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This paper is about random coefficient trigonometric regression models
and their use in gait analysis. Here gait analysis means free-speed walking on
a level surface. Our study focuses on bootstrap-based prediction regions for
the angular rotation curves of test children, when the relevant training data
are gathered from normal children of comparable ages. Considerations that
led to our choice of model and use of the bootstrap are given. Prediction
regions and empirical bootstrap distributions are displayed, as is their appli-
cation to several test cases. Also included is a study of the almost sure
asymptotic behavior of the theoretical bootstrap probability of the prediction
regions.

1. Introduction. Human motion has been a subject of inquiry since nearly
the beginning of history. For example, more than 2300 years ago Aristotle
described the actions of muscles and analyzed their effects in producing motion.
In fact, the way an individual walks is a sensitive measure of neuromuscular
development or impairment. A sound descriptive model helps to define normal
and abnormal parameters and offers some clues to underlying causes of abnor-
mality. The primary goals of our Motion Analysis Laboratory at Children’s
Hospital, San Diego have been to expand the understanding of what constitutes
normal walking and to study deviations from norms seen in children and adults
with a variety of diseases. Pretreatment studies are vital to any decision-making
process in choosing the proper course of treatment. Posttreatment analyses are
used to assess effectiveness of treatment and to furnish useful information for
planning further management.

The most frequent referrals to our Laboratory are patients with cerebral
palsy. However, patients with limb deficiencies, poliomyelitis, arthritis, muscle
disease, head and spinal cord injuries, peripheral nerve injuries, stroke, congeni-
tal joint deformities, joint implants and many other disease processes have been
studied.
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Four basic types of data are gathered at the Laboratory and are used in
evaluating walking:

1. Linear measurements, or time-distance parameters.

2. Movement measurements, that is, calculations of angular rotations (in three
planes) for the pelvis, hip, knee and ankle.

3. Force plate measurements—measurements of forces exerted by the subject’s
foot as it contacts the floor.

4. Dynamic electromyography —measurements of the firing pattern of the sub-
ject’s muscles when he walks.

Pretreatment studies for a patient with cerebral palsy bear upon surgery
planned to help the patient walk in a more normal fashion. All four types of data
are used. Suppose, for example, that at some point in the walking cycle, an
angular rotation falls particularly far from its normal value. The physician then
focuses on a possible explanation. Electromyographic measurements may give
clues to abnormal firing patterns of particular muscles. Asymmetries between
motions of the right and left sides of the patient might suggest a lack of balance
or coordination, or the presence of fixed muscle contractures or excessive muscle
tone in some muscles. These findings can then be corroborated by electromyo-
graphic or force plate data. After the abnormalities are understood, surgery is
designed to lessen or, if possible, eliminate them. With or without an interven-
tion such as surgery or other therapy, gait studies are used to monitor patient
progress. A choice between two different leg braces for the patient can be made
on the basis of which rendered his or her gait more normal in appearance. Most
patients (and their parents and physicians) hope that their walking appears to be
as close as possible in appearance to the walking of clinically normal children
throughout the walking cycle. So techniques that serve to quantify deviation
from normal walking somewhere in the cycle are of great clinical interest. We
believe that our work provides a tool for clinical applications that is of substan-
tial potential importance because it strengthens the ability of the physician to
use motion analysis data in a systematic way.

Angular rotation curves and bootstrap-based prediction regions for them are
the main topics of this paper. The raw data from which the computations are
made are taken by first recording a subject’s movements as he walks down a
walkway and then taking measurements from the recording medium. We study
what is called free-speed, level walking. From 1973 until a recent improvement in
technology, our Laboratory employed the same photographic method, utilizing
four 16 mm motion picture cameras and a system to take measurements from the
film. For this film system, reference marks are placed on the subject’s skin, and
lightweight sticks are secured on the pelvis and tibiae as landmarks from which
to make measurements (see Figure 1). Three fixed-position movie cameras record
the subject from the left side, right side and front as he walks. The fourth movie
camera is located beneath the force plates and photographs the bottom of the
foot as it strikes the plate. The film is analyzed frame by frame to make the
measurements.
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CAMERA LAYOUT

Fic.1. Camera layout for studies of joint rotations.

More detailed descriptions of the way in which data were gathered are in the
paper by Sutherland, Olshen, Cooper and Woo (1980) and especially in the book
by Sutherland, Olshen, Biden and Wyatt (1988). Recently the Laboratory
converted to a semiautomatic VICON (VICON is a trademark of Oxford Metrics,
Inc.) movement measurement system originally developed by M. O. Jarrett. Now
reflective markers are placed on the skin, and they are seen by television
cameras; three-dimensional coordinates of the markers are used to calculate joint
rotations.

