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Abstract—This paper presents a method for designing the gait of a

snake robot that moves in a complicated environment. We propose a

method for expressing the target form of a snake robot by connecting

curve segments whose curvature and torsion are already known. Because

the characteristics of each combined shape are clear, we can design the

target form intuitively and approximate a snake robot configuration to

this form with low computational cost. In addition, we propose two novel

gaits for the snake robot as a design example of the proposed method. The

first gait is aimed at moving over a flange on a pipe, while the other is the

crawler gait aimed at moving over rough terrain. We demonstrated the

effectiveness of the two gaits on a pipe and rough terrain in experiments.

Index Terms—Snake Robot, Redundant Robots, Search and Rescue

Robots, and Inspection.

I. INTRODUCTION

A
Snake robot is expected to perform a wide variety of tasks while

having a simple structure, and control method of the snake robot

have been extensively studied. The ultimate goal of the present study

is to realize a snake robot that can move in any environment.

A control method that converges the controlled variable to the

target value using a model has been proposed. Two models are used

for this method, namely a friction model(e.g. [1]) and a model that

considers the nonholonomic constraint(e.g. [2]). Such a method using

a model of the interaction between the snake robot and environment

is effective for a simple environment such as a plane. However, the

method cannot be applied to an unknown irregular environment.

Therefore, a method that realizes functions also in an irregular

environment by devising the whole form of a snake robot has been

proposed. Although such a method does not involve kinematic or dy-

namic optimization, it is easy to apply to a complicated environment

that cannot be modeled. As a method of controlling the whole form

of the snake robot, various gaits, such as sidewinding and lateral

rolling, have been realized by defining the trajectory of the joint

angle as a parameterized equation [3], [4]. Using the parameterized

equation, we can control the form of the snake robot with several

gait parameters whose physical meanings are clear. However, when

the target form of the snake robot becomes more complicated, it is

difficult to directly formulate the joint angles that realize that shape.

Without using a gait function, a method of approximating a discrete

snake robot to a continuous spatial curve that is called the backbone

curve [5] and expresses a target form of a snake robot has been

studied [6]–[11]. Employing this method, it is possible to consider

a snake robot as a continuous curve abstractly and there is no need

to directly decide the joint angles, and it is thus easy to design a

complicated shape. In [5]–[7], a method for deriving joint angles
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to approximate the robot configuration to the backbone curve was

proposed. Andersson [6] proposed a method of matching the link

connection points on the target curve for a multi-link robot having

joints with two degrees of freedom. However, in the case that each

joint has only one degree of freedom, it is impossible in principle

to match all the connection points with the curve and the method

cannot be applied. Yamada et al. modeled the form of the snake

robot using the Frenet–Serret formulas [8], and proposed a method

of deriving suitable joint angles based on the curvature and torsion of

the target curve [7]. Furthermore, adaptation to the environment has

been realized [9] by combining torque feedback with motion planning

using this approximation method. Because Yamada’s approximate

method [7] can be easily applied when the curvature and torsion of

the target curve are easily obtained, we apply this method. Kamegawa

[10] realized bending helical rolling whose target form is generated

by connecting a helix and a shape called the bending helix for

propulsion on a bending pipe. Zhen et al. [11] proposed a rolling

hump whose target form is a curve obtained by superposing hump-

shaped curves and an arc-shaped curve, and made it possible for a

snake robot to climb over an obstacle on the ground. In [10], [11],

the curvature and torsion were calculated from the continuous curve

as the target form, and the target joint angles were obtained using

Yamada’s method [7].

However, it is difficult to analytically express an appropriate

continuous curve when a more complicated target form is required.

In addition, the torsion may diverge to infinity in some cases that

there is a region where the curvature is zero on the curve [8],

and the corresponding target joint angle cannot then be calculated

using Yamada’s method. We, therefore, propose in this paper a

method of designing the target form by connecting curve segments

whose characteristics are already known, so that the target form can

be intuitively designed and curvature and torsion are easy to be

calculated. In addition to simple shapes, such as straight lines, arcs,

and helixes, any shape can be used as a curve segment as long as

the curvature and torsion are known. If simply connecting shapes,

Yamada’s method [7] cannot be applied owing to the discontinuous

twist of the connecting part of curve segments. In our proposed

method, this problem is solved by formulating the twist of the

connecting part, and it is also possible to treat the twist as if it

is a virtual roll joint. In addition, we propose two novel gaits of

a snake robot designed with our proposed method. These gaits allow

movement in a complex environment. One gait makes it possible to

climb over a flange on a pipe. The other gait is the crawler gait that

allows the snake robot to move over rough terrain.

