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Organizations that rely on cyberspace as a mission-critical asset require advanced situational awareness 
to maintain a tactical advantage over emerging threats. A new cyber–situational awareness framework 
relies on the OODA (observe, orient, decide, act) cycle to provide near real-time cognitive mapping for 
corporate environments. 

C ybera� acks are considered a major corporate and 
even national threat. Our dependence on cyber-

infrastructures is so omnipresent that security incidents 
can lead to disastrous e� ects. In 2007, a series of coor-
dinated cybera� acks on Estonian banks, parliament, 
ministries, newspapers, and TV stations showed that 
critical parts of an entire country’s cyberinfrastructure 
can be rendered completely unavailable for days.1 Com-
panies such as Amazon and eBay that o� er online ser-
vices to customers can expect to lose up to millions of 
dollars per day when their services are down. Perhaps 
even more dramatic are a� acks aiming to steal sensi-
tive data or sabotage critical infrastructure. � e 2010 
Stuxnet a� ack resulted in signi� cant physical damage to 
Iran’s nuclear facilities, destroying years of work.

Despite several decades of research on intrusion 
detection and prevention and billions of dollars of 
annual worldwide investments in IT security technolo-
gies, the threat landscape hasn’t changed signi� cantly. 
Most recent a� ack reports, such as Red October in 
2013, reiterate the high asymmetry between a� ackers 
and defenders and the fact that government organiza-
tions and companies still can’t deal with cyberthreats 
appropriately.2 Even large IT security solution vendors, 
such as RSA, have experienced cybera� acks that have 
led to severe damage to � nances and reputation.3

Almost all nations have realized that the current 
cyberthreats must be addressed decisively with a more 

holistic approach, and governments have recently come 
up with national cyberdefense strategies to reduce their 
vulnerability. Although di� erences exist among these 
strategies, especially in the use of o� ensive countermea-
sures, all identify the lack of cyber–situational aware-
ness as a key problem in IT infrastructure operation. 
Unfortunately, many organizations view cybersecurity 
as a necessary evil and address security by achieving 
point-in-time compliance to industry and government 
standards, which still mostly lack the notion of cyber–
situational awareness. � erefore, enterprises implement 
only minimum requirements to pass annual certi� ca-
tion. However, to e� ectively handle cyberthreats, orga-
nizations should go further by continuously taking into 
account current threats, vulnerabilities, risks, and their 
potential business impact.

Situational awareness has long been a fundamental 
military capability in warfare; thus, it’s not surprising 
that the � rst concepts for cyber–situational awareness 
originated in the military domain.4,5 However, basic 
cyber–situational awareness capability is necessary 
to master the complex cyberthreats in nonmilitary 
domains as well. Private companies and critical infra-
structure operators are now challenged to implement 
similar capabilities.

In this article, we propose a cyber–situational aware-
ness framework based on the OODA (observe, orient, 
decide, act) cycle. Originally developed by Colonel 
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John Boyd of the US Air Force,6 the OODA cycle is 
the classical decision support model used in military 
operations, providing cognitive mapping from the low-
est state level, such as sensor-derived raw information, 
to the highest level of inference, such as comprehensive 
analysis of threats and vulnerabilities requiring reme-
diation by human actions. In a typical military system, 
data sensors observe hostile activity, such as vehicle 
motion, wireless emissions, or approaching missiles. In 
cyberspace, the sensors are di�erent, but the concept is 
similar. Cybersensors observe information �owing in 
networks from sni�ers and extract information from 
system log �les, network management tools, user pro�le 
databases, system messages, and operator commands. 
Human analysts interested in malicious intruders’ iden-
tity, a�ack rate, threat, and impact must have a compre-
hensible view of these activities.

Our framework’s novelty lies in its technical realiza-
tion. Although the OODA cycle has been conceptually 
suggested to achieve cyber–situational awareness for 
humans,4,5 existing frameworks don’t provide a techni-
cal implementation at all stages of the OODA loop and 
thus delegate most of the required tasks, such as sensor 
data fusion, inference, reasoning, and decision making, 
to humans. In most large organizations, the technol-
ogy, business, and information assets of the cyberspace 
domain are too complex to be captured and understood 
without technical assistance, and automation tools 
are necessary to assist human decision makers. Our 

framework relies on the use of Semantic Web technolo-
gies and formal ontologies to model an organization’s 
cyberassets and their interdependences. We support 
reasoning with an integrated decision support system 
that accounts for tradeo�s and uncertainties.

