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Abstract

Background: Gait is impaired in patients with Parkinson's disease (PD) and Huntington's disease

(HD), but gait dynamics in mouse models of PD and HD have not been described. Here we

quantified temporal and spatial indices of gait dynamics in a mouse model of PD and a mouse model

of HD.

Methods: Gait indices were obtained in C57BL/6J mice treated with the dopaminergic neurotoxin

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day for 3 days) for PD, the

mitochondrial toxin 3-nitropropionic acid (3NP, 75 mg/kg cumulative dose) for HD, or saline. We

applied ventral plane videography to generate digital paw prints from which indices of gait and gait

variability were determined. Mice walked on a transparent treadmill belt at a speed of 34 cm/s after

treatments.

Results: Stride length was significantly shorter in MPTP-treated mice (6.6 ± 0.1 cm vs. 7.1 ± 0.1

cm, P < 0.05) and stride frequency was significantly increased (5.4 ± 0.1 Hz vs. 5.0 ± 0.1 Hz, P <

0.05) after 3 administrations of MPTP, compared to saline-treated mice. The inability of some mice

treated with 3NP to exhibit coordinated gait was due to hind limb failure while forelimb gait

dynamics remained intact. Stride-to-stride variability was significantly increased in MPTP-treated

and 3NP-treated mice compared to saline-treated mice. To determine if gait disturbances due to

MPTP and 3NP, drugs affecting the basal ganglia, were comparable to gait disturbances associated

with motor neuron diseases, we also studied gait dynamics in a mouse model of amyotrophic lateral

sclerosis (ALS). Gait variability was not increased in the SOD1 G93A transgenic model of ALS

compared to wild-type control mice.

Conclusion: The distinct characteristics of gait and gait variability in the MPTP model of

Parkinson's disease and the 3NP model of Huntington's disease may reflect impairment of specific

neural pathways involved.
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Background
Disturbances in gait are symptomatic of Parkinson's dis-
ease (PD) and Huntington's disease (HD). Gait abnor-
malities in PD include shortened stride length [1,2], a
dyscontrol of stride frequency [3], and postural instability
[4]. Gait abnormalities in HD include reduced walking
speed [5], widened stance width [6], reduced stride length
[6,7], and sway [8]. Gait variability has also been shown
to be significantly higher in patients with PD [9-11] and
HD [7,9] compared to control subjects. Early detection of
gait disturbances may result in earlier treatment. Thera-
pies for PD and HD patients are often developed to amel-
iorate gait abnormalities [12,13]. Mouse models of PD
and HD are used to understand the pathologies of the dis-
eases and to accelerate the testing of new therapies to cor-
rect motor defects. Although spatial gait indices have been
reported [14,15], gait dynamics in mouse models of PD
and HD have not yet been described.

One common mouse model of PD is obtained by repeat-
edly administering the neurotoxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) [16-18]. MPTP causes
damage of the nigrostriatal dopaminergic system [19],
resulting in PD symptoms, including reduced stride
length [14] and posture disturbances in mice [20]. One
common mouse model of HD is obtained by repeatedly
administering the mitochondrial toxin 3-nitropropionic
acid (3NP) [21,22]. 3NP causes striatal neurodegenera-
tion resulting in mild dystonia and bradykinesia compa-
rable to HD in people [23,24].

Motor defects in MPTP-treated mice or 3NP-treated mice
are often quantified using the rotarod test that measures
the time a subject can balance on a rotating rod [25,26].
MPTP has been shown to reduce performance on the
rotarod [27] or to have no effect on rotarod performance
[17,28]. 3NP has been shown to reduce rotarod perform-
ance [29], or to have no effect on rotarod performance
[30]. The swim test [31], balance beam test [32], and the
pole test [33] have also been used to investigate the effects
of MPTP and 3NP on motor function in mice. Results
regarding motor dysfunction in the MPTP model of PD
and the 3NP model of HD may vary due to the heteroge-
neity in protocols followed. Disparities in the degree of
motor dysfunction have suggested that large doses of
MPTP or 3NP may be required to detect motor defects
after nigrostriatal damage [18,29,34].

Several studies in mouse models of PD and HD have
described "gait" by estimating stride length [14], and
stance width [15] determined by painting the animals'
paws. Fernagut et al. reported that stride length is a relia-
ble index of motor disorders due to basal ganglia dysfunc-
tion in mice [15]. Gait dynamics in humans, however,
extend beyond the measure of stride length. Gait dynam-

ics in humans include spatial indices such as stance width
and foot placement angle. Gait dynamics in humans also
include temporal indices, such as stride frequency, stride
duration, swing duration, and stance duration.