This research is based on [12] and is improved by adding the gen-

eralization of connected shapes, deriving shape constraints, proposing

turning and recovery motion of the crawler gait, and conducting

experiments.

II. SHAPE FITTING USING THE BACKBONE CURVE

We use the snake robot model composed of alternately connected

pitch-axis and yaw-axis joints as shown in Fig. 1. All links have a

length of l, the number of joints is njoint, and the i-th relative joint

angle is θi. The upper value of an absolute angle of joint is θmax
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Fig. 1. Structure of a snake robot.

Fig. 2. Difference between the Frenet–Serret frame and backbone curve
reference set.

and the angle of each joint can be independently controlled within

the range |θi| ≤ θmax. The present paper uses only this model but

the method described in Section III can also be applied to a snake

robot having other joint configurations by following [7].

We used Yamada’s method [7] to calculate the joint angles and

approximate a snake robot to the target form, because it has a low

computational cost and is easily applied when the curvature and

torsion of a target form are known.

In Fig. 2, e1(s), e2(s), and e3(s) are unit vectors forming the

orthonormal basis, called the Frenet–Serret frame. s is the variable

of length along the curve. e1(s) is a vector tangential to the curve at

s, e2(s) is a vector that indicates the direction of change in the curve

at s, and e3(s) is given by e1(s) × e2(s). This coordinate system

depends on the shape of the curve. In contrast with the Frenet–Serret

model, it is necessary to consider the joint direction to model a snake

robot. As shown in Fig. 2, a backbone curve reference set er(s),
ep(s), and ey(s) is defined on the curve by regarding a snake robot

as a continuous curve. er(s) is equal to e1(s). ep(s) and ey(s) are

unit vectors respectively oriented along the pitch axis and yaw axis at

s. These vectors are referred to as the basis vectors of the backbone

curve reference set that is determined by the orientation of each part

of the robot.

As shown in Fig. 2, the twist angle of the Frenet–Serret frame

and the backbone curve reference set around e1(s) is denoted ψ(s),
which can be obtained as

ψ(s) =

∫ s

0

τ(ŝ)dŝ+ ψ(0), (1)

where ψ(0) is an arbitrary integral constant corresponding to the

initial angle. By changing ψ(0), the entire backbone curve reference

set rotates around the curve and a rolling motion is generated. Here

κ(s) and τ(s) are the curvature and torsion in the Frenet–Serret

formulas, and κp(s) and κy(s) are then respectively the curvatures

around the pitch axis and yaw axis in the backbone curve reference

set and obtained as

κp = −κ(s) sinψ(s), κy = κ(s) cosψ(s). (2)

Finally, the target angle of each joint is calculated as

θdi =

{
∫ sh+(i+1)l

sh+(i−1)l
κp(s)ds (i : odd)

∫ sh+(i+1)l

sh+(i−1)l
κy(s)ds (i : even)

, (3)

where sh is the head position of the snake robot on a target continuous

curve. The robot can change its shape smoothly with shift control,

Fig. 3. Overview of the proposed method.

Fig. 4. Joint of segments.

that changes sh and thus the region corresponding to the body of the

robot in the target curve.

III. BACKBONE CURVE CONNECTING CURVE SEGMENTS

It is difficult to represent a complex target form of a snake

robot analytically. There is also the problem that torsion sometimes

becomes infinit if some part of the target form includes a region of

zero curvature [8]. To solve these problems, we proposed a method in

which the target form is represented by connecting curve segments.

In addition to segments having the simplest three shapes of a straight

line, a circular arc, and a helix, curve segments of any shape can

be used as long as the curvature and torsion are known. Using this

method, we can intuitively design the target form as a combination of

curve segments whose geometric properties are clear. Moreover, the

corresponding joint angle is easily calculated because the curvature

and torsion are known. We call a curve segment connected employing

this method a segment, and describe how to configure the target form

by connecting segments.

