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Gait Variability Measures Reveal 

Differences Between Multiple Sclerosis 

Patients and Healthy Controls

Jeffrey P. Kaipust, Jessie M. Huisinga,  

Mary Filipi and Nicholas Stergiou

The purpose of this study was to determine the differences in gait variability 
between patients with multiple sclerosis (MS) and healthy controls during walking 
at a self-selected pace. Methods: Kinematics were collected during three minutes 
of treadmill walking for 10 patients with MS and 10 healthy controls. The Coef-
ficient of Variation (CoV), the Approximate Entropy (ApEn) and the Detrended 
Fluctuation Analysis (DFA) were used to investigate the fluctuations present in 
stride length and step width from continuous strides. Results: ApEn revealed that 
patients with MS had significantly lower values than healthy controls for stride 
length (p < .001) and step width (p < .001). Conclusions: ApEn results revealed 
that the natural fluctuations present during gait in the stride length and step width 
time series are more regular and repeatable in patients with MS. These changes 
implied that patients with MS may exhibit reduced capacity to adapt and respond 
to perturbations during gait.

Keywords: Multiple Sclerosis, gait variability, nonlinear dynamics, stride length, 
step width.

Multiple sclerosis (MS) is a demyelinating inflammatory disease of the cen-
tral nervous system with subsequent destruction of myelin, oligodendrocytes and 
axons (Noseworthy, Lucchinetti, Rodriguez, & Weinshenker, 2000). The functional 
impairments that result from the demyelination include abnormal gait, poor balance, 
muscle weakness and fatigue. These abnormalities typically result from the axonal 
degeneration and conduction block (White & Dressendorfer, 2004). These functional 
impairments contribute to fatigue, reduced daily activity and increase the risk of 
secondary diseases (Freeman, 2001). Specific examination of walking mechanics 
in patients with MS has been limited to temporal and spatial parameters. These 
measures have revealed that patients with MS walk slower with shorter stride lengths 
and prolonged double support phases compared with healthy controls (Benedetti et 
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al., 1999; Gehlsen et al., 1986; Morris, Cantwell, Vowels, & Dodd, 2002; Rodgers 
et al., 1999). While the determination of these deficits is important, spatial and 
temporal classifications do not provide any information regarding the changes in 
motor control that precipitate these deficits. Investigating gait variability, however, 
can provide an important understanding of the motor control strategies employed 
by patients with MS while walking at self-selected pace and may help to determine 
specific rehabilitation recommendations for patients with MS to improve functional 
abilities and walking mechanics. Such insights have been possible in several other 
pathological conditions that are associated with gait disability (e.g., elderly fall-
ers, Parkinson’s disease, and stroke) (Brach, Berlin, VanSwearingen, Newman, & 
Studenski, 2005; Brach et al., 2010; Buzzi, Stergiou, Kurz, Hageman, & Heidel, 
2003b; Hausdorff, Edelberg, Mitchell, Goldberger, & Wei, 1997a; Hausdorff et al., 
2007; Herman, Giladi, Gruendlinger, & Hausdorff, 2007).

