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Abstract

In this paper we describe a system for automatic gait analysis. Different
kinds of human gait are recognized using sequences of grey–level images.
No markers are needed to get the trajectories of different body parts. The
tracking of body parts and the classification are based on statistical models.
We model several body parts and the background as mixture densities. The
positions are determined iteratively, we begin with the most stable part to
find. The anatomy of a human body restricts the area to search for the next
one. From the trajectories, features for gait analysis are derived. These are
used to train hidden Markov models (HMMs), one HMM for each kind of
gait.

1 Introduction

Application of gait analysis can be found in several fields, for example medical diagnosis,
physical therapy, and sports. It is used to get information about gait disorders of patients
with knee or hip pain, or tumors. It is helpful to control cycles of motion for example in
rehabilitation or training.

In most medical examination systems the trajectories which are the curves the body
parts describe are determined by markers which are attached to several points of the body.
The major problems using markers are exact positioning and the shifting of the skin sur-
face when the person is moving, which causes variations of the marker positions. Patients
also may feel obstructed walking with stickers all over their body. In gesture recognition
people often have to wear coloured gloves. We develop a system which works without
any markers and does not presume special clothing. The classification of gait is done
automatically.

One example for motion analysis using markers is given in [11]. Leung attaches
LEDs to the body, tracks them and computes the trajectories. The periodicy of the motion
is used by matching the curvature of one period of the trajectory with a model trajectory.
In contrast to this we do not presume any markers and train hidden Markov models for
each kind of gait.

�The authors are members of the Graduiertenkolleg 3–D image analysis and synthesis sponsored by the
Deutsche Forschungsgemeinschaft (DFG).
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Figure 1: Sample images from sequences of people walking, limping, hopping and run-
ning

There are several approaches for motion tracking and the recognition of human body
parts using a geometric model. Most of them presume contour detection which is not
necessary in our system. [10] uses a model of the human body consisting of 14 cylinders
with elliptic cross sections. He matches the lines of the image with the contours of the
projected model. Hidden contours of the model are removed. [4] generates a 3–D model
of the human body consisting of tapered super–quadrics. He uses several orthogonal
views to track humans in action. [5] detects different body parts by an iterative approach
using multiple views. Starting with a single deformable model, this is segmented into two
parts if the model does not fit the following frame.

Head and hand position are tracked by a stereo Blob tracker [1]. This system is used
to recognize Tai Chi gestures by HMMs using the motion of the head and the hands as
features [3]. [2] computes blobs based on motion and colour similarity, spatial proximity
and groupings in earlier frames. The limbs belong to one blob. For training HMMs for
gait recognition he needs hand–labeled sequences or tracked markers.

Other approaches for action recognition use just the local motion information for clas-
sification. [7] computes local motion statistics inxyt–cells. The feature vector consists
of the summed normal flow in each cell. The classification of periodic action is done by a
3–D template match. [9] uses the grey–level values of rows and columns in an image se-
quence or in difference images to extract features for gesture recognition. He uses hidden
Markov models (HMMs) and a neural net for classification. In contrast to these systems
we consider the motion of body parts, which we think is more detailed.

The paper is structured as follows. In section 2 we give a short overview on the system.
This consists of two parts. The first one determines the trajectories of different body parts
which is described in section 3. These are used to derive features for classification of gait
based on HMMs afterwards, see section 4. In section 5 we show our experiments and
conclude with an outlook on future work.

2 Overview

The system performs an automatic classification of different gaits from grey–level se-
quences. The classes are walking, running, hopping, and limping. The train and test
images are sequences of people moving parallel to the camera in front of a static back-
ground. There are no restrictions concerning clothing. Example frames are shown in
Figure 1.
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Figure 2: Overview on the system. The determination of trajectories is shown in the
dashed box

An overview on the system is given in Figure 2. There are two major parts, the
determination of trajectories and the classification of gait, both of them are based on
statistical models. The first one is shown in the dashed box. We define densities for
different body parts (head, trunk, leg) and the background. These are general models for
the body parts derived from images of different people, the background is trained for each
image sequence. We localize the body parts in every frame by mixture densities taking
into account the anatomic relationships between the parts.

The trajectories are used to extract features from two succeeding frames. The features
describe the periodic component of the motion of the body parts. They define random
variables which are used to train an HMM for each kind of gait.

