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Abstract

This paper addresses gait-based age estimation using a
large-scale whole-generation gait database. Previous work
on gait-based age estimation evaluated their methods us-
ing databases that included only 170 subjects at most with
a limited age variation, which was insufficient to statisti-
cally demonstrate the possibility of gait-based age estima-
tion. Therefore, we first constructed a much larger whole-
generation gait database which includes 1,728 subjects with
ages ranging from 2 to 94 years. We then provided a base-
line algorithm for gait-based age estimation implemented
by Gaussian process regression, which has achieved suc-
cesses in the face-based age estimation field, in conjunction
with silhouette-based gait features such as an averaged sil-
houette (or Gait Energy Image) which has been used ex-
tensively in many gait recognition algorithms. Finally, ex-
periments using the whole-generation gait database demon-
strated the viability of gait-based age estimation.

1. Introduction

Recently, biometrics has increasingly attracted attention
as a key technology for realizing a more secure and safer
society. Although most of the studies on biometrics focus
on person authentication or identification, namely hard bio-
metrics, it is also important to promote the recognition of
properties such as gender, age, and ethnicity, namely soft
biometrics. Face-based age estimation has already been in-
stalled in adult authentication systems for automatic vend-
ing machines of cigarettes in several countries. In addition,
there are many other potential applications such as auto-
matic customer counting by gender and age group for mar-
keting research.

Among biometric modalities, gait has several promising
properties such as availability at a distance from a camera
even without the cooperation of the subject; hence gait-
based hard biometrics [28][31][27][11][23] has been exten-
sively studied over the last decade with the aim of realizing
wide-area surveillance and assistance with criminal investi-
gation.

Furthermore, gait-based soft biometrics are also

an active research area (e.g., gender classifica-
tion [14][17][12][2][18][38], age group classifica-
tion [4][1][24], age estimation [21][20], and ethnicity
classification [21]). In particular, gait-based age estimation
is one of the challenging but encouraging areas of research
motivated by several applications such as detection of lost
children in shopping malls and wandering elderly in care
homes.

On the other hand, large-scale gait databases are essen-
tial for statistically reliable evaluation of gait-based age es-
timation. Although several gait databases have been pro-
posed and some are available (e.g., USF dataset [31], Soton
(Southampton) [26][25], CASIA dataset [36], and OU-ISIR
Gait Database [30]), they include only 170 subjects at most
and contain significant biases in terms of gender and age
(e.g. the majority are males in their twenties). The only
exception is the large-scale gait database proposed in [29],
which includes 1,035 subjects (569 males and 466 females)
with ages ranging from 2 to 94 years. The large-scale gait
database, however, still suffer from a shortage of subjects in
several age ranges such as 15 to 19 years and over 50 years,
which are important for age estimation.

Therefore, we constructed a larger whole-generation gait
database including 1,728 subjects initially with fewer age
biases than [29]. We then provided a baseline algorithm
for gait-based age estimation using Gaussian process re-
gression [3] which has been adopted by state-of-the-art al-
gorithms for face-based age estimation [39]. This was in
conjunction with silhouette-based gait features such as av-
eraged silhouettes (or Gait Energy Images) [19][11] which
have also been used in many other gait recognition stud-
ies [2][37][33][22]. Finally, we investigated the possibility
of gait-based age estimation using the constructed whole-
generation gait database.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews related work on face-based and gait-
based age group classification and age estimation. Section
3 describes our whole-generation gait database and subse-
quently Section 4 describes a baseline algorithm for gait-
based age estimation using Gaussian process regression.
Section 5 presents experiments of gait-based age estimation
using the whole-generation gait database and Section 6 pro-
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vides a discussion based on examples of success and failure
modes. Finally, Section 7 concludes this paper and suggests
future research on the subject.

2. Related work

2.1. Face-based age estimation

The face based age group classification problem is usu-
ally defined as a multi-class classification problem and is
solved by using several classifiers such as a nearest neigh-
bor classifier and a neural network classifier [15].

Face-based age estimation is formulated as a regres-
sion problem from face features to age, and estimation ap-
proaches mainly fall into two groups: global model based
approaches and personal model based approaches.

