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Abstract

This paper demonstrates gait recognition using only the tra-
jectories of lower body joint angles projected into the walk-
ing plane. For this work, we begin with the position of
3D markers as projected into the sagittal or walking plane.
We show a simple method for estimating the planar off-
sets between the markers and the underlying skeleton and
joints; given these offsets we compute the joint angle tra-
jectories. To compensate for systematic temporal variations
from one instance to the next — predominantly distance and
speed of walk — we fix the number of footsteps and time-
normalize the trajectories by a variance compensated time
warping. We perform recognition on two walking databases
of 18 people (over 150 walk instances) using simple nearest
neighbor algorithm with Euclidean distance as a measure-
ment criteria. We also use the expected confusion metric as
a means to estimate how well joint-angle signals will per-
form in a larger population.

1. Introduction

There are numerous applications for computer vision that
require a system to automatically identify people or at least
verify their claimed identity. Gait is one of human charac-
teristics that researchers are investigating and hope to use as
a signature to recognize people. A walking pattern biomet-
ric is appealing from a surveillance standpoint because the
data can be measured unobtrusively and from a distance.
Walking is a complex dynamic activity that involves
many segments of the body moving and interacting with one
another and with the environment. There is evidence from
the psychology literature that when humans view degraded
displays of gait, they are still able to extract some identity
information. For example, experiments in [6, 10] show that
people can indicate some identity from the subjects’ move-
ment even when viewing only a moving point-light display.
There are many properties of gait that might serve as
recognition features. We can categorize them as static fea-

tures and dynamic features that evolve in time. Static fea-
tures reflect instantaneous, geometry-based measurements
such as stride length [e.g. [9]]. Dynamic measurements, in
contrast, are sensitive to the temporal structure of the activ-
ity. In this work, we analyze only dynamic features, namely
lower-body (hip and knee) joint-angle trajectories. Our goal
is to determine the extent of identity information present in
this type of data.

1.1. Approach

The approach we take here is to look at joint-angle trajecto-
ries derived from motion capture data. Our reason for con-
sidering motion capture data is that we are primarily inter-
ested in determining feasible methods for extracting iden-
tity information from the joint angle data. Because we are
evaluating the efficacy of such an approach, we consider the
ideal case where the joint angle data can be known as well
as possible. This will enable the evaluation of particular
methods of determining identity independent of the ability
to recover such information.

Having said this, we note that in the approach we present
we consider only the joint angles projected into the sagittal
or walking plane. Our reasons for doing so are two fold.
First, as will describe, such joint angles are more robust to
derive from marker data than complete, full degree of free-
dom joint angle specifications. Second, the walking plane
jointangles are likely to be the most easily determined joint
angles for visual methods. Previous work on gait recogni-
tion that employ frontal parallel views are also motivated by
such an assumption.

In the remainder of this paper, we first consider some
previous work on the recovery of identity from gait. Next
we describe the sagittal joint-angle estimation method we
apply to the motion capture data. Given these joint-angle
trajectories we devise a temporal normalization that will al-
low comparisons across subjects. Using a database of 18
people we evaluate the efficacy of attempting recognition
from joint-angle data; we report not only percent correct



but also the ability of the data to filter the population for
verification.

1.2. Previous work

In vision research, there is a growing number of efforts in-
vestigating whether machines can recognize people from
gait. Example work includes appearance based approaches
where the actual appearance of the motion is characterized
[9, 5, 11, 8]. Alternatively, there is work that attempts to
model the physical structure of a person, recover that struc-
ture, and then recognize the identity. For example, in [13],
they detect gait patterns in a video sequence, fit a 2D skele-
ton of human body to the imagery, estimate lower-body
joint angles from the model, and then perform recognition.
They employ a small walking database and report reason-
able results.

There is also relevant work in the computer animation
field, including that of recovering underlying human skele-
tons from motion capture data [14, 16] and analyzing and
adjusting characteristics of joint angle signals [4, 3, 2, 17].

2. Recovering normalized joint angle
trajectories

Here we describe the basic motion capture mechanism, the
conversion to sagittal-plane projected joint angles, and the
temporal normalization that results in comparable joint an-
gle trajectories.

