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Abstract

Background: Intensive task specific training early after stroke may enhance beneficial neuroplasticity and functional

recovery. Impaired gait after hemiparetic stroke remains a challenge that may be approached early after stroke by

use of novel technology. The aim of the study was to investigate the safety and feasibility of the exoskeleton

Hybrid Assistive Limb (HAL) for intensive gait training as part of a regular inpatient rehabilitation program for

hemiparetic patients with severely impaired gait early after stroke.

Methods: Eligible were patients until 7 weeks after hemiparetic stroke. Training with HAL was performed 5 days

per week by the autonomous and/or the voluntary control mode offered by the system. The study protocol

covered safety and feasibility issues and aspects on motor function, gait performance according to the 10 Meter

Walking Test (10MWT) and Functional Ambulation Categories (FAC), and activity performance.

Results: Eight patients completed the study. Median time from stroke to inclusion was 35 days (range 6 to 46).

Training started by use of the autonomous HAL mode in all and later switched to the voluntary mode in all but

one and required one or two physiotherapists. Number of training sessions ranged from 6 to 31 (median 17) and

walking time per session was around 25 minutes. The training was well tolerated and no serious adverse events

occurred. All patients improved their walking ability during the training period, as reflected by the 10MWT

(from 111.5 to 40 seconds in median) and the FAC (from 0 to 1.5 score in median).

Conclusions: The HAL system enables intensive training of gait in hemiparetic patients with severely impaired gait

function early after stroke. The system is safe when used as part of an inpatient rehabilitation program for these

patients by experienced physiotherapists.
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Background

Stroke is a global health problem and one major cause of

acquired disability in adults [1]. Hemiparesis is the most

common acute manifestation of stroke and often impacts

on gait function [2,3]. Although performance is improved

in most stroke survivors during the first months post

stroke, one third or more will need assistance in walking

and remains limited in community ambulation [3,4]. Thus,

independent gait remains a challenge in the rehabilitation

after stroke [5].

Normal gait requires postural control, weight shifting

and rhythmic and correct timing of muscle activity during

repeated gait cycles and depends on the integrity of a

complex interaction in sensory-motor neural networks at

both spinal and supraspinal levels [6]. Depending on

location and extent of the lesion and of restorative

and compensatory mechanisms [7], gait characteristics may

vary between and within patients over time after stroke.

Accumulating evidence indicates that early onset, inten-

sive, repetitive task specific training may accelerate func-

tional restitution after stroke and improve final motor

outcomes [8], including gait function [9,10] although most

motor rehabilitation trials have been performed in the

chronic stage post stroke [11]. Even though early onset
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and intensive training of motor functions after stroke may

enhance recovery by driving beneficial neuroplasticity a

better understanding and prediction of the individual cap-

acity and response to specific training paradigms remains

a challenge [12,13].

Devices used to support gait training after stroke include

treadmill training with or without body weight support

(BWS). A recent Cochrane review found no overall statisti-

cally significant effect on gait function after treadmill train-

ing with BWS as compared with training without BWS

[14] but this may differ between subgroups of patients with

various severities and gait velocity during training may also

have an impact [15]. These devices may be combined with

electromechanical “gait machines”, which can allow more

reproducible gait movements when compared to when a

therapist move the patients legs. Gait machines are often

categorized as machines using an end-effector principle

and machines that function as exoskeletons [16]. Machines

based on the end-effector principle use foot plates that

move the feet in a controlled gait pattern and allow the op-

erator to adjust many aspects of locomotion, such as speed,

stride length and step height. In contrast, exoskeletons

such as Lokomat [17] are attached to the patient and func-

tion as an external skeleton. Exoskeletons for lower ex-

tremities have joints matching the patient’s lower limb

joints and motors that drive movements over these joints

to assist leg movements. A recent Cochrane review con-

cluded that electromechanical-assisted gait training in

combination with physiotherapy after stroke increased the

odds of participants becoming independent in walking and

most so when this is applied in the first three months after

stroke in patients, who are not able to walk [18]. However,

further studies are needed with regard to the role of

current types of electromechanical device [18,19] as well as

to new concepts and devices and their evaluation in clinical

trials [20,21]. One conceptual issue relates to the import-

ance of incorporating active participation in the training.

