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Abstract：In this study, we construct a type of CPG (central pattern generator) controller by using 
the delay-coupling Van der Pol (VDP) oscillators and propose an analysis method of parameter 
modulation to illustrate the locomotion gait of a hexapod robot. The structure topology of the CPG 
controller is scheduled as a unidirectional ring network consisting of six identical units. Each unit 
has independent parameters to modulate amplitude and frequency of the period activity. Employing 
the Hopf bifurcation, we first propose parameter conditions to guarantee the existence of the period 
activity for the delayed CPG controller, where coupling delay can induce generation and extinction 
of the period activity. Due to the symmetry structure of the proposed CPG controller, the period 
activity induced by coupling delay presents multiple spatiotemporal patterns with a constant phase 
difference. Based on theoretical analysis of the equivariant Hopf bifurcation, we further pinpoint 
parameter regions for the corresponding spatiotemporal patterns. Then using the invariable phase 
difference between signal outputs of the VDP oscillators, we assign connection order of the CPG 
units to link the hexapod’s legs and produce the hexapodal locomotion gaits. The results show that 
the coupling delay in the delayed VDP-CPG controller is an effective method to obtain many types 
of the hexapodal locomotion gaits.  

Keywords: CPG (Central pattern generator); delay coupling; VDP oscillator; hexapod locomotion 
gait; dynamical analysis method.  
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1. Introduction 

Biological researches have shown that gait locomotion of animals, including vertebrates and 

invertebrates, is initiated and controlled by a special neural network called as the central pattern 

generator (CPG) system, which produces rhythm patterns to alternate coordination of the flexor and 

extensor motor-neurons (Grillner and Manira, 2019; Wang et al., 2021; Lobato-Rios et al., 2022). 

From an application perspective of bio-robotic engineering, the CPG neural network is regarded as 

a distributed system composed of nonlinear coupling oscillators. Phase relationship of the rhythmic 

controlling signals are produced to present different gait patterns. Many types of artificial CPG 

neural systems are proposed to obtain stable and smooth gait locomotion (Yu et al., 2014; Kinugasa 

and Sugimoto, 2017; Ryczko et al., 2020).  

In fact, the bio-inspired CPG controlling strategies have great advantage to steer robots with 

multiple degrees of freedom (DOF). It can coordinate movement of all joints by adjusting a few 

parameters and avoid reluctant modeling process of the model-based control method (Holmes et al., 

2006). Inspired by the swimming CPG of lamprey, Ijspeert and his cooperators (Ijspeert 2001; 

Ijspeert et al., 2007) constructed CPG controllers based on the coupled ACPO model (amplitude 

controlled phase oscillator) to steer swimming and crawling of the biomimetic robots, such as 

salamander robot, fish robot, and snake robot. For legged robots, quadruped locomotion have been 

extensively investigated by many researchers from theoretical analyses and experimental researches 

(In et al., 2022). Hexapod walking robot is inspired by insect’s locomotion (Inagaki et al., 2003; 

2006; Goldman et al., 2006). Chen et al. (2012) constructed a hexapod robot and obtained smooth 

transition of gait locomotion by using a CPG controller with isochronous oscillator and first-order 

low-pass filter. Feedback information of the vision was integrated to adjust movement speed of a 

hexapod robot and obtain smooth transition of gaits within a simplified experimental environment 

(HugoBarron-Zambrano et al., 2015). Using VDP oscillators with a diffusive coupling scheme, Yu 

et al., (2016) proposed a hexapod CPG-based controlling method to obtain wave, tetrapod and tripod 

gait patterns and their smooth transitions. The CPG neural network combined with a feed-forward 

self-adaptive control method was proposed to realize a crab-like robot walking on complex terrain 

(Wang et al., 2017). Chang and Mei (2018) designed a controlling strategy consists of central neural 

system (CNS) and CPG to realize an ant-like gait and its transition. Employing the Hopf oscillator 

with bidirectional diffusive coupling, Bal (2021) obtained a smooth transition of the biomimetic 

hexapoda gaits. Recently, the reinforcement learning strategy was employed to adjust controlling 

parameters of the hexapod CPG controller based on the Hopf oscillators (Ouyang et al., 2021) and 

spiking neural networks (Lele et al., 2020).  

To obtain flexible locomotion under unstructured environment for the bio-inspired robots, the 

proposed CPG controllers should have many types of locomotion gaits to satisfy movement speed 

by switching the control parameters. Golubitsky and his coworkers (Golubitsky et al., 1998; 1999; 

Golubitsky and Stewart, 2016) presented a theoretical method to describe patterns relationship of 

locomotion gait by using the symmetric group theory. They further proposed the CPG controllers 
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composed of several nonlinear oscillators to obtain gait patterns of the bipedal locomotion (Pinto 

and Golubitsky, 2006; Stewart 2014) and quadruped locomotion (Buono and Golubitsky, 2001; 

Buono 2001; Stewart, 2017). For hexapodal locomotion, Collins and Stewart (1993) investigated 

model-independent features of the six-unit symmetrical networks and indicated that the hexapodal 

gait patterns and their switching can be obtained by using the standard symmetry-breaking 

bifurcation. Holmes and his coworkers adapted the six-interconnected three-dimensional bursting 

neurons to construct an insect cockroach CPG model and obtained the gait patterns for the high and 

low movement speed, i.e. tetrapod gait at low speed, tripod gait at high speed, and a unique branch 

of transition gaits (Ghigliazza and Holmes, 2004; Aminzare et al., 2018; Aminzare and Holmes, 

2019). Further, Barrio et al. (2020) presented in detail the translating evolution of the dominant 

patterns by using numerical methods, i.e. the lateral phase lag analysis and quasi-Monte Carlo 

pattern sweeping.  