2.1. Motion capture

Our data are collected using an Ascension electro-magnetic
motion capture system. The user wears 16 sensors, each
measuring the six degrees of freedom (DOFs) of position
and orientation. We place one sensor on each of the ankles,
lower legs, upper legs, hands, lower arms, upper arms, one
on the head, one of the pelvis and 2 on the torso. Figure 1
is an example of a typical setup in our experiment and fig-
ure 2 shows the sensors configuration of the lower part of
the body projected into the sagittal or walking plane. The
data are captured at 30 Hz and directly recorded.

For the work reported here, we focus on the joint angles
most likely to be recoverable from vision: the sagittal plane
joint angles of the lower body. Continued efforts are on-
going to recover such joint-angle data from video (e.g. [1]
and much work in vision based gait recognition presumes
frontal-parallel imagery.

2.2. Skeleton fitting

Because each sensor reports orientation directly, it is possi-
ble to estimate the joint angle between two connected limbs
with internal angle between the two sensors spanning the

Figure 1: Experimental apparatus of our motion capture system.
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Figure 2: Markers considered in our experiment as viewed in the
walking plane .

articulation. Such an estimate assumes that the sensors are
parallel to the underlying skeleton.

In an initial study of recognition from joint-angle trajec-
tories, we found that such estimated joint angles gave re-
markably high recognition rates within a single database.
In this database, each subject donned the motion capture
equipment once and was recorded performing a number of
walks across the platform. To further test the recognition
method we captured and additional data set from a subset
of the same subjects. The recognition rate plummeted. The
difficulty was that there were biases in the data related to
how the motion capture suit was worn. The high recogni-
tion rate arose from only using one recording session per
subject. The recognition method exploited a bias in the sig-
nal caused by the actual placement of the markers on the
subject.

This experience necessitated the estimation of joint angle
trajectories that was as insensitive as possible to the details
of the motion capture session. To accomplish this, we de-
veloped the following skeleton estimation method.

In [14], they present an algorithm for recovering a skele-
ton from magnetic motion capture data using both posi-
tion and orientation information. The algorithm works well
if data has only small noise and subjects exercise enough
DOFs for each joint. Our data, however, did not fully ex-
ercise all the DOFs and therefore would induce numerical
instabilities in such a skeleton recovery.

The above technique, as well as in [16], proceed by esti-
mating one joint location at a time (two limbs and one joint)
and then assuming the body joints are spherical. The basic



Figure 3: Stabilize two markers as a fixed axis and let the other
marker move respect to that axis.

idea for calculating the joint location is to stabilize or fix
one limb and let the other limb rotate. To stabilize the two
body systems over time, we need to know at least the orien-
tation of one body.

By operating in the sagittal plane, we eliminate both the
issue of excessive DOFs, and the question of which artic-
ulated element to fix. First, by considering just position,
it is straightforward to see that if there is little or no out-
of-plane motion of a limb, then the relative movement of a
limb is a circle centered about the joint to which the limb is
attached. Second, people normally do not bend their backs
while they walk. The back axis calculated from two sensors
on the back then can be used in the stabilization process to
find the hip joints, the angle between the femur and then
back.

Figure 3 shows the case where we fix two sensors (A and
B) on the back and let a sensor (C) on the upper leg move
respect to those sensors. Using the trivial, two-dimensional
planar version of the spherical equation in [16], we can
solve for joint locations in the two-dimensional coordinate
system defined by the back:

N
arg min Z(\/(x, —20)2+ (yi —w0)? —1)> (1)
r,20,Y0 i—1

Once we locate the hip joints, we can then propagate the
results to find knee joints by stabilizing the estimated hip
joint and the upper leg sensor and considering the trajectory
of the lower leg.

Each time we propagate the results, errors accumulate.
In our case we can estimate reasonably well the hip and
knee joints (and therefore the angle at the hip between fe-
mur and back). The location of the ankle joint is difficult
to determine because the motion of the foot about the ankle
joint is small. Instead, we approximate the location of the
ankle joint by the location of the foot marker. Because the
distance between the foot marker and the true ankle joint
is small with respect to the distance between the knee joint
and the ankle joint, this approximation is acceptable. Fig-
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Figure 4: Sensor positions and recovered joint locations at 3 dif-
ferent time instants.
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Figure5: Joint-angle trajectories from several subjects.

ure 4 shows an estimated skeleton in a walk sequence at
three different time instants.

