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Abstract

Objective—The control of human bipedal locomotion is of great interest to the field of lower-

body brain computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop 

BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day 

closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet 

to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation 

when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or 

patient preferences.

Approach—In this study, we propose a real-time closed-loop BCI that decodes lower limb joint 

angles from scalp electroencephalography (EEG) during treadmill walking to control a walking 

avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in 

the delta band (0.1 – 3 Hz) were used for prediction; thus, the EEG features correspond to time-

domain amplitude modulated (AM) potentials in the delta band. Virtual kinematic perturbations 

resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait 

adaptation using the closed-loop BCI-VR system over a period of eight days.

Main results—Our results demonstrate the feasibility of using a closed-loop BCI to learn to 

control a walking avatar under normal and altered visuomotor perturbations, which involved 

cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across 

all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to 

(Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8.

Significance—These findings have implications for the development of a real-time closed-loop 

EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical 

plasticity induced by a closed-loop BCI-VR system.
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1.Introduction

Walking is a complex task, and its quality is usually determined by comparison to a smooth 

and symmetric walking gait pattern. However, patients with cerebral damage from stroke 

often adopt asymmetric walking patterns (Hsu et al., 2003, Lamontagne and Fung, 2004). 

Prior studies of gait adaptation to a split-belt perturbation, which creates asymmetric 

walking, demonstrated that temporal and spatial control for symmetric gait can be adapted 

separately (Malone et al., 2012). Moreover, the understanding of motor adaptation 

mechanisms may suggest appropriate interventions for gait rehabilitation. Analyses of 

aftereffects following split-belt treadmill adaptation showed that walking adaptation partially 

transfers to over-ground walking in patients post-stroke. This could imply that the 

persistence of improved symmetry can be used in gait restoration in post-stroke gait 

rehabilitation (Reisman et al., 2009).

Rehabilitation based on Virtual Reality or Virtual Environment (VR/VE) is an emergent area 

of research that provides several advantages to the patients and researchers (Bohil et al., 

2011, Holden, 2005). VE creates an interactive environment that immerses the user in the 

experimental setting. This is important in rehabilitation to ensure patient’s engagement and 

motivation to improve performance (Rizzo and Kim, 2005). Applications of VR/VE in 

rehabilitation are growing; for example, a VR soccer game was used to improve walking 

performance for pediatric rehabilitation (Brutsch et al., 2010). Another study showed the 

advantages of using VE in gait rehabilitation by creating an obstacle avoidance VE system 

during walking in chronic post-stroke patients (Jaffe et al., 2004). Moreover, there are a few 

randomized controlled trial (RCT) studies reported that VR could be beneficial for gait 

rehabilitation (Yang et al., 2008) and for improving balance in chronic stroke patients 

(Llorens et al., 2015). Interestingly, some research showed that a VR intervention is effective 

on triggering cortical reorganization and associated locomotor recovery (You et al., 2005).

Neural engineering approaches to the study and restoration of gait function have 

demonstrated the possibility of reconstructing gait kinematics from patterns of cortical 

activity acquired via intracortical electrode arrays in non-human primates (Fitzsimmons et 

al., 2009) and non-invasive scalp electroencephalography (EEG) in human subjects 

(Presacco et al., 2011) with the same accuracy, for a review see (Chéron et al., 2012). More 

recently, Bulea et al. decoded sit-to-stand and stand-to-sit movements from EEG signals 

recorded immediately prior to those actions suggesting EEG can be used to predict 

locomotive and non-locomotive actions (Bulea et al., 2014). Moreover, Kilicarslan et al. 

pioneered the deployment of EEG-based BCI systems to control lower-body powered 

robotic exoskeletons by subjects with spinal cord injury (SCI) (Kilicarslan et al., 2013). 

Applications of BCI systems for gait rehabilitation using VR/VE represent a new form of 

personalized neurorehabilitation based on putative shared brain networks involved in action 

observation and action execution (Morone et al., 2015, Hashimoto et al., 2010, Wang et al., 

2012, King et al., 2013). Although these studies initially showed the possibility of deploying 