The typical gait patterns of the hexapod walking robot are illustrated in Table 1, where we 

classify the locomotion gaits based on their phase relations of legs (L-left, R-right, F-front, M-

middle, and H-hind). The LH-leg is selected as a reference position that is the phase difference is 

always at 0. For these hexapod locomotion gaits, there are four types of the normalized phase 

differences, i.e. 1/6, 1/4, 1/3, and 1/2. The sequence order of the leg’s movement is to determine the 

type of the gait patterns. The pronk gait has a zero-phase difference between each other. All legs 

leave the ground simultaneously. For the classification of 1/6-phase difference, there are three types 

of locomotion patterns, i.e. wave (Kitsunai et al., 2020), metachronal (Inagaki et al., 2006; Collins 

and Stewart, 1993), and rolling tripod gaits (Inagaki et al., 2006; Golubitsky et al., 1998). 

Specifically, the wave gait has the sequence order of the leg’s movement, i.e. {LF, RF, LM, RM, 

LH, RH}. The metachronal and rolling tripod gaits present their orders {LF, RH, LH, RM, LM, RF} 

and {LF, RH, LM, RF, LH, RM}, respectively. Similar results for the other gait patterns are shown 

in Table 1.  
 

Table 1: The typical gait patterns of the hexapodal locomotion 

Hexapod  

Robot 
Phase 
Difference 

Locomotion Gait Patterns Sequence Order of Leg Movement 
(LF, LM, LH, RF, RM, RH) 

 

 

 

 

0 Pronk (Golubitsky et al., 1998) 0, 0, 0, 0, 0, 0 

1/6 Wave (Kitsunai et al., 2020) 

Metachronal tripod (Inagaki et al., 2003; 

2006; Collins and Stewart, 1993) 

Rolling tripod (Inagaki et al., 2006; 

Golubitsky et al., 1998) 

0, 2/6, 4/6, 1/6, 3/6, 5/6 

0, 5/6, 4/6, 3/6, 2/6, 1/6 

 

0, 2/6, 4/6, 3/6, 5/6, 1/6 

1/4 Tetrapod (Collins and Stewart, 1993) 

Bowtie (Kitsunai et al., 2020) 

0, 3/4, 1/2, 1/2, 1/4, 0 

0, 1/2, 1/2, 1/4, 3/4, 3/4 

1/3 Caterpillar gait (Golubitsky et al., 1998) 

Rice (Kitsunai et al., 2020) 

0, 2/3, 1/3, 0, 2/3, 1/3 

0, 2/3, 1/3, 1/3, 2/3, 0 

1/2 Tripod (Kitsunai et al., 2020; Collins and 

Stewart, 1993) 

Pace (Golubitsky et al., 1998) 

0, 1/2, 0, 1/2, 0, 1/2 

 

0, 0, 0, 1/2, 1/2, 1/2 
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In this study, based on the delay-coupling VDP oscillators with unidirectional ring structure, 

we propose a delayed VDP-CPG controlling strategy to obtain the above-mentioned locomotion 

gaits of the hexapod robot by employing a theoretical method of the dynamical analysis, which is 

our motivation of this paper. In fact, time delay of coupling oscillators is a very important factor to 

generate periodic activity and adjust their dynamical properties (Song et al., 2015; 2020; Yao et al., 

2019). Based on the equivariant bifurcation theory of the delay differential equation, some authors 

investigated spatiotemporal patterns of the periodic activity (Atay and Ruan, 2015; Wang and 

Campbell, 2017). Time delay was once considered as a disadvantageous factor to avoid its 

destructive effect in the CPG network systems (Ohgane et al., 2009; Verdaasdonk et al., 2007; Lu 

et al., 2022). Based on the synchronization theory, Zhu et al. (2018; 2019) constructed locomotion 

gaits of the multi-legged robot by employing the coupling delay to adjust phase shift of the periodic 

activities. Recently, to apply regulating advantages of time delay on the spatiotemporal patterns, the 

delayed half-center oscillator (HCO) of the CPG system was proposed (Song and Xu, 2022) and 

realized the locomotion gaits of a snake-like robot (Song et al., 2022) and quadruped robot.  

Notably, the presented theoretical method in this study has some advantages to construct the 

CPG controller. Firstly, the delayed VDP-CPG controller proposes few parameters to steer the 

hexapodal gaits. Adjusting time delay can obtain the above-mentioned locomotion gaits. Secondly, 

the delayed VDP-CPG controller proposes many types of locomotion gaits of the hexapod robot. 

Almost all of the gait patterns of hexapod locomotion can be obtained as in Table 1. Thirdly, the 

delayed CPG controller proposes an analytical strategy to obtain parameter regions of the gait 

patterns, which avoids too much trial-and-errors to choose the parameter values. Lastly, the different 

locomotion gaits can be switched rapidly without any intermediate states by adjusting time delay. 

This paper is organized as follows. In Section 2, we exhibit the dynamical analysis of the VDP 

oscillator and propose a topological structure of the CPG controller, i.e. unidirectional ring network 

consisting of six identical VDP oscillators. In section 3, employing the Hopf bifurcation analysis, 

we present the parameter conditions to guarantee the existence of the periodic activity in the delayed 

VDP-CPG controller. The periodic activity appears and disappears with increasing time delay. In 

section 4, we further give the spatiotemporal patterns of the periodic activity induced by time delay 

and illustrate the corresponding parameter regions by using theoretical analysis of the equivariant 

Hopf bifurcation. In section 5, we design the connection order of the CPG units to link the hexapod 

legs and produce locomotion gaits for the regions of the system parameters. Finally, in section 6, 

we give some conclusions.  