The global model based approaches assume the com-
mon aging process and hence apply the same regression
model using a quartic function [16], a kernel function [35],
support vector regression [10], Gaussian Process Regres-
sion (GPR) [3], and Warped Gaussian Process Regression
(WGPR) [32]. Manifolds parameterized by ages are also
regarded as types of regression models, and hence manifold
learning and metrics learning techniques are introduced to
face-based age estimation in [5][9][34].

The personal model based approaches assume that aging
processes differ between people and hence apply person-
specific models defined as linear regression [8], nonlinear
regression [7], and multi-linear regression from a tensor
with missing data [6]. Zhang et al. [39] regarded a personal
age estimation problem as one of multiple tasks and in-
troduced Multi-Task Warped Gaussian Process Regression
(MTWGPR).

Although in general personal model-based approaches
achieved better performance than global model-based ap-
proaches, they essentially need multiple-age training sam-
ples for each target person, which are unavailable when the
target is the general public.

2.2. Gait-based age estimation

For gait-based age group classification, Daves et al. [4]
classified children (3-5 years old) and adults (30-52 years
old), and Begg et al. [1] classified younger people (average:
28.4 years old, standard deviation: 6.4 years) and the elderly
(average: 69.2 years old, standard deviation: 5.1 years).
Mannami et al. [24] classified four groups: children (un-
der 15 years old), adult male, adult female, and the elderly
(over 65 years old) using the OU-ISIR Gait Database [30].

For gait-based age estimation, Lu et al. proposed a learn-
ing method of an age-ordinary preserving discriminant sub-
space [21] and a multi-label guided subspace [20].

As seen from the above, there are far fewer studies
on gait-based age group classification and age estimation
than face-based studies. This is because the existing gait
databases were inadequate in terms of age variation and
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Figure 1. Gait measurement system and captured image samples.

the number of subjects, while the existing face databases
(e.g., MORPH database [13]) contain sufficient age varia-
tion and subjects. Therefore, one of the important contribu-
tions of this paper is to construct the first whole-generation
gait database with sufficient subjects for evaluating the per-
formance of gait-based age group classification and age es-
timation.

3. Whole-generation gait database

3.1. Gait measurement system

In this section, our measurement system for creating the
gait database is presented. First, a 10 m walking course was
prepared and each subject was asked to walk at his or her
own preferred speed along the course as shown in Fig. 1.
Because gait tends to be unstable during acceleration and
deceleration intervals at the beginning and end, a 4 m inter-
mediate capturing interval was used for the observation.

Two cameras were then set up at approximately 4 m from
the walking course to observe (1) the transition from a side
view to a rear-oblique view and (2) the transition from a
front-oblique view to a side view. The camera used was
Flea2 by Point Grey Research Inc, and the image size and
frame-rate were VGA (640 × 480 pixel) and 30 fps.

In addition, green background panels and carpets were
arranged along the walking course for the purpose of clear
silhouette extraction. Examples of the captured images are
shown in Fig. 1.

3.2. Data collection and statistics

The data collection process and resultant subject statis-
tics are described in this section. The dataset was collected
in conjunction with an entertainment-oriented demonstra-
tion of gait personality measurement in three events like
an outreach activity of a research project, an exhibition of
surveillance technologies, and an open campus day. Each
subject was asked to sign a release agreement to permit the
use of the data for research purposes.

As a result of the data collection, we have constructed
the world’s largest gait database including 1,728 subjects
(1,007 males and 721 females) with ages ranging from 2 to
94 years old. Details of subject statistics in terms of gen-
der and age groups in 5 year intervals are shown in Fig. 2.
Compared with existing gait databases the following are the
three main strengths of our gait database.

1. Whole generation: The age range of our gait database
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Figure 2. Statistics of subjects’ gender and age.

is from 2 to 94 years old and each age group in 5-year
intervals from 5 to 49 years old contains more than 100
subjects. In addition, it is particularly notable that our
gait database includes sufficient children in the process
of growing where other large-scale gait databases are
mainly composed of adult subjects. Naturally, these
properties are directly beneficial to gait-based age es-
timation in terms not only of performance evaluation
but also reliable regression model training.