A. Form Configuration Obtained by Connecting Segments

An overview of our approach is shown in Fig. 3, while the

approximation method is described in Section II. There is no problem

with the approximation method for internal parts of segments because

the curvature and torsion of each segment are already known.

However, because the Frenet–Serret frame is discontinuous at the

connection part where segments are connected, it is necessary to

devise a representation. Counting from the head, the j-th segment is

referred to as segment j(j ∈ Z). s = sj is the point of connection

part j connecting segment j and (j + 1). The length lj of segment

j, satisfies the relation

sj = sj−1 + lj . (4)

Segments j and (j+1) must be in contact with each other at s = sj .

The state of connection part j is shown in Fig. 4. sj− and sj+ are

the points at an infinitesimal distance before and after connection part

j, respectively. The Frenet–Serret frame, curvature, and torsion at sj
are represented by those at sj−.

The curvature and torsion of segment j are denoted κj(s) and

τj(s), respectively. The point s = 0 in κj(s) and τj(s) is the

beginning point of segment j. The curvature of the target form κ(s)
and the torsion τ(s) can be obtained as

κ(s) = κj(s− sj−1) (sj−1 < s ≤ sj) (5)

τ(s) = τj(s− sj−1) (sj−1 < s ≤ sj). (6)
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TABLE I
CHARACTERISTICS OF EACH TYPE OF SIMPLE SHAPE SEGMENT

type curvature κj torsion τj length lj

helix aj/(a
2
j + b2j ) bj/(a

2
j + b2j ) φi

√

a2j + b2j
circular arc 1/rj 0 φjrj
straight line 0 0 lj

In Frenet–Serret formulas, κ(s) is defined as being positive, but (2)

can be used even if κ(s) is negative. The curve bends in the direction

opposite e2(s) in the region where κ(s) < 0.

We next consider the twist at the connection part. As shown in

Fig. 4, the angle between e2(sj−) and e2(sj+) around e1(sj−) is

denoted ψ̂j . ψ̂j is the twist angle, and is one of the design parameters.

To consider this twist in the calculation of the approximation method,

(1) must be replaced by

ψ(s) =

∫ s

0

τ(ŝ)dŝ+ ψ(0) +
∑

j

ψ̂ju(s− sj), (7)

where u(s) is the step function which is 0 if s < 0 and 1 if s ≥ 0. The

joint angles of the snake robot can therefore be obtained using (2),

(3), (5), (6), and (7). To design a target form, we have to determine

the shape of each segment and the twist angle ψ̂j . By changing ψ̂j ,

we can change the target form as if there is a virtual roll axis joint

of the snake robot at the connection part of the target form.

B. Characteristics of Shapes

The shapes of the connected curve segments are classified into

simple shapes and other shapes. Shape examples of each type will

be explained.

1) Simple Shapes: We first describe simple shapes for segments

whose curvature and torsion are constant, namely a straight line, a

circular arc, and a helix.

In the case of a straight line, the Frenet–Serret frame and torsion

are not defined. In this study, we newly define these for a straight

line to handle straight segments in the same way as other segments.

The frame inside the straight line is defined as being equal to the

frame at s = sj− and torsion is zero.

A circular arc, whose curvature is constant and torsion is zero, is

defined by its radius rj and central angle φj .

A helix (which is a normal helix in this paper) is a curve whose

curvature and torsion have non-zero constant values. The radius aj ,

slope bj , and central angle φj define the shape of a helix. The helical

pitch pj (i.e., the height of a coil) is given as bj = pj/2π. αj is the

angle between the tangent of the helix and the plane perpendicular to

the axis of the helix, and can be calculated as αj = arctan(bj/aj).
e2(s) is directed perpendicularly from each point of the helix to the

axis of the helix. These characteristics are summarized in Table I.

2) Other Shapes: Even if curvature and torsion are not constant,

any shape can be used as long as the curvature and torsion are known.

For example, the curvature and torsion of a serpenoid curve used for

the lateral undulation of a passive wheeled snake robot are

κj(s) = A sin {ω(s− soffset)} , τj(s) = 0, (8)

where A is the maximum curvature of the serpenoid curve, ω is

the spatial frequency of the curve, and soffset is the offset term

representing the initial phase of the serpenoid curve.

