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Gait is one of the few biometrics that can be measured at a distance, and is hence useful for passive surveillance as well as biometric
applications. Gait recognition research is still at its infancy, however, and we have yet to solve the fundamental issue of finding
gait features which at once have sufficient discrimination power and can be extracted robustly and accurately from low-resolution
video. This paper describes a novel gait recognition technique based on the image self-similarity of a walking person. We contend
that the similarity plot encodes a projection of gait dynamics. It is also correspondence-free, robust to segmentation noise, and
works well with low-resolution video. The method is tested on multiple data sets of varying sizes and degrees of difficulty. Perfor-
mance is best for fronto-parallel viewpoints, whereby a recognition rate of 98% is achieved for a data set of 6 people, and 70% for
a data set of 54 people.

Keywords and phrases: gait recognition, human identification at a distance, human movement analysis, behavioral biometrics,
pattern recognition.

1. INTRODUCTION

1.1. Motivation

Gait is a relatively new and emergent behavioral biometric
[1, 2] that pertains to the use of an individual’s walking style
(or “the way he walks”) to determine identity. Gait recogni-
tion is the term typically used in the computer vision com-
munity to refer to the automatic extraction of visual cues that
characterize the motion of a walking person in video and is
used for identification purposes. Gait is particularly an at-
tractive modality for passive surveillance since, unlike most
biometrics, it can be measured at a distance, hence not re-
quiring interaction with or cooperation of the subject. How-
ever, gait features exhibit a high degree of intraperson vari-
ability, being dependent on various physiological, psycholog-
ical, and external factors such as footwear, clothing, surface
of walking, mood, illness, fatigue, and so forth. The question
then arises as to whether there is sufficient gait variability be-
tween people that can discriminate them even in the presence
of large variation within each individual.

There is indeed strong evidence originating from psy-
chophysical experiments [3, 4, 5] and gait analysis research

(a well-advanced multidisciplinary field that spans kinesi-
ology, physiotherapy, orthopedic surgery, ergonomics, etc.)
[6, 7, 8, 9, 10] that gait dynamics contain a signature that is
characteristic of, and possibly unique to, each individual.

From a biomechanics standpoint, human gait consists of
synchronized, integrated movements of hundreds of mus-
cles and joints of the body. These movements follow the
same basic bipedal pattern for all humans, and yet vary
from one individual to another in certain details (such as
their relative timing and magnitudes) as a function of their
entire musculo-skeletal structure, that is, body mass, limb
lengths, bone structure, and so forth. Because this struc-
ture is difficult to replicate, gait is believed to be unique to
each individual and can be completely characterized by a
few hundred kinematic parameters, namely, the angular ve-
locities and accelerations at certain joints and body land-
marks [6, 7]. Achieving such a complete characterization au-
tomatically from low-resolution video remains an open re-
search problem in computer vision. The difficulty lies in that
feature detection and tracking is error prone due to self-
occlusions, insufficient texture, and so forth. This is why
computer-aided motion analysis systems still rely on special
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wearable instruments, such as LED markers, and walking
surfaces [9].

Luckily, we may not need to recover 3D kinematics for
gait recognition after all. In Johansson’s early psychophysical
experiments [3], human subjects were able to recognize the
type of movement solely by observing light bulbs attached
to a few joints of the moving person. The experiments were
filmed in total darkness so that only the bulbs, a.k.a. moving
light displays (MLDs), are visible. Similar experiments later
suggested that the identity of a familiar person (“a friend”)
[5], as well as the gender of the person [4], may be recogniz-
able from their MLDs. While it is widely agreed that these ex-
periments provide evidence about motion perception in hu-
mans, there is no consensus on how the human visual system
actually interprets this MLD-type stimuli. Two main theories
exist: the first maintains that people recover the 3D struc-
ture of the moving object (person) and subsequently uses
it for recognition; the second theory states that motion in-
formation is directly used for recognition, without structure
recovery in the interim [11]. This seems to suggest that the
raw spatiotemporal (XYT) patterns generated by the person’s
motion in an MLD video encode information that is suffi-
cient to recognize their movement.

In this paper, we describe a novel gait recognition
technique that derives classification features directly from
these XYT patterns. Specifically, it computes the image self-
similarity plot (SSP), defined as the correlation of all pairs of
images in the sequence. Normalized feature vectors are ex-
tracted from the SSP and used for recognition. Related work
has demonstrated the effective use of SSP’s in recognizing dif-
ferent types of biological periodic motions, such as those of
humans and dogs, and applied the technique for human de-
tection in video [12]. We use them here to classify the move-
ment patterns of different people. We contend that the SSP
encodes a projection of planar gait dynamics and hence a
2D signature of gait. Whether it contains sufficient discrim-
inant power for accurate recognition is what we set to deter-
mine.

