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Abstract

Gait recognition, i.e., recognizing persons from their walk-
ing postures, has found versatile applications in security
check, health monitoring, and novel human-computer inter-
action. The millimeter-wave (mmWave) based gait recogni-
tion represents the most recent advance. Compared with tra-
ditional camera-based solutions, mmWave based gait recog-
nition bears unique advantages of being still effective un-
der non-line-of-sight scenarios, such as in black, weak light,
or blockage conditions. Moreover, they are able to accom-
plish person identification while preserving privacy. Cur-
rently, there are only few works in mmWave gait recognition,
since no public data set is available. In this paper, we build
a first-of-its-kind mmWave gait data set, in which we col-
lect gait of 95 volunteers ’seen’ from two mmWave radars in
two different scenarios, which together lasts about 30 hours.
Using the data set, we propose a novel deep-learning driven
mmWave gait recognition method called mmGaitNet, and
compare it with five state-of-the-art algorithms. We find that
mmGaitNet is able to achieve 90% accuracy for single-person
scenarios, 88% accuracy for five co-existing persons, while
the existing methods achieve less than 66% accuracy for both
scenarios.

Introduction

Gait is an important biological feature of human beings.
In recent years, gait recognition has been found versa-
tile applications in security check, health monitoring, and
novel human-computer interaction. For instance, the home
automation system can automatically adjust the lighting
brightness or temperature according to each person’s pref-
erence once it identifies each person via gait recognition.

The most common gait recognition is based on com-
puter vision, which utilizes camera to capture visual images
when a human walks, and then performs the identification
(Makihara et al. 2017; Li et al. 2018; Chao et al. 2019;
Li, Liu, and Ma 2019). However, the vision solution bears
several limitations. Firstly, it raises severe privacy threats
for capturing the real images of human daily life, espe-
cially considering that the camera could be hijacked by mali-
cious users. Secondly, cameras are easily affected by lighting
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conditions. They cannot obtain clear images in dark/weak-
light/blockage scenarios, which lead to gait recognition fail-
ures.

Recently, researchers propose to utilize wireless signal for
gait recognition. In particular, each person’s unique walk-
ing posture leads to a unique wireless signal variation pat-
tern. By analyzing the pattern, we can identify the per-
son just from the wireless signal, which eliminates the pri-
vacy concern and is also independent of the lighting condi-
tions. Moreover, driven by the emerging 5G technologies,
gait recognition using the 5G mmWave wireless signal has
gained much interest. Compared with the traditional recog-
nition using low-frequency omni-directional Wi-Fi signal
(Zou et al. 2018), mmWave gait recognition is promising to
achieve higher accuracy, in particular for co-existent mul-
tiple persons, because mmWave radios, with 100× band-
width, can provide much fine-grained spatial resolution.

Despite the potential, however, there is not a mmWave
gait data set open to researchers, which hinders the research
progress. In this paper, we build and publicly achieve a first-
of-its-kind mmWave gait data set, which is collected from
95 volunteers and lasts about 30 hours in total. In particu-
lar, we use two mmWave devices in two different scenes as
shown in Figure 1. We let each device capture the reflected
mmWave signal from walking persons, which forms point
clouds. Then we segment the point cloud of multi-people
who are walking at the same time to get a single person’s
gait point cloud data. We propose a novel method to tagging
the data: firstly, we use clustering algorithm DBscan (Es-
ter et al. 1996) to automatically cluster point clouds with-
out given the number of clustering categories. Secondly, we
use the Hungarian algorithm (Kuhn 2010) to track the point
cloud clusters of one person’s routes. Thirdly, the routes are
matched to corresponding volunteers one by one. We believe
that the data set can provide an open base for designing and
comparing various mmWave gait recognition methods in a
fair way, so as to facilitate further research.