Step-to-step gait variability in humans has also provided
important information about possible mechanisms
involved in neurodegenerative diseases, including PD and
HD [7,9-11]. In patients with PD, higher step-to-step var-
iability has been reported [9-11,35]. The stride length var-
iability increased with the progression of PD suggesting
that this index is useful in assessing the course of PD [10].
Hausdorff et al. demonstrated significantly higher varia-
bility in several gait indices, including stride duration and
swing duration, in patients with PD and HD [9], and in
subjects with amyotrophic lateral sclerosis (ALS) [36]. It
has been proposed that a matrix of gait dynamic markers
could be useful in characterizing different diseases of
motor control [36]. Comparable analyses of gait and
stride variability in mouse models of PD and HD have not
yet been reported.

We recently described ventral plane videography using a
high-speed digital camera to image the underside of mice
walking on a transparent treadmill belt [37,38]. The tech-
nology generates "digital paw prints", providing spatial
and temporal indices of gait. Here we applied ventral
plane videography to study gait dynamics in the MPTP
model of PD and the 3NP model of HD. We studied the
C57BL/6 strain, which has been shown to be sensitive to
both toxins [14,18,21,29]. Since PD, HD, and ALS share
aspects of pathogenesis and pathology of motor dysfunc-
tion, we also studied gait dynamics in the SOD1 G93A
transgenic mouse model of ALS [39] to compare gait var-
iability in mouse models of basal ganglia disease to a
mouse model of motor neuron disease.

Methods
Mice

Male C57BL/6J mice (7–8 weeks; ~22 gm) were purchased
from The Jackson Laboratory (Bar Harbor, ME). Mice
transgenic for the mutated human SOD1 G93A (TgN
[SOD1-G93A]1Gur) (SOD1 G93A) and wild-type human
SOD1 (TgN [SOD1]2Gur) wild-type controls) were pur-
chased from The Jackson Laboratory (Bar Harbor, ME)
when the mice were ~7.5 weeks old. Animals were main-
tained on a 12-hour light: 12-hour dark schedule with ad
libitum access to food and water. Handling and care of
mice were consistent with federal guidelines and
approved institutional protocols.

Experimental groups

MPTP

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
(Sigma-Aldrich, St. Louis, MO) dissolved in saline was
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administered 30 mg/kg i.p. to 7 mice every 24 hours for 3
days (MPTP-treated mice), based on previously published
studies [40,41]. Equivolume (0.2 ml) of saline was
administered i.p. to 7 control mice every 24 hours for 3
days (saline-treated mice).

3NP

3-nitropropionic acid (3NP) (Sigma-Aldrich, St. Louis,
MO) dissolved in saline was administered 3 times to 6
mice: 25 mg/kg i.p. twice, separated by 12 hours (cumula-
tive dose of 50 mg/kg), then 25 mg/kg 24 hours later
(cumulative dose of 75 mg/kg) (3NP-treated mice).
Equivolume (0.2 ml) of saline was administered i.p.
according to the same schedule to 6 control mice. The
intoxication protocol was based on published studies
[29,42], and our own pilot observations that higher doses
resulted in high mortality rates or the inability of the mice
to walk at all on the treadmill belt.

SOD1 G93A transgenic mice

To compare gait variability in the MPTP and 3NP mouse
models of basal ganglia disease to a mouse model of
motor neuron disease, we also examined gait in a mouse
model of amyotrophic lateral sclerosis (ALS). Gait dynam-
ics in SOD1 G93A mice were measured at ages ~8 weeks
(n = 3), ~10 weeks (n = 3), ~12 weeks (n = 5), and ~13
weeks (n = 5), time points this model has been shown to
exhibit motor dysfunction [43-45], and compared to
wild-type control mice studied at ages ~8 weeks (n = 3),
~10 weeks (n = 3), ~12 weeks (n = 6), and ~13 weeks (n =
6).

Gait dynamics

Gait dynamics were recorded using ventral plane videog-
raphy, as previously described [37,38]. Briefly, we devised
a motor-driven treadmill with a transparent treadmill
belt. A high-speed digital video camera was mounted
below the transparent treadmill belt. An acrylic compart-
ment, ~5 cm wide by ~25 cm long, the length of which
was adjustable, was mounted on top of the treadmill to
maintain the mouse that was walking on the treadmill
belt within the view of the camera. Digital video images of
the underside of mice were collected at 80 frames per sec-
ond. Each image represents 12.5 ms; the paw area indi-
cates the temporal placement of the paw relative to the
treadmill belt. The color images were converted to their
binary matrix equivalents, and the areas (in pixels) of the
approaching or retreating paws relative to the belt and
camera were calculated throughout each stride. Plotting
the area of each digital paw print (paw contact area)
imaged sequentially in time provides a dynamic gait sig-
nal, representing the temporal record of paw placement
relative to the treadmill belt (Figure 1). Each gait signal for
each limb comprises a stride duration (stride time), which
includes the stance duration when the paw of a limb is in

contact with the walking surface, plus the swing duration
when the paw of the same limb is not in contact with the
walking surface. Stance duration was further subdivided
into braking duration (increasing paw contact area over
time) and propulsion duration (decreasing paw contact
area over time) (Figure 1B).