The movement of subject may be described as a set of “joint rotations” for
each side of the body. In our work, 12 rotations are measured and evaluated to
describe the movement of each leg (see Figure 2). These include four side (or
sagittal) rotations, pelvic tilt (how much the pelvis tilts forward or back), hip
flexion-extension (how much the hip flexes), knee flexion—extension (measuring
the bending of the knee) and ankle dorsi—plantarflexion—the moving of the foot
up (dorsiflexion) or down (plantarflexion). Viewed from the front, the rotation of
the pelvis to the right or left is measured as pelvic rotation, and pelvic obliquity
measures whether one hip is higher than the other. The ab—adduction of the hip
describes whether the thigh moves inward (adduction) or outward (abduction).
Femoral rotation measures how much the whole leg turns in or out, while tibial
rotation measures the rotation of the lower leg. Hip rotation is the difference
between pelvic and femoral rotations, and knee rotation is the difference between
femoral and tibial rotations. Finally, the angle the foot makes with the nominal
direction in which the subject is walking is measured as the foot rotation angle.
Figure 3 shows a plot of these values, averaged over subjects, for normal
two-year-olds and seven-year-olds.

Though it is difficult to tell from Figure 3, the curves from two- and
seven-year-olds are both similar and different in interesting ways. But for knee
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Fic. 2. Figures depict the methods used in calculating the various joint rotations. Large dots
indicate actual measurement points. Dashed lines show the zero degree reference for each angle.

flexion—extension (c), the sagittal plane curves in developmentally normal two-
year-olds closely resemble not only those of seven-year-olds, but also those of
normal adults. One exception is during the early part of the knee flexion—exten-
sion curve. This portion of the curve is called an initial knee flexion wave, the
result of an eccentric contraction of the quadriceps just after the foot hits the
ground. The contraction, more evident in seven-year-olds than in two-year-olds,



GAIT ANALYSIS AND THE BOOTSTRAP 1423

is a shock absorber. We note that the sagittal plane curves are often the most
interesting and informative ones in quantifying pathological gait [see
Sutherland, Olshen, Cooper, Wyatt, Leach, Mubarak and Schultz (1981)]. Dif-
ferences in rotations between normal two- and seven-year-olds can be found in
the transverse plane. Both pelvic rotation (f) and knee rotation [(g)—(h)] are
slightly exaggerated in the younger children. Hip rotation [(f)—(g)], femoral
rotation (g) and tibial rotation (h) are all external for the two-year-olds relative
to the seven-year-olds. When children begin to walk, they tend to walk with
their feet and legs turned out, and they assume a wide stance to give maximum
support. Their cadence is much higher than the cadence of adults and they spend
less time supported by a single limb than do adults. These aspects of walking are
still evident in two-year-olds, but not in seven-year-olds.

It is essential to assure that measurement systems are accurate and repro-
ducible, especially when treatment is being evaluated or when decisions are being
made about surgery. With the system used to gather our data, the mapping from
digitizer screen to the actual laboratory is about 1 in. : 1 ft. In tests of positioning
accuracy, a typical experienced technician could hit the screen surface within a
circle of about 1/32 in. diameter. This corresponds to about 1 cm “error” on the
subject. VICON has pixel resolution of about 1,/1024 of the field of view. This
implies that for a field of view of 2-3 m, one cannot resolve to less than about
3 mm. In practice, the error for a VICON study is approximately the same as
that for digitizing film, since it is subject to errors of calibration and point
reconstruction. From geometric and the above considerations it follows that with
either system, an observer generally can reproduce his measurements to within
3°. Typically, between observers, measurements are reproducible to within 3°;
the average absolute difference is 1 or 2°. For further information, see Suther-
land, Olshen, Biden and Wyatt (1988).

At the time of this writing, there are many sophisticated motion analysis
laboratories throughout the world. The accumulation of vast amounts of data is
now relatively easy. We hope that our discussion has convinced the reader that
the interpretation of these data presents an enormous challenge. Examples of
clinical uses of gait data are given in the recent books by Sutherland (1984) and
by Sutherland, Olshen, Biden and Wyatt (1988). The latter incorporates use of
the bootstrap-based prediction regions studied here.

The remainder of the paper has four sections. In Section 2 we describe a
training sample and a test sample whose data motivated this research. Also,
further information is given on how the observations we utilize were gathered.
Models and modeling are the subject matter of Section 3. We argue that a
certain random coefficient trigonometric regression model is suitable for the
rotation data and that the distributions of the coefficients need not be Gaussian.
“Cleaning up” outlying data is mentioned, as is the use of least squares for
estimating the expected Fourier coeflicients in our model. Section 4 gives the
algorithm for forming bootstrap predictions for the least squares fit to a test
child’s data. Some applications to test data are given. One noteworthy aspect
of our approach is that prediction for the overall constant term is separated
from that for the sum of harmonics. Graphical connection is made to recent
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Fic. 3. (a) Joint angles for two-year-olds. The curves are derived from the Fourier trigonometric
model by least squares. The three vertical lines through the graphs as viewed from left to right
indicate, respectively, percents of the gait cycle at which the opposite foot leaves the ground, the
opposite foot strikes the ground and the foot being studied leaves the ground.

theoretical work by Johansen and Johnstone (1990); their study, which builds on
contributions by Hotelling (1939), was motivated in part by Figure 5. The last
section is devoted to some mathematical aspects of the bootstrap prediction
regions for the sum of harmonics. In particular, we study the almost sure
behavior of theoretical bootstrap probabilities.