Gait variability is defined as the normal variations that occur across multiple 
strides (Stergiou, Buzzi, Kurz, & Heidel, 2004). Several factors (environmental, 
biomechanical, morphological, and task-related constraints) contribute to the vari-
ability in the gait pattern (Stergiou et al., 2004). In addition to gait, variability is 
also inherent within other biological phenomena such as the heartbeat and respira-
tion (Babloyantz & Destexhe, 1986; Buchman, Cobb, Lapedes, & Kepler, 2001; 
Goldberger & West, 1987; Goldberger, Rigney, Mietus, Antman, & Greenwald, 
1988; Lanza et al., 1998; Skarda & Freeman, 1987; Slutzky, Cvitanovic, & Mogul, 
2001; Toweill & Goldstein, 1998; Wagner, Nafz, & Persson, 1996). It has been 
hypothesized that in biological systems there is an “optimal” state of variability 
that is associated with health (Stergiou, Harbourne, & Cavanaugh, 2006). Changes 
in this optimal state of variability are generally associated with disease. This vari-
ability can be attributed to several physiologic factors such as neural control and 
muscle function (Stergiou et al., 2006). According to this hypothesis a decrease 
from the optimal state of variability makes the system more predictable and inflex-
ible, which is referred to as a periodic state (i.e., walking more like a robot), while 
an increase makes the system unstable and noisy which is referred to as a random 
state (i.e., walking more like a frail elder or even a drunken sailor) (Stergiou et 
al., 2006). Support for this hypothesis has been provided by several studies. For 
example, elderly individuals with extreme step width variability (either low or high 
step width variability) were more likely to report a fall in the past year than those 
with moderate step width variability (Brach et al., 2005; Buzzi, Stergiou, Kurz, 
Hageman, & Heidel, 2003a; Hausdorff, Edelberg, Cudkowicz, Singh, & Wei, 1997a; 
Hausdorff, Edelberg, Mitchell et al., 1997b; Kurz & Stergiou, 2003; Maki, 1997). 
In another study Rocchi, Chiari, & Horak (2002) demonstrated that variability of 
postural sway was larger than normal in patients with Parkinson’s disease without 
the effects of drugs and even larger with levodopa (Rocchi, Chiari, & Horak, 2002). 
However, when receiving deep brain stimulation, these patients exhibited smaller 
than normal variability of postural sway. The normal healthy control behavior was 
found to be between all these conditions, suggesting that too much or too little is not 
optimal. In anterior cruciate ligament (ACL) deficient patients, it has been found 
that while walking the ACL-deficient knee is less adaptable and inflexible when 
compared with the noninjured knee, while the ACL-reconstructed is more noisy 
and unstable (Georgoulis, Moraiti, Ristanis, & Stergiou, 2006; Moraiti, Stergiou, 
Ristanis, & Georgoulis, 2007; Moraiti et al., 2009; Moraiti, Stergiou, Vasiliadis, 
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Motsis, & Georgoulis, 2010). On the other hand, Myers et al. (2009) found more 
unstable and noisy gait patterns in patients with Peripheral Arterial Disease (PAD) 
suggestive of multilevel neuromuscular deterioration in the locomotor system 
(Myers et al., 2009). Similar results have been found in Parkinson’s and Hunting-
ton’s disease patients. These pathological populations have been associated with 
increased risks of falling and decrease in activities of daily living (Buzzi, Stergiou, 
Kurz, Hageman, & Heidel, 2003a; Hausdorff, Cudkowicz, Firtion, Wei, & Gold-
berger, 1998; Maki, 1997). Therefore, restoration of healthy or normal movement 
patterns should ideally involve recovering the optimal state of variability, which 
exists in the continuum of being between random and periodic (Stergiou et al., 
2006). This state is characterized by high levels of motor adaptability and flexibility 
and consequently, with increased ability to respond to perturbations successfully.

The analysis of gait variability can be performed using linear and nonlinear 
tools. Linear tools provide information on the magnitude of variability within the 
system and are typically reported using the range, standard deviation, and coef-
ficient of variation of the time series. Changes in the coefficient of variation are 
indicative of increases or decreases in the amount of variability. Nonlinear tools, 
however, focus on understanding how variations in the gait pattern change over 
time (Stergiou et al., 2004) and provide information on the temporal structure of 
the time series allowing explorations of the above-described optimal state of vari-
ability. Several investigators have studied how aging and disease affects the vari-
ability of gait parameters from a nonlinear perspective and found that the elderly 
display increased randomness during walking as evidenced by higher values for 
the nonlinear tool of Approximate Entropy (ApEn; Buzzi, Stergiou, Kurz, Hage-
man, & Heidel, 2003b; Kurz & Stergiou, 2003; Kurz, Markopoulou, & Stergiou, 
2010). In addition to elderly, nonlinear tools have been used to study Parkinson’s 
disease patients where patients showed increased randomness in the variability 
of joint movement patterns (ankle, knee and hip) compared with elderly controls 
(Kurz et al., 2010). Gait patterns in PAD patients also displayed increased random-
ness compared with healthy age matched controls (Myers et al., 2009). Finally, 
Hausdorff et al. (1997a) used another nonlinear tool, the Detrended Fluctuation 
Analysis (DFA), to study gait variability in Huntington’s disease patients, healthy 
elderly, and healthy young. The authors found that Huntington’s disease patients 
and healthy elderly display a more random and less correlated gait pattern compared 
with young healthy individuals (Hausdorff et al., 1997a).