Stride frequency was calculated by counting the number
of gait signals over time. Stride length was calculated from
the equation: speed = stride frequency × stride length. To
obtain stance widths and paw placement angles at full
stance, ellipses were fitted to the paws, and the centers,
vertices, and major axes of the ellipses were determined.
Forelimb and hind limb stance widths were calculated as
the perpendicular distance between the major axes of the
left and right paw images during peak stance. Gait data
were collected and pooled from both the left and right
forelimbs, and the left and right hind limbs.

Measures of stride-to-stride variability (gait variability) for
stride length, stride time, and stance width were deter-
mined as the standard deviation and the coefficient of var-
iation (CV). The standard deviation reflects the dispersion
about the average value for a parameter. CV was calculated
from the equation: 100 × standard deviation/mean value.

Gait was recorded ~24 hours after each administration of
saline or MPTP. Gait was recorded ~12 hours after the 1st

administration, and ~24 hours after the 2nd and 3rd

administration of 3NP. Each mouse was allowed to
explore the treadmill compartment for ~1 minute with the
motor speed set to zero since our previous experience with
C57BL/6J mice [37] indicated they do not require
extended acclimatization to the treadmill. The motor
speed was then set to 34 cm/s and images were collected.
Approximately 3 seconds of videography were collected
for each walking mouse to provide more than 7 sequential
strides. Only video segments in which the mice walked
with a regularity index of 100% [46] were used for image
analyses. The treadmill belt was wiped clean between
studies if necessary.

Statistics

Data are presented as means ± SE. ANOVA was used to test
for statistical differences among saline-treated, MPTP-
treated, and 3NP-treated mice. When the F-score exceeded
Fcritical for α = 0.05, we used post hoc unpaired Student's
two-tailed t-tests to compare group means. Gait indices
between forelimbs and hind limbs within the saline-
treated mice were compared using Student's two-tailed t-
test for paired observations. Gait indices between SOD1
G93A and wild-type control mice were compared using
unpaired Student's two-tailed t-test. Differences were con-
sidered significant with P < 0.05.
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Results
Gait in saline-treated mice

The ventral view of a C57BL/6J mouse walking on a trans-
parent treadmill belt is shown in the upper panel of Figure
1 (and Additional file 1). Representative gait dynamics
signals for the left forelimb and right hind limb of a
saline-treated mouse walking at a speed of 34 cm/s are
shown in the lower panel of Figure 1. Walking at a speed
of 34 cm/s, C57BL/6J mice achieved ~5 steps every sec-
ond, completed one stride within ~200 ms, and traversed

~7 cm with each step. The contributions of stance and
swing durations to stride duration were ~55% (stance/
stride) and ~45% (swing/stride) respectively. Forelimb
stance width was significantly narrower than hind limb
stance width (1.7 ± 0.1 cm vs. 2.4 ± 0.2 cm, P < 0.05). The
paw placement angle of the hind limbs was significantly
more open than the paw placement angle of the forelimbs
(13.9 ± 1.6 vs. 2.6 ± 0.6, P < 0.05). Stride length variability
of hind limbs was lower than of forelimbs (0.63 ± 0.08 cm
vs. 0.78 ± 0.03 cm, P < 0.05). Likewise, stance width

Ventral view of walking saline-treated mouseFigure 1
Ventral view of walking saline-treated mouse. A. Two images depicting the ventral view of a saline-treated C57BL/6J 
mouse on a transparent treadmill belt walking at a speed of 34 cm/s. The example on the left depicts full stance for the right 
hind limb, and the example on the right depicts sequential full stance for the left hind limb. Cartesian coordinates are used to 
determine stance width and paw placement angles for the forelimbs and hind limbs. B. Representative gait signals of the left 
forelimb and right hind limb of a saline-treated C57BL/6J mouse walking at a speed of 34 cm/s. Duration of stride, stance, and 
swing are indicated for the right hind limb. Duration of braking and propulsion are indicated for the left fore limb.
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variability of hind limbs was lower than of forelimbs
(0.14 ± 0.01 cm vs. 0.21 ± 0.02 cm, P < 0.05) in saline-
treated mice walking on a treadmill belt at 34 cm/s.

Gait in MPTP-treated mice

Gait dynamics in MPTP-treated mice after 3 administra-
tions of 30 mg/kg MPTP were significantly different than
gait dynamics in saline-treated mice (Table 1 and Figure
2). Stride length was decreased in MPTP-treated mice
compared to saline-treated mice (6.6 ± 0.1 cm vs. 7.1 ± 0.1
cm, P < 0.05) at a walking speed of 34 cm/s. Stride fre-
quency was increased in MPTP-treated mice. Stride dura-

tion was significantly shorter in MPTP-treated mice (194
± 1 ms vs. 207 ± 2 ms, P < 0.05). This was attributable to
a shorter swing duration of the hind limbs (92 ± 3 vs. 104
± 2 ms, P < 0.05), and a shorter stance duration of the
forelimbs (116 ± 2 ms vs. 126 ± 2 ms, P < 0.05). The con-
tributions of stance and swing to stride duration in MPTP-
treated mice were not different than in saline-treated
mice, despite the shorter stride duration. Forelimb stance
width and hind limb stance width were comparable in
MPTP-treated mice and saline-treated mice. The paw
placement angles of the forelimbs and hind limbs of
MPTP-treated mice were not different than in saline-
treated mice. Figure 2 illustrates the gait signal from the
right hind limb of a MPTP-treated mouse superimposed
over the gait signal from the right hind limb of a saline-
treated mouse.