2. The data. The joint rotation data that are the subject matter of this
paper come from two studies conducted at our Laboratory. The prediction
regions by age, side and rotation were generated from the training sample data
of 415 gait studies of normal children ages one through seven, by which age
walking is nearly mature. It is natural to use age as a first variable on which to
group subjects since the development of normal walking is of major interest.
Subdividing by sex or dominant side, for example, is not useful; see Sutherland,
Olshen, Biden and Wyatt (1988), Chapter 10.
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F16. 3. (b) Joint angles for seven-year-olds.

The age groups begin at one year and increase by one-half year to age four,
and then by a full year to age seven, for a total of 10 groups. They range in size
from a low of 36 (age 1}) to a high of 49 (age 1). Each child was studied within 30
days of the date when his or her birthday corresponded to the indicated age
group. The prediction regions and bootstrap percentiles have been utilized to
assess departures from normal for data gathered from a few of the 240 children
(in eight different age groups) from another study of prematurely born children.
In one group, well over half the children fell outside the 95% prediction regions
for knee flexion—extension. These are children who have had no orthopaedic
intervention, but who may have neuromuscular impairment (cerebral palsy) or
may merely be delayed in their neurologic development. Some clearly do have
cerebral palsy.

A child being studied made at least three passes down the level walkway.
Each pass included about three full walking cycles (say, right foot-strike to right
foot-strike.) The data from the measurements of the three passes were averaged
on seven simple but important descriptors of walking (cadence, step length, etc.).
For each cycle a vector of standardized differences from the mean across cycles
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was computed. Ideally, the cycle (from among the nine or so) for which the
vector had the smallest Euclidean norm would be chosen for further analysis. In
practice, the implementation was by eyeball. Thus, for the individuals studied
we used representative gait, not average gait. The rationale for this is given by
Sutherland, Olshen, Cooper and Woo (1980). In gathering our data we did not
attempt to interpolate between frames to find the “real” beginning of the gait
cycle. It was not obvious to us how to implement such a scheme, in principle or
(in view of certain limitations of our equipment) in practice. Also, our choice of
representative cycle for future study may have diminished problems with our
analyses that owed to this shortcoming.

3. Models and modeling. Free-speed walking on a level surface by normal
children is approximately periodic and the signals in the angular rotation data
are of low frequency. Therefore, in keeping with tradition for such data, our
analyses are based on Fourier models. The models are never exactly correct.
Some biases are introduced by the deletion of high frequency harmonics; how-
ever, these biases do not appear to detract in important ways from the clinical
uses of the technology we describe.

It is customary in gait analysis to parameterize the cycle by percent, from
foot-strike to foot-strike. Thus, if f = f(8) refers to some generic joint rotation
at percent § of the cycle (for a given age and side), then we assume that

1) F(0) = ap + ng [ajcos( 21”(’)’(;0) + pjsin(%’oz)].

The a’s and B’s are characteristic of a particular child and walk, and

thus random. This simple observation is one key to what successes we have

enjoyed in fitting prediction regions for angular rotations. The vector

(eg; @y, By, @g; By;...) = ¥ is assumed to have mean p and covariance I' = [y, ,].

For a representative stride, data on f for a given child are digitized at 6; < 8, <
- < 8,, where always d > 16, and typically the §, are equally spaced:

_ 100(k — 1)

@) 0= ——

Occasionally, isolated digitized values are greatly out of keeping with (1) for a
moderate number of summands and any believable distribution of errors. For
example, this can occur as the foot strikes the ground and the sticks shown in
Figure 1 are shaken. (The problem is more acute with obese children than
others.) If the 6,’s are as in (2) and, say, a digitized value at §, is aberrant, but
those at §,_,, 6, |, §,,, and 8, , are not, then we replace the digitized value at
6, as follows. One quadratic is fitted to values at 8,_,, 6,_, and 8, , and another
to those at 8,_,, §,,, and 6, ,. The two fitted values at §, are averaged and that
number replaces the digitized value at §,. It follows from the Lagrange interpola-
tion formula [Powell (1981), Section 4.1] and (2) that this interpolation scheme is
exact for cubics. Only a tiny fraction of the data are aberrant and therefore
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corrected. That we have “cleaned up” our raw data is not incorporated into
subsequent inferences drawn from least squares estimation and the bootstrap.

