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Robotic exoskeletons are developed with the aim of enhancing convenience and

physical possibilities in daily life. However, at present, these devices lack sufficient

synchronization with human movements. To optimize human-exoskeleton interaction,

this article proposes a gait recognition and prediction model, called the gait neural

network (GNN), which is based on the temporal convolutional network. It consists of

an intermediate network, a target network, and a recognition and prediction model.

The novel structure of the algorithm can make full use of the historical information from

sensors. The performance of the GNN is evaluated based on the publicly available

HuGaDB dataset, as well as on data collected by an inertial-based wearable motion

capture device. The results show that the proposed approach is highly effective and

achieves superior performance compared with existing methods.

Keywords: exoskeleton, interaction, gait neural network, gait recognition, prediction, temporal

convolutional network

1. INTRODUCTION

The development of lower-extremity robotic exoskeletons (Ackermann and van den Bogert, 2010)
has been found to have significant potential in medical rehabilitation (Zhang et al., 2015) and
military equipment applications. In these devices, human gait is captured in real time through
signals (Casale et al., 2011) that are then sent to a controller. The controller returns instructions
to the mechanical device on necessary adjustments or modifications. However, these exoskeletons
require more effective predictionmodules for joint gait trajectories (Aertbeliën and Schutter, 2014).
The main goal is to improve the synchronization between the exoskeleton and human movement
(Du et al., 2015). Essentially, the time gap between human action andmechanical device adjustment
must be reduced without sacrificing the precision and quality of the modification. To achieve this,
it is necessary to mine historical data and understand their intent (Zhu et al., 2016). Time series
analysis is a powerful tool for this purpose.

Gait signal collection is commonly performed via inertial measurement units (IMUs), tactile
sensors, surface electromyography, electroencephalograms, and so on. The majority of popular gait
datasets employ computer vision technology to improve efficiency (Shotton et al., 2011), such as
the Carnegie Mellon University Motion of Body dataset (Gross and Shi, 2001), the University of
Maryland Human Identification at a Distance dataset, the Chinese Academy of Sciences Institute
of Automation Gait Database (Zheng et al., 2011), and the Osaka University Institute of Science
and Industry Research Gait Database (Iwama et al., 2012). However, it is often difficult to obtain
accurate human gait information from such image-based prediction methods.
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The HuGaDB dataset of the University Higher School of
Economics contains highly detailed kinematic data for human
gait analysis and activity recognition. It is the first public human
gait dataset derived from inertial sensors that contains segmented
annotations for the study of movement transitions. The data were
obtained from 18 participants, and a total of about 10 h of activity
was recorded (Chereshnev and Kertesz-Farkas, 2017). However,
one limitation of the above-mentioned datasets is that they are
not adequate for extremely delicate exoskeleton control.

To achieve sufficiently dexterous and adaptive control, in
addition to statistical approximation by Markov modeling, deep
learning has been demonstrated to be an effective approach.
Recurrent neural networks, such as long short-term memory
(LSTM), have been widely used in the areas of time series
analysis and natural language processing. The cyclic nature of the
human gait has previously precluded the use of such networks
(Martinez et al., 2017; Ferrari et al., 2019). Nevertheless, a
novel LSTM-based framework has been proposed for predicting
the gait stability of elderly users of an intelligent robotic
rollator (Chalvatzaki et al., 2018), fusing multimodal RGB-D and
laser rangefinder data from non-wearable sensors (Chalvatzaki
et al., 2018). An LSTM network has also been used to model
gait synchronization of legs using a basic off-the-shelf IMU
configuration with six acceleration and rotation parameters
(Romero-Hernandez et al., 2019). Further, recent works have
reported the use of convolutional neural networks (CNNs)
for human activity recognition. CNNs use accelerometer data
for real-time human activity recognition and can handle the
extraction of both local features and simple statistical features
that preserve information about the global form of a time series
(Casale et al., 2011). A survey on deep learning for sensor-based
activity recognition is presented in Wang et al. (2018).

At present, the majority of gait prediction models are not
sufficiently precise or robust with respect to environmental
fluctuations. In this work, a gait neural network (GNN) is
proposed for gait recognition and prediction through wearable
devices. The data-processing component consists of two phases:
handling buffer data through an intermediate network and target
prediction. Experiments are performed on a public human gait
dataset, and the results obtained from the GNN are longitudinally
compared with those of other methods. Further, moremeticulous
gait signals are collected from the IMU to improve training
convergence and accuracy. Our model should also be helpful to
exoskeletons with inertial sensors.

