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Gait Estimation from Anatomical 
Foot Parameters Measured by a 
Foot Feature Measurement System 
using a Deep Neural Network 
Model
Kyung-Ryoul Mun1, Gyuwon Song1, Sungkuk Chun2 & Jinwook Kim1

An accurate and credible measurement of human gait is essential in multiple areas of medical 

science and rehabilitation. Yet, the methods currently available are not only arduous but also costly. 

Researchers who investigated the relationship between foot and gait parameters have found that the 

two parameters are closely interrelated and suggested that measuring foot characteristics can be an 

alternative to the strenuous quantification currently in use. This study aims to verify the potential of 
foot characteristics in predicting the actual gait temporo-spatial parameters and to develop a deep 

neural network (DNN) model that can estimate and quantify the gait temporo-spatial parameters 

from foot characteristics. The foot features in sitting, standing, and one-leg standing conditions of 42 
subjects were used as the input data and gait temporo-spatial parameters at fast, normal, and slow 

speed were set as the output of the DNN regressor. With the prediction accuracy of 95% or higher, the 
feasibility of the developed model was verified. This study might be the first in attempting experimental 
verification of the foot features serving as predictors of individual gait. The DNN regressor will help 
researchers improve the data pool with less labor and expense when some limitations get properly 
overcome.

Gait is the most basic form of human locomotion migrating the body’s center of mass (CoM) in various directions 
and it contains much personal information such as movement patterns, pathological symptoms, and movement 
intentions1–3. �erefore, accurate and reliable gait quanti�cation is indispensable in making proper and timely 
clinical intervention. Gait quanti�cation not only provides substantial clues in diagnosing and monitoring mus-
cular skeletal diseases and neurological disorders but also helps evaluate the life quality of the su�ering4,5.

Measuring human gait extensively rely on temporo-spatial characteristics of an individual such as the time 
and length of stride and step, stance time, swing time, single-limb support (SLS) time, double-limb support (DLS) 
time, and gait velocity1,6–8. �ose characteristics can be measured by optical motion capture system1,8, or �oor 
sensors9,10. Since they are special devices, a huge cost is unavoidable. Let alone the cost, this kind of measuring 
requires strict laboratory environment that hampers natural gait of subjects and can be easily disturbed.

To address the challenge, a wearable sensor like inertial-measurement unit (IMU) was developed and now it 
is widely in use. Although it requires neither a huge budget nor sophisticated experimental settings, it is accurate 
and reliable11,12. However, some challenges still remain. A single IMU has not yet fully overcome a dri� phenome-
non despite its signi�cant reduction due to several supplementary techniques, thus cannot provide accurate posi-
tion information while subjects are performing continuous motion tasks. Commercialized IMU-based motion 
capture systems combining several IMU sensors can be a good alternative option for kinematic measurements. 
However, some issues such as constraining human kinematics, sensor fusion technique, magnetic disturbance, 
making a relation between the sensors and anatomical body segment frames through calibration, and detecting 
foot contact and o� time make the measurement process complicate2,13–15.
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In the interest of �nding a better way of measuring human gait, many attempts have been made. Some of them 
turned attention to the prediction potential of arti�cial neural networks. Ardestani and his colleagues developed 
a generic wavelet neural network (WNN) model that predicts human joint moments and veri�ed its accuracy 
by comparing its prediction with that of feed-forward arti�cial neural network (FFANN) model16. Based on 
the accuracy rate that has less than 10 percent of normalized root mean square error (RMSE), Ardestani argued 
that his WNN model can predict joint moments more conveniently yet accurately compared to the conven-
tional multi-body dynamic models. Another study conducted by Yun et al. adopted a statistical and stochastic 
approach and used anthropometric data of a human body and estimated joint kinematics while walking17. �is 
novel approach lowered the estimation cost greatly by using subject-speci�c body anthropometric parameters. 
Some other researchers like Hannink et al. used convolutional neural network (CNN) model and successfully 
predicted the biomechanical stride parameters with comparable accuracy2,18. A recurrent neural network (RNN) 
model was also studied and the results said it successfully detects the movement intentions of the �ve major 
movements which are closely related to daily tasks3. All these studies support the prediction potential of neural 
networks and their compatible accuracy. �ese remarkable achievements endorse an investigation of yet another 
neural network, a deep neural network (DNN), in measuring human movement. �e rise of arti�cial intelligence 
technology can also help �nd ways that are more e�cient in quantifying and classifying human movements.