2. Large population: The number of subjects is approxi-
mately 10 times the number in existing large-scale gait
databases [24]. This significantly improves the statis-
tical reliability of the performance evaluation of gait-
based age estimation.

3. Gender balance: The ratio of male to female is ap-
proximate 10 to 7, and it is less biased compared with
the existing large-scale gait databases (e.g. the ratio of
male to female in CASIA dataset [36] is approximately
3 to 1). This enables an investigation of the gender
impact on gait-based age estimation performance and
also the construction of gender dependent gait aging
models or regression models for further research.

4. Gait-based age estimation

4.1. Gaussian process regression

Because Gaussian Process Regression (GPR) [3] has
been adopted as the state-of-the-art method in face-based
age estimation [39], it is also incorporated in our gait age
estimation solution.

The Gaussian process is organized mainly in two steps
as shown in Fig. 3. In the first step, the Gaussian distri-
bution of the regressand age 𝑓 is derived from the regressor
gait feature x and the regression parameter Θ. In the second
step, the Gaussian distribution of the observed age 𝑦 is de-
rived from that of the regressand age 𝑓 and the observation
noise 𝜎.

Next, let us assume that a training set 𝐷 = [𝑋,y ] is
given, where 𝑋 = [x 1, ⋅ ⋅ ⋅ ,x𝑁 ] is a set of 𝑁 samples of
gait features and y = [𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑁 ] is a set of the corre-
sponding ground truth ages. Then, given a new gait feature
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Figure 3. Diagram of GPR

x ∗, GPR tries to estimate a distribution of an age 𝑦∗ for the
gait feature x ∗ based on the training set 𝐷.

In order to treat non-linear regression, mapping 𝜙 from a
gait feature x to a higher-dimensional feature space is intro-
duced with the parameter Θ as 𝜙(x ; Θ). Then, a regressand
age 𝑓 is given by linear regression in the higher-dimensional
feature space as

𝑓(x ; Θ) = 𝜙(x ; Θ)𝑇w , (1)

where w is a vector of linear regression coefficients in the
higher-dimensional feature space. Moreover, the mapping
of 𝜙 is implicitly defined by the so-called kernel trick and
hence an inner product in the higher-dimensional feature
space 𝑘(x 𝑖,x 𝑗 ; Θ) = 𝜙(x 𝑖)

𝑇𝜙(x 𝑗) is defined as Gaussian
kernel like

𝑘(x 𝑖,x 𝑗 ; Θ) = 𝑣 exp

(
−∣∣x 𝑖 − x 𝑗 ∣∣

2𝑟2

)
(2)

where Θ = [𝑣, 𝑟]𝑇 is a parameter vector for the Gaussian
kernel.

Consequently, a posterior probability distribution
𝑃 (𝑓 ∣x ∗, 𝐷) of a regressand age 𝑓 is defined as a Gaussian
distribution 𝒩 (𝜇𝑓 , 𝜎

2
𝑓 ) [3]. Here, mean 𝜇𝑓 and variance

𝜎2
𝑓 are defined as

𝜇𝑓 = k𝑇
∗ (𝐾 + 𝑆)−1y (3)

𝜎2
𝑓 = 𝑘(x ∗,x ∗)− k𝑇

∗ (𝐾 + 𝑆)−1k∗, (4)

where 𝐾 is a 𝑁 × 𝑁 square matrix whose (𝑖, 𝑗) compo-
nent is 𝑘(x 𝑖,x 𝑗), k∗ is an 𝑁 -dimensional vector and the
whole 𝑖th row is 𝑘(x 𝑖,x ∗), 𝑆 is a 𝑁 × 𝑁 diagonal matrix
whose (𝑖, 𝑖) component is 𝜎2, namely, the observation noise
variance.