Scope and Objective
Imagine a large company that operates a private cloud 
infrastructure to provide critical IT services to its busi-
ness divisions. �e cloud infrastructure uses thousands 
of servers, and millions of clients access those services 
from the Internet every day. �e infrastructure is con-
stantly a�acked by malware, malicious outsiders, or 
insiders aiming to steal sensitive data, corrupt business 
operations, or achieve �nancial gains. �ese a�acks 
might manifest in denial of service, so�ware exploita-
tion, code injections, bu�er over�ow, phishing, data 
ex�ltration, and so on. �is scenario is today’s reality 
for many corporations, which need to detect and react 
to a�acks to mitigate business impact and guarantee 
un interrupted, safe, and secure business operations.

�e Cyberdomain
To achieve cyber–situational awareness, we must �rst 
address the cyberspace domain’s scope and boundary: 
what are the key elements and components to con-
sider? �e term “cyberspace” is used broadly to describe 
the virtual world of computers and the networks con-
necting them. In this article, cyberspace refers to three 
highly interconnected domains, as Figure 1 depicts. 

At its core, the technology domain corresponds to the 
physical infrastructure, such as networks, switches, and 
routers, as well as the so�ware infrastructure, including 
operating systems, virtualization environments, and �le 
or database management systems. Middleware, appli-
cations, and services complete this domain. �e other 
two domains are business and information. Business pro-
cesses are increasingly implemented as so�ware that 
can be transformed automatically into executable ser-
vice code. �erefore, business process models might 
become exposed to unwanted manipulations like any 
other so�ware element in cyberspace. Similarly, infor-
mation assets are increasingly becoming targets of 
external a�acks and manipulations. Status and usage 
of documents, structured data in databases or data 
warehouses, knowledge modeled with ontologies, and 
human expertise contribute to situational awareness 
and should thus be included in our cyberspace repre-
sentation. However, not all elements of the business and 
information domains are part of the cyberspace domain 
(indicated by the dashed border in Figure 1); there will 
always be important physical assets and processes out-
side the cyberspace domain and essential knowledge 
internalized only in people.

Figure 1. �e cyberspace domain consists of technology, business, and 

information domains. Note that elements of the business and information 

domains might represent part of cyberspace as we define it, as a great deal of 

business processes and important information assets are implemented and 

respectively contained in software elements that might become exposed to 

unwanted manipulations. 
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Figure 2. Information process chain to achieve cyber–situational awareness. �e state of cyberspace is assessed with 

sensors that continuously or reactively monitor the environment. Situational awareness is achieved by means of data 

fusion and inference on the data that is stored and expressed in a common representation format, allowing optimizations, 

simulations, and visual representation of the overall state of the system to support decision makers.
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From Sensors to Situational Awareness
According to Mica R. Endsley, situational awareness 
comprises three steps: perception (level 1), compre-
hension (level 2), and projection (level 3).7 Level 1 
is the perception of elements in time and space that 
are important to a particular decision maker. Level 2 
involves a synthesis of disjointed elements from level 1 
that need to be understood in the context of the deci-
sion maker’s role to make a sound decision. Level 3 is 
the projection of that understanding into the future to 
predict the impact of those elements in the context of 
the decision maker’s current situation.

In general, situational awareness implies human aware-
ness. However, full awareness of the state of today’s typi-
cal complex cyberspace is impossible without supporting 
technology and automation. It’s in this sense that our 
framework aims to support the system’s perception, com-
prehension, and projection for human decision makers.

Figure 2 shows our framework’s information �ow 
model. At the lowest level, sensors pick up activity, con-
�guration, and topology information from the technol-
ogy, business, and information domains to achieve level 
1 situational awareness. �e challenge is combining the 
data from the variety of sensors in di�erent formats, 
ranging from network �ow records to usage statistics 
and topology graphs. Sensor data must be normalized, 
cleansed, and transformed into a suitable common rep-
resentation format on the syntactic level. �is data is 
stored in a semantic data store as basic facts about the 
cyberinfrastructure’s history and the current state. 