While gait variability has been examined in the neurological disease popula-
tions, very few studies have examined gait variability in patients with MS. During 
the disease process the myelin sheath surrounding nerve fibers in patients with MS 
is destroyed. This affects the ability of the muscle to generate forces at an appropri-
ate rate and timing during complex motor tasks (Lambert, Archer, & Evans, 2001). 
Walking mechanics in patients with MS are therefore likely affected by this disease 
characteristic, yet the motor control strategies that are employed by patients with 
MS to compensate for loss of neural signal conduction during walking are unknown. 
This study seeks to explore the fundamental differences in gait variability between 
patients with MS and healthy controls. Therefore, the purpose of this study was to 
examine the gait variability present in patients with MS compared with controls by 
evaluating the step width and stride length time series during self-selected walk-
ing. From these gait parameters it may be possible to determine whether patients 
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with MS gait are similar to those affected by other neurological conditions, or 
if the disease effects are unique. Previously mentioned studies which examined 
kinematic variability (Burnfield, Josephson, Powers, & Rubenstein, 2000; Buzzi, 
2001; Buzzi, Stergiou, Kurz, Hageman, & Heidel, 2003b; Kurz & Stergiou, 2003) 
in Parkinson’s disease and elderly patients reported increased values of ApEn and 
DFA that revealed a more random gait pattern compared with healthy controls. 
Hausdorff et al. (1997a) reported increased randomness in stride length time in 
Huntington’s disease patients when compared with healthy controls (Hausdorff 
et al., 1997a). Like patients with Huntington’s disease, a neurological disorder, 
we hypothesized that patients with MS would also show increased amount of 
variability in the evaluated spatiotemporal parameters. This will be indicated by 
linear measures where both standard deviation and coefficient of variation (CoV) 
would be increased in the MS group. In addition, we expected an altered temporal 
structure of gait variability, as indicated by the nonlinear measures of ApEn and 
DFA. It was anticipated that when compared with controls, patients with MS would 
display higher ApEn values and a decreased DFA scaling exponent.

Methods

Subject Inclusion and Exclusion Criteria

A total of ten MS subjects and ten healthy controls participated in this study (Table 
1). Patients provided informed consent and all procedures were approved by the 
University’s Medical Center Institutional Review Board. Specific inclusion criteria 
were: 1) cognitive competency to give informed consent which entailed an under-
standing of the procedures that were taking place and why they were performed, as 
determined by a clinician specializing in MS care (author MF), 2) age ranging from 
19 years to 65 years, and 3) an EDSS score of 1.0–6.0. All physical and neurological 
examinations for the patients with MS were found to be “clinically acceptable”, 
where evidence is required that the MS patient’s physical and neurological condi-
tion would not place the patient in undue risk by participating or interfere with 

Table 1 Baseline Characteristics of Controls and Patients With MS. 

Values Are Presented as Means ± SD.

Characteristics Control (n = 10) MS (n = 10) P

Age (years) 35.30 ± 9.78 35.40 ± 9.02 .981

Gender 8 Female 8 Female

2 Male 2 Male

Height (cm) 167.64 ± 13.36 167.84 ± 10.62 .985

Mass (kg) 72.49 ± 15.19 79.77 ± 17.42 .332

Self-Selected Pace (m/s) 1.08 ± 0.21 0.67 ± 0.25 .001*

EDSS Score Extended Disability  
Status Scale

3.95 ± 1.48

*Significant difference between groups, p < 0.05.
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outcome measures of the study. Exclusion criteria for the study included: 1) any 
other neurological or vestibular disorder, 2) pregnancy, breastfeeding, or within 
three months post partum at the initiation of the study, and 3) any other comorbid 
conditions which would make participation unsafe.

Experimental Procedure and Data Collection

For all data collections, participants wore a form-fitting outfit while reflective 
markers were placed bilaterally according to anatomical position and a modified 
Helen Hayes marker set (Houck, Yack, & Cuddeford, 2004). Once the markers 
were placed, participants walked on the treadmill to find a self-selected speed. The 
treadmill started at 0.045 m/s and the speed was increased by investigators until 
participants reported that a comfortable walking speed was found. Participants 
then walked for three minutes on the treadmill at their self-selected speed. Three-
dimensional kinematics were acquired with an eight camera, high-speed, real-time 
camera system sampling at 60 Hz (EvaRT 5.0 software, Motion Analysis Corp, 
Santa Rosa, CA). The amount of time sampling took place falls between the ranges 
collected by Hausdorff et al., who analyzed two to six minutes of overground walk-
ing (Hausdorff, 2007). In addition, patients with MS were divided into mild (EDSS 
< 4.0) and moderate (EDSS ≥ 4.0) severity groups according to their EDSS score.