Stride time dynamics for 14 sequential strides in a MPTP-
treated mouse are shown in the top panel of Figure 3. For
comparison, stride time dynamics in a 3NP-treated mouse
are illustrated in the middle panel, and in saline-treated
mouse in the bottom panel of Figure 3. Gait variability
was significantly higher in MPTP-treated mice after 3 treat-
ments compared to saline-treated mice. Stride length var-
iability of the forelimbs was higher in MPTP-treated than
in saline-treated mice (0.91 ± 0.04 cm vs. 0.78 ± 0.03 cm,
P < 0.05). Stride length variability of the hind limbs, how-
ever, was not different in MPTP-treated mice. The coeffi-
cient of variation (CV) of forelimb stride length was
significantly higher in MPTP-treated than in saline-treated
mice (13.6 ± 0.8 % vs. 11.1 ± 0.8 %, P < 0.05). The CV of
hind limb stride length was somewhat higher in MPTP-
treated than in saline-treated mice (10.0 ± 1.5 % vs. 8.0 ±
0.7 %, NS).

Stance width variability of the forelimbs was significantly
higher in MPTP-treated than in saline-treated mice (0.26
± 0.01 cm vs. 0.21 ± 0.02 cm, P < 0.05). Stance width var-

Table 1: Gait dynamics in saline-treated, MPTP-treated (90 mg/kg cumulative dose), and 3NP-treated (75 mg/kg cumulative dose) 

mice walking on a treadmill belt at a speed of 34 cm/s.

Saline (n = 7) MPTP (n = 7) 3NP (n = 3)

Stride Length (cm) 7.1 ± 0.1 6.6 ± 0.1* 7.3 ± 0.1

Stride Frequency (Hz) 5.0 ± 0.1 5.4 ± 0.1* 4.9 ± 0.1

Stride Duration (ms) 207 ± 2 194 ± 1* 217 ± 5

% Stance Duration 54.3 ± 0.9 55.9 ± 1.1 59.4 ± 2.3*

% Swing Duration 45.7 ± 0.9 44.1 ± 1.1 40.6 ± 2.3*

Forelimb Stance Width (cm) 1.7 ± 0.1 1.6 ± 0.1 1.7 ± 0.1

Forelimb Paw Placement Angle (°) 2.6 ± 0.6 2.6 ± 0.4 3.5 ± 1.1

Hind limb Stance Width (cm) 2.4 ± 0.2 2.2 ± 0.1 2.8 ± 0.2

Hind limb Paw Placement Angle (°) 13.9 ± 1.6 10.8 ± 1.3 15.2 ± 1.0

Means ± SE. *P < 0.05, compared to saline-treated mice.

Gait signals in a MPTP-treated mouseFigure 2
Gait signals in a MPTP-treated mouse. Gait signal of 
the right hind limb of a MPTP-treated mouse superimposed 
over the gait signal of the right hind limb of a saline-treated 
mouse. Stride frequency was higher in MPTP-treated mice 
compared to saline treated mice. Stance duration and swing 
duration were shorter in MPTP-treated mice compared to 
saline-treated mice.
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iability of the hind limbs was higher in MPTP-treated than
in saline-treated mice (0.20 ± 0.02 cm vs. 0.14 ± 0.01 cm,
P < 0.05). The CV of forelimb stance width was higher in
MPTP-treated than in saline-treated mice (16.7 ± 1.3 % vs.
12.3 ± 1.2 %, P < 0.05). The CV of hind limb stance width
was higher in MPTP-treated than in saline-treated mice
(9.1 ± 1.1 % vs. 5.9 ± 0.5 %, P < 0.05).

Gait in 3NP-treated mice

Stride length, stride frequency, stance duration, and swing
duration were not affected by 3NP after the 1st and 2nd

administrations of 25 mg/kg. The paw placement angle of
the hind limbs, however, was significantly more open in
3NP-treated mice (n = 6) compared to saline-treated mice
(16.6 ± 1.2° vs. 12.4 ± 1.5°, P < 0.05) after the 2nd admin-

istration of 3NP (cumulative dose of 50 mg/kg). Stance
width variability of the forelimbs, moreover, was higher
in 3NP-treated than in saline-treated mice (0.28 ± 0.01 cm
vs. 0.22 ± 0.02 cm, P < 0.05) after the 2nd administration
of 3NP. The CV of forelimb stance width was higher in
3NP-treated than in saline-treated mice (15.0 ± 1.2 % vs.
11.7 ± 0.6 %, P < 0.05) after the 2nd administration of
3NP. Neither stride length variability nor stance width
variability of the hind limbs was affected after the 2nd

administration of 3NP (cumulative dose of 50 mg/kg).

