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Gait Recognition by Cross Wavelet Transform

and Graph Model
Sagar Arun More and Pramod Jagan Deore

Abstract—In this paper, a multi-view gait based human recog-
nition system using the fusion of two kinds of features is proposed.
We use cross wavelet transform to extract dynamic feature
and bipartite graph model to extract static feature which are
coefficients of quadrature mirror filter (QMF)-graph wavelet
filter bank. Feature fusion is done after normalization. For nor-
malization of features, min-max rule is used and mean-variance
method is used to find weights for normalized features. Euclidean
distance between each feature vector and center of the cluster
which is obtained by k-means clustering is used as similarity
measure in Bayesian framework. Experiments performed on
widely used CASIA B gait database show that, the fusion of these
two feature sets preserve discriminant information. We report
99.90 % average recognition rate.

Index Terms—Binary sequences, feature extraction, identifica-
tion of persons, linear discriminant analysis (LDA).

I. INTRODUCTION

RECOGNIZING human from a distance by gait biometric

has attracted researchers in recent years. It has many ad-

vantages like; non-invasive, less obscured, unobtrusive, with-

out subject cooperation, ability to work from a distance and

with low quality video. Comparatively, gait biometric is newer

modality than face, iris and fingerprint. Recognizing someone

from a certain distance, where no fine details are available

is very difficult task. In such case, gait biometrics in which

the person gets recognized by the manner of walking only

is useful. Gait is a potential biometric trait where uncon-

strained person identification is demanded. It is a protocol

free biometric technique which does not require willingness of

person and hence found application in surveillance. However,

commonly used biometric recognition systems usually operate

in constrained acquisition scenarios and under rigid protocols.

The finger print, iris and face recognition could not be the

right choice in the unconstrained environment, where distant

data capture is required. Comparatively, gait comprised of

motion trajectories of various body parts, have a potential to

get captured properly from relatively far distance. It does not

need systematic data capture process, where subjects should
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necessarily be informed. This makes the identification process

protocol free. The extended application of gait recognition can

be suspect identification in a sensitive area where security is

at the highest priority. These characteristics of gait biometrics

lead it to be an attractive modality from the perspective of

human recognition from a distance.

In spite of various advantages, co-variate factors like;

walking speed, carrying conditions, clothing, the surface of

walking, fatigue, drunkenness, pregnancy, injury to feet and

the psycho-somatic condition affect the normal walking style.

View angle also plays vital role while testing such system.

It may be possible that certain view angle provides discrim-

inant information of walking individual while another may

not. Hence, an investigation is needed to find robust gait

representation which can cope up with these challenges in

multi-view scenario.

The main contribution of this paper is the achievement

of significant recognition rate in co-variate conditions like

carrying bag and cloth variation. There is no need to segment

bag from subject to remove co-variate. It does not need any

complex model to extract static or dynamic features. This

scheme is simple, as it does not need color and texture

information of the sequences and innovative in the sense that,

the application of cross wavelet transform and graph model is

not proposed in fusion approach yet.

Rest of the paper is organized as follows. Section II briefs

existing methods of gait recognition. In Section III, proposed

method is discussed. Section IV explores feature extraction

and feature fusion along with training and testing of the system

in details. Experimental results are discussed in Section V

followed by conclusion in Section VI.

II. LITERATURE OVERVIEW

Gait recognition and analysis have been studied heavily in

recent past. In this section we will discuss it briefly. The

approaches in the literature can be broadly classified into

two types viz. model free [1]−[4] and model-based [5]−[8].

In these approaches, various static and dynamic features of

gait sequences were extracted by using shape analysis, image

geometry transformations, wavelet analysis, so on and so forth.

The model free approach extracts features directly from the

image plane. Whereas, the model based approach models the

human gait and then extracts model parameters as features.