 

2．The CPG model 

The important and characteristic feature of CPG model is that the constructed network system 

can generate the stable periodic activity and appropriate spatiotemporal patterns in order to provide 

a rapid and smooth transition of locomotion gaits. The VDP oscillator is a simple and self-excited 
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nonlinear model, which has been applied in theoretical analyses and engineering applications. The 

VDP oscillator is governed by the following differential equation.  

( )2( ) ( ) ( ) ( ) 0,x t x t x t x t  + − + =                         (1) 

where α > 0 and β > 0 determine the amplitude and frequency of the periodic activity, ε > 0 controls 

the periodic shape. The phase portraits of the VDP oscillator for the chosen parameters are show in 

Fig. 1(a) and (b). It follows that the increasing of α enhances the amplitude of the periodic activity. 

The shape of the periodic activity evolves from a sinusoidal-like wave into a relaxation oscillation 

as the parameter ε increases. Further, we exhibit the amplitude and frequency with the increasing of 

the parameters α and β, as shown in Fig. 1(c) and (d). The system parameters of the VDP oscillator 

can determine independently the amplitude and frequency of the periodic activity.  

 

  

   (a)                                    (b) 

   

    (c)                                    (d) 
Fig. 1.  Phase portrait of the VDP oscillator exhibits the increasing of the amplitude and frequency 
with increasing parameters (a) increasing α for β = 1, ε = 0.03, (b) increasing β for α = 1, ε = 0.03, 
(c) α-amplitude for ε = 0.03 and β = 1, and (d) β-frequency for ε = 0.03 and α = 1.  

 

Coupling connection between the oscillators in the CPG controller provides the generation of 

the spatiotemporal patterns and determines the output relationship of the periodic signals. An 

eminent topological connection can eliminate the number of controlling parameters and obtain more 
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robust activities to steer the robot locomotion under a variable and complicated environment. In our 

previous researches (Song and Xu, 2022; Song et al., 2022), delay coupling was introduced to 

construct the CPG controller. As matter of fact, the delayed CPG neural system easily proposes the 

periodic activity with multiple types of spatiotemporal patterns by employing the equivariant Hopf 

bifurcation. The dynamics of the CPG controller with coupling delay is presented as the following 

differential equation.  

( )
( ) ( )

2

1,

( ) ( ) ( ) ( )

( ) ( ) , (mod )

i i i i i i i

n

i i ij j ij

j j i

x t x t x t x t

k H x t k H x t i n

  


= 

+ −  +

= + −
            (2) 

where ki and kij are self- and mutual-coupling weights, τij is time delay of coupling connection from 

the j-th oscillator to i-th, H(x) is a neural activation function.  

 

        

(a)                  (b)                (c)               (d) 
Fig. 2. Some network structures with six VDP oscillators: (a) fully connected network, (b) ladder-
type network, (c) bidirectional ring network, and (d) unidirectional ring network.  

  

To further determine topological structure of the CPG controller, we select some special 

network consisting of six VDP oscillators, as shown in Fig. 2. Fig. 2(a) is a fully connected network. 

Fig. 2(b) is a ladder-type network. Fig. 2(c) and (d) are the bidirectional and unidirectional ring 

networks. We have checked these types of network system. All CPG controllers can propose 

periodic activity for the applicable values of system parameters. However, the fully connected 

network has the more complex dynamical behaviors. The ladder-type network presents a periodic 

activity with different amplitude, which will induce more controlling parameters. The bidirectional 

ring network just exhibits two different patterns, i.e. synchronous and anti-synchronous periodic 

activities. The unidirectional ring network illustrated in Fig. 2(d) has a topological structure with Z6 

symmetry, which will induce the special spatiotemporal patterns to present different locomotion 

gaits of the hexapod robot. In this study, the proposed VDP-CPG controller with coupling delay is 

determined by the following delay differential equation, i.e.  

( )2

5( ) ( ) ( ) ( ) ( ) ( ), mod(6),i i i i i ix t x t x t x t kx t kx t i   ++ − + = − + −       (3) 

where all VDP oscillators are fixed as the same parameters. The self-coupling is selected as an 
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inhibition and inter-connection is excitation, which is k > 0 in system (3). We fix the activation 

function as the linear function H(u) = u. In the following section, we will analyze the periodic 

activity induced by the coupling delay and present rhythmic generation for the delayed VDP-CPG 

controller, which can be used to construct multiple types of locomotion gaits for the hexapod robot.  

 

3．Rhythm generation of the CPG controller 

To generate rhythm activity of the VDP-CPG controller with coupling delay, we consider the 

Hopf bifurcation of the trivial equilibrium. Obviously, system (3) proposes the trivial equilibrium 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Employing ,i i i ix x x y→ → , we can rewrite system (3) into the 

following first-order differential equation, which is  

( ) ( )2

5

( ) ( ),
mod(6).

( ) ( ) ( ) ( ) ( ) ( ) ,

i i

i i i i i i

x t y t
i

y t x t y t x t k y t y t   +

=
 = − −  − + − −

    (4) 

The characteristic equation for the trivial equilibrium is  

( ) ( )6 6
2( , ) ( ) 0.Q k k e        −= + − + − =                 (5) 

In the absence of coupling delay (τ = 0), the characteristic equation of Eq. (5) has the roots 

( )2 2

1,2 4 / 2    =  −  . It implies that the trivial equilibrium is unstable because of 

1,2
Re( ) 0   for the system parameters α > 0 and ε > 0. In order to obtain the rhythm activity in the 

VDP-CPG controller, we determine the critical value of coupling delay for the Hopf bifurcation. 