After the 3rd administration of 3NP (cumulative dose of
75 mg/kg), half of the 3NP-treated mice could not walk
on the treadmill belt at a speed of 34 cm/s. Forelimb gait
indices in the three 3NP-treated mice that could walk on

Stride time dynamicsFigure 3
Stride time dynamics. Examples of stride time (gait cycle duration) in MPTP-treated, 3NP-treated, and saline-treated mice 
of forelimbs (left panels) and hind limbs (right panels). In saline-treated animals, forelimb stride variability was higher than hind 
limb stride variability. MPTP-treated and 3NP-treated mice exhibited significantly higher stride variability. The coefficient of 
variation (CV), a measure of stride-to-stride variability, was highest in the forelimbs of 3NP-treated mice.
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the treadmill belt were similar to saline-treated mice.
Hind limb gait indices, however, were affected in the three
3NP-treated mice that could walk on the treadmill belt.
The hind limb stance width (2.8 ± 0.2 cm) and paw place-
ment angle (15.2 ± 1.0°) in the 3NP-treated mice that
could walk on the treadmill belt (n = 3) tended to be
greater than in saline-treated mice. The percentage of
stride spent in stance was significantly greater in 3NP-
treated mice than in saline-treated mice (59.4 ± 2.3% vs.
54.3 ± 0.9 %, P < 0.05). The percentage of stance duration
spent in propulsion (propulsion/stance) was greater of
the hind limbs in 3NP-treated mice than in saline-treated
mice (45.2 ± 2.5 % vs. 40.2 ± 0.9 %, P < 0.05). This was at
the expense of a smaller contribution of swing to stride
duration (40.6 ± 2.3 % vs. 45.7 ± 0.9 %, P < 0.05).

Stride length variability of the forelimbs, moreover, was
significantly higher in the three 3NP-treated mice that
could walk than in saline-treated mice (1.31 ± 0.09 cm vs.
0.87 ± 0.07 cm, P < 0.05). Stance width variability of the
forelimbs was also higher in 3NP-treated than in saline-
treated mice (0.31 ± 0.04 cm vs. 0.22 ± 0.01 cm, P < 0.05).
The CV of forelimb stride length was higher in 3NP-
treated than in saline-treated mice (17.9 ± 1.6 % vs. 11.8
± 0.8 %, P < 0.05) (Figure 3). The CV of forelimb stance
width was higher in 3NP-treated than in saline-treated
mice (17.3 ± 2.4 % vs. 11.7 ± 0.6 %, P < 0.05). Hind limb
stride length variability and hind limb stance width
variability were not different in the 3NP-treated mice that
could walk on the treadmill belt compared to saline-
treated mice.

Hind limb gait failure in 3NP-treated mice

Two 3NP-treated mice that could not walk on the moving
treadmill belt at a speed of 34 cm/s, however, attempted
to walk, but failed to engage the hind limbs in coordi-
nated stepping. Rather, these mice braced their hind paws
onto the base of the sidewalls of the walking compart-
ment (Figure 4, upper panel; Additional file 2), avoiding
the moving treadmill belt. The forelimbs of these 3NP-
treated mice, however, executed coordinated stepping on
the moving treadmill belt. Forelimb stride dynamics in
these 3NP-treated mice did not differ significantly from
saline-treated mice and the three 3NP-treated mice that
were able to walk on the treadmill belt at 34 cm/s (Figure
4, lower panel). Despite the limitation of these 3NP-
treated mice to only execute forelimb stepping, stride
length of forelimbs was 7.1 ± 0.1 cm, stride frequency was
5.0 ± 0.1 Hz, and stance duration was 133 ± 5 ms, all val-
ues similar to forelimb gait indices in saline-treated mice.

Gait in SOD1 G93A transgenic mice

Stride length was significantly greater in SOD1 G93A mice
(n = 5) than in wild-type mice (n = 6) at ~12 weeks and
~13 weeks of age. At ~12 weeks of age, stride length was

significantly increased in SOD1 G93A mice compared to
wild-type control mice (7.1 ± 0.1 cm vs. 6.7 ± 0.1 cm, P <
0.05). Stride frequency was lower in SOD1 G93A mice
(5.0 ± 0.1 vs. 5.4 ± 0.1 Hz, P < 0.05), and stride duration
was longer compared to wild-type control mice (210 ± 2
vs. 197 ± 3 ms, P < 0.05) at ~12 weeks of age. At ~13 weeks
of age, stride length remained significantly increased in
SOD1 G93A mice compared to wild-type control mice
(7.1 ± 0.1 cm vs. 6.8 ± 0.1 cm, P < 0.05). Stride frequency
remained lower in SOD1 G93A mice (5.0 ± 0.1 vs. 5.3 ±
0.1 Hz, P < 0.05), and stride duration remained longer
compared to wild-type control mice (209 ± 2 vs. 198 ± 3
ms, P < 0.05) at ~13 weeks of age.