C. Shape Constraints

Consider a shape constraint condition such that the target joint

angle does not exceed θmax. The upper limit of the absolute value

of the curvature κmax is determined as κmax = θmax/2l. Consider

the case that the shape is designed such that κ(s) satisfies

|κ(s)| ≤ κmax. (9)

In this case, (2) and (3) yield

|θdi | =

{

|
∫ sh+(i+1)l

sh+(i−1)l
−κ(s) sinψ(s)ds| (i : odd)

|
∫ sh+(i+1)l

sh+(i−1)l
κ(s) cosψ(s)ds| (i : even)

≤

∫ l

−l

|κ(s)|ds = 2lκmax = θmax. (10)

We can then confirm that the absolute value of the target joint angle

|θdi | does not exceed θmax.

However, (9) is the most conservative condition assuming that

rolling motion occurs in the case that the integration range of (3)

is totally within a circular arc of the curvature κmax. Because

the segments contained in the integral range vary owing to the

change in the target form or shift control, it is difficult to consider

optimal constraint conditions in all states including the case of

sh + (i− 1)l < sj < sh + (i+1)l; i.e., the case that the integration

range in (3) includes multiple segments. This paper therefore designs

the form according to the condition (9).

D. Fitting Accuracy

In this paper, we formulate the discontinuous twist at the con-

necting part of the segments and expand Yamada’s approximation

method proposed in [7], [8]. In the segment excluding the connected

portion, Yamada’s method works the same as that in [7], and it

is thus considered that the same sufficiently high approximation

accuracy is realized using the proposed method. In [7], it was

verified how the joint configuration of a snake robot affects the

approximation accuracy. Compared with various configurations, such

as the configuration using the universal joint and the configuration

including the roll axis joint, it was found that the joint configuration

we use in this paper realized the highest approximate accuracy.

Additionally, in [7], it was shown that this approximation error was

proportional to the −2 power of the number of links per length. We

consider that our proposed method maintains sufficient accuracy as

long as the constraint condition given in section III–C is satisfied.

IV. GAIT DESIGN

We design two novel gaits for the snake robot using the represen-

tation method presented in Section III. In the design of these gaits,

we use only simple shapes, namely a straight line, a circular arc, and

a helix.

A. Moving over a Flange on a Pipe

A snake robot moving on a cylindrical obstacle is expected to

relate to the inspection of a pipe or a search or monitoring task

performed by climbing a tree or street lamp. Rollinson and Choset

[4] realized autonomous compliance control of a snake robot moving

on a pipe whose diameter varies continuously. Because their method

does not lift the body of the snake robot locally, it can not be

applied for a snake robot to cross obstacles like flanges, where the

pipe diameter changes greatly discontinuously. Vespignani et al. [13]

proposed a method for rolling on a horizontal pipe with flanges.

However, their method needs an elastic element in the mechanism

of robot. Additionally, there is no control that maintains the gripping

force when the snake robot passes over the flange and the method

cannot be applied to motion along a vertical pipe. In this paper, we

propose a novel gait that allows the snake robot to climb over a flange

on a pipe, even in the case that the pipe is vertical.
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Fig. 5. Overview of the form in case A.

TABLE II
PARAMETERS OF SEGMENTS FOR THE MOTION OF CLIMBING OVER A

FLANGE

seg no. j shape parameter ψ̂j

10m+1 helix (aj , bj , φj) = (rh, ph/(2π), φh) −π/2
10m+2 circular arc (rj , φj) = (rc, αh) −π/2
10m+3 circular arc (rj , φj) = (rc, β) 0

10m+4 straight line lj = ls −π/2
10m+5 circular arc (rj , φj) = (rc, π/2) 0

10m+6 straight line lj = d− 2rc γ
10m+7 circular arc (rj , φj) = (rc, π/2) 0

10m+8 straight line lj = ls π/2
10m+9 circular arc (rj , φj) = (rc, β) π/2

10m+10 circular arc (rj , φj) = (rc, αh) π/2

1) Design of a Segment Shape: It is possible for a snake robot to

propel itself along a pipe through helical rolling [10], [11]. In the

case of our proposed gait, the bridge part is provided in the middle

of a helix for striding over obstacles. The shape of the bridge part

is determined by specifying the height and width as described later.

The segment configuration of this form is divided into two cases, A

and B, depending on the height of the bridge part. The criteria for

switching between the two cases are derived later.