Data Analysis

Treadmill data from the three-dimensional marker trajectories were exported and 
processed in custom software using MATLAB software (MathWorks Inc., Natick, 
MA). This software was used to calculate the stride length and step width from 
the time series. From each time series, the mean, the standard deviation, and the 
coefficient of variation (CoV; Equation 1) for the stride length and the step width 
were calculated for each participant. These linear measures characterize the 
amount of variability present in the data (Harbourne & Stergiou, 2003; Harbourne 
& Stergiou, 2009; Stergiou et al., 2006). The CoV presented here is expressed as 
a percentage of the mean.

 CoV
standard deviation

mean
*100= ⎛

⎝⎜
⎞
⎠⎟

 Equation 1

Approximate Entropy (ApEn; Equation 3) and Detrended Fluctuation Analysis 
(DFA; Equation 5) were also used with the time series. Rather than quantifying 
the amount of variability as the linear measures do (Harbourne & Stergiou, 2003; 
Harbourne & Stergiou, 2009; Stergiou et al., 2006), these nonlinear tools are sensi-
tive to patterns in the data. ApEn quantifies the repeatability or regularity of a time 
series (Pincus & Goldberger, 1994; Ryan, Goldberger, Pincus, Mietus, & Lipsitz, 
1994). ApEn was calculated using algorithms written by Pincus (Pincus, 1991; 
Pincus & Goldberger, 1994) and implemented in MATLAB (m= 2; r = .2*SD). 
The ApEn values typically range from 0 to 2. Values close to 0 are consistent with 
high regularity and repeatability (i.e., a sine wave). Conversely, values close to 2 
represent high irregularity (i.e., white noise). A time series with a more regular 
and repeatable (i.e., periodic) pattern of data points results in lower ApEn values. 
Functionally, this translates to a system that is less capable of responding to a 
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perturbation. A time series with irregular and nonrepeatable (i.e., random) pattern 
of data points results in higher ApEn values. Functionally, this is a sign of dimin-
ished motor control and poor neuromuscular health (Hausdorff, 2009). In brief, 
to define ApEn we start with our N input data points u(1), u(2). . . ., u(N) and also 
incorporate two input parameters, m and r. The input parameter m is length of 
compared runs, and r is a tolerance. First we form vector sequences x(1) through 
x(N-m-1) from {u(i)}, defined by x(i)= [u(i),. . . ,u(i+m–1)]. These vectors are m 
consecutive u values beginning with the ith point. The next step is to define the 
distance d[x(i),x(j)] between vectors x(i) and x(j) as the largest difference in their 
respective scalar components. The third step is to use the vector sequences x(1) 
through x(N-m-1) to create (for each i # N-m+1) (equation 2).

 ( ) ( ) ( ) ( )
( )=

⎡⎣ ⎤⎦
+

C r
x j d x i x j r

N m

number of such that , #

– 1i
m  Equation 2

The C ri
m ( )  values measure (within tolerance r) the regularity of patterns simi-

lar to a given pattern of window length m. The final step is to define Φm(r) as the 
average value of ln C ri

m ( ), where ln is the natural logarithm. Finally, approximate 
entropy is defined as

 ApEn m r N r r, , –m m 1( ) ( ) ( )= +� �  Equation 3

DFA evaluates the presence of long-range, power-law correlations as part of 
multifractal cascades that exist over a wide range of time scales. This method first 
forms an accumulated sum of the time series, sectioning it into windows, and then 
the log of the average size of fluctuation for a given window size is plotted against 
the log of the window size (Peng, Havlin, Stanley, & Goldberger, 1995). In brief, 
if B(i) is the ith interval and Bave is the average interval then:

 y k B i B– avei

k

1∑ [ ]( ) ( )=
=

 Equation 4

Thus, the time series is divided into boxes of equal length, n. In each box of 
length n, a least-squares line is fit to the data. The y coordinate of the straight-line 
segments is denoted by yn(k). The time series is detrended, y(k), by subtracting the 
local trend, yn(k), in each box and then the root mean square fluctuation of this 
integrated and detrended time series is calculated by equation 5. This calculation is 
repeated across the entire times series to provide a relationship between F(n), the 
average fluctuation as a function of box size, and the box size n. A linear relation-
ship on a double log graph indicates the presence of scaling. The fluctuations can 
be characterized by the scaling exponent α, the slope of the line relating log F(n) 
to log n (Peng et al., 1995).