To support level 2 situational awareness, elements 
from this common representation are linked in the 
semantic data store to provide semantic meaning and 
inference capabilities on the cyberinfrastructure com-
ponents and assets. Data fusion therefore creates an 
overall model of the cyberspace domain, including the 
state of and dependencies among its components, using 
the data in the semantic data store. Further inferenc-
ing capabilities act on incomplete or con�icting infor-
mation to propagate the components’ problem state to 
higher levels of dependent services and form a cyber-
space model that correctly represents the state and 
dependencies over time.

Finally, level 3 situational awareness enables projec-
tions into the future using the representation cyber-
space model in combination with specialized abstract 
models. Visualization of the cyberinfrastructure in a 
cyberoperational picture allows stakeholders quick 
understanding, analysis, and decision making. Various 
underlying models are also used for more complex, 
multiobjective optimization problems and projected 
simulations of the cyberinfrastructure’s future develop-
ment to quickly and e�ciently support decision makers 
in achieving situational awareness.

Situational Awareness Framework
As previously stated, the OODA loop is the classi-
cal decision support model used in military combat 
operations. According to Boyd, an entity that can pro-
cess this cycle more quickly than its opponent can get 
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ahead of the opponent’s decision cycle and thus gain 
the advantage.

Figure 3 shows the four steps of the OODA loop. 
Note that the “loop” is actually a set of interacting loops 
in continuous operation. �erefore, in complex pro-
cesses with multiple decision makers, the situation is 
much more complex than the �gure indicates, as deci-
sions involve a team of people observing and orienting 
simultaneously on di�erent system levels and timescales.

For example, typical decisions are needed to per-
form remediation actions in service outages or system 
compromises. According to the model, observations are 
�rst made by collecting raw information from sensors, 
such as cyberspace topology, activity, or security sen-
sors. �is information is then processed during orienta-
tion to provide the status of the cyberassets, including 
infrastructure, services, applications, information, and 
business processes. Feedback is possible at all stages of 
the loop if more observations are necessary for be�er 
orientation and more informed decision making. 

Cyberspace is closely coupled with the physical 
environment; actions in the cyberspace domain might 
directly impact the external environment, and vice versa. 
In Endsley’s de�nition of situational awareness, percep-
tion can be viewed as part of the observe phase, whereas 
comprehension and projection are more related to the 
orient and decide phases of the OODA loop, respectively.

Observe
�e observables of interest to achieve cyber– situational 
awareness far exceed assessing point-in-time compliance 
and must include continual and detailed insights from 

technology, information, and business domains. At a min-
imum, we need a holistic view of the following factors:

 ■ topology and con�guration,
 ■ user and administrator activity,
 ■ implicit commands and security controls,
 ■ so�ware and service vulnerabilities,
 ■ current threats,
 ■ ongoing a�acks, and
 ■ unfolding interaction with the physical environment.

�ese features must be monitored continuously at 
the device, service, and application levels using a range 
of cybersensing and automated auditing technologies. 
For example, deployed topology and con�guration are 
discovered through con�guration management data-
bases (CMDBs), Simple Network Management Protocol 
traps, access policies, process models, and dynamic dis-
covery tools such as nmap or traceroute. User activities 
are captured by logs including logon times, service access 
statistics, and network monitoring. Host-based intrusion 
detection systems (antivirus so�ware); network- based 
intrusion detection systems, such as Snort (h�p://snort 
.org); and incident tickets report a�acks and threats. 
Automated scanners, such as Nessus (www.tenable.com 
/products/nessus), discover vulnerabilities. 

Information from sensors can be represented in dif-
ferent semantics and produce huge data volumes. �ere-
fore, sensed information must be fused and aggregated, 
reducing the initial data while maintaining the ability to 
drill down and retrieve information on demand, which 
is the goal of the orient phase.

Figure 3.  OODA (observe, orient, decide, act) loop for advanced situational awareness in cyberspace (inspired by Christian Sorensen’s “Cyber 

OODA: Towards a Conceptual Cyberspace Framework”4). �e goal is to process this cycle quickly by observing and reacting to unfolding events 

more rapidly than an opponent and therefore gain the advantage.
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Orient
In the orient step, we focus on analyzing the meaning 
of the observed activities with the overall goal to deter-
mine the impact on the security state in the near future. 
�e key dimensions of cybersecurity for this purpose 
are con�dentiality, integrity, and availability (CIA). 
Information collected in the observe phase is combined 
in the orient phase to provide suitable metrics for the 
individual components across these three dimensions. 