3 Tracking of body parts

The tracking and recognition of body parts has been addressed by many researchers. They
either define geometric object models for the positions of segmentation features like edges
or track the parts by correlation with object templates which may be adapted as the person
moves in an image sequence. At least for the human face more sophisticated appearance
based models have been evaluated [12].

We use a statistical approach for modelling a scene with static background (see also [8])
and a person moving parallel to the image plane. Local features are extracted for a lattice
of rectangular image positions. For the body parts which are tracked we define inde-
pendent density functions which are — together with the background — combined in a
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mixture density for the complete image. Thereby a priori knowledge of the relative posi-
tions of the parts is incorporated. The object positions are determined by an expectation
maximization approach.

3.1 Features

We apply a discrete wavelet transform to each image in order to extract local feature vec-
tors. Given an imagef(x; y) with x 2 f0; 1; : : : ; Dx � 1g, y 2 f0; 1; : : : ; Dy � 1g we
combine the wavelet coefficients of different resolutions at each grid locationxm 2 X ,
xm 2 IR2 of a quadratic gridX = [xm]m=0;:::;M�1 with resolution 2. Letcm;r;i

(i = 0; 1; 2) be the high–pass anddm;s the low pass coefficients of a tensor product
wavelet transform on scales 2 ZZ with resolutionrs = 21+s at locationxm. The
wavelet analysis is performed up to levelsN�2: s 2 f0; : : : ; N � 2g. To reduce the direc-
tional dependency of the high–pass coefficients we compute the feature vectorsc(xm) =

(cm;0; : : : ; cm;N�1)
T as:

cm;s = log

0
@ X
i=0;1;2

jcm;s;ij

1
A ; s = 0; : : : ; N � 2

cm;N�1 = log jdm;N�2j :

Feature vectorsc(x) for arbitraryx are calculated by linear interpolation.

3.2 Statistical model

The feature vectors of an image result from static background and different body parts.
This means that we have to consider a static background class
1 and several object
classes
2;
3; : : :. Furthermore we model not all body parts and image distortions occur.
These unknowns are modelled by arbitrary background
0.

All features are assumed as independent. The local feature vectorsc(xm) are con-
catenated in the image feature vectorc. Let p(cjB;
i;Ri; ti) denote the density for the
image featuresc for object
i with model parametersB. The 2–D rotationRi = R(�i)
and translationti describe the position of the object parts (i � 2) and are not necessary
for background.

To define the statistical model of the complete image we first introduce independent
models for each body part
i (i � 2). The model object is composed of local feature
vectors on a rectangular grid. The grid is identical toX if no object transformation is
applied. LetAi � X be a small region which contains the object as shown in Figure 3.
The features outsideAi are considered as arbitrary position independent background with
normal densityp(c(x)jB;
0) = N (xj�0;�0). This leads to

p̂(cjB;
i;Ri; ti) =
Y

xm2Ai

p(cjB;xm;
i;Ri; ti)
Y

xm =2Ai

p(cjB;xm;
0)

=
Y

xm2Ai

N
�
c (Rixm + ti) j�i;m;�i;m

�

Y
xm =2Ai

N (c (Rixm + ti) j�0;�0) :
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Figure 3: Object covered with grid for feature extraction

The valuec (Rixm + ti) at each transformed location is computed by interpolation from
the image feature vectorc. Thereby we assume the transformation of all local feature
vectors as orthonormal. This is not exactly true for linear interpolation but experimental
results show that this assumption is not critical.

The evaluation of this density is on a transformed grid. In order to evaluate the density
on the image grid we have to apply the inverse transformation to the normal density
parameters. The image features are not independent then but have local correlations. We
ignore those correlations and use only diagonal variances�i;m(R; t), which constitute
the model parametersB together with the mean vectors:

p(cjB;
i;Ri; ti) =
Y
xm2X

p(cjB;xm;
i;Ri; ti)

=
Y
xm2X

N
�
c(xm)j�i;m(Ri; ti);�i;m(Ri; ti)

�
:

The static background has no transformation parameters but is position dependent:

p(c(x)jB;
1) =
Y
xm2X

N (c(xm)j�1;m;�1;m):

Based on the assignment of each image location to one object class we can define a
mixture density for the observation. Let� : X ! f0; 1; 2; : : :g denote the assignment
function which bears the hidden information to which class
�(xm) locationxm belongs.
For a shorter notation we write�m = �(m) := �(xm). Then the mixture density is

p(cjB;R; t) =
X

�

p(c; �jB;R; t)

=
X

�

p(cj�;B;R; t)p(�jB;R; t)

with � = (�(m))xm2X and(R; t) =
�
(Ri; ti)i=2;:::

�
.