�is newly emerged use of neural networks in quantifying human movements inevitably poses a question of 
input data. Accordingly, many studies investigating the use of certain features as input data followed. One of the 
candidates is a foot since its arch structure contains much information on how individuals walk, and the foot is 
highly associated with the whole body dynamics including plantar load distribution19–21. Chang et al. found that 
the height of foot arch changes weight distribution22. �e study compared the weight distribution of people with 
low foot arch with that of people with normal arch then concluded that people with low foot arch tends to shi� 
their body more on the medial side while walking. Another study conducted by Sung et al. found that people 
with low foot arch had increased external hip rotation and decreased forefoot supination angle23. By showing 
the kinematic di�erences caused by foot arch types, these studies imply the causal connection between the two. 
More speci�cally, a study conducted by Mun et al. has proven the correlation between the foot feature and the 
gait temporo-spatial parameters24,25. When foot feature parameters measured by a newly developed foot feature 
measurement system (FFMS) and gait temporo-spatial parameters collected from a motion capture system were 
investigated, it was found that medial-longitudinal arch (MLA) and lateral-longitudinal arch (LLA) can move 
independently despite their physical proximity. As for their correlations, it was found that the MLA characteris-
tics are correlated with the gait temporal parameter while the LLA characteristics are correlated with gait spatial 
parameters. �is correlation found by multiple studies advocates the use of foot features as input data in predict-
ing individual gait patterns.

�is study aimed to develop a neural network model that predicts human gait and verify its accuracy. A deep 
neural network based regressor using foot characteristics as input was built and it estimated and quanti�ed the 
gait temporo-spatial parameters. �e estimated gait temporo-spatial parameters were compared with the actual 
values. �e study also looked for the most applicable and reliable input variable set among the studied variable 
sets. Measuring foot characteristics is much simpler and cheaper than collecting gait-related parameters. When 
the accuracy of the suggested model is veri�ed, it can serve as a good alternative to the sophisticated measurement 
currently available. �is new subject-speci�c gait estimation approach will dramatically reduce the cost and e�ort 
that accompany the quanti�cation human gait.

Methods
Participants and Experimental Protocols. Based on the assumption that the foot arch characteristics 
of regular people and athletes di�er distinctively26, a total of 42 subjects, 17 regular subjects (age: 29.41 ± 5.08, 
height: 174.94 ± 4.87, and weight: 73.35 ± 7.98) and 25 semi-professional athletes (age: 52.92 ± 9.60, height: 
171.96 ± 4.8, and weight: 69.76 ± 5.36), were recruited. �e recruited semi-athlete subjects run a triathlon or 
marathon at least once in three months. Subjects who had any history of musculoskeletal injuries, neurological 
disorder, and age-related health issues were excluded. �e experimental protocol was assessed and approved 
by the Intuitional Review Board of Korea Institute of Science and Technology. All methods were performed in 
accordance with the relevant guidelines and regulations. �e informed consent was obtained from all participants 
and no violation of human right was reported.

�e protocols had two sessions that are foot feature measurement session and gait feature measurement 
session. �e foot feature measurement session comprised three movement conditions: sitting, standing, and 
one-leg-standing (OLS) (Fig. 1A). �e gait feature measurement session had three speed conditions: fast, normal, 
and slow. During the foot feature measurement session, all subjects were instructed to sit and maintain a seden-
tary posture with their ankle and knee joint angle at 90° and then steadily stand up and maintain the standing 
posture for 5 seconds on the system developed. Followed by these, the subjects were asked to stand on one leg 
keeping their body balance as stable as possible for 10 seconds (Fig. 1A). �e foot feature measurement session 
was performed on a newly developed foot measurement system which can provide foot shape as well as the 
ground reaction force during movements. �e details of the system are shown in Fig. 1. �e foot features were 
collected when the ground reaction force was the highest and lowest, then the averaged values were used for the 
analysis. During the gait feature measurement session, the subjects were asked to walk on a 30-meter long straight 
path three times: once at their preferred speed, and 15 to 25% slower and faster than their casual speed. Ten 
strides in the middle of these were used for the analysis. For this study, a total of 61 samples were gathered. For the 
regular subjects, both foot and gait features were collected from one dominant limb and those of the semi-athletes 
were collected from both limbs.