BCI-VR systems in rehabilitation, there are no gait studies that investigate visuomotor 

adaptation tasks and little is known about whether and how brain networks adapt during gait 

adaptation based on BCI-VR systems.
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In this study, an EEG-based BCI-VR system based on the unscented Kalman filter (UKF) 

has been designed to infer, in real-time, lower limb joint angles during treadmill walking in 

healthy subjects. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta 

band (0.1 – 3 Hz) were used for prediction; thus, the EEG features correspond to time-

domain amplitude modulated potentials in the delta band. The predicted joint angles were 

used to control a walking avatar in a VE, thereby closing the loop through the brain. Virtual 

kinematic perturbations of subjects’ walking patterns were also introduced to investigate the 

changes in brain activity to gait during adaptation using the closed-loop BCI-VR. The virtual 

kinematic perturbations resulted in an asymmetric walking pattern of the walking avatar. We 

hypothesized that, with practice, the subjects could gain better BCI control and reduce the 

gait asymmetry of the walking avatar through EEG signals. Motor imagery was not done in 

this study because 1) actual gait movements from subjects are known to lead to stronger 

neural signals than imagery alone, which are easier to decode (Yuan et al., 2010), and 2) the 

intended application is for gait rehabilitation after stroke where actual movement and degree 

of gait symmetry are critical variables for rehabilitation (Venkatakrishnan et al., 2014).

2.Materials and Methods

2.1.Experimental Setup and Procedure

Four healthy male subjects (ages from 23 to 27 years) with no history of neurological 

disease or lower limb pathology participated in this study. All participants provided 

informed consent as approved by the Institutional Review Board at the University of 

Houston. Each subject participated in eight sessions which were identical, but occurred on 

different days. Each session lasted for about 50 minutes (mins). Subjects were instructed to 

have 2 mins of standing still in the beginning and end of each session. In the remaining 

period, subjects walked on a treadmill at a fixed speed of 1 mile/hour (mph). A television 

monitor was placed in front of the treadmill, displaying an avatar of the subjects standing/

walking in a virtual environment (VE) (Figure 2A). The screen only showed movement of 

body parts below the waist of the avatar, because this study focused on lower limb 

movements. The avatar followed the subject’s lower limb movements precisely in real-time 

by matching the joint angles (hip, knee, and ankle) on both legs. Each joint angle (in the 

sagittal plane) was measured using goniometers. For safety purposes, all subjects were 

instructed to hold onto a front handle bar while walking on the treadmill, thus simulating a 

walker device.

As illustrated in Figure 1, each session began with the subject standing still on the treadmill 

for 2 mins. The treadmill was then slowly sped up to 1 mph, over approximately 20 seconds, 

by the experimenters. The subject was able to see the avatar following his/her movement 

correctly. In the first 15 mins, the walking avatar was controlled by signals from the 

goniometers (gonio-control phase). In this phase, the unscented Kalman filter and its 

parameters were trained and updated every min in the background. UKF’s parameters were 

fixed at the end of this phase. A detailed description of this algorithm is provided in Section 

2.4. The gonio-control phase was followed by an EEG-control phase, in which the lower 

limb joint angles of the avatar’s right leg followed the outputs from the real-time BCI 

decoder instead of the goniometers. In both gonio- and EEG-control phases, the avatar’s left 

Luu et al. Page 3

J Neural Eng. Author manuscript; available in PMC 2017 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



leg was driven from goniometer data. The EEG-control phase consists of three parts: pre-

exposure (8 mins), exposure (15 mins), and post-exposure (8 mins). During the exposure 

period, a visual kinematic perturbation was introduced to the avatar: all joint angles on the 

avatar’s right leg were linearly scaled down to 70% of the decoder outputs. The subject was 

instructed to think about controlling the avatar to walk normally while looking at the avatar. 

Meanwhile, the subject continued to walk on the treadmill during all phases. In the end, the 

session terminated after the subject had 2 mins of standing still on the treadmill.

2.2.Data Collection

Whole scalp 64-channel active EEG data were collected (ActiCap system, Brain Products 

GmbH, Germany) and labeled in accordance with the extended 10–20 international system. 

A wireless interface (MOVE system, Brain Products GmbH, Germany) was used to transmit 

data (sampled at 100 Hz) to the host PC. There was a small difference in arrangement of 

EEG channels between subjects. For the first 2 subjects, 64 EEG channels followed the 

standard setup (ground channel, GND, at FCz, and reference channel, REF, at AFz). There 

were some changes in the arrangement of EEG channels for the next two subjects: GND and 

REF were moved to the left and right earlobe (A1 and A2), respectively, four EEG channels 

(T7, T8, TP9 and TP10) were used as electrooculogram (EOG) to capture eye blinks and eye 

movements. The purpose of this modification is to improve the real-time decoding 

accuracies based on results found from our previous study (Luu et al., 2015). The two main 

reasons are: 1) GND and REF channels in the standard setup were very close to the motor 

cortex and 2) EOG sensors were required in our real-time artifact removal algorithm (details 

in Section 2.3).