2.3. Joint angle trajectories

Estimating an underlying skeleton enables us to measure the
joint angle trajectories of four joints: left and right hips’,
left and right knees’ angles. Figure 5 shows 4 joint signals
from several walk instances. It is the variation in these joint
signals that we wish to consider as information for identity.

Differences in body morphology and dynamics (e.g.
height and strength) cause joint-angle trajectories to differ
in both magnitude and time and also the number of foot
steps taken to cover a fixed distance. To analyze these sig-
nals for recognition, we need to normalize them with re-
spect to duration and foot step count (or walk cycles).

To standardize the number of foot steps, we use the dif-
ference in foot sensors displacement to segment different
parts of walk cycles consistently across the subjects (see
Figure 6). Typically peaks of the difference in the foot sen-
sor displacement curve are easy to detect. We, therefore,
choose to segment each walk using those peaks as bound-
aries. Since the magnetic motion capture system works well
over a short range, we can select only one and a half walk-
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Figure6: Left-foot and right-foot sensor x-coordinates and its dif-
ference over time.
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Figure 7: Joint-angles trajectories with same structure (same
number of steps)

ing cycles from each of our subjects’ walks. Figure 7 shows
several segmented joint angle trajectories.

We now have the signals with the same structure (one
and a half cycles). Time-normalization is needed for ad-
justing the signals to have the same length. Dynamic Time
Warping (DTW) is a well-known technique to perform non-
linear time alignment. [3] applied this technique to align
joint angle trajectory in an animation application.

DTW works well for signals shifting, stretching, or
shrinking in time, but not for shifting or changing in mag-
nitude. Sometimes, the signals are noisy due to some sys-
tematic errors. Therefore, instead of using the joint angle
trajectories in the warping process, we perform a variance
normalization to reduce the effect of noise by subtracting
the mean of each signal and then by dividing by the esti-
mated standard deviation. This normalized signal has unit
variance and can be more effective in performing matching
in the dynamic time warping algorithm because all dimen-
sions are weighted equally. Once we complete the DTW
process on the variance-normalized data, we use the recov-
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Figure 8: Time-normalized joint-angle trajectories

ered distortion map to align temporally the original (not
variance compensated) signals to some arbitrary reference.
Figure 8 shows the results after we time-normalize the orig-
inal signals. It is the differences between these traces that
represents the remaining identity information.

3. Gait recognition experiments
3.1. Data collection

We first captured 18 people walking with the magnetic mo-
tion capture suit. We attempted to place the sensors at sim-
ilar body locations for all subjects. Each individual per-
forms 6 walks of approximately same distance (4.0m). Be-
fore we use the 2D positions of the markers to estimate the
joint locations, we filter the data using a technique similar
to [17]. Taking all the data for each subject, we recover
hip and knee joint locations. The underlying skeleton is
connected through these joints and foot sensors and joint
angle trajectories are recovered. We normalize the number
of steps for all data to have one and a half walking cycles
as shown in Figure 7. Then we perform time-normalization
on unit-variance signals using DTW. We select randomly a
walk sequence from the database to be a walking template
and then we time-warp all the data to that template. Af-
ter the signal normalization process, all the signals have the
same footstep structure and same temporal length.

We also created another database by capturing walking
data from 8 of the initial 18 subjects. This capture session
took place months later than the first one. Again, each sub-
ject performs 6 walks. Skeleton recovery and temporal nor-
malization were performed as before.

3.2. Recognition results

Our initial database has 106 time-normalized signals from
18 people. Using the nearest-neighbor technique, we can



Table 1: The recognition results using the nearest neighbor from
both databases.

| Database | Recognition Results

Database 1 (18 people, 106 walks) 78/106 = 73%

Database 2 (8 people, 48 walks) 20/48 = 42%

match against database 1

Table2: The expected confusion numbers on 4-subspace features.

Database Expected confusion
number
Database 1 (18 people, 106 walks) 0.097
Database 2 (8 people, 48 walks) 0.15
Database 3 (8 people, 96 walks) 0.27

count how many times we can recognize a particular walk
in the database. For each walk in the database, we find the
closest walk using direct Euclidean distance as a measure-
ment. If the closest match comes from the same individual,
we count as correctly classified. For those 106 walks, we
correctly classify 78 walk instances, or 73% (table 1).