Gait variability was monitored in SOD1 G93A mice at ~8
weeks, ~10 weeks, ~12 weeks, and ~13 weeks of age, coin-
ciding with the appearance of motor dysfunction reported
in this model [43-45]. Gait variability was not different in
SOD1 G93A mice compared to wild-type control mice at
age ~8 weeks, ~10 weeks, ~12 weeks, and ~13 weeks.
Stride length variability of the forelimbs and hind limbs
were comparable between SOD1 G93A mice and wild-
type control mice at all ages studied. Stance width
variability of the forelimbs and hind limbs were also com-
parable between SOD1 G93A and wild-type control mice
at age ~8 weeks, ~10 weeks, ~12 weeks, and ~13 weeks.

Discussion
Gait disturbances are characteristic of Parkinson's disease,
Huntington's disease, and amyotrophic lateral sclerosis.
Gait reflects several variables, including balance, proprio-
ception, and coordination. There are several mouse mod-
els of PD [20,47] and HD [22,48-50], and one widely
studied model of ALS [39,43-45]. Mouse models that rep-
licate PD, HD, and ALS symptoms could improve
understanding of their pathogenesis and treatment. Gait
variability indices are increasingly being recognized as
important markers of neurological diseases [4,9-11,36].
We found gait disturbances, including increased gait vari-
ability, in the MPTP-treated mouse model of PD and the
3NP-treated mouse model of HD, which may be the con-
sequence of the affected neural pathways. Gait variability
was not increased, however, in the SOD1 G93A transgenic
mouse model of ALS.

Gait in MPTP-treated mice

The MPTP-treated mouse model of PD has been exten-
sively studied for its ability to injure the nigrostriatal
dopaminergic system, damage neurons, and deplete the
brain of dopamine [16-18]. Several studies have described
motor function disturbances in MPTP-treated mice to
relate the deficits to symptoms in humans with PD. Motor
function tests in MPTP-treated mice have included grip
strength [40], the ability of the animals to balance on a
rotating rod [27,40], and swimming performance [51].
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MPTP significantly affects locomotor activity [17,40,52]
and motor performance [17,20,28,51], thus providing
functional readouts to test potential therapies. Shortened
stride length is one of the cardinal features of PD [1,4,11],
yet reports of reduced stride length in MPTP-treated ani-
mals are sparse. Fernagut et al., using the paw-inking
method, measured stride length in mice one week after
acute MPTP intoxication [14] and concluded that stride
length was a reliable indicator of basal ganglia dysfunc-
tion. Smaller doses of MPTP (3 mg/kg) were also found to
significantly reduce stride length in rats [53]. The difficul-
ties associated with the paw-inking method and the varia-
bility in overground walking speeds in mice [54] have
possibly limited reports of stride length in MPTP-treated
mice. Using digital paw prints obtained by ventral plane

videography, we found that stride length was significantly
decreased in MPTP-treated mice after 3 days of adminis-
tration (i.p. 30 mg/kg/day).

Gait indices, including stride duration, stance duration,
swing duration, and stride length, change with changes in
walking speed. We eliminated the confounding effects of
differences in walking speed on gait dynamics by setting
the motorized treadmill belt to 34 cm/s for all mice.
Accordingly, since stride length was decreased in MPTP-
treated mice, stride frequency was increased and stride
duration was decreased in forelimbs and hind limbs of
MPTP-treated mice. A decrease in stride duration can be
attained by decreases in stance duration and swing dura-
tion. We found that the decrease in stride duration in

Ventral view of a 3NP-treated mouse attempting to walkFigure 4
Ventral view of a 3NP-treated mouse attempting to walk. A. The ventral view of a 3NP-treated mouse attempting to 
walk on the treadmill belt moving at a speed of 34 cm/s but failing to engage the hind limbs in coordinated stepping. This animal 
braced its hind paws onto the base of the sidewalls of the walking compartment avoiding the moving treadmill belt. Only the 
forelimbs execute coordinated stepping sequences. B. Gait signals of the left and right forelimbs of a 3NP-treated mouse dem-
onstrating coordinated stepping, despite hind limb failure of stepping. The signals of left and right hind limbs are not coordi-
nated and reflect artefacts associated with the belt contacting the braced paws.
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MPTP-treated mice was attained by significantly shorter
hind limb swing duration and forelimb stance duration. A
reduction of the stance duration may result in a shorter
time for limb muscles to be activated for stabilization
[55]. This may account for the significant increase in
stride-to-stride variability observed in MPTP-treated mice.
Fleming et al. studied mice overexpressing wild-type
human α-synuclein (ASO mice), a model of early onset
familial PD [47]. The authors found that although stride
length was comparable to control mice, stride frequency
and stride length variability were increased in ASO mice
[47]. ASO mice did not exhibit a loss of dopaminergic
neurons, but developed accumulation of α-synuclein in
the nigrostriatal system and show enhanced sensitivity of
nigrostriatal neurons to MPTP administration [47].