 F n
N

y k y
1

– n kk

N

1

2

∑ ( )( ) = ⎡⎣ ⎤⎦( )=
2 Equation 5

The DFA algorithm was also implemented in MATLAB according to the 
methods used by Peng (Peng et al., 1993; Peng et al., 1995). An α-value less than 
0.5 indicates a time series that is nonpersistent; α of 0.5 indicates a time series that 
has no correlation; α greater than 0.5 and less than 1 indicate persistent long-range 
correlations; and α greater than 1 and less than 1.5 indicates Brown noise. With 
regards to variability, aging and disease have been associated with either random 
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noise or brown noise, and long-range correlations are present in physiological 
variability from a healthy person (Goldberger, Peng, & Lipsitz, 2002; Iyengar, 
Peng, Morin, Goldberger, & Lipsitz, 1996). Each time series is self-similar if the 
fluctuations at different observation windows (F(n)) scale as a power-law with the 
window size n. F(n) will increase with the window size (Hausdorff et al., 1997a).

Statistical Analysis

Group means were calculated for the standard deviation, CoV, ApEn, and α-values 
for the stride length and step width time series for patients with MS and healthy 
controls. Patients with MS and healthy controls were compared using independent 
t tests. The severity groups were compared with each other and to healthy controls 
using independent t tests. Statistical comparisons were performed using SPSS 
15.0 software (SPSS Inc., Chicago, IL). The level of significance was set at 0.05.

Results

Group means for age, height, and mass did not differ between the patients with MS 
and controls. This verifies that the two groups were well matched. Self-selected 
walking velocity was significantly faster (p = .001) in the control group (1.08 ± 
0.21 m/s) as compared with the patients with MS (0.67 ± 0.25 m/s) (Table 1).

Linear Measures

Mean stride length was 1.14 m in the control group and was 0.94 m in patients 
with MS (p = .070). Mean step width was 0.09 m in the control group and was 0.11 
m in patients with MS (p = .421) (Table 2). The stride length standard deviation 
was 0.01 for controls and 0.02 in patients with MS (Table 3). Standard deviation 
for step width was 0.01 in the control group and 0.01 in patients with MS. There 
were no differences in the standard deviation between groups for stride length 
(p = .134) or step width (p = .842). CoV values (expressed as a percentage) for 
stride length were 2.81 and 4.10 for controls and patients with MS, respectively. 
The CoV for step width was 20.73 for controls and 12.90 for patients with MS. 
There were no differences in CoV between groups for stride length (p = .123) or 
step width (p = .172).

Table 2 Stride Length Values for Controls and Patients with MS. 

Values Are Presented as Means ± SD.

 
Control  
(n = 10)

MS (combined) 
(n = 10)

MS Mild  
(n = 5)

MS Moderate  
(n = 5)

Mean (meters) 1.14 ± 0.27 0.94 ± 0.17 1.04 ± 0.19 0.85 ± 0.09*

Standard Deviation 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01

COV (%) 2.81 ± 1.51 4.10 ± 2.00 3.23 ± 1.37 4.96 ± 2.30*

ApEn 0.70 ± 0.07 0.55 ± 0.07* 0.57 ± 0.06* 0.54 ± 0.08*

DFA 0.79 ± 0.23 0.69 ± 0.22 0.74 ± 0.23 0.64 ± 0.17

*Significant difference compared with controls, p < 0.05.
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Comparisons between patients with MS based on EDSS scores did not reveal 
significant differences in stride length between the mild and moderate severity 
patients for stride length mean (p = .078), stride length standard deviation (p 
= .283), or stride length coefficient of variation (p = .185). No significant dif-
ferences were present for step width between patients with MS for step width 
mean (p = .848), step width standard deviation (p = .817), or step width CoV (p 
= .492). When compared with the healthy controls, the moderate severity group 
had a significantly lower stride length mean (p = .038) and a significantly higher 
stride length CoV (p = .047). The stride length standard deviation between the 
moderate severity group and healthy controls was not significant (p = .061). The 
mild severity group did not have significant differences in the stride length mean 
(p = .474), stride length standard deviation (p = .516), or stride length CoV (p 
= .612). The difference of step width between the moderate severity group and 
healthy controls was not significant for step width mean (p = .491), step width 
standard deviation (p = .984), or step width CoV (p = .384). The mild severity 
group did not show significant differences in step width compared with healthy 
controls for step width mean (p = .539), step width standard deviation (p = .765), 
or step width CoV (p = .294).