We also perform recognition of database 2 against
database 1. In the parlance of the face recognition com-
munity, we use database 1 as the gallery and each trial of
database 2 as the probes [12]. For each walk in the second
database, we find the nearest neighbor match from the first
database, and consider it correct if it comes from the same
subject. As show in Table 1, we classify correctly 20 out of
48 probes, or 42%.

Comparing to a random guess result — 1 out of 18 or 6%
— the recognition results indicate that there is indeed iden-
tity information in the joint-angle trajectories that can be
exploited in recognition tasks. The lower recognition rate
in our second experiment is the combined effect of an arti-
ficially high result caused by session bias when using only
one database, and the noise in the joint recovery algorithm
in general. Such difficulties suggest that merely reporting
recognition results is inadequate, and that better measures
of discrimination are required.

One such measure of performance proposed in the face
recognition community is known as a "Cumulative Match
Characteristic” (CMC) curve (e.g. [12]). This curve indi-
cates the probability that the correct match is included in
the top n matches. If we use the term gallery to mean the
group of walking data in database 1 (of size m), and the term
probe to mean an unknown walking data in database 2 to be
compared to the entire gallery. In figure 9, the horizontal
axis shows the top rank, n, or the n closest matches returned
from a gallery of size m. In this case, we show only up to

Cumulative match score
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Figure9: Cumulative Match Characteristic (CMC)

rank 15th. The vertical axis shows the probability that the
correct match happens to be in the top n matches.

3.3. Expected confusion

Even though we have performed this experiment with 18
people and over 150 walks, the database size is still con-
sidered small. The recognition numbers usually depend on
how many people and how many instances of them are in
the database. Sometimes the numbers do not tell us much
about the scalability or the expected performance of the fea-
tures used in a larger database.

In [9], they introduce a new metric that predicts how well
a given feature vector will filter identity in a larger database.
The basic idea of this metric is to measure, on average, the
ratio of the average individual variation of the feature vec-
tors to the variation of that feature vector over the popu-
lation. This ratio is shown to be equivalent to the average
percentage of the population with which any given individ-
ual will be confused. The simple formula for computing
this ratio is:

|2

Expected Confusion = —————.
P DARE

()

where ¥; is the average covariance mean for all individu-
als in the database, and X, is the covariance for the entire
population in the database.

This metric is appropriate only in a small feature space
where the probability densities can be reasonably estimated.
In our work, the features are joint-angle signals of four
joints (hips and knees). Usually the normalized signals that
we used in the recognition lie within 2 seconds or 60 time
samples. To calculate the nearest neighbor, we concatenate
the four joint-angle signals into one long signal of dimen-
sionality 240 for each walk instance. This yields a feature
space too large to perform any probability density estimates.

To reduce the dimension of the data, we use principal
component analysis (PCA). Analysis of variance indicates
that the first four eigenvectors capture approximately 75%



of the variance, and adding more vectors does not improve
the result significantly. Thus we projected the 240 dimen-
sional vectors into that four-dimensional subspace and used
the coefficients as the new feature space.

Using this reduced feature space we estimated the ex-
pected confusion components. For database 1 (18 people,
106 walks), the expected confusion number is 0.097. For
database 2 (8 people, 48 walks), the number is 0.15. We
also want to calculate the expected confusion number if we
combine the two databases together. Since the number of
subjects in both databases are not the same, we combine the
data from the same 8 people and call it database 3. For
database 3 (8 people, 96 walks), the expected confusion
number is 0.27. The growth in expected confusion in this
combined database is due to variation in data collection: the
additional collection enlarged the variation of data for any
given subject.

4. Summary and conclusions

This paper presents work of human gait recognition that an-
alyzes joint-angle trajectories measured from normal walks.
We choose to use a motion capture system as a tool to mea-
sure human movement because our goal is to assess the po-
tential identity information contained in gait data. As many
vision systems become more robust and can reliably track
human limbs and recover actual joint angles, the recognition
from visual data should reflect the results presented here.

We present a method for recovering human joint loca-
tions in the walking plane. Using those joints, we can re-
cover the joint angle trajectories. By normalizing these sig-
nals so that they have the same structure (same number of
steps) and the same duration, we show that the remaining
variation contains significant identity information that can
be exploited in recognition tasks.
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