This has been approached in several studies by comparing

training by use of gait machines such as Lokomat or Gait

Trainer only, with regular therapist training that allows

more variation, or combinations of these [22-28]. One new

approach was taken by Krishnan et al. [29], who used a

Lokomat device designed to allow patient cooperation and

a target tracking task for matching of the ankle position to

a movement template provided on a screen. A multilevel

outcome analyses indicates that such active robotic train-

ing may be a potentially effective training model.

Recently, an exoskeleton with a hybrid system that

allows both an automatic and a voluntary mode of action

to support training of gait, the Hybrid Assistive Limb sys-

tem (HAL) has been developed [30-32] and introduced in

clinical trials [33-35]. This exoskeleton provides support

according to the patient’s condition by a control algorithm

and supporting devices, where each joint (left and right

hip and left and right knee) can be controlled separately.

The key features of the HAL system has been reported in

detail previously [30-32] and is briefly outlined here.

The HAL system comprises two subsystems for (cybernic)

voluntary control (CVC) and (cybernic) autonomous con-

trol (CAC) respectively. Both modes of action depend on

the user’s intention in different ways. The CAC mode uti-

lizes voluntary weight shift to initiate gait cycles and then

provides predefined movements while gait in the CVC

mode continuously use input from voluntarily activated

gait muscles to provide support by the exoskeleton. This

is achieved by recordings of the bioelectrical signals gener-

ated during muscle activation, as described by Kawamoto

et al. 2002 [30]. Surface electrodes are placed over lower

extremity extensor and flexor muscles and the recorded

signals are incorporated in the control algorithm. The

technology enables even weak muscle activity to be used

to initiate and adjust the assistive torque, which may then

be modified by a therapist [30]. Output is magnified and

adjusted to the level of assistance needed over each hip

and knee joint. A main controller of the system is used to

control the power units, monitor the batteries, communi-

cate with the system operator and modulate the assisting

torque of each power unit. HAL is equipped with a sens-

ing system receiving input also from potentiometers that

are mounted on each joint and used as angular sensors to

measure the joint angles, from force-pressure sensors in

the shoes and from a gyro sensor and an acceleration

sensor, which are mounted on the HAL body trunk, to

measure posture [32].

The CVC mode allows the operator to adjust the

degree of physical support for each joint and gradually

reduce support as training progress. The EMG input,

the adjusted torque limit and torque tuner for each joint

and the adjusted assistance level for the flexor and ex-

tensor muscle groups respectively all together determine

the power output [30]. These settings can not be stan-

dardized but are individually adapted over time. Settings

are modified by the therapist during the training session

depending on the patient’s performance in order to

achieve a gait pattern that is as close as possible to normal

gait. If the subject is paralytic, as may be the case early after

stroke, the CAC mode may be used. Gait is then initiated

and sustained by the voluntary locomotor intention, based

on output from force-pressure sensors in the shoes. In this

mode, the exoskeleton will e.g. swing the left leg when

enough weight is put on the right leg in stance phase.

Gait training with HAL may be performed with or

without BWS. Recently, aspects on feasibility and safety

of HAL have been reported for early mobilization of

patients in a neurosurgical ward by use of a prior

version of the HAL system [35] and for gait training

in patients with chronic impairment after a variety of

conditions including stroke [33,34].
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The aim of the present study was to explore the safety

and feasibility of the HAL system when used for early

onset, intensive gait training as part of an inpatient re-

habilitation program for patients with hemiparetic stroke.

Specifically, we wanted to explore the applicability of the

system in patients with severely impaired gait function.