Substituting ,( 0)i  =   into ( , ) 0Q   =  gives  

( )6
2 6 6 6 6( , ) ( ) cos(6 ) sin(6 ) 0.Q i k i k ik         = + − − + − =       (6) 

Separating the real and imaginary parts of Eq. (6) yields  

6 6

1

6 6

2

cos(6 ) ( ) 0,

sin(6 ) ( ) 0,

k q

k q

  
  

 + =


− =
                          (7) 

where 

( ) ( )
( )
( )
( )

( )

1

2 2 2 2

2 2 2 2

2 2 2 2 4

2

2 2 2 4

( ) ( ) ( )

2 (2 2 ) (( ) 4( ) )

2 (2 2 ) (( ) 4( ) ) ,

( ) 2( )( )( (2 3( ) )

3 (6 ( ) ) 3 .

q k k

k k k

k k k

q k k

k

        

         

        

         

    

= + − −  − − + 

+ − − + − − − + 

− − + + − + − +

= − − − + + − − 

− + + − −

 

Solving   from Eq. (7) and applying 
2 2 1cos 6 sin 6 , + =  one has  
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2 2 12 12

1 2( ) ( ) 0,q q k  + − =                            (8) 

In general, Eq. (8) is a 24-order polynomial equation and proposes at most 12 positive and simple 

roots. To simplify, we assume Eq. (8) just has two positive roots 1 2
0   . It follows from Eq. 

(7) that time delay has the critical values  

2
, 1, 2; 0,1, 2, ,

6

j i

i

i

j
i j

 



+

= = =                  (9) 

where [0,2 )i   and satisfied with 
6 6 6 6

1 2cos ( ) / ,sin ( ) /i i i i i iq k q k     = − = . To present 

the transversality condition of the Hopf bifurcation, we differentiate ( , ) 0Q   =  with respect to 

  and obtain  

( ) ( )( )

6 7

56 5 6
.

1 2 ( )

d k

d k e k k

 
        
=

− − − + + − +
        (10) 

By the Hopf bifurcation theory, we obtain that the trivial equilibrium changes its stability by 

undergoing the Hopf bifurcations at the critical values of time delay with the transversality condition 

Re( / ) 0.d d     

We choose the system parameters α = 1, β = 1, ε = 0.03, k = 0.8 to analyze the Hopf bifurcation. 

It follows from Eq. (8) that the frequencies of the periodic activity are 
1

1.11438 =   and 

2
0.89736 = . The critical delays of the Hopf bifurcation are  

0 1 2 3 4 5

1 1 1 1 1 1
0.3061, 1.4731, 2.6401, 3.8071, 4.9741, 6.1410, ,     = = = = = =    (11) 

and 

0 1 2 3 4 5

2 2 2 2 2 2
0.6932, 1.6329, 2.5726, 3.5123, 4.4520, 5.3917, .     = = = = = =    (12) 

Time histories and corresponding eigenvalues are illustrated in Fig. 3 for the fixed time delay 

that is in the parameter regions determined by the above critical values of (11) and (12). It follows 

that system (3) proposes a periodic activity when time delay subjects 0

1  , as shown in Fig. 3(a1) 

for time history with τ = 0.1. The maximum eigenvalues are a conjugate pair with the positive real 

part, as shown in Fig. 3(a2). The dynamic behavior near the trivial equilibrium is a stable periodic 

activity. With increasing of time delay, the conjugate pair of the eigenvalues comes back to the left-

right complex plane, as shown in Fig. 3(b2) for τ = 0.5. It implies that the periodic activity evolves 

into a stable equilibrium, as shown in Fig. 3(b1). Further, the stable equilibrium will lose its stability 

and enter a periodic activity by employing the Hopf bifurcation when time delay is fixed as τ = 1, 

which belongs to the intervals determined by 0

2  and 1

1 , as shown in Fig. 3(c1). The conjugate 

pair of eigenvalues has the maximum real positive parts, as shown in Fig. 3(c2). Increasing time 

delay and going through the critical delay 1

1 , the periodic activity evolves into the stable trivial 
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equilibrium, as shown in Fig. 3(d1) for τ = 1.6. At this time, the maximum eigenvalues are a 

conjugate pair with the negative real part, as shown in Fig. 3(d2). It follows from Figs. 3(e1) and 

(e2) that system (3) will prepsent a stable periodic activity when time dealy increases and passes 

through the critical vlaues 1

2 . In a word, employing the forward and backward Hopf bifurcation 

of the trivial equilibrium, the delayed VDP-CPG controller presents multiple stability switching 

from the periodic activity to equilibrium, and at last back to the periodic activity as time delay 

increases and passes through the above-mentioned critical delay values. Employing the procedure 

of the stability switching, the periodic activity will propose different spatiotemporal patterns, which 

can be used to construct the gait of the hexapod locomotion.  
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(d1)                               (d2) 

 

(e1)                               (e2) 
Fig. 3. Time histories (left) and corresponding eigenvalues (right) illustrate periodic activities to 

appear and disappear with increasing time delay (a) τ = 0.1, (b) τ = 0.5, (c) τ = 1, (d) τ = 1.6, and (e) 
τ = 2 for the fixed parameters α = 1, β = 1, ε = 0.03, and k = 0.8 in system (3).  

4．Spatiotemporal patterns of bifurcating periodic activities  

In the previous section, we have proposed the stable periodic activity for the delayed VDP-

CPG controller by employing the Hopf bifurcation with increasing of time delay. To realize gait 

locomotion of the hexapod, the periodic activities produced by the VDP oscillators should propose 

multiple types of phase difference to present special patterns. In the following, we will analyze how 

symmetry of the VDP-CPG controller help to generate multiple spatiotemporal patterns and achieve 

gait switching of the hexapod locomotion.  