In practice, there are N children and therefore N independent, identically
distributed (iid) random vectors of coefficients {(a, a{?, BV, a§?, BSY,.. NN ..
Data from the ith child are assumed to be digitized at d; points; the kth of
these points is written 8", where 67 = 100(k — 1)/d, for k = 1,..., d;. There
are measurement errors g, for the measurement of the ith child’s data at 5.
The {¢;,} are assumed to be iid and independent of the set of random vectors of
coefficients, with E(e;,) = 0 and Var(e;,) = 02 Therefore, we write Y, for the
observation on the ith child at 6" as

. . 27765 (2788
(3) Y, = o + ng lay) cos( 00 |t BV sin 100 + €

If the number of summands in (3) is fixed at not more than the integer part of
(d; — 1)/2, then we can estimate p. from the {Y;,}%, (that is, from the data on
the ith subject) by the method of least squares. We learned from M. L. Eaton,
though it follows from results of Rao (1965), that for our model least squares and
best linear unbiased estimation coincide. The ith separate estimate is substi-
tuted in (1) to form f (), an estimate of E(f(#))._ How to combine these
estimates across subjects to form an overall estimate f(8) is not obvious since
the optimal weights for a linear unbiased estimate depend on what 6 is. Two
extreme possibilities are:

1. Average with each subject weighted equally and thereby ignore the inequality
in the d,.
2. Weight each subject proportional to d; and thereby ignore I.

The latter was our choice, though fortunately, for our data the two extreme
methods of combining the f) produce estimates whose graphs are visually
indistinguishable.

It follows from the conditional variance formula that for any allowable
assumed number of summands in (3), the unconditional covariance of the least
squares estimator based on data of the ith child is

(4) T + diag[o?/d;,20%/d,,...,20%/d,],

where diag[ ] is a diagonal matrix of the same dimension as I" with the cited
values on its diagonal. How many summands are utilized in (3) will be discussed.
The parameter o2 is estimated unbiasedly from each least squares fit and the
separate estimates are pooled across subjects to yield an overall estimate 62 The
expression (4) is estimable, at least approximately, from the sample covariance of
the least squares estimates and thus T is, too, by subtraction. Virtually always,
62/(62 + 9,,d;) was less than 0.05, typically much less.

Clearly, normal walking involves a variety of compensating actions of joints
and limbs. Indeed, the a’s and 8’s are not stochastically independent. Various
ad hoc tests of the null hypothesis that I' is diagonal resoundingly reject.
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Ignoring this dependence is a major flaw in the analyses of Cappozzo, Leo and
Pedotti (1975).

A first question that might be asked regarding the a’s and B’s concerns their
marginal distributions. Are they Gaussian? We attempt to answer the question
from the empirical distribution of their least squares estimates. In order to fix
ideas, we focus on the estimation, for child i of, say a{". It is easy to compute
that the least squares estimate is

o2 & 270
(5) ’ agl) + (_i: kgleik COS( W) .

From first glance, it seems as if the assessment we require involves a deconvolu-
tion, since a{¥ is independent of the second term of (5). However, that sum is
distributed approximately as N(0,2/d;) according to the central limit theorem,
80 it is stochastically small. Also, from Cramér’s theorem [Cramér (1936)],
normality of (5) entails normality of &{". In any case, we proceed to make our
assessment as outlined above. Plots of these estimates against their normal
scores reveal occasional outliers, and correlations of data with their normal
scores can be much lower than normal theory would predict. Generally speaking,
for normal children the higher up the body the angular rotation to which f
refers, the older the group of children from whom the data are gathered, and the
lower the frequency of the harmonic, the more Gaussian are the marginal
distributions of the Fourier coefficients. Part of our motivation for introducing
the bootstrap in our prediction regions was that we do not always trust theories
based on Gaussian assumptions regarding the coefficients. When we simulated
data from (1) with Gaussian coefficients with the same means and covariance
structure that we observed for the least squares estimates, the plots of rotation
against 8 typically looked very different from the data of observed children and
from their averages in Figure 3.

We discuss now why, in practice, we take the upper limit of summation in (1)
to be 6. There is precedent for this choice [Cappozzo, Leo and Pedotti (1975) and
Sutherland, Olshen, Cooper and Woo (1980)]. Since setting standards and mak-
ing comparisons are basic to our purpose, it was deemed appropriate to fit the
same number of terms to each child for every rotation. One might guess that the
process of fitting could be improved by first testing whether candidate Fourier
coeflicients are 0 and retaining in the model only those terms that pass some
suitable test at, say the 5% level. This process is not reasonable from at least one
decision-theoretic point of view [Sclove, Morris and Radhakrishnan (1972)]; in
addition, it leads to fitted curves that obscure “blips” and other aspects of
rotations believed to be important on the basis of clinical experience. Instead, we
adapted Shibata’s (1981) model selection procedure to the problem of choosing
the upper limit to the summation. It seemed unreasonable to skip harmonics, so
subsets of harmonics other than those formed in this way were not considered.
We could not generally retain more than the first six sine and cosine terms
because we wanted at least 3 degrees of freedom for residuals for each fit, and for
some rotations d; = 16 for some i. There would be only slight diagnostic value to
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higher order terms anyway, since regardless of d;, multiple correlations for our
fits nearly always exceed 95%. (The extremely high values for multiple correla-
tions persist for VICON data that are digitized more frequently than were the
data on which this paper is based.) Two ideas that guided our application are
these: There is some considerable spread to the distributions of ¢ and so there
should be some spread to the distributions of numbers of terms Shibata would
retain; also, neurologic maturation is top to bottom (cephalocaudal), so the
higher up the body the rotation, the fewer terms would likely be needed. For
rotations such as the foot that involve “fine tuning” of the walk, older children
should require more terms than younger. Both of these conjectures were vali-
dated by the data. For a given candidate value M to the upper limit of
summation, Shibata’s criterion is computed to be

4M + 1
(6) S(d;, M) = {1 + _J——} {residual sum of squares}.