Finally, a posterior probability distribution 𝑃 (𝑦∣x ∗, 𝐷)
of an output age 𝑦 is also defined as a Gaussian distribution
𝒩 (𝜇𝑦, 𝜎

2
𝑦), where

𝜇𝑦 = 𝜇𝑓 (5)

𝜎2
𝑦 = 𝜎2

𝑓 + 𝜎2. (6)

4.2. Parameter learning

Because the Gaussian kernel parameter Θ and the obser-
vation noise 𝜎 used in GPR are unknown parameters, they
need to be learnt with the training set 𝐷 = [𝑋,y ]. Specifi-
cally, they are estimated by maximizing a likelihood of out-



Figure 4. Examples of frequency-domain features [23]. Left, mid-
dle, and right images for each subject are the direct currency el-
ements (averaged silhouettes), one-time frequency elements, and
two-time frequency elements of amplitude spectra when the gait
period is used as the base period for Fourier analysis.

put ages y under the observation of gait features 𝑋 as

𝑃 (y ∣𝑋) =

∫
𝑃 (y ∣f )𝑃 (f ∣𝑋)𝑑f

=
1

(2𝜋)
𝑁
2 ∣𝐾 + 𝑆∣12 exp

(
−1

2
y𝑇(𝐾+𝑆)−1y

)
.(7)

Note that the Gaussian kernel parameter Θ and observation
noise 𝜎 are included in matrices 𝐾 and 𝑆, respectively.

On the other hand, it is well known that the maximization
of the following log likelihood 𝑙 = log𝑃 (y ∣𝑋) is better
than that of the original likelihood in terms of stability in
numerical computation.

𝑙 = −1

2
y𝑇 (𝐾 + 𝑆)−1y − 1

2
log ∣𝐾 + 𝑆∣ − 𝑁

2
log 𝜋 (8)

Finally, the parameters Θ and 𝜎 are optimized by maximiz-
ing the log likelihood with a conjugate gradient method.

5. Experiments

5.1. Method

Gait-based age estimation based on GPR was evaluated
using the whole-generation gait database. Approximately
half the subjects for each generation were chosen as training
samples, which added up to 877 subjects, while the other
851 subjects were used as test samples.

Gait features as a regressor contain three silhouette-
based features: (1) the averaged silhouettes or Gait Energy
Images [19][11] (denoted GEI later), which have been the
most widely used, (2) the frequency-domain features [23]
(denoted FREQ later), which include not only the averaged
silhouettes (direct currency elements) but also one and two-
times the frequency elements shown in Fig. 4, and (3) the
gait periods (denoted by GP later) detected by maximizing
the normalized autocorrelations [23]. The performance of
gait-based age estimation is measured by a Mean Absolute
Error (MAE) and a cumulative score. Given the estimated
age 𝑦𝑡𝑖 and ground truth age 𝑦𝑡𝑖 for the 𝑖th test sample, the
MAE 𝐸 between them is defined as

𝐸 =
1

𝑁 𝑡

𝑁𝑡∑
𝑖=1

∣𝑦𝑡𝑖 − 𝑦𝑡𝑖 ∣, (9)

where 𝑁 𝑡 is the number of test samples. In addition, the
cumulative score for 𝑙 years absolute error tolerance 𝑆(𝑙) is
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defined as the ratio of the number of subjects within 𝑙 years
absolute error 𝑁 𝑡(𝑙) to that of all the test samples 𝑁 𝑡 as

𝑆(𝑙) =
𝑁 𝑡(𝑙)

𝑁 𝑡
. (10)

5.2. Results

In this section, the performance of gait-based age esti-
mation is evaluated by the MAE and the cumulative scores
are shown in Fig. 5.

As a result, it emerged that FREQ achieves the best MAE
(8.2 years) and also the best cumulative score (e.g. the abso-
lute errors of 68% and 85% subjects are less than 10 and 15
years, respectively). GEI is slightly worse than FREQ, the
difference is, however, insignificant. Moreover, although
the MAE of females is better than that of males (e.g., 8.2%
to 8.3% in FREQ), the impact of gender difference is still
insignificant. On the other hand, the GP is much worse than
the other two gait features. This is because gait periods and
ages are almost uncorrelated when the subjects have grown
up, although they are correlated during the growing period
(e.g., from 0 to 15 years old).

6. Discussion

In this section, several success and failure modes of GEI
are discussed based on Fig. 6.