Using the data set, we evaluate five state-of-the-art deep
learning based gait recognition algorithms, and have two
observations: (i) the accuracy of gait recognition decreases
with the increase of the number of co-existent walking peo-
ple. (ii) the accuracy of gait recognition increases if us-
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ing more mmWave sensing devices hlrespecially when Co-
existing multiple people. Motivated by the observations, we
propose a new deep learning driven algorithm mmGaitNet.
In contrast with previous work mID (Zhao et al. 2019), mm-
GaitNet designs new neural network model to extract fea-
tures for each attribute of point cloud, so as to achieve higher
recognition accuracy in multi-people co-existing scenarios.
The contributions of this paper lie in two aspects:

• We build a first-of-its-kind mmWave gait data set, and use
the data set to evaluate the existing deep learning based
gait recognition algorithms.

• We design a new mmWave gait method mmGaitNet,
which outperforms the existing methods and achieves
about 90% accuracy even for multi-person co-existent
scenarios.

Related Works

Gait Recognition

Gait recognition has versatile applications in security check,
health monitoring, and novel human-computer interaction.
People try to solve the problem with many different meth-
ods, such as the methods based on computer vision or al-
ternatives based on various wireless perception. In particu-
lar, traditional computer-vision-based gait recognition meth-
ods (Makihara et al. 2017; Li et al. 2018; Chao et al. 2019;
Li, Liu, and Ma 2019) perform very well in terms of ac-
curacy, but bears several limitations: firstly, camera invades
people’s privacy for capturing the real image of life, which
will cause leakage of personal information, particularly con-
sidering that cameras may be attacked and hijacked. Sec-
ondly, cameras are easily affected by lighting condition. they
cannot obtain a valid image in the dark environment. To
solve the problems mentioned above, researchers attempt to
utilize wireless signal to capture the gait data of people. In
those wireless sensing works, most methods are based on
Channel State Information (CSI), such as WiFiU (Wang,
Liu, and Shahzad 2016), wiwho (Zeng, Pathak, and Moha-
patra 2016) and AutoID (Zou et al. 2018). However, WiFi
signals are difficult to be segmented to isolate the impact of
each person, so they are unable to identify multiple people
at the same time.

mmWave and Wireless Sensing

With the rise of 5G, mmWave sensing is expected to play a
more important role in gait recognition. The estimated hu-
man pose is utilized to do human identifying. Zhao et al.
demonstrates the feasibility of human tracking and identi-
fying capacity (Zhao et al. 2019) with commercial, off-the-
shelf mmWave radars. However, it only can identify individ-
ual users.

In addition, mmWave radios are becoming versatile for
other sensing applications. Zhou et al. proposes autonomous
environment mapping (Zhou et al. 2019b) using commodity
mmWave network device and robot navigation (Zhou et al.
2019a) in dynamic environment. Yang et al. demonstrates
vital sign monitoring (Yang et al. 2016) with commercial,

(a) scene1

(b) scene2

Figure 1: The experimental scenes. Scene1 simulates the ap-
plication scenario of volunteers walking in the corridor fac-
ing the devices. In this scenario, the effective horizontal de-
tection angle of the devices is ±60◦. Scene2 simulates the
application scenario of volunteers walking in a living room.
In this scenario, the effective horizontal detection angle of
the devices is ±45◦.

off-the-shelf mmWave radars. Wang et al. demonstrates ges-
ture recognition (Wang et al. 2016) with Soli (Lien et al.
2016).

In a boarder field, wireless sensing via ubiquitous
WiFi/RFID/4G/mmWave signals is becoming another sens-
ing venue besides the conventional vision based venue,
which bears the unique characteristic of ’see-through’ (Adib
and Katabi 2013). Wireless sensing is firstly utilized for in-
door localization (Yang, Zhou, and Liu 2013), human pos-
ture/gesture estimation (Pu et al. 2013), material identifica-
tion (Wang et al. 2017) and even for the sub-mm-level vibra-
tion recovery (Wei et al. 2015). We note that mmWave sens-
ing operating at high frequency band represents the frontier
of wireless sensing, which provides high spatial resolution
and enables more robust sensing.