In [1], procrustes shape analysis is used to represent gait

signature, which is obtained by extracting the mean shape of

the unwrapped silhouette. Whereas, [2] is a 3D approach for

gait recognition, which constructs 3D silhouette vector of 2D
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scene by using stereo vision method. In a recent work [4],

complete canonical correlation analysis is used to compute

correlation between two gait energy image (GEI) features. In

another recent paper [3], authors extract different width vectors

and combined them to construct gait signature. This feature is

then approximated by radial basis function (RBF) network for

recognition.

In an earlier model based approach [5], gait pattern was de-

tected in XYT spatio-temporal volume. The bounding contour

of walking person is found by the snake. Furthermore a 5-stick

human model is controlled by these contours. Various angle

signals are then extracted by using this model for recognition.

Whereas in [6], each silhouette is first labelled manually.

Various features like; area, gravity center, orientation of each

body part is then calculated. In [8], the gait cycle is modelled

as chain of key poses first, then features like pose energy image

and pose kinematic are extracted. View invariant approaches

have also been proposed in the regard of gait recognition

such as [7]. In this paper, authors estimate marker less joints

followed by viewpoint verification.

Either static or dynamic feature alone can perform well

for recognition but with some limitations. While dealing with

static features, one can not analyze dynamic features and

vice-versa. Extracting both features simultaneously improves

the recognition rate on the cost of increased computational

complexity. Various approaches are proposed in this regard,

which extract static and dynamic features simultaneously,

either fusing model free and model based approaches [9]−[13]

or fusing various features into a single augmented feature

vector [14]−[17].

In [14], gait energy image and motion energy images are

combined to form feature vector, whereas in [15], the static

silhouette template (SST) and dynamic silhouette template

(DST) are fused to construct dynamic static silhouette template

(DSST). The position of the gravity center of human body

may change because of various co-variate factors as afore-

mentioned. This problem is addressed by [16]. In this paper,

authors divide the GEI transformed image into three body parts

like; head, torso and leg. Furthermore, they compute shifted

energy image (SEI) features which are horizontal centres of

body parts. Next, gait structural profile (GSP) extracted to

capture body geometry. For this, silhouette segmented into

four body parts as per the anatomical measurements like; head,

torso, left and right leg. The GSP, which is the difference of

gravity center of these segmented body parts and entire body is

computed. These two features are then used in combination for

recognition. In [17], two distinct features namely frieze pattern

and wavelet coefficients are extracted. The frieze pattern

preserves spatial information and wavelet coefficients preserve

low frequency information. Factorial hidden Morcow model

(HMM) is used to combine these features and parallel HMM

facilitates decision level fusion of two individual classifiers

for recognition. All these approaches signify that, the fusion

of multiple gait features improves the recognition system

performance.

There are certain methods, which explore static and dy-

namic characteristics of the human body. They fuse static

and dynamic features for improvement in performance of

gait recognition system. In [13], features like; centroid, arm

swing, stride length, mean height were extracted from the

binary silhouette. Further, they fit ellipse on each region and

compute it’s aspect ratio and orientation. These features are

then combined and transformed by discrete cosine transform

(DCT) and applied to generalized regression neural network

for recognition. Whereas in [9], mean shape is extracted

by using Procrustes shape analysis as a static feature. The

dynamic features are extracted by modelling human body parts

by truncated cone, head by sphere and computing joint angles

of this model. A human skeleton model is adopted in [10]

to extract dynamic features and computing various angles of

key body points. The static feature is denoted by wavelet

descriptor, which is obtained by applying wavelet transform

to the boundary-centroid distance.