www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |  (2018) 8:9879  | DOI:10.1038/s41598-018-28222-2

A Foot Feature Measurement System (FFMS) and Foot Data Analysis. �e overall scheme of the 
FFMS (1400 mm (length) × 700 mm (width) × 1100 mm (height)) is presented in Fig. 1B. �e system has a stand-
ing type structure with a monitor that displays user instructions. �ere are guard handles on both sides and the 
scanning spot on the bottom. �e FFMS measures the foot structure of a subject while subjects are performing 
various motion tasks on the scanning spot and from the gathered structural data foot feature parameters such 
as foot length, foot width, MLA and LLA curves get extracted. �e scanning spot is equipped with four uniaxial 
force sensors (Phidgets Inc., Calgary, Canada) at each corner of a colorless and transparent acrylic panel (450 mm 
(length) × 450 mm (width) × 400 mm (height)) to measure the center of pressure (CoP) of a body. Underneath 
the panel, there is a single RGB-depth (RGBD) camera (Realsense F200, Intel, Santa Clara, USA) for collecting the 
structural information of a foot (Fig. 1B). �e RGBD camera captures 3D geometric and color data of a plantar 
surface with 60 frames per second in point cloud data format. �e foot length was de�ned as the distance from 
a center of heel to center of the second toe. �e distance from a center of heel to 1st metatarsophalangeal (MTP) 
bone was de�ned as MLA line while the distance from a center of heel to 4th MTP bone was de�ned as LLA line 
(Fig. 2A). �en by projecting MLA and LLA lines onto the plantar surface, the MLA and LLA curves were com-
puted. From these curves, the parameters such as foot length, height and curve area of the MLA and LLA and arch 
angles were calculated (Fig. 2B). �e accuracy and feasibility of FFMS were validated from our previous study25,27.

A Gait Measurement System and Gait Temporo-spatial Parameters. Before measuring the gait of 
the subjects, the anthropometric data of each subject such as ankle height, knee height, hip height, body height, 
hip width, shoulder width, and arm span were measured (Fig. 3A). A commercialized motion-capture system 
(Xsens MVN, Enschede, Netherland) equipped with IMU sensors was used to collect gait-related information 
(Fig. 3A)11,12. �e angular velocity of le� and right shanks was used to detect heel-strike (HS) and toe-o� (TO) 
time of both lower limbs28,29. From these detected HS and TO, the gait temporo-spatial parameters were calcu-
lated (Fig. 3B). �e phase from HS to TO was de�ned as a stance and TO to consecutive HS was de�ned as a swing 
phase. Other de�nitions of double-limb support (DLS), single-limb support (SLS), step, stride, and gait velocity 
can be found in Fig. 3B4.

Deep Neural Network based Regressor and Training and Evaluation scheme. Using the DNN model 
which has been showing remarkable performances in various �elds including gait kinematics and kinetics30–32,  
a DNN based regressor model was developed using Python so�ware to estimate the gait temporo-spatial parame-
ters. Input variables for the neural network were foot feature parameters of each subject which were measured by 

Figure 1. (A) Experimental protocols of foot feature measurement session under sitting, standing, and one-leg-
standing conditions. (B) Overall scheme of the foot feature measurement system (FFMS). FFMS has a standing 
type structure and a monitor installed on the front side. On both sides there are guard handles and there is the 
scanning spot on the bottom. (C) �e scanning spot comprises four uniaxial force sensors at each corner of 
a transparent panel to measure center of pressure of the body and a single RGB-depth camera to collect foot 
structural information.
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the FFMS under sitting, standing, and OLS conditions. �e outputs were the average of the gait temporo-spatial 
parameters for each speed condition. �e regressor estimated the gait parameters following �ve steps.

 (A) Scale an input data set: Since the measurement units for foot and those of body features di�er, all the input 
variables get scaled. A standard scaling approach which sets a mean of the inputs to 0 and a variance of the 
inputs to 1 is used.

 (B) Shu�e and divide data: All acquired data get shu�ed then are divided into learning set and test set as 7:3 
ratios. At each learning stage, Python Deep Learning Library in Keras cross-validated the dataset to avoid 
over�tting.

 (C) Build deep neural networks: Network architecture such as the number of layers, the number of neurons, 
learning rate, activation function, and so on, get con�gured (Fig. 4).