Lower limb joint angles in sagittal plane were recorded by goniometers (SG150 & SG110/A 

Gonio electrodes, Biometrics Ltd, UK). Joint angle data were sampled at 100 Hz, and 

recorded in sync with EEG data using our customized C++ program. Three wireless inertial 

motion sensors (OPAL, APDM Inc., Portland, OR) were mounted on subject’s head, left 

heel, and right heel. Each sensor included accelerometer, gyroscope, and magnetometer 

sampled at 128Hz. The two sensors on the feet provided timing for the gait cycles. OPAL 

data was synchronized with EEG and goniometer data. Figure 2 shows raster plot of these 

signals.

2.3.Signal Pre-processing

All processing was carried out in custom C++ software in real-time. A robust adaptive filter 

was applied to allow real-time filtering of eye-blink and eye-motion artifacts using data 

recorded from EOG channels (Kilicarslan et al., 2016). Peripheral EEG channels were 

removed as they are most susceptible to artifacts from head movements, and facial/cranial 

muscle activity. EEG in the delta band (0.1 – 3 Hz) was used for neural decoding of 

treadmill walking; thus, the EEG features correspond to time-domain amplitude modulated 

(AM) potentials in the delta band. The 0 – 3 Hz band was known to cover most power in 

joint angle signals (Antonsson and Mann, 1985, Luu et al., 2014, Luu et al., 2015). 

Moreover, in (Nathan and Contreras-Vidal, 2016), we have shown that motion artifacts are 

negligible at the gait speeds used in our study. In that study, the authors conducted intensive 

analysis of potential motion artifacts in scalp EEG recording during treadmill walking and 

Luu et al. Page 4

J Neural Eng. Author manuscript; available in PMC 2017 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggested that subjects’ motion did not significantly affect their EEG at the gait speeds 

reported in this research.

2.4.Unscented Kalman Filter Decoder

Linear decoders such as Wiener filters and Kalman filters are most commonly used in BCI 

applications (Wu et al., 2006). However, these models cannot handle a non-linear 

relationship between neural activities and limb movements. Recently, Li et al. showed that 

the unscented Kalman filter outperformed the Kalman filter and the Wiener filter in both 

offline and real-time BCI operation (Li et al., 2009). In this study, UKF was used as decoder 

and defined by four parameter matrices F, B, Q, and R; the UKF algorithm was based on (Li 

et al., 2009). The state variable at time t was defined as:

where θ denotes the joint angle; h,k, and a represent hip, knee, and ankle, respectively.

UKF started with a prediction step which estimated the current state:

where xt’ and Pt’ are the predicted state and its covariance; xt−1 and Pt−1 are the previous 

state and its covariance.

The prediction step was followed by the updating step which used observation data (EEG) to 

correct the predicted values. In this step, an unscented transformation was used to obtain 

sigma points as:

where d is the size of xt, d = 6; k determines the spread of the sigma points, k = 1 for normal 

distribution.

Each sigma point Xi was then augmented and evaluated in an observation function as:
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The predicted neural signals and its covariance were calculated as:

The weights wi were defined as:

The Gaussian partial pivoting method was used to solve the following equation for Kalman 

gain.

where Pxz,t is the state-observation cross covariance:

The estimated state was corrected and the state covariance was also updated:
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2.5.Online Updates of UKF Parameters

BCI decoders are typically trained offline by fitting neural signals against kinematic data. 

During closed-loop BCI, the subjects can alter their neural activity and affect the accuracy of 

the trained decoder which does not account for the difference in neural activity. Recently, 

Orsborn et al. showed that closed-loop decoder adaptation (CLDA) where decoder 

parameters are updated during closed-loop BCI operation can yield performance 

improvements (Orsborn et al., 2011). To apply CLDA for the UKF decoder in this study, the 

pre-processed EEG and lower limb joint angles were first streamed to a buffer which stores 

1 min of collected data (6000 samples). After data in the buffer were collected, the UKF's 

parameters were updated using parameter fitting method introduced in (Li et al., 2009). The 

pre-processing steps, CLDA updates and real-time decoding of the EEG based BCI-VR 

system are depicted in Figure 3.

2.6.Assessment of real-time decoder’s performance

To quantify the level of accuracy for real-time decoding of lower limb joint angles, the 

Pearson’s r-values between measured and predicted joint angles were computed for the 

gonio-control and EEG-control phases.