In [18], HMMs are used to extract static and dynamic gait

features, without using any human body model. The static

features are extracted by conventional HMM and dynamic

features by hierarchical HMM. After labelling, they extract

three features namely; component area, component center and

component orientation. First HMM represents general shape

information while the second HMM extracts detailed sub-

dynamic information. Whereas in [19], local binary pattern is

used to denote the texture information of optical flow as the

static feature. Dynamic feature is represented by HMM with

Gaussian mixture model. In [11], the GEI is transformed by

dual tree complex wavelet transform (DTCWT) with different

scales and orientations. A two stage Gaussian mixture model

denote the patch distribution of each DTCWT based gait

image. Further, to model the correlation of multi-view gait

feature, a sparse local discriminant canonical correlation model

is used. In a recent paper [12], the dynamic feature is extracted

by Lucas-Kanade based optical flow image. The mean shape

of head and shoulder are then extracted by using Procrustes

shape analysis, which is the static feature. The fusion is done

on score level.

It can be noted that not all the aforementioned methods

adopt human body model such as skeleton to extract dynamic

features. Most often, authors prefer mathematical modelling,

as it is efficient to extract different kinds of features and also

facilitate lower computational complexity.

III. PROPOSED GAIT RECOGNITION METHOD

This paper aims to develop a method, which is the fusion of

both approaches, viz., model free and model based, without

using human body model such as skeleton. It facilitates to

extract static and dynamic feature sets simultaneously. Dy-

namic feature set is obtained by computing cross wavelet

transform among dynamic body parts like hand and leg from

each gait sequence. Further, to extract static feature set, the

bipartite graph is used to model gait silhouette, as the graph

is a powerful tool to represent an image on the basis of pixel

adjacency. We apply quadrature mirror filter (QMF)-graph

wavelet filter bank proposed by [20] to each gait sequence.

Only analysis filter bank is used for this task. The feature

vector (FV) represented by fusion of these two feature sets.

The static and dynamic feature sets extracted from all the

sequences with 11 view angles and 10 co-variate conditions.
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These features are combined on feature level. The centroid of

clusters of these augmented feature vectors then obtained by

using k-means clustering. The Euclidean distance computed

between each feature vector and centroid of clusters which is

linearly classified in linear discriminant analysis (LDA) space.

For identification, we use Bayesian framework. These steps are

depicted in Fig. 1.

Fig. 1. Proposed method.

IV. FEATURE FORMATION

In this work, we use CASIA B multi-view gait database

[21], which consists of 124 persons. Each person is depicted in

10 sequences with various co-variate (CV ) like; normal/slow

walking (nm-01 to nm-06), with bag (bg-01, bg-02), with

coat (cl-01, cl-02). The sequences are captured at 11 different

viewing angles (VA) (0o, . . ., 180o). Table I shows the view

angle and co-variate with serial numbers which we use in

experiments. Thus, the database consists of 124× 10× 11 =
13 640 gait sequences. The feature space consists of two

different kinds of feature sets. We use cross wavelet transform

to extract dynamic feature set and QMF-graph wavelet filter

bank to compress the sequence, which is static feature set of

a complete gait sequence at an arbitrary view angle and co-

variate condition.

A. Pre-processing

The silhouettes which are available readily in CASIA B

database have holes as shown in Fig. 2(a) and breaks in succes-

sive frames as shown in Figs. 2(b) and 2(c). In order to extract

meaningful features, we do morphological operations like;

dilation, erosion, opening and closing. Further, it is required

to divide silhouette which contains body parts like hands and

legs. A bounding box technique is applied after cropping the

divided silhouette from complete silhouette to get horizontal

width of cropped silhouette. This width varies in each frame

as hands/legs displaces. We divide entire silhouette into three

equal parts, viz., the portions containing head and shoulder,

hands, legs. We processed only the portions containing hand

and legs by first cropping and then applying bounding box on

both the portions separately. The width of the bounding box

is saved as 1D width vector. Here, in this work we consider

the movement of hand and leg only for the computation of

dynamic feature using cross wavelet transform.

Fig. 2. Inferior silhouette. (a) Hole in silhouette t. (b) Break in silhouette

t−1. (c) Break in silhouette t.

Let Xn and Yn be the 1D signals generated due to dynamic

movement of hands and legs respectively for n sequences.

