formats. Furthermore, the analysis

of the impact of RIN has indicated a trade-off, in these sys-

tems, between overall system performance and the potential for

increased networking flexibility. This serves to inform impor-

tant design rules for the future development and deployment

of OFC based heterodyne mm-wave communication systems.

Through the results obtained, and the analysis provided, the

paper presents a thorough examination of the limitations and

trade-offs associated with the practical implementation of these

systems.
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