As in any pattern recognition problem, these methods
typically consist of two stages: a feature extraction stage that
derives motion information from the image sequence and or-
ganizes it into some compact form (or representation), and
a recognition stage that applies some standard pattern clas-
sification technique to the obtained motion patterns, such as
K-nearest neighbor (KNN), support vector machines (SVM),
and hidden Markov models (HMM). In our view, the crux of
the gait recognition problem lies in perfecting the first stage.
The challenge is in finding motion patterns that are suffi-
ciently discriminant despite the wide range of natural vari-
ability of gait, and that can be extracted reliably and con-
sistently from video. The method of this paper is designed
with these two requirements in mind. It is based on the SSP
which is robust to segmentation noise and can be computed
correspondence-free from fairly low-resolution images. Al-
though this method is view-dependent (since it is inher-
ently appearance-based), this is circumvented via view-based
recognition. The method is evaluated on several data sets of
varying degrees of difficulty, including a large surveillance-

quality outdoor data set of 54 people, and a multiview data
set of 12 people taken from 8 viewpoints.

1.2. Assumptions

The method makes the following assumptions:

(i) people walk with constant velocity for about 3–4 sec-
onds;

(ii) people are located sufficiently far from the camera;

(iii) the frame rate is greater than twice the frequency of the
walking;

(iv) the camera is stationary.

1.3. Organization of the paper

The rest of the paper is organized as follows. Section 2 dis-
cusses related work in the computer vision literature and
Section 3 describes the method in detail. We assess the per-
formance of the method on a number of different data sets
in Section 4, and finally conclude in Section 5.

2. RELATED WORK

Interest in gait recognition is best evidenced by the near-
exponential growth of the size of related literature over the
past few years [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32]. Gait recognition is generally related
to human movement analysis methods that automatically
detect and/or track human motion in video for a variety of
applications-surveillance, videoconferencing, man-machine
interfaces, smart rooms, and so forth. For good surveys on
this topic, see [11, 33, 34]. It is perhaps most closely asso-
ciated with the subset of methods that analyze whole-body
movement, for example, for human detection [12, 35, 36]
and activity recognition [37, 38, 39, 40].

A common characteristic to all of these methods is that
they consist of two main stages: a feature extraction stage
in which motion information is derived from the image se-
quence and organized into some compact form (or represen-
tation), and a recognition stage in which some standard pat-
tern classification technique is applied to the obtained mo-
tion patterns, such as KNN, SVM, and HMM. We distin-
guish two main classes of gait recognition methods: holis-
tic [14, 15, 16, 17, 18, 19, 23, 24, 25, 28, 29, 30, 31, 32] and
feature-based [20, 21, 22, 26, 27, 41, 42, 43, 44]. The holis-
tic versus feature-based dichotomy can also be regarded as
global versus local, nonparametric versus parametric, and
pixel-based versus geometric. This dichotomy is certainly re-
current in pattern recognition problems such as face recog-
nition [45, 46]. In the sequel, we describe and critique ex-
amples from both approaches, and relate them to our gait
recognition method.

2.1. Holistic approach

The holistic approach characterizes body movement by the
statistics of the XYT patterns generated in the image se-
quence by the walking person. Although typically these pat-
terns have no direct physical meaning, intuitively they cap-
ture both the static and dynamic properties of body shape.
There are many ways of extracting XYT patterns from the
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image sequence of a walking person. However, in a nutshell,
they all either extract raw XYT data (namely, the temporal
sequence of binary/color silhouettes or optical flow images),
or a mapping of this data to a more terse 1D or 2D signal.

Perhaps the simplest approach is to use the sequence of
binary silhouettes spanning one gait cycle and scaled to a cer-
tain uniform size [15, 32]. The method of [30] differs slightly
from this in that it uses silhouettes corresponding to certain
gait poses only, namely, the double-support and mid-stance
poses. Classification is achieved either by directly compar-
ing (correlating) these silhouette sequences [30, 32] or by
first projecting them onto a smaller subspace (using princi-
pal components analysis [15] and/or Fisher’s linear discrim-
inant analysis [17]), then comparing them in this subspace.
Although excellent classification rates are reported for some
of these methods (particularly [30]), they are the most sen-
sitive (among holistic methods) to any variation in the ap-
pearance of the silhouette whether due to clothing and cam-
era viewpoint or to segmentation noise. Nonetheless, these
methods are the simplest and hence provide good baseline
performance against which to evaluate other more contrived
gait recognition methods.