To this end, the above-mentioned delayed VDP-CPG controller should be reformulated into a 

functional differential equation in the Banach space of continuous mapping from [ ],0−  to 12
R , 

i.e. 12
([ ], ),0C C R= −  and study its symmetry of the periodic solution generated by the Hopf 

bifurcation. Let ( )1 1 2 2 6 6( ), ( ), ( ), ( ), , ( ), ( )
T

tu x t y t x t y t x t y t C=   and define 

( )( ) ,tu u t = +  for [ ,0]  − . System (3) can be rewritten as  

( )t tu h u = ,                              (13) 

where  
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( )
2

2

2 1 2 2( 5) 2 1

(0)
( ) , mod(6).

(0) (0) ( ) (0)

i

i

i i i i

h i
k k




     − + −

 
=   − + + + − 

  (14) 

Separating the linear parts from system (13) yields  

( )t tu L u = ,                              (15) 

where the linear operator 12
( ) :L C R →  is defined by  

( )
2

2 1 2 2( 5)

(0)
( ) , mod(6).

(0) (0) ( )

i

i i i

L i
k k


 

    − +

 
=   − + + + 

    (16) 

It follows that the linear system (15) produces a strongly continuous semi-group of linear operators 

with infinitesimal generator ( )A   given as  

 
( ) , Dom( )

Dom( ( )) : , (0) ( ) .

A A

A C C L

   

     

= 

=   =
                 (17) 

Moreover, the eigenvalues of ( )A   correspond to the roots of the characteristic equation (5). Let 

  be a compact group. It follows that ( )t tu h u =  is  -equivariant if ( ) ( )t th hu u =  for 

all   . We focus on the case in the delayed VDP-CPG controller, i.e. 6 =  , the cyclic 

group of order 6, with generator  , where the action of 6  on 12
R  is given by  

6( )i iu u += ,   for all mod(12)i  and 12u R .                    (18) 

It follows from the previous section that the characteristic equation has a pair of pure imaginary 

roots 1,2i  at the critical values 1,2

j . The corresponding eigenvectors can be chosen as  

0 1,2 1,2 1,2 1,2 1,2 1,2

2 3 4 5

1 1,2 1 1,2 1 1,2 1 1,2 1 1,2 1 1,2 1

2 3 4 5

2 1,2 2 1,2 2 1,2 2 1,2 2 1,2 2 1,2 2

2 3 4

3 1,2 3 1,2 3 1,2 3 1,2 3 1,2

( , , , , , ),

( , , , , , ), exp( / 6),

( , , , , , ), exp(2 / 6),

( , , , , ,

i

i

      

            

             

         

=

= =

= =

= 5

3 1,2 3

2 3 4 5

4 1,2 4 1,2 4 1,2 4 1,2 4 1,2 4 1,2 4

2 3 4 5

5 1,2 5 1,2 5 1,2 5 1,2 5 1,2 5 1,2 5

), exp(3 / 6),

( , , , , , ), exp(4 / 6),

( , , , , , ), exp(5 / 6),

i

i

i

   

             

             








=
 = =
 = =

        (19) 

where 1 1 1(1, ) for ji  =  , 2 2 2(1, ) for ji  =  , 0,1, ,j n=  . The corresponding 

generalized eigenspace, 
1,2iU   , is spanned by the eigenfunctions 1,2Re( )

i

ke
   , 1,2Im( )

i

ke
   , 

that is  

1,2 1 1 2 2 1 2{ ( ) ( ), , }iU x e x e x x R  = +  ,                    (20) 
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where 

1 1,2 1,2

2 1,2 1,2

( ) cos( )Re( ) sin( ) Im( ),

( ) sin( )Re( ) cos( ) Im( ).

k k

k k

e

e

      
      
= −

= −
 

Let 
1,22 /  =  and denoted by SP  the set of all ω-periodic solutions of system. Then  

1 1 2 2 1 2{ ( ) ( ), , }SP x e t x e t x x R = +  .                    (21) 

Applying 1

6Z S  on SP  results in 

1

6

( , ) ( ) ( ),

( , ) , .

ie x t x t

Z S x SP





  
 

= +

  
                       (22) 

Let 2 /{( , ), (0, )}ie     =  , and let Fix( , )SP
  be the fixed point set of   under 

the action 1

6Z S ,  

Fix( , ) { ( ) ;( , ) forall ( , ) }.i iSP x t SP e x x e   
    =  =          (23) 

With similar notations of Wang and Campbell (2017), we obtain the following conclusions by 

applying the equivariant Hopf bifurcation of the delay differential equation. When the characteristic 

equation has a pair of pure imaginary roots 1,2i   at the critical values 1,2

j  under the 

transversality conditions, the spatiotemporal symmetry of the Hopf bifurcating periodic solutions in 

system (5) can be completely characterized by Fix( , )SP
 . For the critical delayed values 1,2

j , 

there exists a bifurcation of periodic solutions in system (5) with period T  near 1,22 /  =  

and satisfying  

( ) ,
6

1,2, 1, ,5, 1, ,5. , , (mod12).

i pm i

kT
u t u t p

i p k i i pm pk

−
 = − 
 

= = = −
           (24) 

In fact, the periodic activities bifurcating from the corresponding critical values propose 

different phase difference. Specifically, the fully-synchronous patterns from the first critical value 

of time delay have the forms ( )( ), ( ), ( ), ( ), ( ), ( )x t x t x t x t x t x t  , which is referred as in-phase 

locked oscillation (IPLO). An example case is shown in Fig. 4(a) for the fixed time delay τ = 0.1, 

where the system parameters are fixed as α = 1, β = 1, ε = 0.03, and k = 0.8 mentioned in the above 

section. With increasing time delay to τ = 1, the IPLO shifts its phase difference and evolves into an 

out-of-phase synchronous periodic activity with T/6-phase difference, where T is a period time. The 

solution pattern proposes the form ( ( ), ( / 6), ( 2 / 6), ( 3 / 6), ( 4 / 6),x t x t T x t T x t T x t T+ + + +