Methods

Patients

The trial was conducted at the Department of Rehabili-

tation Medicine, at Danderyd University Hospital and

integrated in the individualized, team based, regular

inpatient program. Eligible were patients living in the

Stockholm region and who were admitted to the depart-

ment for post-acute, inpatient rehabilitation after stroke

between June 2012 and August 2013. Inclusion criteria

were: less than seven weeks since stroke; able to sit on a

bench with/without supervision at least five minutes;

unable to walk independently due to lower extremity

paresis with/without somato-sensory impairment and with/

without spasticity; sufficient postural control to allow up-

right position in standing with aids and/or manual support;

ability to understand training instructions as well as written

and oral study information and to express informed con-

sent; body size compatible with the HAL suit. Exclusion

criteria were: contracture restricting gait movements at any

lower limb joint (hip, knee, ankle); cardiovascular or other

somatic condition incompatible with intensive gait training;

severe, contagious infections (e.g. with Methicillin Resistant

Staphylococcus Aureus (MRSA) or Extended Spectrum

Beta-Lactamase (ESBL) bacteria). Eight consecutive patients

fulfilled these criteria and completed the study protocol.

Training program

Training with HAL was performed during daily sessions

on Monday to Friday. The patient was encouraged to

walk as long time as he/she was able to including pauses,

without exceeding 60 minutes (net walking time). In all

patients, training with HAL was used in combination with

BWS and treadmill for safety reasons and to allow adjust-

ments of speed. The degree of BWS was individualized

but never less than the weight of the HAL-suit, i.e. 14 kilos.

Support from handrail of the treadmill was allowed.

Training was performed by one or two physiotherapists

(PT’s), who had learned and trained to use the HAL

system (HAL-ML05). The double leg version was used and

the suit was attached to the patients when standing or

sitting. For an illustration of HAL training see Figure 1.

The physiotherapist provided verbal instructions, encour-

agement and feedback to the patient. A mirror placed in

front of the patient allowed visual feedback. Training

started with the CAC and/or CVC mode for hip and knee

joint on the affected side and aimed to use the CVC mode

as soon as possible. HAL assistance was successively

decreased as convenient according to the PT’s evaluation.

Initial walking speed was 0.4 km/h, increased as tolerated

and set at the highest speed possible to be compatible with

the necessary HAL assist level. The degree of BWS was

then successively reduced but adapted not to hamper

optimal speed. All settings were individualized and adjus-

ted to optimize normal gait pattern, which was evaluated

through continuous observational gait analysis during

training, according to the ten-point-checklist suggested by

Kirtley [36]. The duration of the total treatment period was

individualized. Training with HAL was stopped when HAL

was no longer considered useful by the PT or when three

months had elapsed since the stroke. Training with HAL

was integrated in each participants individualized program

according to current practice. This included goal oriented

individualized and/or group training at the discretion of

the rehabilitation team.

The study protocol addressed: (1) time to arrange the

equipment and initiate a training session with HAL, (2)

gait speed and quality at baseline and immediately after

the training period, (3) utilization of BWS and of con-

ventional aids such as orthoses during HAL training, (4)

adverse events (such as falls, skin impact, pain etc.) related

to use of HAL, technical risk factors and prevention of

these, (5) patients attitudes towards training with HAL. In

addition, training data (e.g. gait speed and distance) and

HAL settings were registered at each training session.

Outcome measures

Assessments at baseline and at endpoint comprised: the

NIH Stroke Scale (NIHSS) [37]; the Fugl-Meyer Scale for

the lower extremities (FM-LE) [38]; Bergs Balance scale

(BBS) [39,40]; Timed Up and Go (TUG) [41]; 10 Meter

Walking Test (10MWT) [42] self-selected and maximum

speed; the Clinical Outcome Variable Scale, Swedish ver-

sion (S-COVS) Section 5–8 [43]; Functional Ambulation

Categories (FAC) [44]; Falls-efficacy Scale Swedish version

(FES(S)) [45]; Barthel Index (BI) [46]; Functional Inde-

pendence Measure (FIM) [47]; EQ-5D and EQ-5D VAS

[48]. In addition, patient’s attitudes towards HAL training

were captured by use of a visual analogue scale (VAS) ran-

ging from 0 (negative) to 10 (positive). Further, relevant

comments were documented during the training sessions.