Nonlinear Measures

ApEn values were significantly lower for the patients with MS compared with 
controls for the stride length (p = .001) and for the step width (p = .001) (Figure 1). 
Between MS severity groups there was no significant difference in stride length for 
ApEn (p = .599) or for DFA exponent (p = .494). DFA values showed no significant 
differences between patients with MS and healthy controls for stride length (p = 
.258) or step width (p = .142) (Figure 2). Compared with healthy controls, ApEn 
for stride length was significantly lower (p = .003) in the moderate severity group 
and was significantly lower (p = .001) in the mild severity group. Compared with 
healthy controls, there were no significant differences for the stride length for the 
DFA exponent in the moderate severity (p = .157) or the mild severity (p = .630) 
groups. Between MS severity groups there was no significant difference in step 
width for ApEn (p = .642) or for the DFA exponent (p = .380). Compared with 
healthy controls, step width for ApEn was significantly lower (p = .001) in the 

Table 3 Step Width Values for Controls and Patients with MS. 

Values Are Presented as Means ± SD.

 Control  
(n = 10)

MS (combined)  
(n = 10)

MS Mild  
(n = 5)

MS Moderate  
(n = 5)

Mean (meters) 0.09 ± 0.05 0.11 ± 0.05 0.11 ± 0.03 0.12 ± 0.07

Standard Deviation 0.01 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

COV (%) 20.73 ± 17.1 12.90 ± 3.16 12.16 ± 2.81 13.64 ± 3.64

ApEn 0.68 ± 0.06 0.51 ± 0.05* 0.52 ± 0.05* 0.51 ± 0.06*

DFA 0.56 ± 0.21 0.70 ± 0.20 0.76 ± 0.12 0.64 ± 0.26

*Significant difference between groups, p < 0.05. 
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Figure 1 — ApEn values for step width and stride length (means ± SD). Significant differences 
were found between patients with MS and controls for both variables. ApEn = Approximate Entropy. 
*Significant difference MS mild compared with controls, (p < .05). † Significant difference MS 
moderate compared with controls, (p < .05). § Significant difference MS combined compared with 
controls, (p < .05).

Figure 2 — DFA values for step width and stride length (means ± SD). No significant differences 
were found between patients with MS and controls for both variables. DFA = Detrended Fluctuation 
Analysis; � = scaling exponent calculated by DFA.
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moderate severity group and was significantly lower (p = .001) in the mild sever-
ity group. Compared with healthy controls, step width for the DFA exponent was 
not different for the moderate severity group (p = .519) or the mild severity group 
(p = .074).

Discussion

The purpose of this study was to examine the gait variability present in patients 
with MS compared with controls by evaluating the step width and stride length 
time series during walking at a self-selected speed. To our knowledge this is the 
first study to investigate gait variability from continuous strides in patients with 
MS. We hypothesized that patients with MS would also show increased amount 
of variability in the evaluated spatiotemporal parameters. This will be indicated 
by linear measures where both standard deviation and CoV would be increased in 
the MS group. In addition, we expected an altered temporal structure of gait vari-
ability, as indicated by nonlinear measures of ApEn and DFA. It was anticipated 
that when compared with controls, patients with MS would display higher ApEn 
values and a decreased DFA scaling exponent.