2. MATERIALS AND METHODS

CNNs are often used for two-dimensional data-processing tasks,
such as image classification and target detection. Recently,
researchers have found that CNNs can be used to process
one-dimensional time series data, where both the convolution
kernel and the pooling window are changed from having
two dimensions to having just one dimension. In 2018,
a temporal convolutional network (TCN) architecture was
proposed (Bai et al., 2018). This architecture was deliberately
kept simple, combining some of the best practices of modern

convolutional architectures. When compared with canonical
recurrent architectures, such as LSTM and gated recurrent
units, the TCN can convincingly outperform baseline recurrent
architectures across a broad range of sequence-modeling tasks.
Some scholars have used TCNs in human action segmentation
with video or image data (Lea et al., 2016a,b) and medical
time series classification (Lin et al., 2019). The distinguishing
characteristics of TCNs are that the convolutions in the
architecture are causal, meaning that there is no information
“leakage” from future to past, and that the architecture can take a
sequence of any length and map it to an output sequence of the
same length, just as with a recurrent neural network. Therefore,
the TCN is used as the base model to handle sequence-modeling
tasks, such as obtaining inertial data on human gaits.

2.1. Standard Temporal Convolutional
Networks
Consider an input sequence x0, . . . , xT for which an output
prediction, such as y0, . . . , yT is desired for each time, where yT
depends only on x0, . . . , xT , with no future inputs xt+1, . . . , xT .
The sequence-modeling network is any function f : xT+1 →

yT+1 that produces the mapping

ŷ0, . . . , ŷT = f (x0, . . . , xT). (1)

This sequence-learning algorithm seeks a network f that
minimizes the loss L(y0, . . . , yT , f (x0, . . . , xT)), which measures
the difference between the predictions and the actual targets.
The TCN employs dilated convolutions to allow an exponentially
large receptive field. For a one-dimensional sequence input x ∈

R
n and a filter f :{0, . . . , k − 1} → R, the dilated convolution

operation on an element of the sequence is defined as

F(s) =
k−1∑

i=0

f (i) · xs−d·i, (2)

where d is the dilation factor, k is the filter size, and s − d ·

i accounts for the past direction. Thus, dilation is equivalent
to introducing a fixed step between every two adjacent filter
taps. When d = 1, a dilated convolution reduces to a regular
convolution. By using a larger dilation, the outputs in the top
layer can have a larger receptive field and so represent a wider
range of inputs. The basic architectural elements of a TCN are
shown in Figure 1.

The output o of a layer is related to the input via an
activation function:

o = Activation(x+ Ŵ(x)). (3)

Within a residual block, the base model has two layers of
dilated causal convolution and non-linearity. For the non-
linearity, a rectified linear unit is used as the activation function.
For normalization, weight normalization is applied to the
convolutional filters. For regularization, a spatial dropout is
added after each dilated convolution. In a standard residual
network the input is directly added to the output of the residual
function, whereas in a TCN the input and output can have
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FIGURE 1 | Structure of the GNN.

different widths. To account for possibly different input and
output widths, an additional 1 × 1 convolution is used, which
ensures that the elementwise addition receives tensors of the
same shape.

For convenience, the GNN predicts only the acceleration and
gyro data.

Gait prediction is a type of time series prediction. Because it
has been shown that TCNs can be very effective sequence models
for sequence data (MatthewDavies and Bock, 2019), a TCN is
used for human gait analysis in the present work.

A TCN has two characteristics: dilated convolution and causal
convolution. The primary function of the dilated convolution
is to enable the network to learn more information in a long
time series. However, it has been observed that long time series
information does not significantly improve the accuracy of gait
prediction, because human gait data are periodic and excess
information is sampled repeatedly. Therefore, we disregard
dilated convolution in this study.

2.2. Gait Neural Network
The architecture of the GNN is shown in Figure 1.

Two TCNs are used for the basic model. The first is the
intermediate network, which uses the normalized inertial data as
input to predict the intermediate sensor data. Unlike traditional
methods, because of the response delay in the system, the GNN
reserves some buffer time, and the original, buffer, and target
data are represented, respectively by x, y, and z. Traditional
methods generally use x to predict z, and y remains unused. As
shown in Figures 2, 3, the GNN uses the original signals as the
intermediate network input x to predict the intermediate data y.
The second TCN in the model is the target vector network. The

original data x and the predicted data y are concatenated to make
the input to the target vector network, which then outputs the
encoded vectors.