We first consider case A. The segment configuration for case A are

shown in Fig. 5 and parameters of each segment are determined as

given in Table II. The target form is formed by repeatedly connecting

these 10 segments, and this unit of segments is called a segment unit.

m ∈ Z in Table II is an index of a segment unit. Fig. 5 shows segment

unit 0. Segment 1 is a helix with radius rh, pitch ph, and central angle

φh. This helix must be long enough to cover the whole body of the

robot:

(njoint + 1)l ≤ l1 = φh

√

r2h +
( ph
2π

)2

. (11)

Pairs of segments, namely segments 2 and 10, segments 3 and 9,

segments 4 and 8, and segments 5 and 7, have the same shapes,

respectively. Segment 6 is parallel to the axis of the helix, while

segments 3, 4, 8, and 9 are on a plane perpendicular to the helix

axis. Segments 5 and 7 are on the same or another plane parallel to

the helix axis.

The radius of all circular arcs is denoted rc. The height h of the

bridge part is the distance between the cylinder and segment 6, and

the width d is the distance between segments 4 and 8. rh, h, and

d depend on the environment, while ph and rc are decided by an

operator. Segments 4, 6, and 8 constitute a straight line with a length

of zero or more, and satisfy the relationship d ≥ 2rc.

The central angle α of segments 2 and 10, central angle β of

segments 3 and 9, twist angle γ between segments 6 and 7, and length

ls of segments 4 and 8 are derived from the geometry. Segments 2

Fig. 6. Diagram of segment 2

Fig. 7. Diagram of segments 1 to 5 in case A.

and 10 constitute a circular arc that changes the direction so that it

is perpendicular to the axis of the helix by canceling the inclination

of the helix. The diagram on the left of Fig. 6 shows the projection

of segment 1, 2 and a cylinder onto a plane. O2 represents the center

of the circular arc in segment 2. When the slope angle of the tangent

of the helix is αh, the central angle of segment 2 is determined as

αh.

The diagram on the left of Fig. 7 shows the projection of segments

1 to 5 onto a plane perpendicular to the axis of the helix. Oh is the

intersection point of the plane and the axis of the helix. Line segments

PR and UV are projections of segments 2 and 5, respectively, while

arc PS is the projection of a part of the segment 1. Oc is the center

of the arc of segment 3. Points Oh, S, T, U, and V are on the same

straight line. From Fig. 7, β, ls, and γ are determined according to

β = ∠OhOcT− ∠OhOcR

= arccos

(

rc
√

(rh + rc)2 + (rc sinαh)2

)

− arctan

(

rc sinαh

rh + rc

)

(12)

ls = h− ST−UV

= h−
√

(rc sinαh)2 + 2rhrc + r2h + rh − rc (13)

γ = 0. (14)

The value of h in case ls = 0 is the border value between cases A

and B. From (13), the border height hb is derived as

hb =
√

(rc sinαh)2 + 2rhrc + r2h − rh + rc. (15)

The case with h > hb is case A.

The target form in case B (h ≤ hb) is shown in the left side of Fig.

8. The lengths ls of segments 4 and 8 are zero. The middle of Fig. 8

shows the projection of segments 1 to 5 onto a plane perpendicular to

axis of the helix, as in Fig. 7. β and γ are obtained from a different

geometric relationship as in case A. When β = 0, h has the lower

limit hmin:

hmin =
√

r2h + r2c (1 + sinαh)2 − rh. (16)



JOURNAL OF XXX, VOL. YY, NO. Z, JAN 2017 5

Fig. 8. Diagram of segments in case B.

Fig. 9. Movement over a flange. Left: Shift control only leads to the robot
colliding with the flange. Right: Combined rolling with shift control avoids a
collision.

Fig. 10. Relationship between ∆s and ∆ψ

The shape of the bridge part is determined by the height h and

width d satisfying hmin ≤ h and 2rc ≤ d.

The minimum length of the snake robot is the sum of the length of

the bridge-part and the length of the head-side part and the tail-side

part winding around the pipe in a helical form. In order to prevent the

fall, the required length of the helical parts is related to the friction

between the snake robot and the environment and the torque of the

motor, so it is difficult to analytically obtain it, which is a future task.