First, we focus on the successful subjects within 3 years
of absolute error. During the growth of a child (e.g. from
0 to 20 years old), we can observe clear changes in body
shape such as ratio of head to full body. In addition, the
relative stride to height tends to be large during childhood,
in particular, for boys under 10 years of age. After grow-
ing up, while the arm swings of subjects in their twenties
tend to be small, those in their thirties or older tend to be
larger. On the other hand, when getting older (e.g. after 40
years of age), middle-age spread and stoop are observed in
most of the subjects. Consequently, these kinds of correla-
tions between gait features and ages enable gait-based age
estimation.

Next, we focus on the failure modes. From our obser-
vation, the failures result mainly from two causes: (1) the
difference between gait age and actual age and (2) the ab-
sence of training samples similar to a failed test sample.



7

5 9

4 10

13

14

17

18

21

22

24

25

28

29

32

33

35

37

38

40

42

43

45

46

48

49

51

52

54

55

58

59

4
(−18)

35
(−19)

43
(−15)

47
(−22)

52
(−21)

59
(−17)

66
(−40)

81
(−25)

3
(37)

6
(24)

9
(20)

14
(16)

20
(21)

24
(37)

27
(28)

31
(19)

36
(25)

40
(16)

44
(15)

49
(17)

Greater than 
15 yrs error

Within 3 yrs 
absolute error

Less than 
-15 yrs error

0 10 20 30 40 50 60 70 80
Ground truth age

(a) Male

3

4

7

9

11

12 17

16 22

25

26

28

30

31

33

34

36

37

39

40

42

44

5346

5020

37
(−17)

42
(−25)

47
(−22)

52
(−23)

58
(−17)

63
(−25)

68
(−30)

74
(−27)

8
(−19)

3
(18)

8
(16)

12
(25)

16
(18)

22
(19)

27
(28)

34
(16)

40
(15)

0 10 20 30 40 50 60 70 80
Ground truth age

Greater than 
15 yrs error

Within 3 yrs 
absolute error

Less than 
-15 yrs error

(a) Female
Figure 6. GEI grouped by age estimation errors: greater than 15
years (over-estimate failure), within 3 years (almost successful),
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is aligned along with the ground truth age by gender.

The first failure occurred when the gait features of failed
subjects significantly deviated from the gaits of their actual
ages. For example, it is observed that the middle-age spread
and/or stoop of over-estimated male adults is much more ap-
parent than in successfully estimated subjects of the same
generation and hence their gait features look like those of
middle-age adults or the elderly, and vice versa. These fail-
ure modes, however, suggest another interesting possibil-
ity that gait age estimation may be applied in the field of
health science, medical science, and exercise science (e.g.,
gait age as a measure of physical strength and fitness pro-
motion).

The second failure occurred when a test gait feature was
very different from training gait features. For example,
it was observed that some of the over-estimated boys had
quite small forward steps, which is not seen in any of the
successfully estimated subjects. These types of failures are
common problems for a family of example-based regression
approaches including the proposed baseline algorithm us-
ing Gaussian kernel-based regression. Therefore, we need
further studies on sophisticated feature extraction such as
part-based feature or decomposition of static (e.g., leg and
arm lengths and body shape) and kinematic (e.g., joint angle
sequences) features to solve this problem.

7. Conclusions

This paper described gait-based age estimation using a
whole-generation gait database. The proposed gait database
included 1,728 subjects with a wide age range (from 2 to 94

years old) and overcame shortcomings of the existing gait
database in terms of age variation, the number of subjects,
and gender balance. We also provided a baseline algorithm
using Gaussian process regression and silhouette-based gait
features. As a result of the experiments using the whole-
generation gait database, the mean absolute error was 8.2
years for the frequency-domain features, which indicates a
potential possibility for gait-based age estimation.

One important future study is the enhancement of the
whole-generation gait database, particularly addition of
the elderly. Moreover, there should be sufficient room
for improvement from the baseline algorithm; hence, the
other state-of-the-art gait features and/or regression meth-
ods will be incorporated while using the whole-generation
gait database as a benchmark.
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