The selection rule is to pick M for which (6) is minimized. The criterion is
asymptotically optimal if the e,, are independent and identically distributed,
N(0, 62). Of course we do not believe the normality assumption in general. Even
with the stated assumptions, however, Rice (1984) indicates that at least for
some problems the technique tends to overfit in practice. This tendency is less of
a problem in our situation with random coefficients than it might be in other
contexts, because in deciding how many terms to retain it would seem unwise to
be parsimonious at the expense of using models unable to describe the rotations
of any sizable minority of children. Figure 4 gives histograms of the choice of M
Shibata dictates for two rotations for our 38 normal five-year-olds. Clearly the
ankle tends to require more terms than the hip, and yet even for the hip some
children require M = 6. The choice of M and application of the Shibata criterion
can be summarized thus. For each rotation, M was to be fixed. It could not be
more than six. To have chosen it to be less for any rotation would have been
inconsistent with the data of at least some children. So we feel that a uniform
choice of M = 6 is reasonable.

4. Bootstrapping prediction regions and percentiles. While mean val-
ues are a sine qua non in our analyses, the process of comparing test children to
normal children requires estimates of the variability of the rotations for the
normal child. We formalize the use of training data to evaluate subsequent test
subjects by forming prediction regions. Initial attempts to define such regions
led to the discovery that for many rotations, the variability of the average across
0 (that is, «,) seems to be larger than the variability of the sum of harmonic
terms. Therefore, for each rotation we separate the process of prediction into two
(not independent) components: one for a, and one for the sum of harmonics.
This is reasonable from a physiologic point of view, since the former may be
primarily a function of body alignment and the latter largely dependent on
muscle control. Another argument is that across motion analysis laboratories the
a, term for a given walker is not necessarily reproducible since its value depends
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Fic. 4. Choice of the upper limit of summation in (1) by the Shibata model selection criterion (6) for
38 normal five-year-old children.

to a large extent on marker placement. On the other hand, the sum of harmonics
for the same walker is closely reproducible. For now, discussion centers on
prediction regions for the sum of harmonics, that is, for

) £,(6) = é [ajcos( 21’(’)’(;9) + pjsin(%)].

As is clear from the discussion of the last section, variability of f, is far from
constant across the gait cycle. Typically, the range of data is wider during swing
phase (when the foot is off the ground) than during stance phase. The variance of
,(0) is of(8) = T'(6)I,T(0), where

70 = (Cos(ﬂ),sin(gﬂ),...,sin( 12'”0)),

100 100 100
where the prime denotes transpose and T, is the lower right 12 X 12 submatrix
of T.
Denote by f;L(H) the estimated f,(8) for a test subject for whom least squares
estimates based on his data are plugged into (7). From (4) it follows that if d, is
the number of points at which the subject’s data are digitized, then

(8) Var( f,(8)) =7(8)T,7(8) + (120%/d,).



GAIT ANALYSIS AND THE BOOTSTRAP 1431

Because in practice, as was stated, 062/d,, is always small relative to v,, and the
d;’s from the training sample data are roughly equal, we simply estimate (8) by

9) 64(8) = 7(8)Cov, 7 (0),

where Cov,, is the sample covariance of the collection of least squares estimates
(@D, ..., B}, E( fi(8)) is estimated by f3(8), in which f{® is weighted
proportlonal to d,. It is in keeping with clinical practice to say that a child
departs from the normal range if for some 8, his fh and the population mean are
too different, where the unit of discrepancy at 6 is o;(6). Thus, our estimated
simultaneous prediction regions are of the form

(10) (0, F): £:(0) = m8,(0) < 1,(0) < 1(0) + mé; (0))

sm},

where m is a positive number. The bootstrap enables us to estimate the
probability of the event (10).

The bootstrap process begins with the selection of a random sample of size N
with replacement from our training sample of N subJects Compute from this
bootstrap sample N vectors of coefficients {(&{"p, B(‘) ) i=1,...,N} and
from them an estimate f'\h,B fh 5(8) of E( fh(0)) and 3(0) of Var( fr(0)).
These vectors {(&(p,..., %) i=1,..., N}, are N reahzatlons of random
vectors distributed according to the theoretical bootstrap distribution. In Sec-
tion 5, where most of the discussion is restricted to the case M = 1, we have
denoted by {(&%"9, 8% D). i = 1,..., N} random vectors distributed accordlng
to the theoretical bootstrap distribution from which the N (8, Bp): i =

, N} are sampled. The probability measure that gives rise to the theoretical
bootstrap distribution is denoted in Section 5 by P§Y’.