2) Combining Shift Control and Rolling: As shown at the left of

Fig. 9, when executing only shift control, the position of the bridge

part relative to the flange is not constant and the robot collides

with the flange. As shown at the right of Fig. 9, rolling motion

should be carried out while executing shift control to keep the bridge

part across the flange when the snake robot passes over the flange.

The relationship between the shift length ∆s and the change in the

bridge part is shown in Fig. 10. As the rolling distance is given by

∆ψdrobot/2. ∆s and rotation angle ∆ψ must satisfy the relation

∆ψ(
drobot

2
) cosαh = −∆s sinαh, (17)

where drobot is the diameter of the body of the snake robot.

B. Crawler gait

We proposed the crawler gait, which has higher adaptability to

uneven ground because the snake robot behaves like a crawler belt,

similar to the loop gait in [14], [15]. Furthermore, this gait does not

require a special mechanism to connect the two ends of the robot

such like the loop gait. Because more than one part of the snake

robot is grounded, the crawler gait has greater stability. The crawler

Fig. 11. Segment configuration of the basic form of the crawler gait.

TABLE III
PARAMETERS OF SEGMENTS FOR THE BASIC FORM OF THE CRAWLER GAIT

seg no. j shape parameter ψ̂j

6m+ 1 straight line lj = 2rc + d 0

6m+ 2 circular arc (rj , φj) = (rc, π) α
6m+ 3 circular arc (rj , φj) = (rc, π) 0

6m+ 4 straight line lj = 2rc + d 0

6m+ 5 circular arc (rj , φj) = (rc, π) −α
6m+ 6 circular arc (rj , φj) = (rc, π) 0

Fig. 12. Schema of the turning form of the crawler gait.

gait can be regarded as modifying the shape of the wave in 3D pedal

wave [16]. The basic form of the crawler gait for omni-directional

motion, turning form for turning, and recovery motion in the event

of a fall are explained.

1) Basic Form: The segment configuration of the crawler-gait

basic form is shown in Fig. 11. This form is designed by repeat-

edly connecting units consisting of six segments. The straight line

segments touch the ground whereas the circular arc segments are

floating. By setting three form parameters, namely the height h, width

w, and margin of the distance between the circular arcs d, the target

form is determined as given in Table III. m ∈ Z is the index of a

segment unit. rc is the radius of circular arcs and α is the twist angle

between circular arcs. These are obtained as

rc =

√

h2 +
(

w
2

)2

2
, (18)

α = 2arctan
( w

2h

)

. (19)

Shift control and rolling generate propulsion in the x and y direc-

tion in Fig. 11, respectively. So, it is capable of omni-directional

movement.

2) Turning Form: By changing the straight line segment in the

basic form to appropriate circular arc segments, a snake robot is able

to turn. In this turning form, the turning curvature κt ̸= 0 is added

to the form parameter in addition to h, w, and d of the basic form.

κt has a positive value when the snake robot turns its head to the left

and a negative value when it turns to the right. Fig. 12 is the schema

of the turning form. rc and α are the same as those for the basic



JOURNAL OF XXX, VOL. YY, NO. Z, JAN 2017 6

TABLE IV
PARAMETERS OF SEGMENTS COMPOSING THE TURNING FORM OF THE

CRAWLER GAIT.

seg no. j shape parameter ψ̂j

6m+ 1 circular arc (rj , φj) = (rr, φr) −βr
6m+ 2 circular arc (rj , φj) = (rc, π) α
6m+ 3 circular arc (rj , φj) = (rc, π) βl
6m+ 4 circular arc (rj , φj) = (rl, φl) −βl
6m+ 5 circular arc (rj , φj) = (rc, π) −α
6m+ 6 circular arc (rj , φj) = (rc, π) βr

Fig. 13. Recovery motion of the crawler gait.

shape and can be obtained from (18) and (19) respectively. Ot is the

center of the arc PkQk(k ∈ Z). rt is the turning radius defined as

rt = OtSk = 1/|κt|. The parameters of each segment are defined

in Table IV. Fig. 12 is the projection of segments onto a xy–plane.