 (D) Train deep neural networks: �e training data set is fed into the established neural networks, and the 
networks calculate Mean-Squared-Error (MSE) and standard deviation (SD) between an actual value and 
an estimated value for each combination of weights and biases. When the training �nishes, the network 
chooses an optimal model which has a minimum MSE.

 (E) Validate the optimal model: Using a new set of input data, the optimal model estimates gait parameters and 
compares the values with the corresponding actual values.

Using the regressor, several experiments in various settings were conducted. �e input variables were classi-
�ed into �ve groups to investigate which dataset is the most proper and optimized input set among the anthropo-
metric data on foot and body. Whereas only the LLA related parameters for group 1 and MLA related parameters 
for group 2 were selected, the combination of MLA and LLA were selected for group 3. All foot parameters and 
body anthropometric parameters were selected for group 4, while all foot parameters, body anthropometric data, 
and labeling information that tells whether a subject is the regular or semi-athletes were selected for group 5. For 
group 1 and 2, the total of nine variables including the height, heel angle, and height angle of LLA and MLA in 
sitting, standing, and OLS conditions were selected as the inputs of the regression model. Eighteen variables from 
MLA and LLA characteristics were selected for group 3. For group 4, a total of 34 variables including foot length, 
height and area of the arch curves, heel and height angle of MLA and LLA in all three movement conditions as 
well as seven body anthropometric data were used. All the variables selected for group 4 and labeling information 
were used for group 5.

�e prediction outputs of the regressor were 27 gait temporo-spatial parameters such as stride and step time, 
SLS and DLS time, stance and swing time, stride and step length, and gait velocity at fast, normal, and slow walk-
ing speed.

To �nd an optimal architecture of DNN, we adopted grid search algorithm that can perform an exhaustive 
search and hyper-parameter optimization. During the grid search, the number of hidden layers was selected at 
a range from 1 to 5, and the number of neurons was searched at a range between 1 and 5 times the number of 
input features. Seven candidates such as ‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’ were 
considered for the optimizers, while eight candidates such as ‘so�max’, ‘so�plus’, ‘so�sign’, ‘ReLU’, ‘tanh’, ‘sigmoid’, 

Figure 2. (A) A distance between a center of heel and center of second toe is de�ned as foot length, while a 
center of heel to 1st MTP bone and to 4th MTP bone are de�ned as MLA and LLA line, respectively. (B) From the 
MLA and LLA line, foot arch parameters such as curves, height, heel and height angles of MLA and LLA were 
calculated.
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‘hard_sigmoid’, ‘linear’ were examined for the activation functions. �e learning rate and epochs were determined 
by our empirical judgment. For the detailed information of each hyper-parameter, refer to Keras library docu-
ment (https://keras.io/). A�er doing some grid search with a few randomly selected samples, we set the architec-
ture of 2 hidden layers having ‘Adam’ optimizer, ‘ReLU’ activation function with 0.1 learning rate and 1000 epochs 
for training iteration considering a trade-o� between accuracy and cost. �e number of neurons was the same as 

Figure 3. (A) Experimental setting for the gait experiment with IMU sensors mounted on a subject, and the 
subject’s anthropometric data such as ankle height, knee height, hip height, height, hip width, shoulder width, 
and arm span collected prior to the gait experiment. (B) De�nitions of gait temporo-spatial parameters such as 
stance, swing, step, stride, single-limb support and double-limb support.

Group 1 Group 2 Group 3 Group 4 Group 5

Mean Std Mean Std Mean Std Mean Std Mean Std

Stride Length [m] 0.019 0.013 0.014 0.009 0.010 0.007 0.007 0.004 0.009 0.006

Step Length [m] 0.008 0.006 0.005 0.003 0.004 0.002 0.004 0.002 0.004 0.002

Gait Velocity [m/s] 0.133 0.114 0.104 0.053 0.068 0.037 0.058 0.033 0.050 0.029

Stride Time [s] 0.076 0.010 0.042 0.078 0.022 0.020 0.032 0.026 0.016 0.010

Step Time [s] 0.036 0.069 0.009 0.008 0.006 0.006 0.006 0.004 0.005 0.003

SLS Time [s] 0.015 0.019 0.007 0.006 0.004 0.004 0.004 0.003 0.004 0.003

DLS Time [s] 0.004 0.003 0.003 0.002 0.002 0.001 0.002 0.001 0.001 0.001

Swing Time [s] 0.013 0.017 0.005 0.006 0.003 0.002 0.004 0.002 0.002 0.001

Stance Time [s] 0.031 0.044 0.026 0.037 0.009 0.005 0.009 0.005 0.007 0.004

Table 1. �e mean square errors and their standard deviations averaged at various gait speeds.