We model the a priori density of the assignment based on the body part positions as
p(�jB;R; t) =

Q
xm2X p(�mjB;R; t). For each local assignment we only distinguish

between background and body assignment�̂ : X ! f0; 1g:

p(�mjB;R; t) = k � p(�̂mjB;R; t);
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Figure 4: Left: Reference locations for the head (ear), trunk (neck) and leg (hip). The
distances are marked. The fourth point is the knee, which is determined by the rotation
of the leg and the length. Right: Trajectories of these four points out of 21 frames of a
sequence.

wherek is a norming constant. The body probabilityp(�̂m = 1jB;R; t) is derived
from the relative positions of reference locations~xi on each body part
i. The reference
positions are transformed to~xi(Ri; ti). For two subsequent parts
i and
i+1 we define
the body probability

pi(�̂mjB;R; t) =
p
�
j~xi(Ri; ti)� ~xi+1(Ri+1; ti+1)j j�̂m

�

P
^�
m
=0;1

p
�
j~xi(Ri; ti)� ~xi+1(Ri+1; ti+1)j j�̂m

� :

Thereby we assume normal distribution for the distance of body reference locations and
a uniform distribution of the distance otherwise. The body probabilities are combined by
p(�̂m = 1jB;R; t) =

Q
i pi(�̂m = 1jB;R; t).

3.3 Pose search

The simultaneous pose estimation of all body parts is too time consuming. Therefore
we choose an iterative approach in this paper where at each iteration step we search for
one additional body part. All body parts are trained on different people to get general
part models. The first object of the iteration is searched in the first image of the image
sequence globally. The other parts and all subsequent images are only searched locally
then.

The search itself is conducted by an expectation maximization approach, where the
expectation term (Kullback–Leibler)

E� (log p(c; �jB;R; t)jc;B;R; t) =
X
xm2X

X

�
m

p(�mjc;xm;B;R; t) log p(cj�m;xm;B;R; t)

is maximized with respect to(R; t).
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4 Classification of gait

4.1 Features for motion recognition

Trajectories of body parts contain a lot of information on someone moving. We can
receive data about the velocities, acceleration and rotation of different body parts. Es-
pecially the information derived from the legs, feet and the centre of mass are important
in clinical application. Analyzing gait by trajectories, physicians interpret the symmetry,
amplitude and frequency of these curves.

The features we extracted from the trajectories are periodic, which is the important
component of a movement. The amplitude of the trajectories are related to the size of the
person. The form and symmetry of the trajectory does not depend on it.

As features we use displacements of body parts inx– andy–direction which are de-
notedvi;x andvi;y for thei–th body part. They are derived from two succeeding frames:

vi;x =
xi;n+1 � xi;n

�t

vi;y =
yi;n+1 � yi;n

�t
:

(xi;n; yi;n) is the position~xi(Ri; ti) of thei–th body part in then–th frame.�t denotes
the frame rate of a sequence. The features are independent of sequences taken with differ-
ent rates. These features are used especially for body parts which do not perform rotation,
like the head and the trunk. The trunk contains the centre of mass, but the position of the
head is more exact because of the trunk’s deformation. The trajectories are similar.

Concerning the leg the rotation angle� is a useful feature. It describes the flexibility
of the joint which is important especially in medical applications.

4.2 Hidden Markov models

The classification is done by hidden Markov models [6]. These have been used in speech
recognition successfully. We extract one observation vector from two succeeding frames,
N + 1 images will lead toN feature vectors. The observed feature vector in then–th
frame is denoted byon, so the whole observed sequence will be described by a random
variableO = (o1; : : : ;oN ). The dimension of the vectoron is determined by the number
of extracted features. This random variable will describe in general more than one period
T which is one step with the right leg and one with the left leg. The sequence may
start anywhere in the walking cycle. We use discrete HMMs. The output vectorson are
quantized before training the HMMs and testing the sequences.

The HMMs (�;A;B) consist ofI statesS = (S1; : : : ; SI). In the training phase
the initial state probability�, the state transition probability matrixA and the output
probabilityB are computed. We consider HMMs of degree one, the actual state just
depends on the preceding state. The training is expected to end up in a cyclic left–to–
right model, as the state transitions do not go backward in time, but include a periodic
motion.