Although the cybercomponents’ availability is gener-
ally much easier to assess than con�dentiality or integrity, 
security sensors, such as virus scanners and intrusion 
detection systems, might provide appropriate indicators 
of individual hosts’ and services’ security states. For exam-
ple, when an antivirus so�ware raises security alarms, we 
might infer that the host’s integrity and con�dentiality are 
compromised. Security state is generally transitive—that 
is, when a host’s operating system is compromised, the 
�les and processes running on that host might be com-
promised. Similarly, all encryption keys this host uses to 
access remote services might be compromised.

To enable continuous security tracking, the sys-
tem must constantly fuse sensor information from 
the observe phase. In this context, there’s a tradeo� 
between pulling sensor data on demand and having the 
sensors push the most recent updates. With the multi-
tude of sensors and the large amount of data, the la�er 
might result in a huge overhead. However, we can com-
bine both strategies for optimal orientation depending 
on the deployment context. 

Fusing sensor information is challenging as it 
requires a suitable real-time model of the cyberspace 
domain. Over the years, standards and so�ware frame-
works have been proposed to model IT infrastructure 
elements and their dependencies. Of these e�orts, the 
Distributed Management Task Force’s Common Infor-
mation Model (CIM; h�p://dmtf.org/standards/cim) 
is a�ractive because it has high development maturity, is 
in active development, and has a broad reach across the 
industry. However, CIM is class based, subject to a very 
strict structure, and not easily extensible. 

A more �uid way to capture structured data is the 
Semantic Web approach, which allows very �exible data 
modeling.8 �e Semantic Web’s format and technologies 
have largely been standardized by the W3C Consortium 
(www.w3.org/standards/semanticweb). Most impor-
tant, it aims to capture the enormous amount of very 
general data currently available on webpages for human 
consumption and convert it into machine- readable for-
mats. Many tools for handling extremely large (Internet-
scale) amounts of data are freely available.

We combine the best parts of CIM and the Semantic 
Web, modeling the cyberspace domain according to a 
Semantic Web representation of CIM. In the Semantic 

Web model, resources are expressed with the very gen-
eral structure of triples {subject}-{predicate}-{object} 
to describe all facts and relationships. �ese triples 
are standardized as Resource Description Framework 
(RDF; www.w3.org/RDF) in which subjects and 
predicates are de�ned as Uniform Resource Identi�ers 
(URIs) and objects are de�ned as either URIs relat-
ing to another named component or literal values to 
capture data. �is results in a data model expressed in 
a graph structure. �e following example RDF graph 
shows protocol services used in our reference imple-
mentation (in N3 notation):

csa:atm_a1_svc

    cim:ElementName “ATM Service A1”;

    rdf:type cim:ProtocolService;

    cim:ServiceUsesSecurityService     

      csa:kdc_atm_svc. 

csa:kdc_atm_svc

    cim:ElementName “KDC Service”;

     rdf:type cim:KerberosKeyDistributi 

  onService;

     cim:ServiceAffectsElement csa:kdc_ 

  atm_key.

�ese RDF statements describe an air-tra�c monitor-
ing (ATM) service and its dependencies on a Kerberos 
key distribution service.

In addition to the basic RDF triples representing 
the data, higher-level standards such as RDFS (www 
.w3.org/TR/rdf-schema) and OWL (www.w3.org 
/TR/owl-features) allow the de�nition of schemas 
and classes with constraints—that is, ontologies. A 
standardized query language for these graphs, called 
SPARQL (www.w3.org/TR/rdfsparql-query), is simi-
lar to the database query language SQL but adapted for 
graph-matching queries. For example, a SPARQL query 
of the form

SELECT ?service

WHERE {

   ?service rdf:type cim:ProtocolService.

   ?service cim:ServiceUsesSecurityService  

   ?secservice.