https://keras.io/


www.nature.com/scientificreports/

6SCIENTIFIC REPORTS |  (2018) 8:9879  | DOI:10.1038/s41598-018-28222-2

the number of input feature (Fig. 4). �e total of 61 samples was randomly classi�ed into the learning set (70%) 
and the test set (30%). �e MSE and SD were used in evaluating the performance of the regressor model.

Results
Figure 5 shows the MSEs of the gait temporo-spatial parameters at each speed condition. �e MSEs and SDs of 
gait temporal and spatial parameters averaged were shown in Fig. 5G,H) and Table 1. �e averaged prediction 
accuracies of the gait temporo-spatial parameters were shown in Table 2. When the numbers of input on the 
regressor increased, the prediction errors remarkably decreased.

For the gait temporal parameter estimation, the MSEs and SDs of the stride and step time, SLS and DLS time, 
swing and stance time of group 1 were 0.076 ± 0.098, 0.036 ± 0.069, 0.015 ± 0.019, 0.004 ± 0.003, 0.013 ± 0.017, 
and 0.031 ± 0.044, respectively. �ose of group 3 were 0.022 ± 0.020, 0.006 ± 0.006, 0.004 ± 0.004, 0.002 ± 0.001, 
0.003 ± 0.002, and 0.009 ± 0.005 while those of group 5 were 0.016 ± 0.010, 0.005 ± 0.003, 0.004 ± 0.003, 
0.001 ± 0.001, 0.002 ± 0.001, and 0.007 ± 0.004 (Table 1). �e MSEs and SDs were the highest in group 1 and 
the lowest in group 5. �e MSEs of group 3, 4, and 5 were signi�cantly lower than those of group 1 and 2. �e 
averaged accuracies of each temporal outputs were 93.44, 94.18, 97.12, 94.68, 97.42, and 95.18 for group 1, 98.14, 
98.95, 99.20, 97.72, 99.38, 98.69 for group 3, and 98.79, 99.23, 99.27, 98.95, 99,61, and 99.04 for group 5 (Table 2).

�e prediction errors of the gait spatial parameters showed much decrease when the inputs on the regres-
sor increased. �e MSEs and SDs of the stride and step length, and gait velocity were the highest in group 1; 
0.019 ± 0.013, 0.008 ± 0.006, 0.133 ± 0.144. The MSEs were the lowest in group 5 showing 0.009 ± 0.006, 
0.004 ± 0.002, and 0.05 ± 0.029. �ose of group 3 were 0.010 ± 0.007, 0.004 ± 0.002, and 0.068 ± 0.037 (Table 1). 
�e averaged accuracies of each spatial outputs were 97.805, 98.00, and 85.345 for group 1, 98.86, 99.19, 92.51 
for group 3, and 99.001, 99.388, 94.815 for group 5 (Table 2). The detailed information on the actual gait 
temporo-spatial parameters and estimated outputs from the DNN regressor in group 5 were shown in Fig. 6 using 
Bland-Altman plots, which included the achieved mean accuracy and precision.

Figure 4. �e structure of DNN regressor is determined by the grid search algorithm. It has 2 hidden layers 
having ‘Adam’ optimizer, ‘ReLU’ activation function with 0.1 learning rate and 1000 epochs for training 
iteration. �e number of neurons is the same with the input features.

Group 
1

Group 
2

Group 
3

Group 
4

Group 
5

Stride Length 97.80 98.31 98.86 98.92 99.01

Step Length 98.00 98.88 99.19 99.18 99.39

Gait Velocity 85.35 88.35 92.51 94.69 94.82

Stride Time 93.44 96.16 98.14 98.66 98.79

Step Time 94.18 98.55 98.95 99.24 99.24

SLS Time 97.11 98.66 99.20 99.24 99.27

DLS Time 94.68 96.21 97.72 97.93 98.95

Swing Time 97.42 99.09 99.38 99.53 99.61

Stance Time 95.18 96.22 98.69 98.99 99.04

Table 2. �e prediction accuracies averaged at various gait speeds (%).
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Discussion
�e study estimated the total of 27 gait outcomes including 9 temporo-spatial gait parameters at fast, normal, and 
slow walking speed, using foot characteristics including MLA and LLA along with other body anthropometric data.