Rather than using the entire silhouette, other methods
use a signature of the silhouette by collapsing the XYT data
into a more terse 1D or 2D signal(s), such as binary shape
moments, vertical projection histograms (XT), and horizon-
tal projection histograms (YT) [14, 18, 28, 30, 31]. Niyogi
and Adelson [14] extract four (2D) XT sheets that encode
the person’s inner and outer bounding contours. Similarly,
Liu et al. [31] extract the XT and YT projections of the bi-
nary silhouettes. He and Debrunner [18] compute a quan-
tized vector of Hu moments from the person’s binary silhou-
ette at discrete gait poses and use them for recognition via
an HMM. The method of Kale et al. [28] is quite similar to
this, except that they use the vector of silhouette widths (for
each latitude) instead of Hu moments. Certainly, the SSP of
the present paper is a mapping of the sequence of silhouettes
to a 2D signal. However, while the SSP is quite robust to the
segmentation noise in binary silhouettes, signals derived di-
rectly from binary silhouettes are typically very sensitive to
segmentation noise even with smoothing.

A third category of holistic methods apply two levels of
aggregation on the XYT data, and not one [16, 19, 23, 29].
They first map the XYT data of the walking person into one
or more 1D signals, then aggregate these into a feature vector
by computing the statistics of these signals (such as their first-
and second-order moments). Lee and Grimson [29] fit el-
lipses to seven rectangular subdivisions of the silhouette then
compute four statistics (first and second-order moments) for
each ellipse, and hence obtain 28 1D signals from the entire
silhouette sequence. Finally, they use three different methods
for mapping these signals to obtain a single feature vector for
classification.

Little and Boyd [16] use optical flow instead of binary
silhouettes. They fit an ellipse to the dense optical flow of
the person’s motion, then compute thirteen scalars consist-
ing of first- and second-order moments of this ellipse. Pe-
riodicity analysis is applied to the resulting thirteen 1D sig-

nals, and a 12D feature vector is computed consisting of the
phase difference between one signal and all other twelve sig-
nals. Recognition is achieved via exemplar KNN classifica-
tion in this 12D feature space. These features are both scale-
invariant and time-shift invariant so that no temporal scaling
nor alignment is necessary.

Obviously, the advantage of the holistic approach lies in
that it is correspondence-free, and hence simple to imple-
ment. Its main drawback is that the extracted features are in-
herently appearance-based, and hence likely to be sensitive
to any factors that alter the person’s silhouette, particularly
camera viewpoint and clothing. Viewpoint dependence can
be remedied by estimating the viewpoint of the walking per-
son and using view-based recognition. However, it is not ob-
vious how or whether the clothing sensitivity problem could
be solved.

2.2. Feature-based approach

The feature-based approach recovers explicit features (or pa-
rameters) describing gait dynamics, such as stride dimen-
sions and the kinematics, of joint angles. Although human
body measurements (i.e., absolute distances between cer-
tain landmarks, such as height, limb lengths, shoulder width,
head circumference, etc.) are not descriptors of body move-
ment, they are indeed determinants of that movement, and
hence can also be considered as gait parameters.

Bobick and Johnson [22] compute body height, torso
length, leg length, and step length for identification. Us-
ing a priori knowledge about body structure at the double-
support phase of walking (i.e., when the feet are maximally
apart), they estimate these features as distances between fidu-
cial points (namely, the midpoint and extrema) of the binary
silhouette. Obviously, the accuracy of these measurements is
very sensitive to segmentation noise in the silhouette, even if
they are averaged over many frames.

In [42], Davis uses a similar approach to compute the
stride length and cadence, though he relies on reflective
markers to track 3D trajectories of head and ankle. With
measurements obtained from 12 people, he is able to train a
linear perceptron to discriminate the gaits of adults and chil-
dren (3–5 years old) to within 93% accuracy. BenAbdelkader
et al. describe a more robust method to compute stride di-
mensions, which exploits not only the periodicity of walking
but also the fact that people walk in contiguous steps [44]. In
related work [26], they further estimate the height variation
of a walking person by fitting it to a sinusoidal model and use
the two model parameters along with the stride dimensions
for identification.

The kinematics of a sufficient number of body land-
marks can potentially provide a much richer, and perhaps
unique, description of gait. Bissacco et al. [27] fit the tra-
jectories of 3D joint positions and joint angles to a discrete-
time continuous-state dynamical system. They use the space
spanned by the parameters of this model for recognizing dif-
ferent gaits. Tsai et al. [41] use one cycle of the XYZ curvature
function of 3D trajectories of certain points on the body for
identification.
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Figure 1: Overview of method.