For each positive m, let
[Here {, 1(0) refers to the least squares estimate of f,(#) for an individual member
of the training sample.] Now repeat the bootstrap sampling and computation of
Fy(m), say R times. Then Fy(m) is the average of the R Fym). If0<p <1,
then m, is defined by

Fi(8) - F(0)

(11) = {fh: max 5.(0)

Fu(0) = o 5(6)
6[, B( 0‘)

(12) Fy(m) = N~'#{ f,: max

m, = min{m: FTB(m) Zp};

p is our estimate of the probability of the event (10) when m = m,,. That is, we
predict that for approximately 100p% of normal children, their f, will lie
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Fic. 5. Plot of a bootstrap estimate of the probability of the event (10) as a function of m for left
ankle dorsi-plantarflexion based on R = 10 bootstrap samples and N = 38 normal five-year-old
children.

between_fh(ﬂ) — m,6;(6) and fh(ﬂ) + m6;(8) for all 6. In practice the discrete-
ness of FB is not important since its typical jump is 1/NR.

It follows from large deviation results [as in Babu and Singh (1983)], that if R
is large enough, then F’B(m) arbitrarily closely approximates the corresponding
theoretical bootstrap probability (uniformly in m) with arbitrarily high proba-
bility. In Section 5 it is demonstrated that subject to some conditions on the
distribution of ¥, the difference of the theoretical bootstrap probability and the
true probability of (10) tends almost surely to 0 as N increases without bound.

Figure 5 is a plot of lOOF'B(m) versus m for the left sagittal plane ankle
motion based on a training sample of 38 normal five-year-old children. Note the
striking and typical sigmoidal shape to the curve. An explanation is given by
Johansen and Johnstone (1990). They show that, at least approximately, the
curve in Figure 5 is the distribution function of a product of two independent
random variables, one the square root of a xZ, random variable. The other
distribution is derived from work of Hotelling (1939). In constructing Figure 5,
R = 10 was used. Further computing showed that the curves for R = 10 and
R = 25 were, for any practical purposes, indistinguishable.

If we fix a p, say p = 0.95, then (10) and F‘B combine to provide simultaneous
prediction regions. The fh of any test subject can then be plotted with fh(ﬂ),
fh(O) — mge56;(0) and fh(ﬂ) + m956;(0) to see whether fh lies within the
region. This has been done (for R = 10) in Figures 6 and 7. In the first instance,
right foot rotation is plotted, with fh and the prediction region, for a clinically

normal five-year-old who was actually a member of the training sample. The
only known outlying aspect of this “test” child’s walk was an unusually high
ankle dorsi-plantarflexion &; and, of course, this f, lies within the bounds

throughout. Figure 7 gives the prediction region and f for five-year-old left ankle
dorsi-plantarflexion. Here the test subject is a five-year-old child born 10 weeks
prematurely. Obviously the child’s walk is abnormal; he has cerebral palsy.
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Fi1c. 6. A 95% prediction region for five-year-old right foot rotation is bounded by the dotted lines;
f, is given by the solid line. The heavy line is [, for a clinically normal child who was actually a
member of the training sample.

In order to better understand the stability and robustness of our prediction
regions, we ran a simulation study as follows. For a fixed f we simulated N
Gaussian ay,..., B; from a distribution with the same p and I' as were esti-
mated. Both f, » and prediction regions were found for the simulated data. Recall
from discussion of the previous section that individual f,—and necessarily fh,
too—did not look like observed f,. However, the simulated prediction regions
bear remarkable resemblance to the real regions and to those of Johansen and

Johnstone. An example is given in Figure 8. In fact, ﬁ’B(m) was well approxi-
mated by the simulated version for all m.
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Fic. 7. A 95% prediction region and f;h are given as in Figure 6, though here for five-year-old left
ankle dorsi-plantarflexion. The test subject [, was computed from the data of a 10 week prematurely
born child who has cerebral palsy.
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Fi1c. 8. Prediction regions for five-year-old right knee flexion—extension, with R = 25. The lighter
solid and dashed lines are based on real data, the others on Gaussian data with (true) mean and
covariance that were observed.

The cited theory of Johansen and Johnstone yields prediction regions that can
in practice closely approximate what we compute from the bootstrap. Their
theory as presently implemented depends on Gaussian assumptions on the
distributions of Fourier coefficients and on the approximation 6;(8) = o,(4). It
follows from the comparison of Johansen and Johnstone with this paper that in
the examples drawn from gait analysis, for the purpose of computing bootstrap
prediction regions, the non-Gaussian distributions of the higher frequency Fourier
coefficients do not bear heavily on F’B(m). We certainly did not know this when
we began.

The bootstrap procedure that has been described for fr can be carried out as
well for a,. In this case what was a prediction region becomes a prediction
interval. The bootstrap process is used to estimate the probability of the event
that corresponds to (10) (in an obvious notation),

(13) {d: & — mé, < &, < & + m4,).

The theory of Johansen and Johnstone (1990) applies here, too. However, curves
like the one depicted in Figure 9 are not expected to be sigmoidal in shape,
because \/E is not approximately Gaussian like \/E is. We expect but are not
certain that in practice the Johansen-Johnstone prediction intervals correspond
closely to those that we compute from the bootstrap.