Firstly, one TCN is used to process the original input, and then
the original input and the output of the first TCN are combined
into the input to the second TCN. To a certain extent, it can be
seen that the number of features of model learning is increased
and the ability to obtain historical information is enhanced.

Finally, a recognition model and a prediction model are added
to the network as two fully connected layers. The encoded vectors
obtained from the basic model are fed into these recognition
and prediction models to output the human action (walking,
standing, or running) and the predicted gait data z (whichmainly
includes acceleration and gyro data).

2.2.1. Loss Function
A loss function is used to evaluate the fitting effect of a deep
neural network. It is also used to compute gradients using a
back-propagation algorithm to optimize the parameters of the
network. The GNN has two loss functions to calculate: one for
measuring the prediction loss due to prediction error and the
other for measuring the loss of recognition accuracy.

The prediction loss function of the GNN is

Lpred = wy ∗ Ly(ŷ, y)+ wz ∗ Lz(ẑ, z), (4)

where Ly and Lz represent the loss functions of the intermediate
prediction network and the target vector network, respectively; ẑ
and z are the output vector and the target vector, respectively; and
wy andwz are the weight coefficients of Ly and Lz , respectively, for
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FIGURE 2 | Composition of the basic GNN model.

FIGURE 3 | Input data of the GNN.

which either L1 or L2 loss functions can be used:

L1 =
1

NB

NB∑
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|û
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|, (5)
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1
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(û
j

k
− u

j

k
)2, (6)

where NB denotes the batch size, which is in the range of {32, 64,
128, 256}, û is the predicted value of the network output, u is the
tag value of the network output, and j indicates the jth output
value of the network.

The recognition loss function of the GNN represents the
cross-entropy loss:

Lrec = −
1

n

∑
[y ln ŷ+ (1− y) ln(1− ŷ)], (7)

where ŷ is the model output.
The total loss of the GNN is

Ltotal = Lpred + αLrec, (8)

where α is the hyperparameter used to balance the loss function
in order to achieve high performance during the recognition and
prediction tasks.

2.3. Experimental Approach
In this study, the performance of the GNN was evaluated on two
datasets: the publicly available HuGaDB dataset and a human
gait dataset obtained using an inertial-based wearable motion
capture device.

The GNN was trained by an Adam optimizer with a learning
rate of 0.001 at 80 and 150 epochs, divided by 10. The maximum
epoch and batch size were 200 and 64, respectively. The dropout
rate of all dropout layers was set to 0.3. The GNN was
implemented by PyTorch and trained and tested on a computer
with an Intel Core i7-8750H processor, two 8GB memory chips
(DDR4), and a GPU (GeForce GTX 1060 6G).

2.4. Experiment on a Public Dataset
2.4.1. Gait Data Description
The human body has more than 200 bones. To simplify the
gait analysis process, motion analysis is often performed on
collected joint motion data. Gait analysis is one method used
to study an individual’s walking pattern. It aims to reveal the
key links and factors influencing an abnormal gait through
biomechanics and kinematics, in order to aid clinical diagnosis,
guide rehabilitation evaluation and treatment, evaluate efficacy,
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and inform research on the mechanisms involved. In gait
analysis, special parameters are used to assess whether the gait
is normal; these generally include gait cycle, kinematic, dynamic,
myoelectric activity, and energy metabolism parameters. To
improve the correspondence between the robotic exoskeleton
and the human body, motion data, such as joint velocity and
acceleration data must be collected.