   ?secservice cim:ServiceAffectsElement  

   csa:kdc_atm_key. }

looks for a pa�ern of a service (variable  ?service), 
which is itself a cim:ProtocolService and depends 
on a security service (variable ?sec service), which in 
turn depends on the speci�c Kerberos key csa:kdc_
atm_key. �e query looks for subgraphs matching 
this pa�ern and will output all services depending 
on this Kerberos key as speci�ed by the SELECT 
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statement. In this example, the only result is the service 
csa:atm_a1_svc.

�is type of structured knowledge representation 
enables advanced inferencing and reasoning on the 
data as required for orientation. For example, know-
ing that a Kerberos key has been compromised, the 
system can infer that a service using this Kerberos ser-
vice is also compromised. �is type of inferencing can 
be performed by a simple SPARQL query in which the 
reasoner reports all services depending on a cim:-
KerberosKeyDistributionService using a compro-
mised Kerberos key. In other words, we can detect the 
compromise of services indirectly by identifying com-
promised services on which they depend. We can for-
mulate advanced queries like this to answer questions 
for the orient and decide phases. 

Decide
Decision making is the process of identifying and 
selecting a course of action to solve a speci�c problem. 
In the OODA loop, a decision is based largely on obser-
vations of the evolving situation, tempered with clas-
si�cation and implicit �ltering of the problems being 
addressed. Observations and their meanings derived 
from SPARQL queries of the previous phases estab-
lish the input and the derived knowledge of situational 
awareness for decision making.

Decisions can be complex, with two major obsta-
cles potentially constraining an optimal decision: 
 tradeo�s—for instance, among con�dentiality, integrity, 
and availability—and information uncertainty.

Assume we observe anomalous network tra�c pat-
terns indicating a malware infection on a central net-
work node. Should we isolate this node, endorsing the 
node data’s integrity and con�dentiality at the cost of 
reduced or disrupted availability? What if the intrusion 
detection turns out to be a false positive? A detailed cost 
representation of alternative actions and a quantitative 
credibility measure for the observed situation would be 
highly bene�cial for the decision process.

Tradeo�s. �e goal of security is to protect critical infor-
mation infrastructures’ CIA. Tradeo�s among CIA 
have been described extensively in the literature.9 �e 
traditional view of tradeo�s is an economical one: a 
cost function can determine an optimal proportion of 
resource allocation and minimize the total cost. Han-
dling several allocation components—three in the case 
of CIA—results in a multiobjective optimization prob-
lem, also called Pareto optimization.10,11 

Optimal tradeo� solutions also depend on the 
system’s domain: an online retail business might 
place high value on availability, whereas retail bank-
ing might promote data integrity and con�dentiality. 

Note that optimal resource allocation might change 
dynamically if the cyberspace situation alters. An 
external event—such as the malware a�ack in our ear-
lier example— might drive an immediate decision to 
reallocate resources.

In addition, awareness of cross-domain activities 
might be required when moving from an operational to 
a more strategic level. For example, the chief �nancial 
o�cer of a company selling online goods will be inter-
ested in how an event in the cyberspace domain in�u-
ences the ability to sell products and make pro�ts.

Information uncertainty. A low degree of belief in 
observed data is cumbersome in any decision process. 
Important information is o�en missing when sensors 
don’t capture the entire cyberspace state; a belief func-
tion revealing the plausibility of speci�c incidences 
would facilitate the decision process. In recent years, 
many models have been created to tackle the problem 
of information uncertainty and improve the degree of 
belief in sensory data, including Bayesian networks, 
Dempster-Shafer theory, and fuzzy logic. �e majority 
of these models use Bayesian statistics. 

In traditional statistics, probabilities are interpreted 
as the certainty, or uncertainty, that an event of a ran-
dom experiment occurs. By contrast, in Bayesian statis-
tics, probabilities reveal the plausibility that an event, 
such as a security incident, occurs. Most Bayesian infer-
ence models allow fusion of data from many di�erent 
sensory channels, which makes them convenient for 
sensor inputs.12 �e main problem lies in selecting the 
appropriate model for a given problem. Model selec-
tion depends largely on the knowledge of the probabil-
ity measures used for the inference13 and the di�erent 
types of uncertainty originating from data incomplete-
ness, data inaccuracy, inconsistency, ambiguity, inacces-
sibility, and malicious activities.