Data Collection Methodology

We collect gait data of volunteers with two commercial, off-
the-shelf mmWave radars in two scenes as shown in Figure
1. Scene1, as shown in Figure 1(a), imitates a corridor where
the open free for walking is a long rectangle. When a per-
son is close to the device, the device cannot scan the whole
body of the person because the effective vertical monitoring
angle of the device is less than ±20◦. Hence, the location
of the two devices is 1 meters away from the point M and
N. The height of the devices is 1m. The angle between the
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first device (i.e., IWR6843) and line-segments AB is 0◦, and
the angle between the second device (i.e., IWR1443) and
the line-segments CD is 0◦ too. Scene2, as shown in Figure
1(b), imitates an office or homeroom, where the open space
is square. The two mmWave sensing devices (i.e., IWR1443
and IWR6843) are placed at the location of point E and
H, with a height of 1m. The angle between IWR6843 and
line-segments EF and the angle between IWR1443 and line-
segments GH are both 45◦.

mmWave Sensing Device

We use IWR14431 and IWR68432 as the mmWave sens-
ing devices. The two devices are essentially FMCW radars
equipped with multiple antennas (i.e., an antenna array).
The FMCW radars periodically transmit a signal in sinu-
soidal waveform whose frequency increases linearly with
time. This type of signal is also named a chirp and can mea-
sure the range as well as velocity and angle of sensing targets
(Richards et al. 2010). In the experiments, the two devices
are configured to use all their three transmitter antennas and
four receiver antennas to generate the 3D point cloud data.
The devices both output a frame of 3D point cloud, in every
0.1s. The detailed configuration parameters of the devices
are as follows:

The configuration of IWR6843. The device transmits 32
chirps per frame. The start frequency of the chirp is set to
60.25GHz. The bandwidth B is set to 3.75GHz. The Chirp
Cycle Time Tc is set to 169.33μs. The Idle Time is set to
93μs. The ADC Valid Start Time is set to 7μs. The Ramp
End Time is set to 83.33μs. The Frequency Slope is set to be
45GHz/ms. With such a configuration, IWR6843 has a range
resolution of 4.4cm and a maximum unambiguous range of
8m. In terms of velocity, it can measure a maximum radial
velocity of 2.35m/s, with a resolution of 0.15m/s.

The configuration of IWR1443. The device is set to
transmit 16 chirps per frame. The start frequency of the chirp
is set to 77GHz. The bandwidth B is 4GHz. The Chirp Cycle
Time Tc is set to 131.14μs. The Idle Time is set to 81μs. The
ADC Valid Start Time is set to 7μs. The Ramp End Time is
set to 57.14μs. The Frequency Slope is set to be 70GHz/ms.
With such a configuration, IWR1443 has a range resolu-
tion of 4.4cm and a maximum unambiguous range of 8m.
In terms of velocity, it can measure a maximum radial ve-
locity of 2.35m/s, with a resolution of 0.3m/s.

Time Synchronization

In order to use the data collected by two devices at the same
time, we use timestamps to mark the collected data. To en-
sure computer time consistency, we run time synchroniza-
tion Network Time Protocol (NTP) on two computers, while
one computer acts as the NTP server and the other as the
client. We use the client computer to synchronize with the
time of the server. To reduce synchronization time, we con-
nect the two computers directly using a cable. Using above
method, the time difference between client and server is less
than 5ms. The walking speed of persons is commonly less

1http://www.ti.com/tool/IWR1443BOOST
2http://www.ti.com/tool/IWR6843ISK

Table 1: The number of volunteers in the data set. For exam-
ple, The number 25 in row 3vol-sim and scene2, fixed route
column means that there are 25 volunteers take part in an ex-
periment, in which a volunteer needs to walk with two other
volunteers on fixed route in scene2.