Gait in 3NP-treated mice

Gait dynamics in 3NP-treated mice were difficult to study.
Aggressive doses of 3NP resulted in high mortality or the
inability of the mice to walk at all on the treadmill belt
(data not shown). The earliest effect of 3NP (12 hours
after 1st dose of 25 mg/kg) on gait was an increase in fore-
limb stride length variability. Subsequent gait distur-
bances included increased gait variability of the forelimbs
and eventual failure of hind limb stepping. Our findings
of different effects of 3NP on gait dynamics of forelimbs
and hind limbs are in accordance with previous motor
behavioral assessments in 3NP-treated animals [29,56].
Fernagut et al. found no differences in stride length of
forelimbs and hind limbs after a cumulative dose of 3NP
(340 mg/kg) [29]. With a cumulative dose of 560 mg/kg
of 3NP, forelimb stride length was comparable to saline-
treated mice, but hind limb stride length was shortened
[29]. Administration of 3NP may affect hind limb gait
dynamics differently than forelimb gait dynamics via dif-
ferent effects on the neostriatum and the nucleus
accumbens [14,57]. Shimano et al. showed that hind limb
muscles in 3NP-treated rats became hypotonic with low
voltage electromyogram activity and impaired movement
[58]. Activation of the motor program required for the
two 3NP-treated mice that braced their hind limbs against
the inside walls of the walking compartment while simul-
taneously maintaining coordinated gait of the forelimbs
[59] may suggest that 3NP-induced cognitive defects [60]
did not contribute to the gait disturbances in 3NP-treated
animals.

Lin et al. reported that stride length and stance width in a
knock-in mouse model of HD did not differ from wild-
type mice [48]. Stride length variability and stance width
variability were higher, however, in the mutants [48]. In a
transgenic mouse model for HD, R6/2 mice exhibited
unevenly spaced shorter strides, staggering movements,
and an abnormal step sequence pattern [49]. No signifi-
cant abnormalities in stride length were observed in the

R6/1 HD transgenic mouse [50]. The significantly higher
gait variability of the forelimbs we observed in 3NP-
treated mice may reflect the jerky and highly variable arm
movements in HD gene carriers and patients with HD
[61]. Taken together, increases in forelimb stride
variability appear to be more characteristic of motor con-
trol deficits in early HD than decreases in stride length.

Gait in SOD1 G93A mice

Impaired performance in SOD1 G93A mice in some
motor function tests have been observed at ~8 weeks of
age [45]. Others have reported motor impairments in
SOD1 G93A mice at ~11–16 weeks of age [43,44]. It was
of interest, therefore, to find that stride length was signif-
icantly longer in SOD1 G93A mice compared to wild-type
mice at ~12 weeks and ~13 weeks of age. Increased stride
length is often associated with increased amplitude of
electromyogram activity and enhanced motor perform-
ance. Gurney et al. first described significantly shorter
stride length in SOD1 G93A mice with severe pathological
changes in the late stage of disease [39]. Puttaparthi et al.
also reported significantly shorter stride length in SOD1
G93A mice at ~24 weeks of age [44]. The reported
decrease in stride length at later stages could be due to
muscle weakness, fatigue, and motor neuron loss. The
data of Puttaparthi et al. also indicate, however, that stride
length in SOD1 G93A mice may tend to be longer at ~16
weeks of age [44]. Wooley et al., moreover, recently
reported significantly longer stride duration in SOD1
transgenic mice compared to wild-type mice walking on a
treadmill at 23 cm/s at 8 and 10 weeks of age [62], which
would mean that SOD1 transgenic mice had significantly
longer stride lengths at 8 and 10 weeks of age. It is notable
that patients with ALS who walked overground at speeds
comparable to healthy subjects also had longer stride
duration [36]. One explanation for the increased stride
length in the presymptomatic SOD1 G93A mice we
observed walking 34 cm/s could be aberrant electrical
activity of the muscles involved in treadmill walking. Kuo
et al., in fact, identified significantly elevated intrinsic
electrical excitability in cultured embryonic and neonatal
mutant SOD1 G93A spinal motor neurons [63]. Dengler
et al. surmised that new motor unit sprouting and result-
ing increases of twitch force could compensate for the loss
of motor neurons in patients with early stages of ALS [64].
To our knowledge, there are no reports regarding stride
length in patients with ALS walking on a treadmill. An
early indication of ALS could be an increase in stride
length.