Then, we can write

Xn = {x1, x2, x3, . . . , xt} (1)

Yn = {y1, y2, y3, . . . , yt} (2)

where xt and yt are the width vector computed from bounding

box and t is number of frames in a sequence. The width of

the bounding box is saved as 1D width vector as shown in

Fig. 3.

B. Dynamic Feature Extraction (FVdynamic)

After pre-processing, the width vectors extracted from each

silhouette which represents the dynamic movements of hands

and legs throughout the entire gait sequence. Cross wavelet

transform then applied to these 1D signals. Morlet wavelet

(with ω0 = 6) is used as it better suits for such nature of

signals with regard to time and frequency localization.

ψ0(η) = π− 1

4 eiω0ηe−
η2

2 (3)

where ω0 is dimensionless frequency and η is dimensionless

time.
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TABLE I

CO-VARIATES AND VIEW ANGLES IN CASIA B DATABASE

Serial number 1 2 3 4 5 6 7 8 9 10 11

CV

nm nm nm nm nm nm bg bg cl cl -

01 02 03 04 05 06 01 02 01 02 -

VA 0
o

18
o

36
o

54
o

72
o

90
o

108
o

126
o

144
o

162
o

180
o

Fig. 3. 1D signals extraction.

1) Cross Wavelet Transform: The cross wavelet transform

is defined over two time series, which reveal an area of

common higher power and relative phase in the time-frequency

domain. Cross wavelet transform of two time signals Xn and

Yn is expressed as [22]:

W (Xn, Yn) = W (Xn) · W (Yn)∗ (4)

where W (Xn) is continuous wavelet transform and ∗ is

complex conjugation. The cross wavelet power can be defined

as

Wp = |W (Xn, Yn)|. (5)

The local relative phase between Xn and Yn can be ex-

pressed as complex argument

Φn = arg (W (Xn, Yn)) . (6)

The complete representation of wavelet cross spectrum is

W (Xn, Yn) = |W (Xn, Yn)|eiφn (7)

where Φn is the phase at time tn.
2) Wavelet Coherence: More significant coherence between

two continuous wavelet transformed signals is found even

when common power is low. This relationship is expressed

as wavelet coherence (WCOH). Wavelet coherence denotes

the relationship between two independent time series signals

expressed in terms of area of the common frequency band

at a certain time interval, across which these two signals

vary simultaneously. Following [22], [23], wavelet coherence

between two signals Xn and Yn can be written as:

WC(Xn, Yn) =
|ς [W (Xn, Yn)] |

√

ς [W (Xn)] × ς [W (Yn)]
(8)

where ς = S · s−1, S is smoothing parameter and s is the

scale.

For demonstration purpose, we show 1D signals extracted at

angle 90o with bag carrying co-variate as shown in Figs. 4−6

denote wavelet cross spectrum, wavelet coherence and phase

relationship between extracted signals, respectively. These

Figs. are color-coded spectrograms. They denote variations

in spectral and coherence components. We choose scale (s)

up to 75 as it is optimum choice after visual inspection. The

smoothing (S) is done in both the time and scale directions

to compute meaningful coherence. The time smoothing uses

a filter given by the absolute value of the Morlet wavelet

function at each scale and normalized to have a weight of

unity. The scale smoothing is done by using a boxcar filter of

a certain width which is 0.60 for Morlet wavelet [24].

The dynamic feature set includes the mean value of cross

wavelet spectrum along with wavelet coherence and phase

across the entire gait sequence. The length of dynamic features

varies with the number of frames present in that particular

sequence, hence zero padding is done to individual feature to

make the feature set of fixed length.

C. Static Feature Extraction (FVstatic)

Various static features like; mean height, centroid, mean

shape, wavelet descriptor have been presented earlier, which

are already discussed in literature overview. We do not extract

such features. Instead, first we represent gait silhouette by

a bipartite graph and further use QMF-graph filter bank to

compress the entire gait sequence. A brief about graph and

QMF-graph filter bank is discussed next.
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Fig. 4. 1D signals at view angle 90
o with bag.

