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Abstract 
 

In this paper we describe a novel method for gait 
based identity verification based on Bayesian 
classification. The verification task is reduced to a 
two class problem (Client or Impostor) with logistic 
functions constructed to provide probability estimates 
of intra-class (Client) and inter-class (Impostor) 
likelihoods. These likelihoods are combined using 
Bayes rule and thresholded to provide a decision 
boundary. Since the outputs of the classifier are 
probabilities they are particularly well suited for use 
without modification in classifier fusion schemes. On 
tests using 1664 examples from 100 clients and 100 
impostors the Bayesian method achieved an equal 
error rate of 7.3%. The improvement over a Euclidean 
distance classifier was shown to be statistically 
significant at the 5% level using McNemar’s test.  
 
1. Introduction 
 

Gait recognition is defined as the identification of a 
person through the pattern produced by walking. This 
field has produced significant interest over recent 
years, and through this work it has been shown that a 
subject’s gait pattern is sufficiently unique for 
identification [1]. Gait has particular advantages over 
other biometrics: it can be used at a distance, uses no 
addition skills on the part of the subject, and may be 
performed without the subject’s awareness or active 
participation. All of these advantages make it 
particularly valuable in surveillance or security 
systems. 

Recognition methods can be broadly divided into 
two groups, silhouette based techniques and model 
based techniques. Silhouette based techniques [2, 3] 
tend to offer speed and simplicity, but are only 
indirectly linked to gait and are difficult to normalise 
for noise or variations such as clothing. Model based 

techniques [4, 5, 6] use the shape and dynamics of gait 
to guide the extraction of a feature vector. Static and 
dynamic measurements can be extracted directly 
whilst the constraints of the model ensure that only 
plausible human shape and motion is permitted. The 
constraints of the model also dramatically reduce the 
effects of variance due to clothing or noise. In this 
paper we employ a model based method proposed by 
Wagg and Nixon [7] due to its good performance 
coupled with  low dimensionality.  

With most of the techniques cited above (and the 
majority of other gait techniques in the literature), 
recognition relies on distance metrics, typically 
Euclidean distance, i.e. a form of nearest neighbour 
classifier. Between two vectors; one of a known 
subject, iC, and one of an unidentified subject, iN, a 
classification decision can be made based on the 
distance between the two vectors, CN iid −= . This 

technique has a number of weaknesses; principle 
amongst them is that it fails to exploit any knowledge 
of variation within the data, particularly which 
variation is due to changes between recordings of the 
same subject (intra-class variations) and which 
variation is due to changes between subjects (inter-
class variations). The second important weakness of 
this technique is the uncertainty about the range or 
distribution of scores that will be produced. This is an 
important factor in the verification problem and in 
data fusion.  

In the verification task we try to ascertain if a 
subject is who they claim to be by comparing a stored 
vector of their gait, iC, with a new vector that they 
present to our system, iN. If the measurements are 
sufficiently similar then they are accepted as a true 
client, otherwise they are rejected as an impostor. The 
Euclidean distance can struggle with this task since 
unimportant dimensions in the measurement vector 
can contribute greatly to the similarity score and make 
finding a threshold difficult.  



Data fusion attempts to combine metrics from 
various techniques to build one single identification 
score [8, 9, 10, 11, 12]. These methods struggle when 
using distance based metrics since the scale and 
distribution of scores across multiple techniques are 
unlikely to be similar. To compensate for this, score 
transformation is often used  to approximate the 
posterior probability [13, 14]; however it is not clear 
whether these are good approximations of the 
posterior probability. In this paper we describe a 
method which we feel would be more suitable, where 
the posterior probabilities are calculated directly.  

One solution for all of the problems described 
above would be to use the Bayesian classifier [15] to 
provide a probabilistic measure for the verification (or 
classification) decision. A well designed Bayesian 
classifier will take into account intra and inter-class 
variation, as well as providing well scaled (guaranteed 
between zero and one) and well distributed outputs.  

This paper describes a Bayesian based probabilistic 
method for verification of subjects based on their gait. 
We will show a technique for the accurate estimation 
of intra and interclass likelihoods and how these may 
be combined using Bayes’ rule. We will test our 
technique against the Euclidean distance technique 
described earlier and present the results of this 
experiment. Our conclusion discusses the performance 
of our technique and future applications for our work. 
 
2. Theory 
 
2.1. Gait Signature Extraction 
 
Following the methods described by Wagg and Nixon 
[7, 16] we extract a seventy-three dimensional 
measurement vector, i, using model based estimation. 
This signature derives from bulk motion and shape 
characteristics of the subject, articulated motion 
estimation using an adaptive model and motion 
estimation using deformable contours; examples of all 
of these processes can be seen in Figure 1. 
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Figure 1 – Gait parameter extraction 

 
 After pre-processing to remove noise and 

background the sequence is edge detected with a Sobel 
operator. A motion compensated temporal 
accumulation algorithm [17] is used to extract the 
bulk motion of the subject in the horizontal plane. 
This is then filtered using template matching, leaving 
only motion due to the subject. Shape estimation is 
then performed using a more accurate model of the 
subject’s shape. 