)( 5 / 6)x t T+ , called as the T/6-phase head-locked oscillation (T/6-PHLO). The time history is 

presented in Fig. 4(b). Further, when time delay is fixed as τ = 2, the periodic activity presents a 



13 

 

new form with T/3-phase difference, called as T/3-phase head-locked oscillation (T/3-PHLO). The 

solution pattern is ( ( ), ( / 3), ( 2 / 3),x t x t T x t T+ + )( ), ( / 3), ( 2 / 3)x t x t T x t T+ +  , as shown 

in Fig. 4(c). The anti-phase locked oscillations (APLO) ( ( ), ( / 2), ( ), ( / 2),x t x t T x t x t T+ +

)( ), ( / 2)x t x t T+  are presented in Fig. 4(d) for the fixed time delay τ = 3. Moreover, the periodic 

activity of the delayed VDP-CPG controller proposes 2T/3- and 5T/6-phase differences for the 

corresponding delayed regions, which is T/3 and T/6 lagging phase difference. We called these 

activities as the T/3-phase lag-locked oscillation (T/3-PLLO) and T/6-PLLO, respectively. The 

periodic activities have the corresponding solution forms ( ( ), ( / 3), ( 2 / 3), ( ),x t x t T x t T x t− −

)( / 3), ( 2 / 3)x t T x t T− −   and ( ( ), ( / 6), ( 2 / 6), ( 3 / 6), ( 4 / 6),x t x t T x t T x t T x t T− − − −

)( 5 / 6)x t T− , as presented in Figs. 4(e) and (f) with τ = 4 and τ = 5.2, respectively. Following this 

way, the periodic activities change their spatiotemporal patterns from IPLO to multiple types of out-

of-phase synchronous oscillations with increasing time delay.  
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(e)                                     (f) 
Fig. 4.  Time histories illustrate the spatiotemporal patterns of the delayed VDP-CPG controller 
with increasing time delay (a) IPLO for τ = 0.1, (b) T/6-PHLO for τ = 1, (c) T/3-PHLO for τ = 2, (d) 
APLO for τ = 3, (e) T/3-PLLO for τ = 4, and (f) T/6-PLLO for τ = 5.2, where α = 1, β = 1, ε = 0.03, 
and k = 0.8.  

 

Based on the above-mentioned analysis, we illustrate the Hopf bifurcation curves to obtain the 

parameter regions with different spatiotemporal patterns, as shown in Fig. 5 for α = 1, β = 1, and ε 

= 0.03. The (k, τ)-plane of the system parameters is classified into different regions, where the 

periodic activity bifurcating from the trivial equilibrium presents different phase difference, such as 

T/6, T/3, and T/2 due to Z6 symmetry. It follows from Fig. 5 that Region I (referred as IPLO) is to 

the fully-synchronous periodic activity, which can be used to construct pronk gait of the hexapod 

locomotion. In region II (T/6-PHLO) and VI (T/6-PLLO), the periodic activities present T/6-phase 

difference (leading difference for II and lagging for VI) and can be used to construct wave, 

metachronal, and rolling tripod for different coupling sequence. Further, the locomotion gaits 

involved T/3, i.e. caterpillar and rice are obtained by choosing the system parameters in Region III 

(T/3-PHLO) and V (T/3-PLLO) for appropriate connection sequences. At last, tripod and pace gaits 

are to the Region IV (APLO), where the periodic activities propose T/2-phase difference.  
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Fig. 5.  The classification regions of periodic activities with different spatiotemporal patterns by 
employing the Hopf bifurcation curves, where α = 1, β = 1, and ε = 0.03.  

 

We further exhibit the phase difference of the periodic activities to present the robustness of 

the signal outputs constructed by the delayed VDP-CPG controller. It follows that the classification 

regions proposing the periodic activities with different spatiotemporal patterns is determined by the 

phase differences. The normalized phase differences of the periodic activities are given as  

1

1
1 1

, 2, ,6
n n

m
m n n

m m

t t
m

t t


+

+

−
 = =

−
,                   (25) 

where the output signal of the first oscillator x1 is as the reference, , 2, 6
n

m
t m =  denote the time 

at which the m-th oscillator passes through the threshold for the n-th time. It follows from Eq. (25) 

that the phase difference of the periodic activity will be between 0 and 1. The fully-synchronous 

periodic activity corresponds to a zero-phase difference. The normalized 1/2-phase difference is to 

an anti-phase locked periodic activity. Further, 1/6 and 1/3 are to the other out-of-phase patterns of 

the periodic activity, as shown in Fig. 6. The numerical simulations validate theoretical results 

obtained by the equivariant Hopf bifurcation theory of the delay differential equation. It follows that 

these typical periodic activity having different spatiotemporal patterns will remain their phase 

difference as coupling weight k increases, which provides the robustness of signal outputs to 

construct the CPG controller for a wider space region of the parameters.  