Scene scene1 scene2

Route Fixed Free Fixed Free

1vol-sim 20 20 30 25
2vol-sim 20 20 30 30
3vol-sim 15 10 25 25
4vol-sim 15 10 15 15
5vol-sim 10 10 10 10

than 2m/s. Person can be deemed as quasi-stationary at the
5-ms interval.

Data Set

We collect a total of 30 hours of 3D point cloud data from
95 volunteers3. The data set contains two types of walking
trajectories: fixed route and free route where there are up to 5
volunteers walking at the same time. Fixed route means that
volunteers walk from one side to the other along a straight
line, and free route means that volunteers walk casually on
any route in the specified area as shown in Figure 1.

Data Composition

We deliberately ask concurrent people to walk simultane-
ously all the time during the gait collecting time. We make
such setting because it represents the most challenging case.
For fixed route, volunteers walk back and forth on the fixed
route 25 times; for free route, volunteers walk freely about
10 minutes. The number of volunteers in the data set is
shown in Table 1. For example, the number 25 in row 3vol-
sim and scene2, fixed route column means there are 25
volunteers take part in this experiment, and each volunteer
walks along with two other volunteers on fixed route in
scene2.

Volunteers

We collect mmGait from 95 recruited volunteers, 45 male
and 50 female volunteers. The age of the volunteers is be-
tween 19 and 27. More than half of the volunteers are be-
tween 20 and 21 years old. The height of the volunteers is
between 150cm and 185 cm. More than two-thirds of the
volunteers are between 160 cm and 180 cm in height. The
weight of the volunteers is between 41kg and 115kg. More
than half of the volunteers are between 50kg and 65kg in
weight.

Data Characteristics.

The data collected by our sensing devices is quite sparse, as
shown in Figure 2. The number of points belong to a vol-
unteer in the point cloud is very small. Note that a human

3https://github.com/mmGait/people-gait.
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 1  2  3  4  5

(a) The number of points for a
group of volunteers in scene1

(b) The number of points for a vol-
unteers of multi-data in scene1

(c) The number of points for a
group of volunteers in scene2

(d) The number of points for a vol-
unteers in scene2

Figure 2: The number of mmWave reflection points. In scene1 (a) and scene2 (c), as the number of volunteers walking increases
simultaneously, the number of points in the point cloud increases. However, the increase in the number of points becomes
smaller. In scene1 (b) and scene2 (d), as the number of walking volunteers increases simultaneously, the number of points for
a volunteer in the point cloud decreases.

body acts as a reflector rather than a scatter. At any point in
time, our device can capture only a subset of the radio fre-
quency reflections off the human body. The data in Figure
2 demonstrates that: as the number of simultaneous walking
volunteers increases, the number of points in the point cloud
increases slowly. On the other hand, the number of points
belong to a volunteer in the point cloud decreases. The rea-
son lies in that the output capacity of the device is lim-
ited. The 3D point cloud data generated by IWR1443 con-
tains up to 64 points. The 3D point cloud data generated by
IWR6843 contains up to 100 points. As the number of points
in the point cloud increases, the devices could only output
the points with higher confidence. What’s more, as the num-
ber of points in the point cloud increases, the probability
of a volunteer occluded by other volunteers increases. For
example, when five people are walking, the devices could
only detect three people most of the time. Using two devices
working at the same time can effectively increase the density
of point cloud and reduce the occlusion of volunteers.

Data Annotation

Data Processing

The devices have removed many noise points which are re-
flected by static objects utilizing static clutter removal algo-
rithm CFAR (Richards et al. 2010). However, there are still
many noise points by high-order reflection between walking
people and static objects, such as the situation shown in Fig-
ure 3. These noise points usually have larger distance to the
receiver, compared with the points reflected directly from
walking people. In mmGait, we adopt DBSCAN clustering
algorithm to remove the noise points in the point cloud, be-
sides to segment the point cloud formed by multiple people.
An example is given in Figure 4.