Table 1 gives results on bootstrap percentiles for a, for two prematurely born
five-year-old children and 10 angular rotations. The subject denoted 8519 is the
same child whose fh was displayed in Figure 7. Clearly 7 of his 10 rotations put
him at no lower than the 99th percentile for normal children. The only three
rotations for which he does better deal with movement toward the middle of the
body and they are not associated with what one might think of as fine motor
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F1G. 9. Plot of a bootstrap estimate of the probability of the event (13). As with Figure 5, the
rotation is ankle dorsi—plantarflexion for five-year-old children with N = 38 and R = 10.

control, as is the foot. Notice also that since most of the gait cycle is stance
phase (when the foot is on the ground), the predicted average (across ) ankle
value could be —87.1, as it is, only if the child were walking on the balls of his
feet. (A subject standing still with heels together has ankle dorsi—plantarflexion
of approximately 0.) Subject 8506, two fewer weeks prematurely born than
subject 8519, appears to be normal at a superficial glance. His bootstrap knee
flexion—extension percentile is high and his left hip clearly does not rotate
internally as he walks, quite like the hips of his full term peers. We once thought
that this child’s neuromuscular development was delayed because of his prema-
ture birth. However, for reasons not discussed here [see Sutherland, Olshen,
Biden and Wyatt (1988), pages 191-200], we decided that the gait of this child
more closely resembles that of an older, not younger, child.

TABLE 1
Left &, averages and standard deviations and bootstrap distribution percentiles for two prematurely
born children

Subject 8519 (10 weeks) Subject 8506 (8 weeks)

_ Bootstrap Bootstrap

Plane Rotation & 8 a, .#8, percentile &, #§; percentile
Sagittal Knee F-E 309 3.2 479 5.3 99 + 238 2.2 98
Sagittal Ankle D-P 15 34 —-67.1 193 99 + + 08 0.2 19
Sagittal Hip F-E 260 5.5 328 1.2 73 178 1.5 81
Transverse  Pelvic Rtn —17 48 45 1.3 83 1.7 0.7 45
Transverse  Femoral Rtn 1.5 6.1 309 4.8 99 + -57 12 77
Transverse  Tibial Rtn —-62 69 679 10.7 99 + + -53 0.1 5
Transverse  Foot Rtn -72 4.7 145 4.6 99 + —-13.7 14 86
Transverse  Hip Rtn 32 58 264 4.0 99 + -74 1.8 90
Transverse  Knee Rtn -76 6.7 370 6.7 99 + 03 1.2 80

Frontal Pelvic Oblg 14 20 -27 21 96 -08 1.1 70
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5. Some mathematical considerations. What follows are the beginnings
of an asymptotic theory for the bootstrap prediction regions. Of course, one
popular area of current research regarding the bootstrap is its hyperaccuracy for
both critical points and coverage probability for certain confidence interval
problems; see, for example, Babu and Singh (1983), Abramovitch and Singh
(1985) and, especially, Hall (1988). One key to these results is an Edgeworth-like
asymptotic expansion, difficulties with which have been discussed by Hartigan
(1986) and Olshen (1986); see Hall (1988) for a definitive exposition. The presence
of f, in the numerator of (11) precludes asymptotic normality of the statistic
given there; rather, that statistic, asymptotically, is obviously a mixture of
normals. In the special case of prediction intervals for «,, it has been shown
without Edgeworth expansions that bootstrap-based critical points are not
hyperaccurate, but nonetheless coverage probabilities are!; see Bai (1988), Bai
and Olshen (1988) and Bai, Bickel and Olshen (1990). (An estimator based on a
learning sample of size N is said to be hyperaccurate if the difference between it
and its putatively correct value tends to O faster than N~1/2 as N tends to
infinity. The sense in which the difference is computed depends on context. For
bootstrap-based prediction intervals, the differences of critical values converge
almost surely, while the convergence of differences of coverage probabilities is
that of a sequence of real numbers. The name hyperaccurate is due to Wing
Wong.) We concentrate here only on the sample path behavior of the theoretical
bootstrap probability of the event given by (10) and (11). The arguments
presented concentrate first on the case M = 1, that is, the upper limit of
summation in (1) is 1.

To begin, we assume the existence of a sequence of random vectors
(& B),(aD, BD),(a®, D), ... that are iid. These are the individual least
squares estimates for, respect1vely, the test case and the learning sample. Next
we introduce a triangular array of bootstrap random vectors {(&%), BYy: i=

-} and {(&% 7, B ") i =1,2,...; j=1,...,1)}. Their distributions are
deﬁned in terms of condltlonal distributions as follows Let %, be the o-field
generated by {(&®, BD): i< N}, {(8%7),04"): i<N-1, j<i} and
(&P, BP): i < N—1). (& B) is 1ndependent of Vy%y, the span of the %By.
leen A, the random vectors (4", BY") and {(& 9, BV9): i < N} are iid
with distribution Py, the empirical distribution of {(&®, 8¥): i < N}. Finally,
write P§Y) for P(-|#,) and E§V) for expectations computed with respect to
P{M). All conditional probabilities are assumed to be regular.