EEG signals were first analyzed by mean, standard deviation (STD), and signal to noise ratio 

(SNR). These values were calculated from sliding windows with window size of 30s and 

step size of 1s. EEG artifacts from stereotypical (e.g., eye blinks) and non-stereotypical (e.g., 

movement, muscle bursts) sources were removed using Artifact Subspace Reconstruction 

(ASR) method which is available as a plug-in for EEGLAB software (Delorme and Makeig, 

2004). The outputs from ASR method (EEGASR) and EEG raw data were used to estimate 

EEG noise and compute SNR values. The results were grouped based on EEG sensor 

locations: peripheral (PERI), Frontal (F), Central (C), and Posterior (P) electrodes.

where SNRw is signal to noise ratio of EEG data in window wth; i = 1‥N is EEG samples in 

one window.

2.7.Assessment of gait adaptation to visual kinematic perturbations

Gait symmetry provides information about the control of human walking. Analyzing gait 

symmetry is clinically significant (Patterson et al.). In general, there are two components 

that determine a symmetry metric: an equation to calculate gait symmetry and the spatial-

temporal gait parameters used in the equation (e.g., stride length, step length, range of 

motion, cadence, stance time, swing time, etc.) (Patterson et al., 2010). The symmetry ratio 

(SR) and range of motion (ROM) of the avatar’s lower limbs were used to calculate gait 

symmetry and thus, the quality of EEG-based avatar control.
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where g represents hip, knee or ankle joints; r and l are right and left leg, respectively.

3.Results

3.1.Gait adaptation to visual kinematic perturbation

We observed changes in errors between lower limb joint angles of the subjects and the 

walking avatar during visual kinematic perturbation. Figure 4 depicts the errors during 

exposure and post-exposure phases in 8 days for knee joint angles. The errors were 

standardized (z-score) with pre-exposure phase as baseline. In pre-exposure phase, the 

walking avatar was controlled by predicted lower limb joint angles (hip, knee, and ankle) 

from real-time decoder; however, in exposure, the introduction of kinematic perturbations 

(predicted joint angles were multiplied by 0.7) resulted in changes in the errors compared 

with the pre-exposure phase. After removal of the visual kinematic perturbation during the 

post-exposure phase, joint angles errors changed in the opposite direction as during exposure 

(i.e., after-effect). Nevertheless, the errors between subjects' and the walking avatar's joint 

angles during exposure and post-exposure decreased in 8 days of training.

3.2.Effects of visual kinematic perturbation on movement control and closed-loop BCI 

control

Figure 5 illustrates the effects of visual kinematic perturbation on both subject’s lower limb 

movement control and closed-loop BCI control of the walking avatar. Range of motion ratios 

between 4 right and left joint angles were used as a gait symmetry index. ROM ratios were 

first standardized (z-5 score) against gonio-control phase; the differences between ROM 

ratios in post- and pre-exposure phases 6 were analyzed using pairwise t-test. Results in 

Figure 5 shows that the introduction of visual kinematic 7 perturbation significantly affected 

both subject’s movement control and avatar’s BCI control. In general, 8 the differences in 

ROM ratios of subjects SK03 and SK04 in Day 8 decreased compare to Day 1. The changes 

of subjects’ and avatar’s ROM ratios are different under visual kinematic perturbation and 

these changes varied across subjects.

Figure 6 shows the numbers of sessions with ROM ratios significantly affected by visual 

kinematic perturbation. As can be seen, the introduction of visual kinematic perturbation 

affected the BCI control of the walking avatar more than the subjects’ movement control for 

subjects SK03 and SK04. Nevertheless, the opposite results were found for subjects SK01 

and SK02.

3.3.Real-time decoding accuracies improved within 8 days of training

The improvement of decoding lower limb joint angles (hip, knee, and ankle) from scalp 

EEG signals can be found as in Figure 7, Figure 8 and Figure 11. Figure 7A shows examples 

of the measured and reconstructed lower limb joint angles (hip, knee, and ankle) and heel 

positions (calculated from lower limb joint angles) for subject SK04 on Day 1 and Day 8. As 
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can be seen, the reconstructed kinematics on Day 8 are closer and more in-phase with the 

actual values compared to the reconstructed values on Day 1. The quality of the 

reconstructions of gait trajectories in 3D space on Day 1 and Day 8 is also illustrated in 

Figure 7B. Polar plot in Figure 8 shows that r-values on Day 8 are closer to the circle (r = 1) 

compare to these values on Day 1. In Figure 11, low decoding accuracies are depicted in 

blue, and they are concentrated on Day 1. Decoders become better within 8 days and the 

high decoding accuracies, shown in brown, are concentrated on Day 8. Decoding accuracies 

of lower limb joint angles for 4 subjects on Day 1 and Day 8 were also calculated and 

reported in Table 1. Decoding accuracies of lower limb joint angles on Day 8 are higher than 

decoding accuracies on Day 1, except for SK01’s hip joint.