Act
Two types of actions result from a decision. On one 
hand, a decision maker might choose to address a 
problem by implementing direct countermeasures in 
cyberspace, such as blocking ports on a �rewall. �ese 
countermeasures will impact the system state and be 
visible through direct observations from cybersensors. 

On the other hand, decisions might lead to counter-
measures that result in changes in the physical world. 
For example, a company might choose to react to phish-
ing a�acks by asking its personnel not to open any 
emails with unknown origin. Such actions can indi-
rectly impact cybersystems if the action in the physical 
world in�uences the cyberspace domain. However, it’s 
also possible that such an action has no in�uence on 
the cyberspace state. In this case, the OODA loop is 
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e� ectively closed via the unfolding interactions with the 
physical environment at the observation level, as Figure 
3 shows.

Reference Implementation
To test our framework, we designed and implemented 
a demonstrator with the goal of creating a reasonably 
complex but still manageable functional playground 
for testing the ideas and bene� ts of a cyber–situational 
awareness system. In this article, we focus on an air-tra�  c 
monitoring service that’s part of a larger cyberinfrastruc-
ture with many interdependent services. 

To make the infrastructure realistic from an IT per-
spective, its components—servers, network devic-
es, applications, sensors, and monitoring tools—are 
fully implemented, though limited in scope, as virtual ma-
chines. � is ATM service consists of multiple (simulated) 
radar systems—redundant 
data- gathering serv-
ers running the main 
ATM service applica-
tion, accessible to users 
through load-balancing 
middleware. Kerberiza-
tion of the correspond-
ing services ensures 
strong authentication.

Observe
To achieve situational awareness on all system lev-
els, we deployed continuous and periodic sensors. 
We achieved continuous activity monitoring via host 
monitoring using the open source tool Munin (h� p://
munin-monitoring.org) and network � ow monitoring 
with the IBM Tivoli Netcool Performance Flow Ana-
lyzer. We monitored the con� guration setup using a 
CMDB and observed system log � les for state monitor-
ing (for example, of load-balancing components). We 
used Nessus to periodically scan all hosts and services 
for vulnerabilities. Deployed malware scanners and 
intrusion detection systems sent alerts to a central col-
lector to report security incidents or indicated threats 
through persistent a� acks. Together, these sensors pro-
vided the base for a holistic view of the current cyber-
space environment.

Orient
Most operational cybersystems lack a central collection 
and systematic evaluation of monitored information. 
� us, decision makers might be unable to make opti-
mal decisions because important pieces of information 
are unavailable to them. In our framework, sensor data 
is translated to a common syntax and semantics during 
the orient phase.

To achieve this, we developed adapters that translate 
all observed data dynamically into Semantic Web RDF 
triples and made them available as “Linked Data” (www
.w3.org/standards/semanticweb/data) for easy accessi-
bility. We used the CIM’s semantic terms for a common 
vocabulary and added missing terms where necessary. 
Dependencies among di� erent parts and services are 
also captured in CIM, represented as RDF triples, and 
enacted by adding the corresponding logical model in 
the form of explicit rules in the triple store that repre-
sents the “model cyberspace” in Figure 2.

On top of this model, our framework provides visual 
high-level views as well as drill-down views exposing 
more details of the infrastructure for analysis of lower-
level components and dependencies, if necessary. For 
this, we implemented a hierarchical representation of 
the overall system from top-level services and applica-

tions to components involved 
with all their interde-
pendencies. Figure 4 
shows selected views 
of the demonstrator’s 
c y b er– s i t u at i o na l 
awareness console.

Figure 4a shows 
the top-level view of 

all high-level services and applications; users can drill 
down by clicking the components. For each compo-
nent—be it an application, service, or business process 
in the di� erent views—we assigned the corresponding 
security state for CIA. Information about the compo-
nents’ dependencies and their security states is inferred 
through rules and SPARQL queries. � e lower right 
shows a list of recent events related to the selected com-
ponents’ security.

One major di� erence in traditional monitoring 
tools is that views are generated by automated dis-
covery, whereas conventional systems require manual 
work. Hence, views will automatically update when 
the infrastructure changes. In addition, our RDF-based 
representation of the cyberspace domain is vendor 
independent and extensible; therefore, any component 
can be represented in the model without restrictions. 