All assessments were conducted by the same physiother-

apist who was not blinded to the intervention.

Ethical approval

The study was approved by the Stockholm Ethical

Review Board (Dnr: 2012/696-31/1).

Clinical trial registration

The study was approved and registered as a clinical

trial by the Swedish Medical Products Agency (Dnr:

461:2012/518333).
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Results

Patients and injury characteristics

None of the patients who fulfilled study criteria declined

participation and there were no drop-outs. All eight

patients included were men. Median age was 56 years

(range 39 to 64), median time from stroke to inclusion

was 35 days (range 6 to 46). At baseline, Barthel Index

ranged from 10 to 60 (median 30), FIM scores ranged

from 26 to 96 (median 60). Demographic and injury

characteristics are presented in Table 1.

Data from assessments at baseline and immediately

after finishing the training are presented in Tables 1 and 2.

Figure 1 Illustration of training.
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Table 1 Patient characteristics and motor performance

Case No. Age Type of
stroke

Side of
paresis
(L/R)

Time from stroke
to inclusion (days)

Number of
training
sessions

Net walking
time/session (min)
median (range)

Walking distance/
session (m) median
(range)

HAL mode
of action

10MWT, self
selected speed
(s) B/E

10MWT, maximal
speed (s) B/E

BBS (0–56)
B/E

FAC (0–5)
B/E

1 64 H L 46 20 21 (10–29) 231 (93–435) CAC/CVC −/− −/− 4/5 0/1

2 39 H R 46 16 22 (4–30) 403 (27–700) CAC/CVC 147/32 147/15 5/37 1/2

3 55 I R 11 16 45 (21–55) 813 (210–1188) CAC/CVC 34/25 32/22 33/47 2/4

4 59 I R 6 7 17 (7–18) 150 (70–300) CAC -/26 -/26 23/39 0/2

5 61 I L 33 17 26 (7–44,5) 475 (82–1050) CAC/CVC 480/244 480/244 7/10 0/1

6 48 I R 39 31 32 (2–50) 533 (20–1125) CAC/CVC -/279 -/279 4/19 0/1

7 57 I L 37 11 26 (9,5-32) 520 (127–675) CAC/CVC -/147 -/147 10/12 0/1

8 39 H L 26 6 24 (20,5-46) 460 (376–920) CAC/CVC 76/40 76/30 30/40 1/2

Abbrevation: H hemorrhage, I infarct, L left, R right, CAC cybernic autonomous control, CVC cybernic voluntary control, B/E Baseline/Endpoint, 10MWT 10 Meter Walking Test, BBS Bergs Balance Scale, FAC Functional

Ambulation Categories.
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At baseline, FM-LE scores ranged from 41 to 63 (median

49) and gait was severely impaired as reflected by the TUG,

10MWT and FAC data (Table 2). Only one patient could

perform the TUG test at baseline, 4 could perform the

10MWT and then needed on average 2 minutes, and the

median FAC sore was 0 (Table 2). EQ5D and FES data are

incomplete due to communication problems.