�e results deserve attention since they surpass the limits of the previous studies. For long, the curve of LLA 
had been neglected due to the absence of simultaneous measurement technique. �e developed foot feature meas-
urement system enables automatic analysis of the plantar surface of the foot by using a commercial RGB-D cam-
era installed underneath the transparent scanning spot through the vision-based measurement approach in an 
e�cient way25. �e developed system also provides the foot anthropometric data such as foot length and width as 
well as morphological changes of the MLA and LLA curves simultaneously with 60 frames per second. It allows 
the quantitative assessment of the foot features such as foot length, height and arch angles in various conditions 
with a considerable accuracy and repeatability. �e feasibility of the FFMS system was evaluated through our 
previous study24,25.

In this study, �ve sets of outputs were compared and an optimal input dataset was found in the proposed 
model. �e foot characteristics were classi�ed into 5 groups: (i) LLA features, (ii) MLA features, (iii) LLA + MLA 
features, (iv) group 3 + body anthropometric data, and (v) group 4 + labeling information indicating whether the 
subject is regular or athletes. �e prediction accuracy of the DNN based regressor on gait temporal parameters 
was relatively poor in group 1 showing the averaged accuracy percentages from 93.44 to 97.42% (Table 2). �e 
accuracies of group 2 were a lot higher than those of group 1 showing the accuracy range from 96.16 to 99.09%. 
In addition, the MSEs and SD of stride, step, SLS, and swing time in group 1 was about twice as high as group 2 
(Fig. 5G and Table 1). �is considerable increases in prediction accuracy that group 2 showed might be explained 
by the characteristics of their input dataset. Our previous study which investigated the correlation between the 
foot feature parameters and the gait temporo-spatial parameters con�rmed that the MLA characteristics in OLS 

Figure 5. (A to F) Mean square errors and their standard deviation of the gait temporo-spatial parameters at 
fast, normal, and slow walking speed. (G and H) �e mean square errors and their standard deviation of each 
gait temporal and spatial parameters averaged at various gait speeds on the unseen test data (out-of-sample) of 
the DNN based regressor model.
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condition are highly correlated to the features of gait temporal parameters while those of LLA are related to gait 
spatial parameters24. �e compelling contribution of MLA in gait temporal characteristics may have resulted in 
higher prediction accuracy in group 2 compared to group 1 under the same variable environment. Yet another 
error reduction found in group 3 can be explained by the independence of the MLA and LLA despite their prox-
imity. Adopting both foot characteristics might have helped the regressor improve the prediction accuracy. �e 
marginally improved accuracy found in group 4 and 5, which used both MLA and LLA as along with other body 
anthropometric data, supports this speculation of the importance of the foot characteristics in estimating the gait 
patterns.

For the most of the output variables, there was no considerable di�erence found between group 4 and 5 except 
for the DLS time. �e averaged MSE of DLS time in group 5 was twice as low as the group 4. �is might have 
been because of the mean DLS time of regular subjects being di�erent from that of the semi-athlete subjects. �e 
labeling information must have helped the DNN based regressor improve the prediction accuracy.

An up-to-date study2, which successfully demonstrated a CNN model translating an abstract information 
provided by IMU sensor mounted on a foot into context-related gait stride-parameters, proves that this novel 
method can outperform the currently available double integration approaches in estimating the stride, stance, and 
swing time. �e root-MSEs (RMSE) and SDs of stride time, swing time, and stance time of the above mentioned 
study were 0.00 ± 0.07, 0.00 ± 0.05, and 0.00 ± 0.07, whereas the MSEs and SDs of our study at normal walking 
speed were 0.005 ± 0.003, 0.001 ± 0.001, and 0.002 ± 0.001. Although comparing these absolute values of the cited 
study with the results of our study is challenging since the former study only focused on two decimal places with 
di�erent units, it is worth commenting that the SDs of our study were fairly smaller. It indicates that the approach 
we suggest can provide more consistent and precise estimation of the gait temporal aspects than the approach that 
the above-mentioned study suggested in2.