3.4.Real-time decoding accuracies varied across subjects

The accuracies of decoding lower limb joint angles (hip, knee, and ankle) from scalp EEG 

signals for the 4 subjects across 8 days are illustrated in polar plot in Figure 8. The shaded 

areas indicate one standard deviation of r-values. In the polar plot, r = 0 at the center of the 

circle and r = 1 on the perimeter of the circle. Among the subjects, SK04 has decoders with 

the highest r-values.

Statistical analysis between subjects was performed using pairwise t-test with Tukey-Kramer 

adjustment for multiple comparison and the results are shown in Figure 9. Pearson's r-values 

for subject SK04 are significantly different from the others (P < 0.001). R-values for SK03 

and SK01 are also significantly different (P < 0.05). One-way ANOVA was also performed 

to confirm that r-values differed across subjects (P < 0.001).

3.5.Effects of EEG signals quality on real-time decoding accuracies

The analysis of EEG signals (Mean, standard deviation (STD), and signal to noise ratio 

(SNR)), and Pearson’s r-values between actual and predicted lower limb joint angles (hip, 

knee, and ankle) for subject SK04 across 8 days are shown in Figure 10. Sliding windows 

(window size of 5s and step size of 0.5s) were used to analyze EEG and kinematic data. 

EEG channels are grouped into 4 regions: Pre-Frontal (PF), Frontal (F), Central (C) and 

Parietal (P). In general, the STD of EEG signals decreased and the SNR of EEG signals 

increased across the 8 days. The stability of EEG signals also improved across days. 

Compared with EEG signals in central and parietal areas, EEG signals in pre-frontal and 

frontal areas have higher STD and lower SNR values. Figure 10 shows that Pearson’s r-

values for hip, knee, and ankle joint increased and became more stable within 8 days of 

training. Moreover, decoding accuracies varied across lower limb joints (hip, knee, and 

ankle). For example, r-values between actual and predicted angles increased from 0.31 

± 3.31 (Day 1) to 0.72 ± 0.12 (Day 8) for the hip, 0.41 ± 0.26 to 0.81 ± 0.08 for the knee, 

and from 0.16 ± 0.25 to 0.45 ± 0.20 for the ankle joint.

It was expected that the decoding accuracy (r-values) would improve with low STD and high 

SNR values of EEG signals. Figure 11 illustrates the effects of STD and SNR values of EEG 

signals on decoding accuracy. High decoding accuracies (r > 0.5) are depicted in brown 

color and they concentrate at the top left of the plot. This area has relatively low STD (< 11 

µV) and high SNR values (> −8 dB). On the other hand, low decoding accuracies (r < 0.3) 
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are shown in blue and they concentrate at the bottom right of the plot (STD > 20 µV and 

SNR < −12 dB).

4.Discussion

In this study, a real-time neural decoder was designed to translate neural activity acquired 

via scalp EEG into lower limb movements in human walking. The predicted lower limb joint 

angles (hip, knee, and ankle) were used to control a walking avatar in a virtual environment. 

Visual kinematic perturbations of gait patterns were also introduced to investigate cortical 

adaptations during gait adaptation using a closed-loop EEG-based BCI.

Historically, Brain-Computer Interface (BCI) research has been primarily conducted for 

communication or for upper arm pointing movements (e.g., center-out paradigm where the 

number of targets, accuracy and the speed of acquisition are important), and more recently 

for use to control assistive devices or neuroprostheses. One metric used in BCIs for 

communication and center-out hand movements has been the ‘bit rate’, which can be 

computed from task parameters (e.g., number of symbols to communicate in the case of 

communicative BCI spellers and number of targets, target size and movement time in the 

case of BCIs used for center-out movements). The bit-rate for these systems (invasive or not) 

used by people with disabilities remains unfortunately low (< 2 bits/sec), except for recent 

demonstrations in monkey dorsal premotor cortex, which has reached up to 6.5 bits/sec, or 

approximately 15 words per minute, with 96 implanted electrodes (Santhanam et al., 2006). 

A walking gait cycle could be divided into two main phases: stance phase which comprises 

approximately 62% of the gait cycle, and swing phases which comprises 38% of the cycle. 