Practical aspects on the use of HAL

HAL training was conducted by one or two PT’s, depend-

ing on the severity of the patient’s impairments. However,

two therapists were present during donning and initial

sessions for all patients and during the whole training

period for 3 patients. A typical training session lasted

around 90–105 minutes, including time for preparation of

electrodes, putting on the harness and the suit and trans-

fer to the treadmill. Time to arrange the equipment for

training varied slightly depending on the patient's motor

and cognitive skills. In general 15–20 minutes was needed

from the patient arrived to the training session until gait

training with HAL could start. Favorable factors were:

ability to independently move between wheelchair and

bench; ability to stand with the support of aids and mod-

erate support of therapist when putting on for example

electrodes, harness and HAL; ease to understand verbal

instructions. Factors that increased the time for prep-

aration were need for shaving the skin before attach-

ing electrodes and need of great support in standing to

maintain postural control. Time needed after finished

HAL training (i.e. to remove the suit, harness and elec-

trodes) was in general less than preparation time

(around ten minutes). No patient needed a foot orth-

osis in addition to the support provided by the HAL

suit and its connected shoe. All patients used the handrail

unilateral (non paretic side) for support.

Training program and clinical course

Training data are presented in Table 1. Total, number of

training sessions varied from 6 to 31 (median 16) depend-

ing on the clinical progress i.e. until HAL was no longer

considered useful by the PT, or until three months after

the stroke. The net walking time per session was around

25 minutes. The average individual walking distance per

session ranged from 155 to 797 meters. The maximal walk-

ing distance observed during one session was 1188 meters

in one patient (Case nr 3). Walking distances during HAL

training for each study patient are presented in Figure 2.

All patients started with the CAC mode and all except one

later switched to use the CVC mode. On average, for these

7 patients, the initial 6 sessions out of 16 were with the

CAC mode. The switch was performed as soon as the

voluntarily induced EMG activity was sufficient to elicit a

command signal. The amount of BWS provided was in me-

dian 27 (range 23–36) percent of the patients' body weight.

Measures of motor function, gait and of activity per-

formance improved from baseline to the end of the train-

ing period in all patients (Table 2). Improvements in gait

function in terms of FAC, increased by 1.5 units and time

to walk 10 meters decreased by around 65% (n = 4). For

further details see Table 2.

Patient’s attitudes to use of the HAL system

All patients except one (with moderate communication

problems) responded to the visual analogue scale. Over-

all, patients’ attitudes were positive. The average VAS

rating of the “over all attitude to continue training with

HAL”, was 7/10 (range 0.5-10).

Adverse events

No serious adverse events occurred. Minor and temporary

side effects comprised pain due to pressure from the cuff

Table 2 Baseline and endpoint data, median (range)

Measures Baseline n Endpoint n

NIH stroke scale (0–42) 13 (7–18) 8 11 (5–14) 8

Fugl-Meyer, LE (0–86) 49 (41–63) 8 51 (39–68) 8

Bergs balance scale (0–56) 8.5 (4–33) 8 28 (5–47) 8

Timed up and go (s) 44 (44–44) 1 33.5 (24–42) 4

10 meter walking test, self selected speed (s) 111.5 (34–480) 4 40 (25–279) 8

10 meter walking test, maximal speed (s) 111.5 (32–480) 4 30 (15–279) 8

S-COVS, item 5–8 (4–28) 9 (4–16) 8 16.5 (8–20) 8

Functional ambulation categories (0–5) 0 (0–2) 8 1.5 (1–4) 8

Falls efficacy scale (0–130) 33.5 (3–67) 6 64 (24–96) 7

Barthel index (0–100) 30 (10–60) 8 55 (30–85) 8

Functional independence measure (18–126) 60 (26–96) 8 82 (45–106) 8

EQ-5D (Index) 0.015 (−0.043-0.639) 7 0.516 (−0.056-0.710) 7

EQ-5D VAS (0–100) 60 (40–70) 6 50 (10–98) 7
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over the knee (n = 1; managed by changing the height of

the cuff) and over the malleolus (n = 1; managed by chan-

ging the angle of the lower leg and foot joint); moderate

discomfort of tight straps and the feeling of being trapped

(n = 1), discomfort from shoulder straps (n = 2); sense of

the suit being heavy over the lower back (n = 1); tempor-

ary skin irritation/redness from electrodes (n = 2; disap-

peared after finishing HAL training); moderate pain in the

groin after a HAL training session (n = 1) (related to chaf-

ing from the harness); chafed feet due to wrong shoe size

(n = 1) (manage by change of shoes); slight risk of stum-

bling due to impaired weight shifting occurred from time

to time (support by two therapists was needed). One pa-

tient reported pain in the paretic arm during training.