Fig. 5. Wavelet cross spectrum at view angle 90
o with bag.

Fig. 6. Wavelet coherence at view angle 90
o with bag.

1) Graph Model: A graph G = (V, E), in which V and

E are the vertex and edge, respectively, is a powerful tool for

modelling image and video signals, as it offers flexibility in

adjacent pixel relationship. The 2D images can be represented

as graph using various pixel connectivities such as: rectan-

gular, vertical, horizontal, diagonal, 8 connected neighbours.

This flexibility leads to different down sampling patterns for

filters. Various concepts from signal processing like Fourier

decomposition and filtering can be extended to graph domain.

These functions are called as graph signals. In this work,

we use the bipartite graph to model the silhouette image.

The bipartite graph is expressed as G = (L,H,E). They

are also called as two-colourable graphs as their vertices can

be coloured into two colours. The connected two vertices

are not of the same colour. The decomposition of bipartite

graph produces edge disjoint set of sub-graphs. The vertices

V are divided into two disjoint sets L and H . Each vertex

in L is connected to each vertex in H by a link as shown in

Fig. 7. We model the silhouette by such undirected bipartite

graph, which is without self loop and considering each pixel

as an individual node to form 8 connected image graph G. An

adjacency matrix A is defined over the graph and A (i, j) is

weight between node i and j. D = diag (di) denote diagonal

degree matrix, where di is degree of node i. Furthermore, the

Laplacian matrix of graph is expressed as, L = D−A, where,

L = I − D−1/2AD−1/2 is the normalized Laplacian.

Here, we apply only analysis filter of perfect reconstruction

two channel critically sampled QMF-graph wavelet filter bank

as shown in Fig. 8 to compress the graph-structured data. As

suggested in [20], the colouring of the vertices is done by

using BSC algorithm [25], followed by decomposition of the

graph into the set of bipartite graphs using Harary’s algorithm

[26]. Each sub-graph is down sampled by βL and βH , which

are down sampling operators. The nodes in L preserve output
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of low pass channel, whereas nodes in H preserves output of

high pass channel. Thus H and L facilitates bi-partition of

graph. The analysis filters H0 and H1 can be written as,

H0 = h0 (L) =
∑

λ∈σ(G)

h0 (λ) Pλ (9)

H1 = h1 (L) =
∑

λ∈σ(G)

h1 (λ) Pλ (10)

where, h0 (λ) and h1 (λ) are spectral kernels, L is normalized

Laplacian, λ is eigenvalue, σ (G) is spectrum of graph which

is set of eigenvalues and Pλ is the projection matrix of eigen

space V(λ). The low pass analysis kernel h0 (L) is computed

by using Chebychev approximation of Meyer kernel. The other

spectral kernels can be computed by using QMF relations.

The static feature set includes the mean wavelet coefficients

of entire gait sequence. The length of static feature is of 256
after second level decomposition.

Fig. 7. Bipartite graph.

Fig. 8. Graph wavelet filter bank (analysis).

D. Feature Fusion

As discussed in previous subsections, static and dynamic

features are extracted, which have different discriminating

power. We concatenated these two features to construct a

single augmented feature vector. Since, these features are not

directly comparable, we first normalize them using min-max

normalization method [27]. The length of dynamic features

varies with the number of frames present in that particular

sequence, hence zero padding is done to individual feature to

make the dynamic feature set of fixed length. The static feature

set is of fixed length, hence zero padding is not required.

Further, weights for normalized feature vectors are computed

using the mean-variance method.

The normalized static and dynamic feature vectors are

FV static =
FVstatic − min (FVstatic)

max (FVstatic) − min (FVstatic)
(11)

FV dynamic =
FVdynamic − min (FVdynamic)

max (FVdynamic) − min (FVdynamic)
. (12)

The weights for normalized features vectors are

wstatic =
mstatic

σstatic
(13)

wdynamic =
mdynamic

σdynamic
(14)

where, w is weight, m is mean and σ is variance of the feature

vector.