Both standard deviation and CoV for stride length and step width showed no 
differences in the amount of variability between MS and healthy controls. The lack 
of differences does not support the original hypothesis that patients with MS would 
have higher amounts (linear measures) of variability. Stride length variability has 
previously been investigated in other neurological and aging populations. When 
examining stride length CoV in patients with Parkinson’s disease, Rosano et al. 
(2007) found a stride length CoV of 6.3% from four continuous strides over a 
four-meter walkway. The stride length CoV of those patients was higher than the 
stride length CoV found in our study for patients with MS (4.3%), however their 
data had a much lower number of strides. From their data, Rosano et al. (2007) 
concluded that a greater amount of stride-to-stride variability can be a sign of the 
presence of a neurological disorder (Rosano, Brach, Studenski, Longstreth, & 
Newman, 2007). Hausdorff et al. (2007) also examined stride to stride variability 
using CoV of stride time in Parkinson’s disease patients over 100 m. The authors 
found that compared with controls, such patients had significantly higher stride 
time variability but when an auditory stimulus was added, the Parkinson’s patients 
reduced their stride-to-stride variability. It was suggested that the reductions in the 
amount of stride-to-stride variability indicate improved rhythmicity and stability 
(Hausdorff et al., 2007). Our patients with MS, while walking on a treadmill, 
displayed a similar amount of stride-to-stride variability compared with controls. 
These results taken independent of the nonlinear variability measures indicate that 
patients with MS already have stride length variability with sufficient rhythmicity 
and stability. Importantly, these results are different from the above-mentioned 
literature. It is possible that this is due to methodological issues since we used many 
more strides to fully explore gait variability. However, it is also possible that the 
effect of MS is quite different than of the other mentioned pathologies in terms of 
amount of variability measures.

ApEn for stride length and step width were lower in patients with MS com-
pared with healthy controls. The lower ApEn values indicate that for patients with 
MS, the gait pattern is more predictable and less adaptable than healthy controls. 
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The results do not support our original hypothesis, which stated that patients with 
MS would have increased ApEn values as compared with healthy controls. The 
decreased ApEn values indicate that in patients with MS, the fluctuations present 
in the stride length and step width time series are more repeatable and regular. 
Therefore, they are indicative of a system that is inflexible and has less available 
degrees of freedom. Fewer degrees of freedom have been associated with reduced 
capability to alter gait patterns. Cavanaugh et al. (2005) found that “this reduced 
capability of adapting indicates that a system cannot optimally respond to or pro-
duce a proper physiological response to a particular task or perturbation which will 
usually result in a near fall or fall” (Cavanaugh, Guskiewicz, & Stergiou, 2005). 
Currently there are no established normative values for ApEn measure during 
walking in patients with MS. This is why it is critical to refer to healthy control 
values to establish a reference point (Buzzi, 2001; Stergiou et al., 2004). The step 
widths reported in the studies performed on healthy elderly subjects by Brach et 
al. (2010) across a four-meter walkway and Callisaya et al. (2010) across a four-
meter walkway fall into a range from 0.08 to 0.12 m (Brach et al., 2010; Callisaya, 
Blizzard, Schmidt, McGinley, & Srikanth, 2010). We know that the elderly are 
associated with a higher risk for falling; the patients with MS are also believed to 
have a similar risk because of imposed limitations due to the disease progression. 
Other studies investigating stride length in patients with MS (Martin et al., 2006) 
have reported values ranging from 0.89 to 1.2 m for the stride length (Benedetti 
et al., 1999; Givon, Zeilig, & Achiron, 2009). When comparing our values with 
those in the literature for patients with MS, our stride length for the patients with 
MS was within this range (0.945 m). Values for step width reported by Gutierrez 
et al. (2005) in patients with MS were 0.19 m and in our study we found values 
of 0.11 m (Gutierrez et al., 2005). However, it was found by Owings et al. (2004) 
that variability of step width while walking on a treadmill decreases, so this could 
explain our deviation from the literature (Gutierrez et al., 2005; Owings & Gra-
biner, 2004). These data for stride length and step width reflect that the patients 
with MS display similar values to those of the elderly. However, the average age 
of the patients with MS was only 35.4 years.