Gait prediction in lower-extremity exoskeleton robots
requires highly accurate human gait data, so it is necessary
to utilize a gait dataset suitable for human gait prediction.
Therefore, we chose to evaluate the gait prediction and
recognition performance of the GNN on the publicly available
HuGaDB dataset (Chereshnev and Kertesz-Farkas, 2017), which
contains detailed kinematic data for analyzing human activity
patterns, such as walking, running, taking the stairs up and
down, and sitting down. The recorded data are segmented and
annotated. They were obtained from a body sensor network
comprising six wearable inertial sensors for collecting gait
data. Sensors were placed on the left and right thighs, lower
legs, and insteps of the human body; their distribution is
shown in Figure 4. Each inertial sensor was used to collect
three-axis accelerometer, three-axis gyroscope, and occasionally
electromyography signals of the corresponding body part,
providing data that can be used to evaluate the posture and
joint angle of the lower limbs. The data were recorded from 18
participants, and consist of 598 min and 2,111,962 samples in
total. The microcontroller collected 56.3500 samples per second
on average, with a standard deviation of 3.2057, and transmitted
them to a laptop through a Bluetooth connection (Chereshnev
and Kertesz-Farkas, 2017). Only the inertial data were taken as
input to the present model.

2.4.2. Data Analysis
In this work we analyze gait data from wearable sensors. Given
the similarity between the two legs, we use only the right leg as
an example. As seen in Figure 5, there is a certain relationship
between the sensor signals; hence it is preferable to conduct
training using all of the data as input rather than some subset. The
acceleration signals of three people were randomly sampled for

FIGURE 4 | Location of the sensors on the human body that collected data

for HuGaDB.

data analysis. As shown in Figure 6, the gait data are periodic, and
the patterns of the three people are similar, although the different
individuals have different walking gaits.

2.4.3. Data Pre-processing
The original data in HuGaDB can be converted to values of
the corresponding variables. To properly utilize the variables in
the GNN, data normalization is necessary. The normalization
formula is

xnorm =
x−mean(x)

max(x)
. (9)

By this formula, all gait data can be scaled to be between
−1 and 1, which can eliminate learning difficulties caused by
inconsistencies in data size and range.

2.4.4. Sample Creation
After preprocessing the gait data, the samples used for network
training were created. The gait data consist of the acceleration
and angular velocity of the inertial devices. In the experiment
we conducted, the lengths of x, y, and z were 10, 5, and 1,
respectively. To confirm the method of sample creation, samples
were selected from the HuGaDB gait data. The first 80% of
samples were used as the training dataset, the next 10% were
selected for the validation dataset, and the last 10% were taken
to be the test dataset.

2.5. Experiment on the Collected Data
To further evaluate the GNN, an inertial-based wearable motion
capture device was used to collect human gait data. The entire
motion acquisition system consists of seven inertial measurement
units, and only the signals from the lower limbs were selected
for the human gait prediction, as shown in Figure 7. Each unit

FIGURE 5 | Correlation between the HuGaDB sensor data.
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FIGURE 6 | Similarity in the acceleration data of three people.

FIGURE 7 | Collected human gait data.

measured the three-axis acceleration and the three-axis angular
velocity. The sampling frequency was 120Hz. The collected gait
data include data on walking, going up and down stairs, and
going up and down slopes.

3. RESULTS

As the predicted data can be collected by inertial sensors, the
model is used to predict the accelerations and angular velocities.
In the training of the model, multimodal data are used, and the
numerical distributions in different dimensions are different; but
since we need to use these data as input at the same time, we
normalize the data in each dimension. The input and output of
the model are multidimensional data, and the units in different

dimensions are different. The training of the model is based on
the normalized data, and the predicted value of the model is
also the accurate value after normalization. Therefore, the mean
squared error (MSE) and mean absolute error (MAE) in the
evaluation indexes are based on the normalized data, so the units
are not specified.

3.1. Evaluation Results Using HuGaDB
The network was first trained using the gait data from a single
wearer, and the results were compared with those obtained from
existing methods. Considering that the exoskeleton must adapt
to the movement of different wearers, to test the network’s
generalization ability, the gait data of three wearers were selected
for the training set, and the data of one wearer who was not
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included in the training set were used for the test set. It took
2.405 s to complete the recognition and prediction task on 2,249
samples in the test set, which means that the prediction and
recognition task on each sample took only 1ms.

3.1.1. Gait Prediction
The results inTable 1 show that the GNN achieves the best results
in the prediction task, with the exception of the maximum error
for one wearer. Compared with the other methods, the GNN has
the best generalization ability for new human gait data. Further,
when the hyperparameter α is set to 0.4 in the experiments, the
GNN shows the top performance. As displayed in Figure 8, the
gait data of one wearer, including x-, y-, and z-axis acceleration
data, were selected to make a prediction; the horizontal parts of
the curve represent standing posture, while the oscillating parts
represent the walking and running states. We find that the GNN
produced good results.