For the gait spatial parameters, the MSEs and SDs of stride length were relatively high in group 1 and 2 
(0.019 ± 0.013 for group 1, and 0.014 ± 0.009 for group 2) compared to the other groups, and the group 4 
showed the best performance on stride length prediction (0.007 ± 0.004). �e prediction accuracies were from 
97.80 to 99.01% (Table 2). �e prediction of step length showed a similar pattern but the accuracy was slightly 
higher. When more variables were available as input dataset, the MSEs and SDs of the gait velocity decreased 

Figure 6. Bland-Altman plots for each of the output variables estimated by the DNN regressor.
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consequently. Nevertheless, the prediction accuracies of the gait velocity were relatively lower than those of stride 
and step length (from 85.35 to 94.82%). �e more variables were input, the higher accuracy was achieved in esti-
mating the gait velocity. It might have been due to the high variation of the gait velocity which may require more 
information in estimating.

When we compare our results on spatial parameters with those of the study mentioned above, the RMSE and 
SD of the stride length that the cited study showed was 0.15 ± 6.09 while our result at normal walking speed was 
0.08 ± 0.05 when it was converted into RMSE for comparison2. From this comparison, we can conclude that our 
approach not only is more accurate and precise than the previous study but also takes various gait patterns at dif-
ferent walking speed into account. However, it is worth noting that there exists a discrepancy between2 and this 
study since former study uses a heterogeneous dataset of geriatric patients whereas the present study evaluates on 
healthy young and semi-athletes.

Table 2 shows the averaged accuracy of all the gait temporo-spatial parameters, group 3 seemed to be the most 
e�cient and optimized input set for temporo-spatial gait parameter estimation despite the fact that group 3 had 
relatively smaller input variables of 18 compared to the 31 of group 4 and 33 of group 5. �us, the regressor based 
on the group 3 was the most e�cient in performing the estimation although it was relatively simple and less com-
plex than other groups. Besides, the input variables applied to group 3 did not require manual measurement of the 
body anthropometric data and in turn, demanded less human labor. When the results of group 3 which had only 
the foot characteristics as variables were compared to those of group 4 and 5 which had other body anthropo-
metric data in estimation, little di�erence was found. From this, we can conclude that foot characteristics serve as 
more dominant factors than another body anthropometric information in estimating personalized gait patterns.

Although this study successfully demonstrated that a new type of regressor model based on DNN can estimate 
temporo-spatial gait parameters quite e�ectively and accurately, the study bears a few inevitable limits. One is 
that the sample size was relatively small in both training and testing the network. Although there were 42 subjects 
participated in this study, there were only two maximum datasets of input and output per a subject. Of the 61 
samples collected, 70% was used in training and the remaining 30% was used in testing. To address an over�tting 
issue caused by the sample size, the training and testing datasets were randomly shu�ed and both processes were 
repeated for a hundred times. During the training process, a model which had shown the minimum errors was 
chosen as an optimal model and MSEs and SDs of this optimal model were calculated in the testing process.

As a study adopting DNN method, another limit that this study was not able to avoid was the use of black-box 
approach which provides little understanding of the generating mechanisms. Consequently, the results of this 
study are highly dependent on the training datasets33,34. �e result can be understood in the current given data 
pool but it cannot be guaranteed that our DNN model can accurately provide the gait dynamics over time. As 
for the subjects, it should be commented that all recruited subjects were relatively young and healthy. �e ones 
at old age or with muscular-skeletal injuries, foot-structural problems, or other neurological disorders were not 
included in this study. So estimating the gait parameters of the elderly or the injured was impossible. Further 
studies taking the old and injured into account would expand the analysis scope of gait and sports rehabilitation.

To conclude, this study developed a DNN based regressor that estimates gait temporo-spatial parameters 
using the foot structural features such as MLA and LLA measured in various movement conditions like sitting, 
standing, and OLS and the feasibility of the developed model was tested. �e study not only proved that the 
accuracy of the developed regressor was comparable to those of the conventional approaches in practice but also 
assessed its feasibility. �e cost-e�ectiveness and easiness of data collection can be the potential advantages of 
the developed model. By using this DNN based regressor, researchers can improve the data pool without using 
complex and expensive laboratory equipment. Further studies with various subject groups such as the old or 
patients with muscular-skeletal diseases or foot morphological disorders should be conducted to generalize the 
�ndings of this study.
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