For the multi-people gait recognition, we use the DB-
SCAN clustering algorithm to divide the points in a frame
into different groups. Each group on behalf of a single per-
son. One advantage of DBSCAN is that we do not need to
preset the number of clusters. In our data set, the closest dis-
tance between two side-by-side people is about 0.3m which
is a normal social distance. In this case, the detection and
identification accuracy is about 86.5%. The impact factors of

the accuracy are the distance between people and the sever-
ity of their mutual covering. The accuracy will drop if the
distance becomes smaller or one person is blocked by an-
other because the point clouds of two or more people may
merge together and become hard to separate. Figure 4 shows
the results of clustering. Then we use a matching algorithm
for tracking each person’s gait.

We track the clustered point cloud using Hungarian algo-
rithm to get the continuous gait data of volunteers. Hungar-
ian algorithm matches the clusters in current frame to those
clusters that appear in the previous frames. The weight ma-
trix of Hungarian algorithm includes the location of cluster-
ing categories generated in the last 10 frames, which helps
alleviate the clustering interruption caused by the sparseness
of point cloud.

Data Merge

A single device is unable to meet the requirements of the
experiment. Therefore, we decide to utilize two devices to
collect gait data concurrently, which can greatly increase the
number of points in point clouds, and also reduce the mutual
covering of volunteers. For example, when we use a single
device to monitor two volunteers walking at the same time,
the volunteers may cover each other. If we use two devices,
they can capture full point cloud of both volunteers without
blockage. The data collected by the two devices are in differ-
ent rectangular coordinate systems, because the positions of
devices is different. In order to use the data collected by the
two devices, we convert the data into the same rectangular
coordinate system as follows.

Coordinate transformation. We convert the point clouds
data into the same coordinate system by rotation and trans-
lation of the coordinate system. Firstly, we rotate the co-
ordinate system of the two devices clockwise to make the
two coordinate systems in the same direction. Secondly, we
translate the coordinate system of IWR6843 consistent with
IWR1443. The translation formula is as follows:

x′ = xcos(θ)− ysin(θ)
y′ = xcos(θ) + ysin(θ)

where θ is the rotation angle of a coordinate system, (x,
y) is the coordinate of one point in the original coordinate
system, (x’, y’) is the coordinates of the point in new coordi-
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(a) Signal at t (b) Signal at t+ 1 (c) Signal after CFAR

Figure 3: The noise source. Signal B is a signal multi-
reflected by the static objects. Signal A is a signal multi-
reflected by walking people and static objects. Signal B will
be undone after static clutter removal algorithm (CFAR), be-
cause it is the same at time t and t+1. Signal A has changed
due to the walking people and cannot be undone.

(a) original 3D point cloud of
4 subjects

(b) original 2D point cloud of
4 subjects

(c) 3D point cloud of 4 sub-
jects after clustering

(d) 2D point cloud of 4 sub-
jects after clustering

Figure 4: The 2D and 3D point clouds of 4 people walking
at the same time.

nates after transformation.
Merging process. We merge the point clouds collected

by the two devices according to the timestamps of point
cloud. Firstly, we give each point cloud a new attribute
called the device name for recording the device ID that col-
lects the point clouds. Secondly, we combine the coordinate-
converted point clouds collected by the two devices into the
same file. Thirdly, In particular, we sort all point cloud ac-
cording to the collection time of the point clouds. We merge
the point clouds from two devices whose time difference is
less than a specified threshold. In our experiments, we set
the threshold to be 50ms. We find that the mean value of the
time difference of the merged point clouds is 24ms.

mmGaitNet

Neural Network Structure

The network directly consumes the point cloud takes into
account the unique properties of point cloud that the number
of points in point cloud is very small. If the point cloud is
mapped to a picture, there will generate a lot of redundant
data and the network consumption time will grow too high.
Points of 3D point cloud have five properties, range, mir-
ror speed, horizontal angle, pitching angle, and signal noise