 



16 

 

  

  (a)                                   (b) 

 

  (c)                                   (d) 

 

  (e)                                   (f) 
Fig. 6.  Phase differences with increasing coupling weight k illustrate the robustness of the gaits in 
the different parameter regions (a) τ = 0.1, (b) τ = 1, (c) τ = 2, (d) τ = 3, (e) τ = 4, and (f) τ = 5.2, 

where α = 1, β = 1, ε = 0.03.  
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5．Gaits designing for hexapod locomotion 

In the aforementioned studies, we have investigated the spatiotemporal patterns of the periodic 

activity by employing the equivariant Hopf bifurcation theory of the delay differential equation. The 

delayed VDP-CPG controller having the unidirectional ring structure displays different periodic 

activities due to Z6 symmetry of the system. Further, by employing the Hopf bifurcation curves, we 

presented the corresponding parameter regions for the different spatiotemporal patterns. In the 

following section, we discuss how such the controller network is linked to the hexapod’s legs to 

produce locomotion gaits. For a better understanding, we fix the connection between hexapod legs 

and the VDP oscillators. The legs of LF, LM, LH, RH, RM, and RF are controlled by the signal 

outputs of the i-th VDP oscillator, 1, ,6i = , as shown in Fig. 2(d). That is to say, oscillator 1 is 

to the LF leg and oscillator 2 is to LM leg, as so on. In order to produce the locomotion gaits of the 

hexapod robot, we construct phase difference of the six legs by switching connection order of the 

VDP oscillators. The legs’ assignment is illustrated in Table 2. The first VDP oscillator controlling 

the LF leg is regarded as the reference unit. Notably, all constructed networks have a uniform 

topological structure, i.e. the unidirectional ring with identical oscillators. Further, we just present 

one of topological networks as an example for each case in Table 2. In fact, one gait maybe 

correspond to several assignment orders. An example is given in Fig. 7 to illustrate eight types of 

connection orders of the oscillators for tripod gait. All connections having unidirectional ring 

topology present tripod gait of the hexapod robot as the system parameters are fixed in Region IV, 

where signal outputs of the VDP oscillators illustrate the anti-phase locked oscillations.  

 

       

(a)                  (b)                 (c)                  (d) 

       

(e)                  (f)                 (g)                 (h) 

Fig. 7.  Eight types of connection orders having unidirectional ring topology can present tripod 
gait of the hexapod robot as the system parameters are fixed in Region IV, where the signal outputs 
of the VDP oscillators illustrate the anti-phase locked oscillations.  
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Table 2: Spatiotemporal patterns are designed to present locomotion gaits of hexapod robot by 

choosing connection order of the delayed VDP-CPG controller with the unidirectional ring topology  

Critical 
Eigen 

Oscillating Form Parameter 
Region 

Topological Network Gait 

0  ( )( ), ( ), ( ), ( ), ( ), ( )x t x t x t x t x t x t  Region I  Any connection order  Pronk  

1  (
)

( ), ( / 6), ( 2 / 6),

( 3 / 6), ( 4 / 6), ( 5 / 6)

x t x t T x t T

x t T x t T x t T

+ +

+ + +
 

Region II ①→④→②→⑤→③→⑥→① 

①→⑥→⑤→④→③→②→① 

①→⑥→②→④→③→⑤→① 

Wave 

Metachronal 

Rolling tripod 

2  (
)

( ), ( / 3), ( 2 / 3),

( ), ( / 3), ( 2 / 3)

x t x t T x t T

x t x t T x t T

+ +

+ +
 

Region III ①→⑥→⑤→④→③→②→① 

①→⑥→②→④→③→⑤→① 

Caterpillar 

Rice 

3  (
)

( ), ( / 2), ( ),

( / 2), ( ), ( / 2)

x t x t T x t

x t T x t x t T

+

+ +
 

Region IV ①→⑥→⑤→④→③→②→① 

①→④→②→⑤→③→⑥→① 

Tripod 

Pace 

4  (
)

( ), ( / 3), ( 2 / 3),

( ), ( / 3), ( 2 / 3)

x t x t T x t T

x t x t T x t T

− −

− −
 

Region V Reversed direction 

Reversed direction 

Caterpillar 

Rice  

5  (
)

( ), ( / 6), ( 2 / 6),

( 3 / 6), ( 4 / 6), ( 5 / 6)

x t x t T x t T

x t T x t T x t T

− −

− − −
 

Region VI Reversed direction 

Reversed direction 

Reversed direction 

Wave 

Metachronal 

Rolling tripod  

 

It follows from Table 2 that the pronk gait is to the fully-synchronous periodic activity with 

zero-phase difference when the system parameters are fixed in Region I. At this time, the VDP 

oscillators of the delayed CPG controller can be assigned with any connection order. In Region II, 

the periodic activity with T/6-phase difference can be used to design three types of locomotion gaits, 

i.e. wave, metachronal, and rolling tripod for the hexapod robot. Specifically, wave gait is to the 

order assignment ①→④→②→⑤→③→⑥→①, where a backward propagation wave moves 

from the back to the forward. At this time, the order of the leg’s movement is on the left side first 

and then on the right side, i.e., LF→RF→LM→RM→LH→RH. The adjacent legs, i.e. LF and LM, 

LM and LH, have T/3-phase difference. The contralateral legs, LF and RF, LM and RM, LH and 

RH, have T/6-phase difference. Metachronal gait has the order of the leg’s movement, i.e. 

RH→RM→RF→LH→LM→LF, with the coupling connection ①→⑥→⑤→④→③→②→① 

for the delayed VDP-CPG controller. Similarly, when the VDP oscillators are connected as the order 

①→⑥→②→④→③→⑤→①, the hexapod robot presents the rolling tripod gait with the order of 

leg’s movement: LF→RH→LM→RF→LH→RM.  

In Region III, the periodic activities of the delayed VDP-CPG controller have T/3-phase 

difference. For this case, switching topological structure of the oscillators can construct two types 

of gait, i.e. caterpillar and rice gaits. Caterpillar gait was proposed first by Golubitsky et al. (1998), 

where the left and right legs present synchronous activity, namely, {LF, RF}→{LM, RM}→{RH, 

LH}. The front and hind legs on opposite sides, i.e. LF and RH, LH and RF, have T/3-phase 

difference. The corresponding connection order of the units can be assigned as ①→⑥→⑤→④→
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③→②→①. Rice gait, proposed first by Kitsunai et al. (2020) has synchronous patterns between 

the front and hind legs on opposite sides, namely, {LF, RH}→{LH, RF}→{RM, LM}. At this time, 

the contralateral legs, LF and RF, LH and RH, have T/3-phase difference, while LM and RM are in 

synchrony. In fact, the name of the gait pattern is derived from the corresponding Chinese characters 

or Japanese kanji sign.  