The major strength of this approach lies in that it uses
classification features that are known to be directly pertinent
to gait dynamics, unlike its holistic counterpart. Another ad-
vantage is that it is in principle view-invariant since it uses
3D quantities for classification. However, its measurement
accuracy degrades for certain viewpoints as well as at low res-
olutions. Obviously, accurate measurement of most of these
gait parameters requires not only accurate camera calibration
but also accurate detection and tracking of anatomical land-
marks in the image sequence. The feasibility of this approach
is currently very limited mainly due to the difficulty of au-
tomatic detection and tracking in realistic (low-resolution)
video. For example, all of [27, 41, 42] use 3D motion capture
data or semimanually tracked features in order to avoid the
automatic detection and tracking problem altogether.

3. METHOD

The proposed gait recognition method characterizes gait in
terms of a 2D signature computed directly from the sequence
of silhouettes, that is, the XYT volume of the walking person.
This signature consists of the SSP, which was first introduced
in [47] for the purpose of motion classification, and is de-
fined as the matrix of cross-correlation between each pair of
images in the sequence. The SSP has the advantage of being
correspondence-free and robust to segmentation and track-

ing errors. Also, intuitively, it can be seen that the SSP en-
codes both the static (first-order) properties and temporal
variations of body shape during the walking.

The method can be seen as a generic pattern classifier
[48, 49] composed of the three main modules shown in
Figure 1. First, the moving person is segmented and tracked
in each frame of the given image sequence (preprocessing
module). Then the SSP is computed from the obtained sil-
houette sequence, and properly aligned and scaled to account
for differences in gait frequency and phase, thus obtaining a
set of normalized feature vectors (feature measurement mod-
ule). Finally, the person’s identity is determined by applying
standard classification techniques on the normalized feature
vectors (pattern classification module). Sections 3.1, 3.2, and
3.3 discuss each of these modules in detail.

3.1. Preprocessing

Given a sequence of images obtained from a static camera, we
detect and track the moving person then compute the cor-
responding sequence of motion regions (or blobs) in each
frame. Motion segmentation is achieved via a nonparamet-
ric background modeling/subtraction technique that is quite
robust to lighting changes, camera jitter, and to the pres-
ence of shadows [50]. Once detected, the person is tracked
in subsequent frames via simple spatial coherence, namely
based on the overlap of blob bounding boxes in any two
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Figure 2: The SSP can be computed from the sequence of silhouettes corresponding to the original image, the foreground image, or the
binary image (from left to right).

consecutive frames [51]. The issue of determining whether
a foreground blob indeed corresponds to a moving person is
addressed in the feature measurement module.1 Specifically,
we use the cadence-based technique described in [35] which
simply verifies whether the computed cadence is within the
normal range of human walking (roughly 80–145 steps/m).

Once a person has been tracked forN consecutive frames,
a sequence of N corresponding silhouette templates is cre-
ated as follows. Given the person’s blob in each frame, we
extract the (rectangular) region2 enclosed within its bound-
ing box either from (1) the original color/greyscale image,
(2) the foreground image, or (3) the binary image, as shown
in Figure 2. Clearly, there are competing trade-offs to using
either type of template in measuring image similarity (when
computing the SSP). The first is more robust to segmentation
errors. The third is more robust to clothing and background
variations. The second is simply a hybrid of these two; it is ro-
bust to background variations but sensitive to segmentation
errors and clothing variations.

3.2. Feature measurement

3.2.1. Silhouette template scaling

The silhouette templates need to be first scaled to a standard
size to normalize for depth variations (Figure 3). It is worth
noting that this will only work for small depth changes. Large
depth changes may introduce nonlinear variations (such as
loss of detail and perspective effects) and hence cannot be
normalized merely via a linear scaling of the silhouettes.

The apparent size of a walking person varies at the fre-
quency of gait, due to the pendular-like oscillatory motion
of the legs and arms, and consequently the width and height
of a person’s image also vary at the fundamental frequency
of walking. Specifically, let w(n) and h(n) be the width and

1The only reason this is not done in the current module is for the sake of
modularity, since cadence is computed in the second module.