However, similar pain did also occur during other training

sessions and thus was not specific for training with HAL.

Issues related to technical problems were few and did not

affect patient safety.

Discussion
The main findings of this study are that the HAL system

enables intensive, repetitive gait training in hemiparetic

patients with severely impaired gait function early after

stroke and that the system is feasible and safe when used

as part of an inpatient rehabilitation program for these

patients by experienced physiotherapists. Although this

study does not allow any conclusions on the additional

value of training with HAL with regard to recovery

rate or final outcome as compared to other gait training

programs, the findings may guide further studies in this

respect.

This is the first application of the new Hybrid Assistive

Limb system that allows both training of gait induced

by weight shift (autonomous mode) and a gait pattern

induced by the voluntary drive to walk, in contrast to

other gait machines such as Lokomat [17], in patients

with a hemiparesis early after stroke. It is to the best

of our knowledge the first study of early onset of intensive

gait training after stroke that utilizes this type and model

of exoskeleton (HAL-ML05). Patients included in the

study represented the more severe spectrum of patients

with hemiparetic impairments after stroke. Accordingly,

all eight patients initiated the training period by use of the

autonomous HAL mode, which allowed the training to

start earlier than otherwise possible. All except one patient

later switched to training by use of the voluntary HAL

mode. It should be pointed out that the voluntary activa-

tion pattern, as reflected by electromyography and trans-

lated to assisted movements, is by definition disturbed in

the condition at study and thus requires corrections,

which are part of the HAL system, and that the HAL

settings are individually adapted by an experienced

physiotherapist to achieve a gait pattern as close to

normal as possible.

A typical training session lasted for about 100 minutes.

The length of the training sessions, set to maximally

60 minutes net walking time, was predetermined based

on clinical experience of what may be feasible and with

regard to integration with the regular rehabilitation pro-

gram. This time frame turned out to correspond well

with what participants could manage, general fatigue be-

ing the most common limiting factor. Interestingly, the

study patients walked in average approximately 444 m/

session. The walking distance during HAL training ses-

sions did not increase linearly over time but exhibited

considerable intra-individual variation, which probably

reflects increasing demands when the degree of assist-

ance was reduced, fluctuations of the patients’ medical

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

Session nr.

M
e
te

rs
Case No.1

Case No.2

Case No.3

Case No.4

Case No.5

Case No.6

Case No.7

Case No.8

Figure 2 Walking distance by HAL training session.

Nilsson et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:92 Page 7 of 10

http://www.jneuroengrehab.com/content/11/1/92



condition, mood and vitality as well as the learning

curve.

Even though the study does not allow any conclusion,

it was a consistent clinical impression that use of HAL

enabled patients to achieve longer walking distances

than would have been possible by regular gait training

with or without BWS. Comparison in this respect with

results from other studies using other training devices

are hampered by differences with regard to inclusion

criteria, time since stroke, training program and study

design.