Figure 5: Overview of mmGaitNet. COV 1 means a layer of
7×7 spatio-temporal convolutions kernel with 2×2 strides.
COV block means layer1 of ResNet18. COV 2 means a layer
of 3 × 3 spatio-temporal convolutions kernel with 1 × 1
strides. FC: a fully connected layer.

ratio. According to the distance, horizontal angle, pitching
angle of the points, we can derive the three-dimensional co-
ordinates of points. Correspondingly, the network consists
of five identical attribute networks T = {T1, T2, T3, T4, T5}
and a fusion network G as shown in Figure 5. The inputs
are point clouds’ five attributes X , Y , Z, V , and S, where
X , Y , Z denote the spatial location, V denotes the radial
speed and S denotes the signal strength of the points. These
attribute values represent different characteristics of a point.
In order to extract time and space information at the same
time, the input of each attribute network is a p × t matrix,
where p denotes the number of points in point cloud, and t
denotes time. The attribute features of point cloud extracted
by attribute network are not comprehensive enough to iden-
tify people. We need feature fusion network to fuse the fea-
tures extracted by each attribute network and distill the over-
all characteristics of the point cloud to identify people. The
final fully connected layer F output the class score which is:

scr = F (Cat(G(X), G(Y ), G(Z), G(V ), G(S))) (1)

where Cat(.) mean concatenate. The loss function of the net-
work is:

L(scr, l) = − log

(

exp (scr [l])
∑

j exp (scr [l])

)

= −scr [l] + log

⎛

⎝

∑

j

exp (scr [l])

⎞

⎠

(2)

The final classification result is the jth person marked as
shown in Figure 5, where j = max (scr).

Implementation and Training

Each attribute network takes 30 frames (3 seconds) of the
point cloud with a size of 128 points as input. In practice, the
practical number of points in a cloud always less than 128.
To solve the issue, we multi-copied the points a point cloud
as padding points of the point cloud if the point’s number of
the real point cloud is less than 128.

The attribute network uses 1 layer of convolution. It is a
7×7 spatio-temporal convolution with 2×2 strides. We use
batch normalization followed by ReLU activation functions
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Table 2: Accuracy of each person using IWR6843. (xvol-
sim 10(y)) means the case of x volunteers walking at the
same time. 10(y) means there are 10 or y volunteers in this
experiment.

People
Method

PL P-L DR Ours

1vol-sim 10(20) 36% 49% 60% 90%(80%)
2vol-sim 10(20) 20% 43% 51% 86%(72%)
3vol-sim 10(15) 28% 46% 44% 86%(76%)
4vol-sim 10(15) 7% 11% 21% 57%(62%)

5vol-sim 10 50% 15% 49% 58%

after the layer. We use the 3 × 3 max pooling with 2 × 2
strides. Next we use a residual blocks of ResNet18 (He et al.
2016) with 2× 2 strides and 3× 3 spatio-temporal convolu-
tions. We connect the feature values of the channel modules
together. The first layer is 3 × 3 spatio-temporal convolu-
tions with 1 × 1 strides. We use batch normalization fol-
lowed by the ReLU activation functions after the layer. We
use the Average pooling with 2×2 strides. We use a layer of
fully connected layer with 320 input to obtain classification
scores. The batch size is 32. The initial value of learning rate
lr is 0.01. For each 8 epoch we set lr = lr × 0.1. The op-
timization function of the network is Adam. We implement
our network in PyTorch.

Tasks and Benchmarks

We benchmark in different contexts of the data set, which
contains fixed routes, free routes and different scenes.