From Fig. 12, rr, φr, rl, φl, βr, and βl can be obtained according to

(rr, φr) = (OtPk, ∠PkOtQk) (k: odd), (20)

(rl, φl) = (OtPk, ∠PkOtQk) (k: even), (21)

βr = −
α

2
+ sgn(κt)

π

2
, (22)

βl =
α

2
+ sgn(κt)

π

2
, (23)

where

OtPk = rt + (−1)k+1sgn(κt)
w

2
, (24)

OtUk−1 = rt + (−1)ksgn(κt)
w

4
, (25)

∠PkOtQk = 2arctan

(

rc

OtUk−1

)

+2arcsin





d

2

√

OtUk−1
2
+ r2c



 . (26)

It is possible to turn the snake robot by performing shift control with

this form. However, there is a problem with this turning motion. In the

proposed turning form, it is ideal that segments (6m+1) and (6m+
4), which are in contact with the ground, follow concentric circular

trajectories of different radii rr and rl, respectively. However, because

the two segments have the same propulsion velocity generated by shift

control, it is necessary for the segments to slip against the ground to

follow trajectories of different lengths, and it is thus not possible to

accurately realize the trajectory of the turning curvature κt.

3) Recovery from Overturning: There is a possibility of the snake

robot falling over when moving on rough terrain. Falling while

employing the crawler gait is a state in which the circular arc

segments that should not be grounded are grounded as shown on the

left side of Fig. 13. In this case, it is possible to turn the whole form

falling with a hinge-like action by changing α smoothly as shown

in Fig. 13, so that the snake robot can return to a state capable of

propulsion. The parameter α in (19) is redefined as

α = (1− γ)αorg + γ(2π − αorg), (27)

Fig. 14. Experimental system.

Fig. 15. Experimental result of moving over a flange on a pipe.

where αorg = 2arctan(w/2h) and 0 ≤ γ ≤ 1. By smoothly

changing γ from 0 to 1, recovery motion can be performed as in

Fig. 13.

V. EXPERIMENT

Experiments were performed to verify the effectiveness of the

proposed gaits. The configuration of the developed system is shown

in Fig. 14. The snake robot had a module configuration in which one

module was composed of two links with a pitch axis joint and a yaw

axis joint. The snake robot also has a wireless camera and a light.

The length of each link was 80 mm, the diameter of the thickest

part of the module was 100 mm, and the weight of one module was

about 0.5 kg. The maximum continuous torque of joint motors was

4.0 Nm. The robot was composed of 30 joints. The snake robot was

powered with a cable, and the target angle of each joint was sent

from a computer on the operator side. The cable is connected to the

snake robot with a rotary connector that is able to rotate infinitely

while passing power and the signal. It was possible to obtain robot

information such as the joint angle and motor current. The sampling

time for updating the target joint angle was 20 ms. The operator could

perform operations with a gamepad.

A. Moving over a Flange on a Pipe

We carried out an experiment in which the snake robot climbed

over a flange on a vertical pipe, a horizontal pipe, and a pipe inclined

at 45 degrees. The outside diameter of the pipe was about 110 mm,

the outside diameter of the flange was 210 mm, and the thickness

of the flange was 44 mm. In the experiment, the operator directly

looked at and operated the snake robot. The snake robot was able

to move over the flange on the all pipes. Fig. 15 shows the snake

robot climbing over the flange from below to above the flange,

while a video showing the snake robot moving over the flange is

provided in the first multimedia extension Extension1-moving-over-

a-flange.mp4. An elastic material was attached to the body of the

robot. By making the diameter of the helix segment slightly smaller
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than the value for just winding around the pipe, it was possible to

push the elastic material against the pipe and exert sufficient gripping

force. A similar method has been used when propelling a snake robot

outside a pipe with helical rolling in [4]. Proposal of a method for

generating a strong tightening force while maintaining the target form

to move on a slippery pipe is a future task. The operator adjusted the

form parameters d and h of the bridge part according to the shape

of the flange and aligned the positions of the bridge part and the

flange. If the relative positions of the flange and bridge part were

appropriate, motion over the flange proceeded semi-automatically

by performing shift control and rolling according to (17). In the

experiment, when slippage between the snake robot and the pipe

occured and the position relative to the flange shifted, the relative

position was adjusted with rolling motion by operator’s command.

In physical simulation, the pipe diameter was changed to 150 mm,

it can move over the flange. However, the application limit depends

on the specification of the robot, such as the length of the body and

maximum joint torque. If the diameter of a pipe gets larger, a large

joint torque is required. It is the future task to clarify the relationship

between the robot specification and the applicable environment.