The information content for discrete classification of stand and swing phases could be 

computed as: 0.6 * (−log(0.6)) + 0.4 * (−log(0.4)) = 0.67 bits; and the information rate for 

walking on treadmill at gait speed of 1 mph is 0.67 / 1.65 = 0.41 bits/sec, where 1.65 (s) is 

the average of gait cycle time in this study. Note that the neural decoder in this study was not 

designed for gait cycle classification; the outputs from the decoder were lower limb joint 

angles instead. The use of ‘information rate’ as a metric to assess BCIs for the control of 

prosthetic limbs and exoskeletons may not be appropriate because suitable metrics should 

measure functional outcomes and usability of those technologies, e.g., can the amputee 

complete a successful grasp? Can the stroke patients regain gait symmetry? For a discussion 

of metrics, see (Contreras-Vidal, 2014).

Our EEG-based Kalman decoders were designed to close the loop in a BCI with update rates 

that are faster than the rate of the actual or predicted movements. First, the closed-loop 

neural interfaces are updated often (~ 10 msec) so that real-time control can be achieved; 

second, most gait movements, particularly in rehabilitation contexts, have a very low 

bandwidth (usually < 3 Hz), which is known to cover most power in joint angle signals 

(Antonsson and Mann, 1985, Luu et al., 2014). Moreover, we have shown that motion 

artifacts are negligible in these frequencies (Nathan and Contreras-Vidal, 2016), and have 

demonstrated that Wiener and Kalman filters can be used for decoding continuous linear 

kinematics from the fluctuations of the amplitude (i.e., amplitude modulation) of slow 

cortical potentials in the delta band EEG that compares well to invasive BCI approaches 

(Presacco et al., 2011). Other groups have also shown that gait information is contained in 
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low frequencies of EEG; for example, Gwin et al. showed that meaningful changes in EEG 

during walking or running occur at low frequency (< 10 Hz) (Gwin et al., 2010). In this 

manuscript, we show that our EEG Kalman decoders operating in the fluctuations in the 

amplitude of slow cortical potentials in the delta band can be used to close the loop in a BCI 

with update rates that are faster than the rate of the actual or predicted movements. The 

bandwidth of these time-domain delta band features are commensurable with the bandwidth 

of the gait movements performed by the subjects in this and other gait studies.

We observed that the subjects were able to adapt the avatar’s gait patterns controlled via the 

closed-loop EEG-based BCI. The improvement of real-time decoding accuracies in 8 days 

of training suggests that with practice, subjects gained more control of the walking avatar by 

using their brain signals. This finding supports the view that the visuomotor adaptation can 

be triggered directly from brain activity and thus the proposed system can also be used as a 

platform to examine cortical plasticity in the human brain. We found that decoding 

accuracies (or r-values) varied with the mean, STD and SNR scores of the EEG signals, 

suggesting that signal stability within and across days may be influenced by global internal 

states of the subjects such as attention, motivation and fatigue. These global states should be 

quantified in future studies.

Asymmetric walking gait patterns are commonly found in patients post-stroke. Study of 

walking adaptation to a split-belt perturbation, which creates early asymmetric walking, 

demonstrated that with practice, subjects can improve phasing and reduce gait asymmetry 

(Malone et al., 2012). Moreover, the understanding of gait adaptation may suggest 

appropriate interventions for gait rehabilitation. In this study, a closed-loop BCI was used to 

investigate if changes in brain activity contribute to gait adaptation during virtual kinematic 

perturbation of a walking avatar in a virtual environment. The results show that the visual 

kinematic perturbation affected both the movement control of subjects' lower limb and BCI 

control of the walking avatar. Interestingly, walking gait patterns of the subjects and the 

walking avatar improved in phasing and similarity with practice suggesting the BCI-avatar 

system triggered cortical plasticity. The results also showed that the adaptation of BCI 

control and movement control differed between subjects when visual kinematic perturbation 

was introduced. For example, more BCI control of the walking avatar was found for SK03 

and SK04 while more movement control was found for SK01 and SK02 (Figure 6). 

Interestingly, SK03 and SK04 have better decoding accuracies compare to SK01 and SK02 

(Figure 9). This suggests that subjects might focus more on BCI control of the walking 

avatar under visual kinematic perturbation if a good real-time neural decoder was provided.

Previous studies demonstrated that BCI applications and VR-based neurorehabilitation 

systems enhance active participation and contribute to significantly better motor functional 

outcomes in motor rehabilitation (Pichiorri et al., 2015, Morone et al., 2015, Saleh et al., 

2011, Cameirão et al., 2012, da Silva Cameirão et al., 2011, Brütsch et al., 2011). The 

integration of BCI and VR technologies is expected to be very promising (Lotte et al., 2013). 