Data Preparation. When multiple volunteers walk on a
fixed route at the same time, the routes of volunteers who
are walking together are inconsistent. This is reflected in
the difference in the mean value of the x distribution. In
order to eliminate the influence of the route on gait recog-
nition, we normalize the point cloud of each volunteer. So
that the average value of each volunteer’s point cloud on x
is 0. mmGait is split into training and testing set with the
ratio 80% : 20%. We process the training set and the test-
ing set into two data formats to meet the requirements of
the visual data based neural network method and the neural
network method which directly consume point cloud. The
vision based approach requires the transformation of point
clouds into 3D voxel meshes. We map each point cloud to
a matrix with 20 × 20 × 40. The length of the unit grid is
0.05cm. We intercept 30 consecutive point clouds in the gait
sequence of human walking as a sample which is fed to the
network. The point cloud based approach requires us to pro-
cess point cloud into point cloud with fixed points. We ex-
tend the point cloud’s points to a fixed points by copying the
point cloud itself. We select 30 consecutive frames in the gait
sequence as input to the point cloud based neural network.

Benchmark Algorithms

Five existing point cloud classification methods Point-
Net (Qi et al. 2017a), PointNet++(Qi et al. 2017b),
DGCNN(Wang et al. 2018), mID (Zhao et al. 2019) and
ResNet is utilized to evaluate on our data set. We identify

Table 3: Accuracy of each person using two sensors.

People
Method

PL P-L DR Ours

1vol-sim 10(20) 36% 52% 33% 86%(80%)
2vol-sim 10(20) 32% 54% 42% 88%(84%)
3vol-sim 10(15) 40% 66% 37% 90%(88%)
4vol-sim 10(15) 28% 52% 27% 85%(80%)

5vol-sim 10 47% 52% 46% 88%

the identity of volunteers based on the point cloud sequence
generated by volunteers walking for a period of time. How-
ever, PointNet, PointNet++ and DGCNN are designed to
classify static objects, so we use them to extract the feature
of point cloud and then utilize LSTM to extract the time in-
formation. In the following, we introduce the five algorithms
in brief.

PointNet + LSTM (PL). PointNet is an architecture
that is designed for 3D point cloud classification. It uses
an asymmetric function to deal with the unordered points,
which makes the results invariant to the permutation of the
input points. PointNet uses a transformation network T-Net.
T-Net carries out the arbitrary transformation of point cloud
data or feature. In method PL, firstly, PointNet is used to ex-
tract features from point cloud. Secondly, the feature vector
is fed to LSTM to extract time characteristics. Thirdly, the
feature passes a fully connected layer to get the final classi-
fication result.

PointNet (no T-net) + LSTM (P-L). In the method P-
L, we remove the T-net network from PL. The reason lies
in that T-net destroys the consistency of the continuous gait
point cloud sequence.

DR. In the method DR, we remove the last two residual
blocks of ResNet18. It feeds the five attributes of point cloud
as five channels.

PointNet++ + LSTM (P+L). To address the lack of local
feature extraction and processing in PointNet, PointNet++
proposes a sample layer and grouping layer to take neigh-
bor points into consideration. By extracting features from
both raw points and grouping layers, PointNet++ can obtain
abundant multi-scale features. In the method P+L, LSTM is
used in the same way as PL.

DGCNN + LSTM (DGL). DGCNN is another method
which consumes the point cloud directly. DGCNN proposes
EdgeConv, which takes k adjacent points as graph structure
to extract local features. In the method DGLSTM, LSTM is
used in the same way as PL.

mID. The method utilizes bi-direction LSTM network
(BiLSTM) to classify point cloud sequences. Firstly, mID
maps the point cloud of the point cloud sequences to 3D
voxel grid to option the body shape of volunteer. Secondly,
the 3D voxel grid is flattened and converted into feature vec-
tor. Thirdly, the feature vector is fed to BiLSTM followed by
a fully connected layer to get the final classification result.
BiLSTM has 128 hidden units and 256 layers.
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Table 4: Accuracy of each person under different attributes.