3.1.2. Gait Recognition
As shown in Table 2, for the single wearer’s motion data, all
methods achieved good recognition results. When the GNN that
was trained on three wearers’ data received a new wearer’s gait
data as input, although it did not achieve the best performance, it
did yield a promising accuracy rate of 98.04%.

Based on its performance in the human gait prediction and
recognition tasks, we can conclude that the GNN is highly
effective in the analysis of human motion.

TABLE 1 | Comparison of prediction results of different methods on the HuGaDB

data.

Prediction task

One-wearer test Generalization test

Method Learning

rate

Epochs MAE MSE Max

error

MAE MSE Max

error

GNN

(α = 0.4)

0.001 200 0.0427 0.0144 2.06 0.091 0.0277 1.760

LSTM 0.001 200 0.0428 0.01443 2.039 0.1001 0.035 2.126

CNN 0.001 200 0.055 0.0162 1.989 0.1424 0.0474 1.978

BP 0.001 200 0.0522 0.018 2.156 0.1159 0.0406 2.150

Bold values represent the best performance.

3.2. Evaluation Results Using the Collected
Data
To ensure the reliability and fairness of the experiment, all
parameters of the model are the same as those used for the
HuGaDB dataset.

3.2.1. Gait Prediction
As shown in Figure 9, the acceleration signal of the left tibia
was selected as the prediction object. It can be seen that the
GNN achieves good prediction performance, except for some
abnormal points, which could be caused by noise. It took 1.2332 s
to complete the recognition and prediction task on 674 samples
in the test set, which means that the prediction and recognition
task on each sample took only 1.8ms.

3.2.2. Gait Recognition
The GNN was compared with other methods on the collected
dataset; the results are shown in Tables 3, 4. Clearly, the GNN
achieved the best results in most tasks. Further, the MSE value is
observed to be larger than the MAE value in the prediction task,
as shown in Table 3, indicating that some extreme outliers occur
in the data. Again, the GNN achieved superior results in this case.

Through evaluation on collected datasets, we have verified
the feasibility of the model under different data settings. After
the model has been trained, it can be deployed on the relevant
equipment to achieve real-time and online gait prediction
and recognition.

TABLE 2 | Comparison of recognition results of different methods on the HuGaDB

data.

Methods One-wearer test Generalization test

accuracy (%) accuracy (%)

RECOGNITION TASK

GNN (α = 0.4) 100 98.04

LSTM 95.67 92.78

BP 97.5 78.49

CNN 96.39 79.24

LightGBM 99.76 99.33

SVM 100 98.62

Bold values represent the best performance.

FIGURE 8 | Gait prediction by the GNN based on one-wearer gait data.
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FIGURE 9 | Acceleration prediction result using left tibia data collected from one wearer.

TABLE 3 | Comparison of the prediction results of different methods using the

collected data.

Methods Learning rate Epochs MAE MSE Max error

PREDICTION TASK

GNN 0.001 200 0.1269 0.1314 7.28

LSTM 0.001 200 0.1647 0.2885 9.56

CNN 0.001 200 0.3308 1.4429 15.28

BP 0.001 200 0.1290 0.1391 7.77

Bold values represent the best performance.

TABLE 4 | Comparison of the recognition results of different methods using the

collected data.

Methods Accuracy (%)

RECOGNITION TASK

GNN 98.81

LightGBM 98.34

SVM 97.62

BP 91.68

LSTM 88.78

CNN 85.38

Bold values represent the best performance.

4. CONCLUSIONS

This article has proposed the GNN as a model for human-
exoskeleton interaction. Comparisons of the GNN and other
methods on theHuGaDB dataset show that the GNN consistently
achieves superior performance. The results further demonstrate
that the GNN’s generalization performance is better than that
of the other methods, despite the increase in the MAE and
MSE. Because of the size of the dataset, only three wearers’

gait data were used to test the generalization ability. Including
more gait data from different groups to train the network should
enable even better prediction results to be obtained. For further
evaluation of the method, gait data on complex movements
were collected using an inertial-based motion capture device. By
evaluating the GNN on the collected data, we find that it achieves
efficient human gait prediction performance even without strong
periodicity. Generally the GNN takes <2ms to complete the task
of gait recognition and prediction. Based on these results, it can
be concluded that the GNN model can effectively recognize and
predict human motion states.
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