Pfurtscheller et al. introduced a BCI system using motor imagery (MI) to navigate in a 

virtual environment (Leeb et al., 2007, Friedman et al., 2007). The combination of BCI and 

VR could be beneficial for rehabilitation purposes. However, the number of studies of 

noninvasive BCI-VR in the context of neurorehabilitation is limited. In this study, we 

Luu et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2017 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed that the subjects were able to control a walking avatar via a closed-loop EEG-based 

BCI-VR system. In addition, the improvement of real-time decoding accuracies in 8 days of 

training illustrates that with practice, subjects gained more control of the walking avatar by 

using their brain signals in spite of the conflicting sensory and motor signals. We note that 

subjects were instructed to keep their gait pattern consistent and control the walking avatar 

only by using their brain signals and that the changes of their own actual walking for 

asymmetry compensation didn’t contribute to the real-time decoding performance as the 

decoding accuracies (r-values) were calculated from neural decoder outputs and measured 

joint angles from the right leg (i.e., the avatar’s right leg was driven by brain signals during 

eeg-control phase and affected by visual kinematic perturbation). The results suggest that the 

proposed EEG-based BCI-VR could be feasible in visuomotor learning and beneficial to the 

field of neurorehabilitation.

Observational therapy in stroke rehabilitation has been found to be beneficial (Celnik et al., 

2008, Ertelt et al., 2007, Franceschini et al., 2012). In typical observational therapy, persons 

with stroke observe a video clip or other people demonstrating a movement before they try it 

themselves. Reports suggest that patients undergoing observational therapy show significant 

improvement in functional assessment, including fMRI, before and after the treatment 

(Ertelt et al., 2007). Inspired by this fact, we propose to enhance patient involvement by 

allowing them to use their neural activity to control an avatar instead of passively watching 

movement. In this regard, we also examined how visual disruption affected the gonio-control 

phase. A clear adapting phase and learning curve can be seen during the perturbation (Figure 

4), showing that the subjects were actively learning the new motor coordination skills. We 

hypothesize that the proposed EEG-based BCI-VR could be feasible and beneficial to 

observational therapy in stroke rehabilitation. Moreover, the proposed EEG-based neural 

decoder could be integrated with robotic assisted devices or robotic orthosis for lower limbs 

to facilitate advanced neurorehabilitation interventions.

Neural decoders play a central role in BCI applications. Although results from decoder 

accuracies in this study are promising, some limitations need to be considered in future 

research. First, the decoding accuracies for ankle joint angles are significantly lower than 

those for hip and knee joint angles. Second, even though the proposed real-time neural 

decoder provided good accuracy in terms of Pearson's r-values (up to 0.81 ± 0.08 in 50 mins 

session) and phasing between measured and predicted lower limb joint angles, the errors 

between the measured and predicted values need to be further reduced. The signal to noise 

ratio between actual and predicted joint angles will be considered as an assessment 

parameter when improving the neural decoder. Finally, the neural decoder in this study is 

limited to only inferring lower limb joint angles from EEG signals for a walking gait pattern 

at 1mph. Further analysis to enhance the neural decoder for a wider range of gait speeds is 

required.

A robust adaptive filter was applied to allow real-time filtering of eye-blink and eye-motion 

artifacts using data recorded from EOG channels for subjects SK03 and SK04 (this filter was 

not available when subjects SK01 and SK02 were tested). This filter significantly increased 

decoding accuracy of user intentions using EEG to control a lower-body exoskeleton, as it 

was shown in (Kilicarslan et al., 2016). A previous study showed that quality of EEG signals 
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(i.e., signal to noise ratio, standard deviation) affect decoding accuracies of treadmill 

walking (Luu et al., 2015), which was the case in this research. Therefore, the 

implementation of real-time filtering of eye-blink and eye-motion artifacts was expected to 

yield higher decoding accuracy for SK03 and SK04 than for SK01 and SK02. Moreover, the 

quality of EEG signals recorded from SK03 and SK04 was significantly different. Pairwise 

t-test was applied to compare signal to noise ratios and standard deviation of EEG signals 

for SK03 and SK04. The results showed that SK04 had higher SNR (SK03: −11.64 ± 3.45; 

SK04: −8.91 ± 2.03; P < 0.001) and lower STD values (SK03: 18.96 ± 3.44; SK04: 12.78 

± 2.03; P < 0.001). The implementation of real-time artifacts removal and the high quality of 

EEG signals might explain why SK04’s performances were significantly superior to the 

other three subjects. However, future works on analysis of how robust adaptive filter affects 

neural decoding accuracies of treadmill walking are required for better understanding. 