In addition, we can see the state of services and appli-
cations in the CIA security dimensions; for example, Fig-
ure 4 shows the status a� er a key compromise in the ATM 
service and the unavailability of a support service server. 
Corresponding services are marked in red in all views to 
highlight the problems, with “C,” “I,” and “A” indicating 
problems with the component’s con� dentiality, integ-
rity, and availability, respectively. Using the dependencies 
among the services, the underlying logical model spreads 
these problems to dependent services, which also change 
to red or yellow according to their importance. � ese 

ant 

Awareness of cross-domain activities 
might be required when moving from an 

operational to a more strategic level.
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Figure 4. Cyber–situational awareness demonstrator. (a) Interactive top-level view of services and applications with color codes and 

confidentiality, integrity, and availability (CIA) icons indicating all services’ security states and interactive drill-down views for the Airspace 

Monitoring service’s (b) logical component dependencies, (c) geographic location, (d) dependency graph and CIA compromise chain, and  

(e) decision support view o�ering di�erent remediation plans and their security–cost tradeo�s. 

(a)

(b)

(d)

(c)

(e)
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dependencies are usually so complex that administra-
tors and decision makers can’t appropriately account for 
the impact of speci�c problems across the cybersystem. 
With a formal representation of the cyberassets and their 
state representation with RDF triples, this inference can 
be performed using rules and SPARQL queries and thus 
accomplished by machines instead of humans.

Figures 4b–e show exemplary views (corresponding 
to di�erent detail tabs in the upper right of Figure 4a) 
when the Airspace Monitoring element is selected. Fig-
ure 4b shows the logical context and connections among 
the constituting components, and Figure 4c shows the 
components’ location. Again, these views are generated 
dynamically based on the formal model representation 
of the cyberspace domain. �e bene�t of this approach 
is even more evident in Figure 4d, which shows how the 
compromise of one ATM server (ATM A1 CS) leads to 
a compromise of the corresponding Kerberos key and 
thus the entire ATM service. �is type of reasoning 
enables a rapid assessment of the impact of a�acks on 
other system components to determine business risk.

Decide
As an example of support in the decide step, the dem-
onstrator projects actions of di�erent remedial work-
�ows into future system states. �is is particularly 
important for critical decisions that have alternate 
remedial plans. Starting with the compromised system 
state, this decision support function uses the depen-
dency model to calculate the system state during the 
remedial work�ows. 

Figure 4e shows the result of such a calculation for 
an ATM service compromise. �e decision support 
system evaluates work�ows created by human experts 
in the cybermodel and summarizes the projected state 
of CIA over time during the di�erent work�ows, visu-
alizing the impact of each as input for decision makers. 
In this case, three possible work�ows restore the ATM 
service’s full trusted state: the �rst minimizes the avail-
ability interruption (without involving other services), 
the second minimizes the time of service compromise, 
and the third aims to maximize availability during 
remediation by temporarily involving the support ser-
vice infrastructure (resulting in a longer compromise 
time for the ATM service and an additional outage of 
the support service). 

During this step, human decision makers must han-
dle tradeo�s and information uncertainty. By visualiz-
ing the state over time as projected during remediation, 
our framework helps decision makers understand the 
tradeo�s among di�erent action paths, weighing the 
importance of a highly available service against accept-
able business risk resulting from using a compromised 
service. Although a traditional IT business risk analysis 

might give some guidance on which decisions are be�er 
for risk minimization, our framework maps higher-layer 
business decisions to detailed infrastructure compo-
nents, providing more advanced situational awareness, 
including cost and security modeling.

Act
By selecting a remedial work�ow, decision makers trig-
ger the act step of the OODA loop—either starting 
automated work�ows or delegating tasks to system 
experts, administrators, or users.

I n contrast to existing OODA-based proposals, which 
leave much of the orientation and decision function 

to humans, we provide a technical implementation to 
support all phases of the loop. Although maintaining 
an up-to-date and valid ontological representation of 
cyberspace across technology, business, and informa-
tion over time certainly remains nontrivial, coordi-
nated e�ort by industry and academia toward this goal 
is a key prerequisite for achieving situational awareness 
and gaining an edge in cyberspace over current and 
future threats. 
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