The test protocol captured a broad range of functional

aspects. As expected, all patients exhibited improve-

ments from baseline to endpoint assessments. These

probably reflect time dependent, spontaneous recovery,

which is mainly completed within the first ten weeks

after stroke [49,50] as well as beneficial effects of the

regular rehabilitation program, while an additional effect

of the specific training with HAL cannot be disentangled

and obviously was beyond the scope of this study. It may

be noted that the observed improvement of functional

gait as assessed by FAC, seemed more pronounced than

may be explained only by time. FAC units increased by

more than 1 unit (from a median value of 0 to 1.5, in

mean by 1.25) in our small study sample of patients who

started the HAL training around five weeks after stroke

onset. In a longitudinal study by Kwakkel et al. [50] of

101 patients the corresponding figure for change of FAC

was 1.1 units (in mean) over a 16 weeks period from

stroke onset and this time dependent increase was most

pronounced during the initial six weeks. Thus, even if

our data do not allow any conclusion the observations

lend some support to the interpretation that the impro-

vements observed do not only reflect spontaneous

recovery over time. Most previous gait training studies

that report improvements of FAC differ considerably

from our study with regard to study samples, baseline

levels and study design [22,24-27]. One study by van

Nunen et al. [28] offer data that may be used for a cau-

tious comparison. That study compared the recovery of

walking in non-ambulatory patients in the subacute

phase after stroke. At baseline, in mean 62 days for 16

patients performing Lokomat + conventional training,

and in mean 67 days for 14 patients performing conven-

tional training, FAC was 1.50 and 1.00 respectively. At

week 10, FAC had increased by 1.25 in the combined

therapy group and by 1.29 in the other group. This is

similar to the observations in our study. However, the

FAC score baseline level was lower and training onset

was earlier (median 35 days) in our study.

Training with HAL was performed by use of BWS and

treadmill in all patients, which offered better control of

safety and of gait speed. The combined use of BWS and

HAL worked smoothly and no obstacles for such combined

use were observed. The treadmill enabled accurate record-

ing of walking speed and distance for each patient and

training session. Although the width of the treadmill occa-

sionally limited weight shifting, it never stopped a training

session. The use of a harness seems essential to allow the

HAL training to be safe and feasible for patients with

severe paresis in the early stage after stroke.

Regular gait training for the study patients had

likely been by use of treadmill and BWS and then

most patients would probably have needed manual as-

sistance by two or more physiotherapists to move the

paretic leg and to assist weight shifting. However the

potential benefits with regard to therapist time as

compared to conventional gait training remains to be

investigated and time spent to put on the suit and adjust

settings must also be considered. This time was dependent

on the patient’s general physical condition but seemed not

related to spasticity, sensory impairments or motor

performance of the upper extremity and diminished

over time.

No serious adverse events occurred during training

with HAL. Minor and temporary side effects comprised

e.g. local pain, skin irritation and sense of heaviness of

the lower back by the suit. It should be pointed out that

even though participating patients had severe motor

impairments all had regained sitting balance and were

able to communicate with the therapist. In addition, the

physiotherapists who conducted the training were expe-

rienced in rehabilitation after hemiparetic stroke and

had been trained to use the HAL system. Minor tech-

nical issues occurred but did never impact on safety or

the training schedule.

According to the questionnaire as well as face to face

contacts, patients’ attitudes were generally positive to

training with HAL. Regaining independent gait function

is often considered a primary goal in stroke rehabilita-

tion and it is reasonable to assume that the option to

start training early by use of HAL may serve as a motiv-

ating factor.

Study limitations

This prospective study is based on a small study sample

at one study site and used no blinding or control group.

The study included a selected subgroup of patients, who

are not representative for the whole stroke population

with regard to age, gender or neurological impairments.

Notably, all study patients were men in spite of consecu-

tive inclusion according to the study criteria. This prob-

ably is a random effect even though an uneven gender

distribution (with around twice as many men) among

patients, who are referred to the study clinic, may also

have played a role. Thus, the findings are only relevant

for the subgroup at study and cannot be generalized to

the whole stroke population.
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Conclusions
This study of the Hybrid Assistive Limb system for

intensive gait training early after stroke demonstrates

that such training can be performed also by hemiparetic

patients with severely impaired gait function and that

the system is safe when used as part of an inpatient re-

habilitation program for these patients by experienced

physiotherapists. The observations should be useful for

the design of further studies comparing training with the

HAL system with other models for training of gait early

after stroke.
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