Finally, these two features are concatenated as shown in

(15) to form a single augmented vector for representation and

further processing,

FV =
[(

wstatic · FV static

)

,
(

wdynamic · FV dynamic

)]

.

(15)

For demonstration of the proposed fusion approach, we

computed dynamic and static features of a person walking

normally with view angle of 90o. Figs. 9−11 denote zero

padded normalized weighted dynamic features. Fig. 9 shows

mean value of wavelet cross spectrum (WCS), Fig. 10 denotes

wavelet coherence (WCOH) and Fig. 11 shows local relative

phase (φ) relation between dynamic body parts. The static

feature is shown in Fig. 12, which are coefficients of graph

wavelet filter bank decomposed up to second level. The

augmented feature vector after fusion of static and dynamic

feature set is shown in Fig. 13. It is the representation of a

person walking normally at view angle 90o in feature space.

Fig. 9. Normalized WCS feature.
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Fig. 10. Normalized WCOH feature.

Fig. 11. Normalized phase feature.

Fig. 12. Normalized filter bank coefficients.

Fig. 13. Augmented feature vector.

E. Training

For each gait sequence we extract feature vector

FV (PN ,VA,CV ), which is fusion of cross wavelet coherence

and QMF-graph wavelet filter bank coefficients. Considering

PN = 1, . . . , 124, VA = 1, . . . , 11, CV = 1, . . . , 10,

where, PN is number of subjects (persons), VA is view angle

and CV is co-variate. The centroid of clusters pq is then

obtained as a result of k-means clustering. It clusters training

FV (PN ,VA,CV ) vectors to Q clusters to minimize the within-

cluster distance

Q
∑

q=1

PN
∑

i=1

αiq‖FV (PN ,VA,CV ) − pq‖
2 (16)

where αiq = 1, if FV (PN ,VA,CV ) is assigned to the cluster

q and αiq = 0 otherwise. The centroid of clusters pq,

q = 1, . . . , Q are the centres of clusters. The optimal number

of clusters is determined by using cross-validation procedure.

The FV (PN ,VA,CV ) vector describes the feature vector of

PN th person, walking at viewing angle VA and having co-

variate condition CV . This feature vector of each training

subject is then mapped by Euclidean distance to the centroid

of clusters pq as follows

dEd = ‖FV (PN ,VA,CV ) − pq‖. (17)

Other distances can also be used but Euclidean distance

exhibit simple representation hence preferred. Each distance

vector is then finally represented as D = [d1, d2, . . . , dQ]T .

Further, for the final representation, the Euclidean distances

are normalized to get membership vector

RFV =
dEd

‖dEd‖
. (18)

To make this membership vector duration invariant, as we

use multi-period gait sequences, the mean of RFV is taken. For

i = 1, . . . , CV and all tj ; j = 1, . . . , pq membership vectors

vi =
1

tj

tj
∑

k=1

Rik
FV . (19)

Further, linear discriminant analysis is applied to vi to

project it into low dimensional discriminant subspace. Each
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person can be linearly separable in this subspace. In LDA, an

optimum projection matrix Wopt is derived to minimize the

Fisher criterion.

Wopt = arg min

(

WT SwW
)

(WT SbW )
(20)

where Sw and Sb are the scatter matrices of within class and

between class of C classes

Sw =
C

∑

n=1

Si (21)

Si =
∑

xǫωi

(x − µi) (x − µi)
T

(22)

Sb =
C

∑

i=1

ni (µi − µ) (µi − µ)
T

(23)

where

µ =
1

n

∑

∀x

x (24)

µi is the mean vector of class ωi and µ is the mean vector of

the training set.

F. Testing

The test feature vector is obtained using similar steps as

used to obtain the training feature vector. For identification,

we use probabilistic model such as Bayesian framework.