Studies have shown the central nervous system’s capacity to adapt its structural organization 

after the development of a brain lesion (Masiero et al., 2014). Such brain lesions can also be 

simulated in our settings by deliberately removing certain EEG channels that are input to the 

decoder. With such a change, decoder performance is expected to drop and trigger neural 

adaptation to restore function. Study of adaptation to virtual cortical lesions within the 

proposed EEG-based BCI-VR system will be considered in future directions.

Examining the changes in the representation of gait in cortical networks during virtual 

kinematics perturbation is one of main objectives of this research. Future studies will 

consider analyzing power of EEG signal in different bands and performing EEG source 

localization to understand the neural sources of cortical plasticity during closed-loop BCI 

learning and virtual kinematics perturbations.
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Figure 1. 
The experimental procedure for each day. Each session lasted approximately 50 mins. 

Subjects were instructed to have 2 mins of standing still at the beginning and at the end of 

experiment while looking at the avatar and try to minimize eye blinks. In the gonio-control 

phase (15 mins), the avatar was driven by goniometer signals. Decoder parameters were 

updated every 1 min and fixed by the end of this phase by using closed-loop decoder 

adaptation (CLDA). In the EEG-control phase, the avatar’s right leg was driven by decoder 

outputs. During exposure phase, decoder outputs were linearly scaled down by the 

perturbation gain, 0.7.
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Figure 2. 
A) Experimental setup in this study. Each subject was instructed to walk on a treadmill at 

1mph and think about controlling an avatar to walk normally while looking at the avatar 

displayed in VE in front of them. Recorded data included electroencephalography (EEG) 

and electrooculogram (EOG), lower limb joint angles of both left and right leg, and 

accelerations of head, left and right heel. B) Example of raw data in 10 seconds.
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Figure 3. 
Flow chart of kinematics and EEG signal pre-processing, online updates for unscented 

Kalman filter parameters and avatar control in this study.
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Figure 4. 
Errors between right knee joint angles of the subjects and the walking avatar during visual 

kinematic perturbation. The errors were standardized (baseline: pre-exposure phase). Solid 

lines are exponential fit for all data points.
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Figure 5. 
Range of Motion (ROM) ratios between right and left lower limb joints during visual 

kinematic perturbation. ROM ratios in post-exposure were standardized (baseline: early-

exposure phase). * P < 0.05.

Luu et al. Page 21

J Neural Eng. Author manuscript; available in PMC 2017 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Numbers of sessions with gait symmetry indexes affected by visual kinematic perturbation. 

Markers and filled markers represent different subjects and avatar, respectively.
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Figure 7. 
(a) Reconstructed right leg kinematics from EEG signals in real time for subject SK04 in 

Day 1 and Day 8. Rows represent hip, knee, and ankle joint angles (θrh, θrk and θra) and 

heel positions (calculated from lower limb joint angles). (b) 3D trajectories of lower limb 

joint angles and heel position portrait.
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Figure 8. 
Pearson’s r-values between predicted and actual lower limb joint angles (hip, knee, and 

ankle) for 4 subjects across 8 days. The shaded areas indicate mean and one standard 

deviation of r-values. Solid lines are exponential fit for all data points. Dotted lines separate 

different phases in each day (gonio-control, pre-exposure, exposure and post-exposure).
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Figure 9. 
Pearson's r-values in EEG-control phase for 4 subjects and statistical analysis between 

subjects using pairwise t-test with Tukey-Kramer adjustment. Bars represent the subject’s 

mean. * P<0.05 and *** P<0.001
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Figure 10. 
EEG signals (Mean, STD, and signal to noise ratio (SNR)) and Pearson’s r-values for 

subject SK04 across 8 days. The values were calculated from sliding windows (window size: 

5s, and step size of 0.5s). Superimposed bold lines correspond to mean data for all channels. 

EEG channels are grouped into Pre-Frontal (PF), Frontal (F), Central (C), and Parietal (P) 

location. Broken lines divide each session into Gonio-control (Gonio-) and EEG-control 

(EEG-ctrl) phases.
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Figure 11. 
Pearson’s r-values (knee joint) in pre-exposure phase against STD and SNR of EEG signals 

for 4 subjects across 8 days. Histogram of STD and SNR of EEG signals are showed as bar 

plot. Pearson’s r values for each day are also illustrated.
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