The decrease in the ApEn measures in patients with MS is in contrast with 
the change seen in other neurological disease groups when compared with healthy 
controls. Specifically Parkinson’s and Huntington’s disease both show an increase 
in ApEn compared with healthy controls. Both of these conditions are the result of 
basal ganglia dysfunction, while MS affects nerve conduction in the brain, spinal 
cord, and peripheral nerves (Noseworthy et al., 2000). We speculate that the increase 
in regularity of step width and stride length in patients with MS may be the result 
of this wide spread demyelination where both spinal nerves and supraspinal nerves 
are affected. Because the spinal cord and supraspinal structures can no longer send 
and receive signals appropriately, the supraspinal control of walking is decreased 
in patients with MS. This results in an increased reliance on spinal generated sig-
nals to control walking and the increase in reliance on rhythmic stepping patterns. 
This proposed mechanism would explain the decrease in ApEn values for both 
step width and stride length, which indicates increased regularity of movement. In 
addition, MS patients are reported to have large, but delayed automatic postural 
response latencies, which correlated, with the latencies of their spinal somatosen-
sory evoked potentials (Cameron, Horak, Herndon, & Bourdette, 2008). Because 
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of these response latencies, it is possible that patients with MS require increased 
regularity of movement to avoid excess perturbations during walking. While the 
purpose of this paper is not to compare across pathologies it is worth mentioning 
that the epidemiology of specific disease processes appears to affect gait variability 
differently across groups.

To verify that disease severity, according to EDSS, was not a confounding 
factor in our results, post hoc independent t tests were run between the two defined 
severity groups within the patients with MS. The mean stride length was signifi-
cantly lower in the moderate severity group compared with the healthy controls 
while the mild severity group did not have a lower stride length compared with 
controls. This difference indicates that more severe patients with MS (according 
to EDSS) have a shorter stride length, which could reflect a strategy employed by 
the moderate severity group to maintain stability during walking. Examination of 
treadmill walking speed in two severity groups showed that the moderate severity 
group walked slower (0.58 m/s), though not significantly, than the mild severity 
group (0.76 m/s). A slower walking speed on a treadmill would facilitate a shorter 
step length. If the moderate severity group walked at a faster treadmill speed they 
would likely have increased stride length to maintain the pace. Overall, there were 
no differences between the mild and moderate severity groups in any of the vari-
ability measures. This lack of differences indicates that grouping all patients with 
MS, regardless of disease severity, was appropriate. Though the groups did not 
show statistically different treadmill walking patterns, there is a clinical difference 
between the mild and moderate patients. The patients were separated based on an 
EDSS score of greater or less than 4.0. According to the Kurtzke scale (Kurtzke, 
1983), MS patients with a score below 4.0 are fully ambulatory without aid. Patients 
with scores above 4.0 start to have ambulatory problems and may require assis-
tance when walking distances of 200 m. As patient’s ambulatory ability worsens, 
including intermittent or constant aid in the form of a cane or walker, the EDSS 
score increases (Kurtzke, 1983).

In summary, this study is the first to investigate gait variability of patients with 
MS. The nonlinear measure of ApEn showed that patients with MS have a more 
periodic walking pattern with respect to their stride length and step width. This 
periodic pattern is not the type of variability associated with healthy gait patterns 
(Harbourne & Stergiou, 2003; Stergiou et al., 2006). Some limitations of the study 
need to be addressed. First, many of the patients with MS were not familiar with 
walking on a treadmill. However, the treadmill is essential to examine the vari-
ability of the gait pattern over multiple continuous strides. To address this issue, 
we had the patients with MS walk at their preferred self-selected pace. We also 
allowed them to hold onto the handrails of the treadmill. Utilizing the handrails 
can also be a limitation of the study. Chang et al. (2009) found that holding onto 
a front handrail while walking on a treadmill can produce a significantly higher 
� value than not holding onto the handrail (Chang, Shaikh, & Chau, 2009). Our 
�-values were not significantly different from the healthy controls, so this cannot 
be stated as a reason for difference. In dealing with a neurological population we 
also wanted to ensure safety while walking on the treadmill so patients without 
treadmill walking experience were allowed to use the handrails.

To the authors’ knowledge, this is the first paper to investigate the differences 
in gait variability between patients with MS and healthy controls by examining 
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data with nonlinear variability tools. This study found that patients with MS have 
a more repeatable and less adaptable pattern of walking. A gait pattern that is 
inflexible does not allow the patients with MS to properly adjust their gait to meet 
the demands of the environment and the task. Results should be considered when 
assessing severity of patients with MS gait disability and when evaluating the effects 
of pharmaceutical or exercise interventions for the MS population. Both of these 
interventions should be focused on restoring the system to the optimal healthy status. 
Such a change may be indicative of learning and a reorganization of the available 
degrees of freedom (Vaillancourt & Newell, 2000). With this reorganization of the 
degrees of freedom, patients with MS will demonstrate a more flexible gait pattern 
and increase their ability to properly respond to a specific task or perturbation.
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