The Bayesian probabilistic decision theory is a fundamen-

tal approach in pattern classification. Assuming equiprobable

classes and all probabilities are known, let P (j) is the apriori

probability of occurrence of jth person in the database of PN

classes. The class conditional probabilities can be expressed as

P (j|PN , VA, CV ), where PN are total subjects in databases,

VA are viewing angles considered and CV are co-variate

conditions while training. The apriori can be estimated during

training and aposteriori can be estimated by the following

equation

P (j|P1, V1, C1, . . . , PN , VN , CN )

=
P (P1, V1, C1, . . . , PN , VN , CN |j) · P (j)

NP
∑

n=1
P (P1, V1, C1, . . . , PN , VN , CN |n) · P (n)

. (25)

V. EXPERIMENTAL RESULTS AND COMPARISON

Experiments are performed on CASIA B multi-view gait

database, considering all view angles and co-variate condi-

tions in MATLAB environment. All the training classes are

equiprobable as Bayesian framework is used for identifica-

tion. Training includes all view angles and co-variate factors

considering only hand and leg movement. The mean value of

wavelet cross spectrum (WCS) along with wavelet coherence

and phase (φ) are preserved to construct the dynamic feature

set. Each sequence is compressed by QMF-graph wavelet

filter bank to get wavelet coefficients as the static feature.

The feature fusion is done by min-max rule. The Euclidean

distance between each training vector and centroid of the

clusters are then preserved. While testing, we divide the

database into three sets. Set A is of sequences nm-05 and

nm-06, set B is of cl-01 and cl-02 and set C is of bg-01 and

bg-02.

We compare our work with [16], [11] and [28], even though

it is not straight forward. The rank 1 results are

shown in Table II. In [16], first they extract side view gait

cycle and extract two kinds of features namely; shifted energy

image and gait structural profile. They performed experiments

by considering; normal walking sequences nm-01 to nm-04
as gallery set, nm-05, nm-06 as set A, cl-01, cl-02 as set

B, bg-01, bg-02 as set C. We extract two features considering

all view angles and co-variate conditions as gallery set. The

probe sets are taken similarly to perform experiments as given

in [16]. It is found that our method slightly works better for set

A, but outperforms for sets B and C. In [11], authors consider

seven angles (from 36o to 144o ) and all co-variate conditions.

They performed experiments considering similar probe sets

as aforementioned. Here, they use single angle for testing on

multi-view gallery each time, e.g., probe angle is 126o and

gallery angles are 36o to 144o. In our case, we train and test

the system by multi-view sequences. Our method outperforms

for all probe sets.

TABLE II

WORK COMPARISON RANK 1 RECOGNITION RATE (%)

Probe set SIES [16] DTCWT-PDF [11] Hybrid [28] Our method

Set A 99 76.76 97.98 99.82

Set B 64 73.23 86.02 100

Set C 72 71.71 85.22 100

Whereas in [28], authors extract static and dynamic features.

The histogram distribution of optical flow vector is used

as dynamic feature and Fourier descriptor is used as static

feature. This work is similar to ours in this sense but they

consider only three view angles, viz., 72o, 90o and 108o. They

used rank based fusion, whereas ours is feature based fusion.

Experimental results shows that our method performs better

for probe sets A, B and C than [28].

The proposed method outperforms the above methods as

the features we extracted are robust and found invariant to co-

variate conditions especially carrying bag and cloth variations.

VI. CONCLUSION

In this work, we use cross wavelet transform and bipartite

graph model for gait based human recognition in multi-view

scenario. The experimental results show that, the fusion of

different kinds of features represent gait pattern of an individ-

ual significantly. Table II shows that our method outperforms

others in co-variate conditions also. The average recognition

rate considering all view-angles and co-variate conditions in

Bayesian framework is 99.90%. It has been observed that,

the recognition rate decreases if the probe sequence is not

included in the gallery while training. In future, we will

concentrate on our research work to investigate different gait

features which can improve performance of system in various

co-variate conditions.
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