For each kind of gait one HMM is trained. The different kinds of gait, the classes
are denoted as~
�, � = (1; : : : ; 4). In the classification phase the probabilities for each
HMM to generate the observation sequence is computed and maximized, which means
argmax� p(Oj(�;A;B)�) has to be found.
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Figure 5: Some result images. The four positions are marked. The last image shows a
person whose body parts could not be found successfully.

5 Experiments

5.1 Trajectories

We performed our experiments with sequences similar to the sample frames shown in
Figure 1. 110 frames of 29 people are used to train general models of three body parts,
the head, the trunk and the leg, including different clothing and hair colour. The fea-
tures for the localization of body parts (section 3.1) are extracted by the Johnston wavelet
transform. To train the static background, the whole sequence is used as training material.

The recognition of body parts is done iteratively. The head is the first part to find
as it is the most stable one, there is no occlusion or deformation. In the first frame of
a sequence the head is searched globally, in the whole image. Then we consider the
trunk. We define a reference location for every body part. For the position of the parts see
Figure 4. For the head, the location is the ear. For the trunk, it is the neck position. The
relationship between these two points can be considered by a constant distance between
them, see section 3.2. This restricts the search area for the trunk to a region determined
by the distance to the head. We assume normal distribution of distances as described in
section 3.2, it is determined by sample frames when training the general models. For the
leg we chose a reference location at the hip. The bigger variance concerning the distance
to the neck causes a larger search area.

We tested the system for 96 sequences of 12 different people. Some localization
results are shown in Figure 5. The positions for the head, neck and hip are marked. The
fourth position shows the rotation angle of the thigh.

Table 5.1 shows the results. In 18 of 96 sequences the head could not be localized
correctly in the first frame or later. Most of them are sequences of a person larger than the
others. The person itself was found, but the assignment of body parts was not successful.
The heads of all other persons are tracked well, if they are detected correctly in the first
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Localization correct Recognition rate
Head tracking 78/96 (sequences) 81 %
Head position 2492/2632 (frames) 95 %
Trunk position 2492/2632 (frames) 95 %
Leg position 1704/2410 (frames) 71 %

Table 1: Results for the tracking of body parts.

Classification correct Recognition rate
Walking 40/53 75.5 %
Limping 23/40 57.5 %
Hopping 26/53 49.0 %
Running 31/47 66.0 %
Sum 120/193 62.2 %

Table 2: Results for the classification.

image. 95 % (just considering the 78 sequences) of the localization was exact. The right
position of the leg is much harder to find. Just 71 % of the position were found correctly.
Here we just considered 2410 frames, because in the beginning and and frames it was not
completely in the frame. Correct positioning of the leg means that the left or right leg was
localized correctly. We will get along with mixing up the two legs if we consider both of
them.

5.2 Classification

We performed the experiments for classification using 193 sequences of 16 different peo-
ple, 53 walking, 40 limping, 53 running and 47 jumping. 10 HMMs for each kind of gait
are trained. Each sequence is tested by a model not containing itself for training. We used
the trajectories of the head and the trunk. The feature vector is four–dimensional. We
consider HMMs of degree one. The choice of four states is motivated by the gait cycle
itself, representing the stance and swing phase of each leg.

The results are shown in Table 5.2. Walking people are recognized well. Most of
the wrong results occur from hopping people to be detected as running. The confusion
matrix is shown in Table 5.2. There are some possibilities to improve classification. The
most obvious are using more sequences for training and features from other body parts.
There is still a lot of unused information in the leg trajectory, we will use this in further
experiments.

6 Future

In future work more body parts will be incorporated to develop a general model for the
human body. Especially the second thigh and the feet are important for gait recognition.
The system will be tested with a larger data set. Scaling and other views (3–D trajectories)
will be taken into account.
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Walking Limping Hopping Running
Walking 75.5 % 18.9 % 5.6 % 0 %
Limping 37.5 % 57.5 % 0 % 5.0 %
Hopping 9.4 % 0 % 49.0 % 41.5 %
Running 12.8 % 2.1 % 19.1 % 66.0 %

Table 3: Confusion matrix, it describes to which kinds of gait (columns) the sequences
(rows) are assigned.
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