2The cropped region also includes an empty 10-pixel border in order to
allow for shifting when we later compute the cross-correlation of template
pairs.

height of the nth image (template) of the person. According
to gait analysis literature [6], w(n) and h(n) can be approxi-
mated as sinusoidal functions:

w(n) = mw(n) + Aw sinωn + φ,

h(n) = mh(n) + Ah sinωn + φ,
(1)

where ω is the frequency of gait (in radians per frame) and φ
is the phase of gait (in radians). Note that mw(n) is the mean
width and Aw is the amplitude of oscillation (around this
mean). The same can be said about mh(n) and Ah, respec-
tively, for height. Furthermore, in fronto-parallel walking,
mw(n) and mh(n) are almost constant, while in non-fronto-
parallel walking, and due to the changing camera depth,
they increase/decrease approximately linearly (i.e., in a linear
trend): mw(n) ≅ αwn + βw and mh(n) ≅ αhn + βh. Figure 3
illustrates these two different cases.

Therefore, in order to account for template size variation
caused by camera depth changes (during non-fronto parallel
walking), we first de-trend them:

ŵ(n) = w(n)− αwn = βw + Aw sinωn + φ,

ĥ(n) = h(n)− αhn = βh + Ah sinωn + φ,
(2)

so that the templates now have equal mean width and height.

Note, however, that we need ŵ(n)/w(n) = ĥ(n)/h(n) for all
n, that is, αw/αh = w(n)/h(n), so that each template can
be uniformly scaled along its width and height. In other
words, we need the width-to-height aspect ratio to remain
constant throughout the sequence. This is a valid assump-
tion since the person is sufficiently far from the camera, bar-
ring abrupt/sharp changes in person’s pose with respect to
the camera.

Finally, the templates are scaled one more time so that
their mean height is equal to some given constant H0 (we
typically use H0 = 50 pixels):

h̃(n) = ĥ(n) ·
H0

βh
= H0 + Ãh sinωn + φ. (3)
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Figure 3: Template dimensions in pixels for (a), (b) a fronto-parallel sequence, (c), (d), (e), and (f) two non-fronto-parallel sequences
(bottom two rows). The width and height increase when the person walks closer to the camera (middle row), and decrease as the person
moves away from the camera (bottom row). The red lines correspond to the linear trend in both these cases.
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Figure 4: The SSPs for (a) a fronto-parallel sequence and (b) a non-fronto-parallel sequence computed here using foreground templates.
Similarity values are linearly scaled to the gray scale intensity range [0, 255] for visualization. The local minima of each SSP correspond to
combinations of key poses of gait (labelled A, B, C, and D).

3.2.2. Computing the self-similarity plot

Let Ii be the ith scaled template with size w̃i × h̃i (in pixels).
The corresponding SSP S(i, j) is computed as the absolute
correlation3 of each pair of templates Ii and I j , minimized
over a small search radius r, namely,

S(i, j)

= min
|dx|<r, |dy|<r

∑

|x|≤W/2

∑

|y|≤H/2

∣

∣I j(x + dx, y + dy)− Ii(x, y)
∣

∣,

(4)

where W = min(w̃i, w̃ j−2r) and H = min(h̃i, h̃ j−2r) so that
the summation does not go out of bounds. Although ideally
S should be symmetric, it typically is not, unless r = 0.

Figure 4 highlights some of the properties of S for fronto-
parallel and non-fronto-parallel walking sequences. The di-
agonals are due to the periodicity of gait, while the cross-
diagonals are due to the temporal mirror symmetry of the
gait cycle [47]. The intersections of these diagonals, that is,
the local minima of S, correspond to key poses of the gait
cycle: the mid-stance (B and D) and double-support (A and
C) poses. Thus S encodes both the frequency and phase of
the gait cycle. Some of these intersections disappear for non-
fronto-parallel sequences (BD, BB, and DD) because gait
does not appear bilaterally symmetric.

3.2.3. Normalizing the self-similarity plot

Since we are interested in using the SSP for recognition, we
need to be able to compare the SSPs of two different walk-

3We chose absolute correlation for its simplicity. Other similarity mea-
sures include normalized cross-correlation, the ratio of overlapping fore-
ground pixels, Hausdorff distance, and so forth.

ing sequences. Furthermore, gait consists of repeated steps,
and so it only makes sense to compare two SSPs that con-
tain an equal number of walking cycles and start at the same
phase (i.e., body pose). In other words, we need to normalize
the SSP for differences in sequence length and starting phase.
There are several ways to achieve this. In a previous work, we
used a submatrix of the SSP that starts at the first occurrence
of the double-support pose4 in the sequence and spans three
gait cycles (i.e., six steps) [52].

A different approach that proves to be better for recog-
nition [25] uses the so-called self-similarity units (SSUs).
Each SSU is a submatrix of the SSP that starts at the double-
support phase and spans one gait cycle. The SSP can then be
viewed as a tiling of (contiguous) SSUs, and a different tiling
can be obtained for any particular starting phase. We use
all SSUs corresponding to the left and right double-support
poses for gait recognition. However, because the SSP is (ap-
proximately) symmetric and for computational efficiency, we
only use the SSUs of the top half, as shown in Figure 5. We
can easily show that for a sequence containing K gait cycles,
there are 2(K(K + 1)/2) = K(K + 1) SSUs.