Method noX noY noZ noV noS Ours

Accuracy 77% 83% 83% 82% 86% 90%

Accuracy of Benchmark Algorithms

The gait recognition in the scene of multiple people walking
at the same time is a key issue in the field of health supervi-
sion and behavior analysis in real life. Exploring the number
of people walking at the same time is critical to gait recogni-
tion. Gait recognition on a fixed route is a fundamental task
of gait recognition, which minimizes the impact of other fac-
tors on the results. We benchmark the data collected at the
situation multiple people walking on fixed route in scene1.
We first evaluate five algorithms with accuracy as the evalu-
ation metric.

The results of several methods with better performance
are shown in Table 2 and Table 3. Table 2 and Table 3
report the gait recognition performance on data collected
by IWR6843 and both IWR6843 and IWR1443 separately.
The experiments show two observations. Firstly, with the in-
crease of the number of people who are walking at the same
time, the accuracy of gait recognition declines. Secondly,
with the increase of the number of devices, the accuracy of
gait recognition increases especially when Co-existing mul-
tiple people. A further investigation on the experimental re-
sults shows the following findings. (i) T-Net is unsuitable for
the task since P-L performs better than PL. (ii) Each attribute
of a point cloud has its own characteristics since our method
performs better than DR.

The accuracy of other evaluation methods (P+l, DGL,
and mID) on our data set is only 15% on average. Point-
Net++ carries out down-sample to extract local features. Af-
ter down-sampling, the number of points is too sparse to ex-
tract local features. The experiment shows that our method
achieves the optimal performance on mmGait.

In reality, it is also possible for people to walk on any path,
thus free route walking should be considered. However, free
walking involves changing walking perspective at any time,
which brings extra challenges to gait recognition. In our ex-
periment, the recognition accuracy of our method over free-
route scenarios is 45%, while DR’s accuracy is only 33%,
PL and P-L are even worse (less than 20%), possibly due to
lack of ability to distill useful classification features in such
setting. We leave the problem for future exploration.

Efficiency of mmGaitNet

The running speed of our method is very fast. Our method
can return a gait recognition result within 1.5ms when it is
running on GPU. The reason lies in that our method con-
sumes point cloud unlike mID. mID map point cloud data to
3D space and generate a lot of extra spatial data. Hence, mID
is very slow, which needs 500ms to return a gait recognition
result when it is running on GPU.

Robustness of mmGaitNet

We conduct experiments in two different scenes, and the re-
sults show that the change of scenes has no effect on recog-

Table 5: Accuracy of each person under different input for-
mat of point cloud.

Method DR N32 N311 Ours

Accuracy 37% 80% 88% 90%

nition accuracy. In particular, we evaluate our method on the
data which is collected when two people are walking at the
same time in two scenarios. In scene1, our method achieves
an accuracy rate of 86%. In scene2, our method achieves an
accuracy rate of 93%. The experiments validate that mm-
GaitNet’s performance is resilient to environmental hetero-
geneity. The reason lies in that the mmWave sensor and our
signal processing algorithm is able to remove static reflec-
tion points from the different furniture in different environ-
ments.

Effect of Input

In order to explore the properties of point cloud data, we
design some contrast experiments. The results are shown in
Table 4, which demonstrates that each attribute plays an im-
portant role in the task. In Table 5, N32 feeds X, Y, Z as three
channels into one attribute network and feed radial velocity
and signal noise ratio as two channels into another attribute
network. N311 feeds X, Y, Z coordinate value into one at-
tribute network and feeds radial velocity and signal noise
ratio into another two attribute networks respectively. Table
5 illustrates that the similarity between coordinates, radial
velocity, and signal noise ratio is smaller than the similarity
between coordinates. What’s more, the attributes are inde-
pendent. They represent the different characteristics of the
point cloud.

Conclusion

In this work, we build a first-of-its-kind mmWave gait data
set. We evaluate multiple baseline gait recognition methods
using the data set and propose a new mmWave gait recog-
nition method mmGait. Compared with existing methods,
mmGait is able to achieve much higher recognition accuracy
even under multiple person co-existent scenarios. We plan to
make in-depth study to improve mmWave gait recognition
under more dynamic scenarios.
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