Assume that an angular rotation f is fixed. Let

p— — N .
a=a&N)=N"1Y a¥
J=1
B = B(N) and 6; = 6;(IN) are defined by analogy Also, set
Gp=@ay(N)=N""! Za(N’)

Jj=1

and define ,éB and &; p by analogy. For expository convenience we here use a
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conventional 0-2# scale by writing iy = 276 /100. The probability of the event
(10) (with M = 1 and not 6) is thus

~

(14) P(O[(&—&)cos¢+ (8~ B)sin i s&,(¢)m]).
Introduce the two quantities
I- P{ﬂ[|(5 ~ &)cosy + (f — f)sin 9| < @(Mm]}
and ‘p
In = P§”>{O[|(5B — &@)cos  + (B — BYM )sin y| < 6f,3(4»)m]}-

The point of what we show is that I and II are close. In order to complete our
program, we assume that

(15) & and § both have finite (8 + §)th moments for some positive
8 and (&, B) has a bounded density.

From the results of Rubin and Sethuraman (1965) and the Borel-Cantelli lemma
we conclude that almost surely

- log N
(16) G=dy+ 0|y — )
= = log N
(17) .3=,BB+O( N )
and
log N
18) 6,9) = o) + 0 | 75 |

where the last equality is uniform in . Also,
sup (max(|& — &1, 18 — Bal. 16,(¥) — 6, a()]))
N.¢

is integrable. So

Y

1= P{O[|(¢§B — &)cosy + (BB - E)sin Y| < 6,(11/)m]}

log N
o( 1 )

Denote the first term on the right-hand side of (19) by I*. Write @, = &y V

a~

o({(&N D, BN ) j < N}), where o(-) is the o-field spanned by the parenthetic

(19)
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random vectors. Then

I* = E{P(Oh(&B - &)COSz,b + (EB - ,E)sin Y| < 6,’B(z,b)m]@1\,)},

(20) II=1II* = ElgN){PgM(nh(éB — &@M)cos ¢
¥

+(B‘B _ ’gg"))sin Y| < 6f’3(¢)m]@N)}.

Of course, part of the conditioning in IT* is redundant; it could as well have been
restricted to o({(&y" ", 5V ?): j < N}). Note that after the conditioning, the
remaining randomness in the integrand of I* is in (&, £ ) and that the remaining
randomness in the integrand in II* is in (&¥, BY). The latter has conditional
distribution P,.

The notion of Vapnik-Chervonenkis class figures in the arguments that we
present now. Our definition is that of Kuelbs and Dudley (1980), who begin with
a set 2" and a collection .% of subsets of &. Let V(%) be the smallest 7 such
that for every F C & with n elements, not every subset of F' is of the form
FNC,Ce& If (#) < oo, then & is a Vapnik-Chervonenkis class.

In the (&, §) plane, the set whose conditional probability is computed in I* is
an ellipse. So from the fact that the set of ellipses is a Vapnik-Chervonenkis
class [Steele (1975) and Dudley (1978)] and a law of the iterated logarithm due to
Kuelbs and Dudley (1980), we see that

PN(ﬂ[l(a — @ )cos ¥ + (b — BYV)sin | < cm])
4
_P(ﬂ“(a — d@)cosy + (b — f)siny| < cm])}}

¥
loglog N
0(\/—N )

Since the integrands in I* and II* do not exceed 1, from (21) it follows that

log N
N a.s

is alrhost surely

sup|I — II| = O(
The discussion so far can be summarized thus:

THEOREM 1. Assume that M = 1 and (15). Then the difference between the
probability of the event (10) and the (theoretical) bootstrap probability of (12) is
almost surely O(y/log N/N ), uniformly in m.
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From Theorem 7.2 and Proposition 7.12 of Dudley (1978), it follows that (21)
can be extended immediately to arbitrary M < oo if the intersection in (10), (11)
and (14) and the corresponding maximum in (12) are restricted to (any) finite set.
Of course, data are gathered only at a bounded number of discrete points, so the
cited extension applies to our practical situation. However, we prefer not to have
the restriction in theoretical results; and the extension of Theorem 1 to M > 1
does follow from Theorem 2, which is a special case of recent results of Stengle
and Yukich (1989). Their result implies that for any fixed M < o, the sets that
arise from (10) and that correspond to the cited ellipses in (20) are a
Vapnik—Chervonenkis class. Therefore, the Kuelbs—Dudley law of the iterated
logarithm that applied to (21) applies as well to this more general case.

THEOREM 2 [Stengle and Yukich (1989)]. Assume that p, q, r and s are
positive integers and that 9 is the set of functions of the form

Glx) = mfx{ _z;:lP,(x)Q,-w)},

where for each j, P, is a polynomial of degree s in the p-dimensional real
variable x and Q; is a polynomial of degree q in cos Y and sin . Then the class
of subsets of Euclidean p-space of the form {x: G(x) > 0} for some G € Y isa
Vapnik—Chervonenkis class.
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