Finally, because the size of each SSU is defined both by
the duration of a gait cycle and the frame rate (namely,
P = T · Fs frames, where T is the average gait cycle length in
seconds and Fs is the frame rate), we scale all SSUs to some
uniform size of m×m in order to be able to compare them.

3.2.4. Computing the frequency and phase of gait

Obviously, we need to compute the frequency and phase
of gait in order to normalize the SSP and obtain the SSUs.

4The double-support phase of the gait cycle corresponds to when the
feet are maximally apart. The left double-support pose is when the left leg is
leading and the right double-support pose is when the right leg is leading.
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Figure 5: Extracting SSUs from the similarity plot. Blue and green
SSUs start at pose A and C, respectively.

Several methods in the vision literature have addressed this
problem, typically via periodicity analysis of some feature of
body shape or texture [12, 53, 54]. In fact, most existing gait
recognition methods involve some type of frequency/phase
normalization, and hence devise some method for comput-
ing the frequency and phase of gait.

In this paper, we compute gait frequency and phase via
analysis of the SSP, which indeed encodes the frequency and
phase of walking, as mentioned in Section 3.2.2. We found
this to be more robust than using, say, the width or height of
the silhouette, as we have done in the past [52]. For the fre-
quency, we apply the autocorrelation method on the SSP as
was done in [12]. This method is known to be more robust to
nonwhite noise and nonlinear amplitude modulations than
Fourier analysis. It first smoothes the autocorrelation matrix
of the SSP, computes its peaks, then finds the best-fitting reg-
ular 2D lattice for these peaks. The period is then obtained as
the width of this best-fitting lattice.

The phase is computed by locating the local minima of
the SSP that correspond to the A and C poses (defined in
Section 3.2.2). However, not all local minima correspond
to these two poses, since in near-fronto-parallel sequences,
combinations of the B and D poses also form a local min-
ima. Fortunately, the two types of local minima can be dis-
tinguished by the fact that those corresponding to A and
C poses are “flatter” than those corresponding to B and D
poses. However, we are still only able to resolve the phase of
gait up to half a period, since we have no way of distinguish-
ing the A and C poses from one another. As a result, the SSUs
corresponding to both A and C poses (shown in Figure 5) are
all used for gait recognition.

3.3. Pattern classification

We formulate the problem as one of supervised pattern clas-
sification. Given a labeled set of SSUs (wherein each SSU
has the label of the person it corresponds to), termed the
gallery, we want to determine the person corresponding to
a set of novel (unknown) SSUs, termed the probe. This can

be achieved in two steps: (1) pattern matching, which com-
putes some measure of the degree of match (or mismatch)
between each pair of probe and gallery patterns and (2) de-
cision, which determines the probe’s correct class based on
these match (or mismatch) scores. For the latter, we simply
use a variation of the KNN rule. For the former, we use two
different approaches, namely, template matching (TM) and
statistical pattern classification, discussed separately in Sec-
tions 3.3.1 and 3.3.2.

3.3.1. Template matching

Because the SSU is an m×m 2D template, perhaps the sim-
plest distance metric between two SSUs is their maximum
cross-correlation computed over a small range of 2D shifts
(we typically use the range [−5, 5]). The advantage of this
approach is that it explicitly compensates for small phase
alignment errors. Its disadvantage is that it is computation-
ally very demanding.

3.3.2. Statistical pattern classification

Here, each SSU is represented as a p-dimensional vector, p =
m2, by concatenating its m rows. The distance between two
patterns is then simply computed as their Euclidean distance
in this space. However, when p is large, it is desirable to first
reduce the dimensionality of the vector space for the sake of
computational efficiency as well as to circumvent the curse of
dimensionality phenomenon [48, 49, 55].

Dimensionality reduction, also called feature extraction,
maps the vectors to a q-dimensional space with q ≪ p. We
consider three linear feature extraction techniques for this
problem: principal component analysis (PCA), linear dis-
criminant analysis (LDA), and a so-called subspace-LDA (s-
LDA) that combines the latter two techniques by applying
LDA on a subspace spanned by the first few principal com-
ponents. See [56, 57, 58, 59, 60, 61] for examples of the ap-
plication of these methods in face recognition.

Each method defines a linear transformation W that
maps a p-dimensional vector u in the original feature space
onto a q-dimensional vector ζ = (ζ1, . . . , ζq) such that ζ =
WTu. Note that (ζ1, . . . , ζq) can also be viewed as the coordi-
nates of u in this q-dimensional subspace.