In region IV, the periodic activity having T/2-phase difference can be used to construct the 

tripod and pace gaits, which proposes cyclical alternation of two phases. Tripod is a common and 

simple gait in entomological observations with high locomotion speed. In tripod gait, the ipsilateral 

front and back legs (LF and LH, RF and RH) and the contralateral middle legs (LM and RM) present 

synchronous activity. The legs in each segment propose T/2-phase difference. The adjacent legs on 

the right and left sides are also T/2-phase difference. That is to say, there are three legs swing or 

stand, delineating two intertwined triangles, i.e. {LF, RM, LH}→{RF, LM, RH}. To obtain the 

tripod gait, we can assign the corresponding connection order as ①→⑥→⑤→④→③→②→①, 

which is the same structure of the metachronal and caterpillar gait. In fact, the delayed VDP-CPG 

controller that we built can propose multiple types of locomotion gait with increasing time delay for 

the fixed topological structure due to the symmetry-breaking bifurcations. Further, we present the 

pace gait with increasing time delay for the identical structure of the wave gait, namely ①→④→

②→⑤→③→⑥→①. In pace gait, the ipsilateral legs, namely LF, LM, LH, and RF, RM, RH have 

the same periodic activities. The left and right legs in each segment propose half a period out-of-

phase, i.e. {LF, LM, LH}→{RF, RM, RH}.  

In Regions V and VI, the delayed VDP-CPG controller proposes the periodic activities having 

T/3- and T/6-phase lag-locked oscillations. To obtain the same gaits of the hexapod locomotion 

exhibited in Table 1, we can just switch the connection direction of the VDP oscillators in the CPG 

controller. Of course, the unswitching direction of the proposed CPG controller will induce the 

corresponding revered gaits. Specifically, the reversed wave gait can be obtained for the same VDP-

CPG controller having the wave gait as the system parameters are fixed in Region VI. Other reversed 

gaits can be derived in analogy. In fact, Inagaki et al. (2006) proposed the reversed metachronal and 

reversed rolling tripod, which can be obtained by using our delayed VPD-CPG controller for the 

metachronal and rolling tripod, as illustrated in Table 2.  

At last, there are two types of gaits with T/4-phase difference, i.e. tetrapod and bowtie gaits for 

the hexapod locomotion. Tetrapod is a common gait with medium speed. The front and hind legs in 

the contralateral body, namely LF and RH, LH and RF, have synchronous patterns, which move 

together with zero-phase difference. Two legs of each segment have T/2-phase difference. The 

locomotion has a consecutive order, i.e. {RH, LF}→RM→{RF, LH}→LM. To obtain tetrapod gait, 

we adjust coupling delay to zero in the link connections of ④→③ and ⑥→①. The topological 

structure is labeled as ①→⑤→④=③→②→⑥=①, where → and = are denoted as the delayed 

and non-delayed connections, respectively. The system parameters including coupling delay and 

coupling weight are fixed in Region II for the case of the wave gait. The signal outputs of the CPG 
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controller present the tetrapod gait for the coupling parameters τ = 2, k = 0.8 with the VDP oscillators 

α = 1, β = 1, ε = 0.03, as illustrated in Fig. 8(a). Similarly, the bowtie gait, proposed by Kitsunai et 

al. (2020) from visual appearance of the network structure, can be obtained by fixing time delay as 

zero in the link connections of ②→③ and ④→⑤. The structure topology of the delayed VDP-

CPG controller is presented as ①→⑥→②=③→④=⑤→①. In this case, the legs of the LF, RF, 

LM, and RM have T/4-phase difference. The left and right legs in the hind segment is synchrony to 

the corresponding middle legs, namely, LF→RF→{LM, LH}→{RM, RH}. The corresponding gait 

pattern is shown in Fig. 8(b), where the other system parameters are chosen as the tetrapod gait.  

 

 

(a)                                     (b) 
Fig. 8.  (a) Tetrapod gait with the structure topology ①→⑤→④=③→②→⑥=① and (b) 
bowtie gait with ①→⑥→②=③→④=⑤→① for the delayed VDP-CPG controller for the system 
parameters α = 1, β = 1, ε = 0.03, k = 0.8, τ = 2, where → and = in the structure are denoted as the 
delayed and non-delayed connections, respectively.  

 

6.  Conclusions 

In this study, we constructed a new type of the delayed VDP-CPG controller and proposed an 

analysis method to obtain locomotion gaits of the hexapod robot. The topological structure of the 

CPG controller was designed as the unidirectional ring consisting of six identical VDP oscillator 

units. Employing the Hopf bifurcation of the delay differential equation, we presented the conditions 

of system parameters to guarantee the existence of period activity. The coupling delay between the 

VDP oscillators was regarded as the bifurcation parameter to steer the generation and extinction of 

the period activity. Due to the symmetry-breaking bifurcation, the periodic activity induced by the 

coupling delay proposes multiple types of phase difference. Based on the theoretical analysis of the 

equivariant Hopf bifurcation, we obtained the parameter regions divided by the Hopf bifurcation 

curves and explicated the relation of the corresponding parameter regions to the spatiotemporal 

patterns. Applying these period activities with constant phase difference, we assigned the coupling 

connection order of the VDP oscillators to produce multiple types of locomotion gaits of the 

hexapod robot. The results illustrated that the coupling delay in the delayed VDP-CPG controller is 
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an effective parameter to adjust many types of hexapodal locomotion gaits.  
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