Gait variability indices

The CVs of stride length and stance width in healthy
humans are ~3–6% and ~14–17%, respectively [65,66].
The CV of stride time in humans with intact neural control
is <3%, and is significantly higher in patients with PD,
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HD, and ALS [36]. Stride time variability was highest in
patients with HD [36]. The CV for stride length in saline-
treated C57BL/6 mice is higher than in healthy humans,
but the CV for stance width is comparable. Stride length
may be determined predominantly by gait-patterning
mechanisms, whereas stance width may be determined by
balance-control mechanisms [67]. Stride length may be
more variable in mice because of a greater number of gait
patterns [37]. Gait variability may also be high in mice
walking on a treadmill belt at a speed of 34 cm/s com-
pared to mice walking overground at preferred speeds.

We found that gait variability of the forelimbs in mice was
significantly higher than gait variability of the hind limbs.
This may be attributable to the role of the forelimbs in
balance and navigation [68,69]. We further found that the
MPTP mouse model recapitulated the higher gait variabil-
ity in patients with PD, as evidenced by a significant
increase in stride length variability of the forelimbs and a
significant increase in stance width variability of the fore-
limbs and hind limbs. We also found that the 3NP mouse
model may reflect the higher gait variability in patients
with HD, as evidenced by a significant increase in fore-
limb stride length variability and stance width variability.
We found that gait variability of the forelimbs was highest
in 3NP-treated mice, in parallel with the higher gait varia-
bility in patients with HD as compared to patients with
PD [35]. The higher forelimb stride length variability in
3NP-treated mice may reflect the jerky movements of
arms in HD patients [61]. Although pathology of PD and
HD involve different portions of the basal ganglia, pos-
tural instability is common to both diseases. Postural
instability was characteristic of MPTP-treated and 3NP-
treated mice. Increased stride length and step width varia-
bility of the hind limbs was more characteristic in the
MPTP model of PD than in the 3NP-model of HD. The
more open paw placement angle of the hind limbs in
3NP-treated mice was not accompanied by higher stance
width variability and stride length variability. Moreover,
the eventual failure of the hind limbs in 3NP-treated mice
(75 mg/kg cumulative dose) to engage in coordinated
stepping was not preceded by changes in hind limb gait
variability (50 mg/kg cumulative dose). We did not find
an increase in gait variability in transgenic SOD1 G93A
mice. Neither forelimb nor hind limb stride length varia-
bility or stance width variability in SOD1 G93A mice were
different than in wild-type controls at ~12 weeks or ~13
weeks, ages when motor function deficiencies have been
observed. In patients, gait variability was shown to be
higher with well-established ALS [36]. We do not yet
know if gait variability increases in SOD1 G93A mice as
the disease progresses. Our findings suggest, however, that
gait variability is not increased in the early stages of motor
neuron disease. Differences in gait variability among

MPTP-treated, 3NP-treated, and SOD1 G93A mice may
reflect differences in neuropathology.

Limitations
We do not know the long-term effects of extended admin-
istrations of MPTP or 3NP on gait dynamics. Different
schedules of neurotoxin administration result in differ-
ences in the mechanisms of neuronal death [34,70],
which could affect gait. We did not observe morbidity and
mortality in the MPTP-treated mice. Results in 3NP-
treated mice, however, were variable, consistent with
reports of significant inter-animal variation in response to
3NP toxicity [71]. MPTP- and 3NP-induced neuronal
damage in mice are age-dependent [72,73], and both tox-
ins have systemic effects, including the heart [42,74].
Since no postmortem analyses were performed demon-
strating neurodegeneration, the pathogenesis of the gait
disturbances is unclear. We did not measure striatal
dopamine; previous reports indicate, however, that 30
mg/kg/day MPTP for 3 days reduce striatal dopamine by
>50% [18,20]. Neither the MPTP nor the 3NP toxin mod-
els exactly replicate the pathological phenomena of PD
and HD. Future studies could compare gait dynamics in
different chemically-induced models and genetic models
of PD and HD. We did not consider effects of habituation
to treadmill walking [61] on gait indices. Gait dynamics
are strain-dependent [75], making it difficult to compare
gait dynamics in the SOD1 G93A transgenic mouse model
of ALS, which is a mix of C57BL/6 and SJL mice, to gait in
the MPTP-treated and 3NP-treated C57BL/6 mice.

Conclusion
MPTP-treated mice demonstrated significant gait distur-
bances, including shortened stride length, increased stride
frequency, and increased stride-to-stride variability, symp-
toms characteristic of patients with Parkinson's disease.
3NP-treated mice demonstrated an increased forelimb
stride-to-stride variability and a more open paw place-
ment angle of the hind limbs. Gait failure in 3NP-treated
mice resulted from an inability of the hind limbs to
engage in stepping while forelimb gait remained intact.
Gait variability was not significantly higher in SOD1
G93A mice, a model of motor neuron disease, compared
to wild-type control mice. The present study provides a
basis for additional studies of gait and gait variability in
mouse models of PD, HD, and ALS.
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