B. Crawler gait

1) Basic Motion: We carried out experiments on basic motions of

the crawler gait, namely propulsion forward and backward, propul-

sion to the left and right, turning, and recovering from a fall. Results

are shown in the second multimedia extension Extension2-crawler-

gait-basic-motion.mp4. The form parameters of the crawler gait were

w = 250 mm, h = 200 mm, and d = 200 mm.

The snake robot could move back and forward by shifting sh,

and move sideweys by changing ψ(0). By performing shift control

and rolling at the same time, it is possible to propel the snake robot

diagonally.

Turning by shift control with turning form is shown in the video.

The target turning radius rt was 500mm, but it seemed that the

robot was slipping against the floor, and the actual turning radius

was larger than the target. Although the length of the target trajectory

differed between the inner side and outer side of the grounded arc

segment, the same propulsion velocity was generated by the shift

control, resulting in the above problem. Furthermore, because of the

difference in lengths of the inner and outer arc segments, there was

a difference in the frictional force and the slipping was not constant

depending on the contact condition of the segments. Improvement of

the turning motion is a future task.

Experiments for recovery motion were carried out on the floor and

the step field. The snake robot was artificially turned over into a

falling state from the usual state in which the crawler gait propelled

the snake robot. Starting from this overturned state, we performed

recovery motion by smoothly changing α from 0 to 1 using (27), and

we succeeded in recovering to the state in which the snake robot can

be propelled. Investigation of a method that can be used to recover

in various situations is a future task.

It is difficult to operate using the camera image when moving

with the crawler gait because the direction of the camera is very

oscillatory. Establishing a method of stabilizing the posture of the

mounted camera is a future task.

2) Movement on Rough Terrain: Two experiments were conducted

in which the snake robot moved across rough terrain with the crawler

gait. One experiment was conducted on a debris field while the other

on a step field. The appearance of these experiments are shown in

Fig. 16 and Fig. 17, and details are shown in the third multimedia

extension Extension3–crawler-gait-rough-terrain.mp4.

The debris field was made by randomly laying wooden pieces and

sponges of various shapes. The experiment was performed using the

Fig. 16. Experimental result of the movement on a debris field

Fig. 17. Experimental result of the movement on a step field

snake robot covered with cloth that protected against dust. Note that

the operator commanded the snake robot simply to propel forward

with shift control and did not use any information on the environment,

and yet the robot was able to move across the debris field adaptively.

In the experiments conducted on the step field, we use the 32-joint

snake robot. The height of one step in the step field was 100 mm.

In this experiment, the operator appropriately commanded the snake

robot to propel itself forward or to turn, so that it moved over the step

field. The joint angle did not necessarily match the target because the

control of the joint angle of the robot was the position control within

the limitation of torque. This property generated compliant motion

and realized adaptation to the shape of the environment.
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VI. CONCLUSION

We proposed a method of designing the target form of a snake

robot by connecting curve segments having known characteristics. In

addition to simple shapes, such as a straight line, a circular arc, and

a helix, any shape can be used for the connected curve segments as

long as the curvature and torsion are calculated analytically. We also

derived shape constraints such that the target joint angle does not

exceed the range of motion of joint angle of the snake robot.

Furthermore, using this method, we proposed two novel gaits that

allow the snake robot to move in a complex environment. One gait

is for motion over obstacles on a pipe that change in diameter

discontinuously, like a flange, and the other gait is the crawler gait

aimed for motion across rough terrain. Even with the complicated

target form as a whole, we could easily determine the shape of each

segment using geometric calculation. We carried out experiments to

verify the effectiveness of each gait and realized movement over a

flange, the basic motion of the crawler gait, and movement over a

debris field and step field with the crawler gait.

If it is possible to easily design a form suitable for various

complicated environments, the applicable fields of the snake robot

are extended. It is necessary to make it easier to design complicated

target forms by increasing the types of curve segments. Additionally

the kinematic/dynamic analysis of the proposed gait is left as a

future task. Carrying out the comparison with other gaits is also an

important task remain. With regard to the crawler gait, a goal is for

the snake robot to move on varying rough terrain freely by improving

this gait. For these purposes, it is necessary to increase mobility of

the crawler gait by adapting to the terrain shape and to propose a

control method for trajectory tracking. And realizing autonomous

movement by installing various sensors to obtain information about

the environment is also important.
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