The p × q matrix W is determined from a given train-
ing set of vectors by optimizing some objective criterion. The
choice of q seems to be domain-dependent and we have not
as yet devised a method to automatically select it. Instead, we
simply choose the value that achieves best classification rate
for the given training and test data sets.

Choosing between PCA, LDA, and s-LDA is also domain-
dependent. It depends on the relative magnitudes of the
within-class scatter and the between-class scatter, as well as
the size of the training set. Furthermore, one design issue
common to all three approaches is the choice of the subspace
dimensionality.

4. EXPERIMENTS AND RESULTS

We evaluate the performance of the method on four different
data sets of varying degrees of difficulty, and use the holdout
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(also called split-sample) cross-validation technique to esti-
mate the classification error rate for each data set [55]. Our
goal is to quantify the effect of the following factors on per-
formance.

(i) Natural individual variability due to various physical
and psychological factors such as clothing, footwear,
cadence, mood, fatigue, and so forth. This within-
person variation is introduced by using multiple sam-
ples of each person’s walking taken at different times
and/or over different days. It is worth noting, how-
ever, that sequences taken on different days will typi-
cally contain unwanted variations such as background,
lighting, and clothing variations, which makes the
recognition task even more difficult.

(ii) Photometric parameters, namely, camera viewpoint,
camera depth, and frame sampling rate.

(iii) Algorithm design parameters, namely, the image sim-
ilarity metric (correlation of binary silhouettes (BC)
and correlation of foreground silhouettes (FC)), the
pattern matching approach (PCA, LDA, s-LDA, and
TM), and the KNN classifier parameter (K = 1, 3).

4.1. Data set 1

This data set is the same used by Little and Boyd in [16]. It
consists of 42 image sequences with six different subjects (4
males and two females), 7 sequences of each, taken from a
static camera at 30 fps and 320×240 resolution. The subjects
walked a fixed path against a uniform background. Thus the
only source of variation in this data set (aside from random
measurement noise) is the individuals’ own walking variabil-
ity across different samples.

Figure 6 shows all seven subjects overlaid on the back-
ground image. Figure 7 shows three of the SSP’s for each per-
son in Figure 6. The results are shown in Table 1. Note that
LDA is not used for this data set because the number of train-
ing samples is insufficient for this kind of analysis [48]. Obvi-
ously, BC gives slightly better results than FC, and that s-LDA
also slightly outperformed PCA. However, there is a signifi-
cant improvement when using feature extraction (PCA and
s-LDA) over TM.

4.2. Data set 2

The second data set contains fronto-parallel sequences of
44 different subjects (10 females and 34 males), taken in an
outdoor environment from two different cameras simultane-
ously, as shown in Figure 8. The two cameras are both fronto-
parallel but located at different depths (approximately 20 ft
and 70 ft) with respect to the walking plane. Each subject
walked in two different sessions a fixed straight path, back
and forth, at his/her natural pace. The sequences were cap-
tured at 20 fps and at full-color resolution of 644× 484.

Six holdout experiments are carried out on this data set,
with absolute correlation of BC used as the image similarity
measure. The results are summarized in Table 2. The classi-
fication performance is better for the far camera (first row)
than for the near camera (second row), which may be due
to superior image quality of the far camera. Also, perfor-

Figure 6: The six subjects for data set 1, shown overlaid on the
background image.

Figure 7: Three of the SSPs for each person in data set 1.

Table 1: Classification rates for the first data set for different image
similarity metrics (BC and FC), pattern matching approaches (PCA,
s-LDA, and TM), and KNN classifier parameters (K).

BC FC

K PCA s-LDA TM PCA s-LDA TM

1 94 100 89 94 94 94

3 94 100 94 94 94 94

mance degrades significantly when the training and test sets
are from different cameras (third and fourth rows), which
may be because our method is not invariant to large changes
of camera depth, and hence confirms our observation in
Section 3.2.1.

4.3. Data set 3

In order to evaluate the performance of the method across
large changes in camera viewpoint, we used the Keck multi-
perspective lab [62] to capture sequences of people walking
on a treadmill from 8 different cameras at a time, as illus-
trated in Figure 9. The cameras are placed at the same height
around half a circle so that they have the same tilt angle and
different pan angles. The latter span a range of about 135 deg
of the viewing sphere, though not uniformly. The data set
contains 12 people (3 females and 9 males) and about 5
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(a) (b)

Figure 8: Second outdoor data set. Sample frames from (a) the near camera and (b) the far camera.

Table 2: Classification performance on the second data set using holdout technique with six different training and testing subsets.

Training set Test set
PCA LDA s-LDA TM

K = 1 K = 3 K = 1 K = 3 K = 1 K = 3 K = 1

Far camera Far camera 49 49 63 70 65 67 59

Near camera Near camera 53 52 41 46 49 52 55

Far camera Near camera 10 10 22 23 24 25 21

Near camera Far camera 17 23 24 22 23 23 25

Both cameras Both cameras 52 50 52 52 54 56 35

−75◦ −60◦ −30◦ −15◦

0◦ 15◦ 45◦ 60◦

Figure 9: Eight camera viewpoints of the sequences in second test data set.

sequences per person per view on average, taken mostly on
different days for each person. The sequences were captured
at a frame rate of 60 fps and a resolution of 644×488 greyscale
images.

Like in general object recognition problems, there are two
main approaches to gait recognition under variable view-
ing conditions: a view-based approach and a parametric ap-
proach. In the view-based approach, a classifier is trained
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Figure 10: Classification performance for data set 3: (a) view-based approach, (b) parametric approach.

separately for each viewpoint, that is, there are as many
classifiers as there are camera viewpoints. A novel sequence
needs to first have its viewpoint determined so that the cor-
responding classifier is applied. The parametric approach, on
the other hand, trains a single classifier using data from all
viewpoints.

Both these approaches are applied to the data set and
the results are shown in Figure 10. We use absolute correla-
tion of binary silhouettes for image similarity, and the hold-
out cross-validation technique to estimate the classification
rate, whereby we train on data from six days and test on
data from the seventh day. This is repeated 7 times, and the
classification rate is computed as the average over the seven
iterations. Clearly, the performance is best for near-fronto-
parallel views (4–6). An intuitive explanation for this is the
following. Most of the dynamics of walking takes place in
the sagittal plane, which is the plane containing both legs.
Hence in a non-fronto-parallel viewpoint, where the sagit-
tal plane is almost orthogonal to the image plane, much less
of the appearance variation caused by gait dynamics is cap-
tured, which may be insufficient for recognition. Further-
more, view-based approach gives overall better results than
the parametric approach.

4.4. Data set 4

Recall that we scale the SSUs to a fixed size (m × m pix-
els), which is equivalent to normalizing the gait frequency

to a fixed value (i.e., temporal scaling). However, because
gait dynamics are inherently a function of cadence, we ex-
pect that the SSUs corresponding to significantly different
cadences to be qualitatively different (even if they are pre-
normalized to the same frequency). We tested this expecta-
tion using a portion of CMU’s MoBo data set [63], consist-
ing of indoor sequences of 25 people walking on a treadmill
and captured from 3 different views, as shown in Figure 11.
Furthermore, each person walked at two different speeds: a
slow pace (2.06 miles/h) and a moderate pace (2.82 miles/h).
Thus we used a total of 150 sequences for this experiment
(i.e., 2 sequences per person per view). The sequences are all
captured on the same day and against the same background.

We then setup experiments via the holdout cross-
validation technique in which the train and test sets corre-
spond to different combinations of speeds. This was done
for each view separately, however (i.e., view-based clas-
sification). Table 3 shows the classification results. As ex-
pected, the performance degrades significantly when the
training and test data for the classifier correspond to different
speeds.

5. CONCLUSIONS

We described a novel holistic gait recognition approach that
uses image self-similarity as the basic feature for classifica-
tion. The method is correspondence-free, works well with
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(a) (b) (c)

Figure 11: The three views in data set 4.

Table 3: Performance on the fifth data set: classification rates using holdout technique with four different training and testing subsets.

Slow/slow Fast/fast Slow/fast Fast/slow

View 1 100 100 54 32

View 2 100 96 26 16

View 3 96 100 43 33

low-resolution video, and is robust to variation in clothing,
lighting, and to segmentation errors. A recognition rate of
100% is achieved for a fronto-parallel data set of 6 people,
and 70% for a fronto-parallel data set of 54 people.

Although the method is inherently appearance-based,
and hence view-dependent, this is circumvented via view-
based recognition. Using a data set of 12 people cap-
tured from 8 viewpoints, recognition rates decreases from
about 65% for near fronto-parallel viewpoints to about
47% for near frontal viewpoints. Performance also de-
grades when camera depth and cadence are significantly
changed.

We are working to combine the gait features of this
method with geometric gait features that can be robustly
computed from video, such as cadence, stride length, and
stature. We also plan to study the use of these features for
other recognition tasks, such as gender classification and gait
asymmetry detection caused, for example, by a limp.
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