Articulated motion is estimated as sinusoidal 
models of hip, knee, ankle and pelvic rotation. These 
provide a starting point for model adaptation of the 
subject’s limb movements. An adaptive process for 
joint location is then applied to the sequence to form a 
more accurate and robust model of limb movement. 
This adaptive process is based on an iterative gradient 
descent model repeated until no changes occur over 
the entire sequence.  

By feature selection, the processes described in [7] 
yield 45 parameters based on are joint rotation models 
for the hip, knee and ankle and 18 parameters 
describing the subject’s speed, gait frequency and body 
proportions. A further 10 parameters are extracted 
from the processes described in [16]. All of these 
parameters are normalised to make them size 
invariant. 

 
2.2. Intra and Inter-Class Variation 
 

Decisions in traditional gait recognition are made 
in terms of the Euclidean distance between a known 
and unknown vector, CN iid −= . We have expressed 

a desire to exploit our knowledge of the variation 
within d to provide a probabilistic measure of whether 
iC and iN belong to the same subject. Specifically we 
wish to describe the variation in two ways, the 
variation that arises from differences in measurements 
from the same subject (intra-class variation) and that 
variation that is the result of differences between the 
measurements of different subjects (inter-class 
variance).  

To describe this variance we take a corpus of 
training data that contains a number of subjects each 
with multiple measurement vectors. From this corpus 
we subtract every vector from all other vectors of the 
same subject and allow this to form our intra-class 
training set, DC; we also subtract every vector from 
every other vector in the corpus where the subjects are 
not identical, this forms the inter-class training set, DI. 

Having created our two training sets we then find 
the mean and variance of each set: 
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This process is undertaken for both the intra and 

inter-class training sets to give, µC, µI, σ2
C, and σ2

I. We 
justify the use of the variance rather than the 
covariance following Liu and Wechsler’s work in face 
recognition [18] where they make the assumption that 
the covariance matrices are diagonal: 
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Initial experiments performed on our data show 

that the covariance matrices are indeed sparse except 
on the diagonal and we concur with Liu and 
Wechsler’s experiments showing no loss of 
performance using variance rather than covariance. 

 
2.3. Likelihood Estimation 

 
We wish to describe a new sequence’s similarity to 

a stored sequence of a known subject in a probabilistic 
manner using the information on the mean and 
variance obtained in (1) and (2). To achieve this we 
must calculate the likelihoods of obtaining the 
distance d given either intra-class variation, P(d|C), or 
an inter-class variation, P(d|I), i.e that the subject is 
either a client or an impostor.  

It is desirable to model these two distributions such 
that P(d|C) tends to one with d less than µC, tending to 
zero as d increases beyond µC; conversely P(d|I) 
should tend to zero with d less than µI and tend to one 
as d increases beyond µI. If the distributions of d from 
clients and impostors are slightly overlapping then the 
functions for P(d|C) and P(d|I) should appear as in 
Figure 2. 

To achieve this distribution we have chosen to 
model P(d|C) and P(d|I) as logistic functions [19] such 
that: 
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These two functions conform to our requirements 

set out above that they take into account knowledge of 
the variations of d, that they are well distributed and 
guaranteed to produce outputs between zero and one. 

 

 
Figure 2 – Intra and inter-class distribution and 

likelihoods 
 

2.4. Bayesian Classification 
 
From our estimates of the posterior the probability 

of a subject being a client, P(C|d), can be calculated 
directly. To achieve this we use Bayes’ rule (7), with 
the assumption that the prior probabilities of a client 
or an impostor are equal, (8), and calculating P(d) 
using (9): 
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Equation (7) then simplifies to: 
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Having calculated the posterior probability, a 
suitable decision threshold, t, can be implemented for 
the verification task. Hence if P(C|d) is greater than t 
we accept the assertion that the subject is a client, 
otherwise we reject them as an impostor. The value of 
t may be adjusted to achieve the desired trade-off 
between false accept and false reject rates. 

 
3. Methodology 
 

The performance of our verification method was 
evaluated on the Southampton HiD database [20]. 
Each subject is filmed in controlled laboratory 
conditions from a fronto-parellel viewpoint. The 
database is encoded in Digital Video at a resolution of 
720x576 pixels, with a frame rate of 25fps; each 
sequence is approximately 90 frames in length. The 
sequences are then reduced to a 73 dimensional vector 
using the technique described in section 2.1. 

The database consists of 1,079 sequences from 115 
subjects walking to the left. From this database we 
constructed four datasets:  
• 145 sequences from 15 subjects were used to 

form a training set in order to estimate intra and 
inter-class mean and variance; 

• One sequence for each of the remaining 100 
subjects was used to form a gallery;  

• A number of sequences were selected to match 
each subject in the gallery forming a client set of 
834 sequences; 

• A number of sequences were selected so that the 
subject in the sequence and gallery did not 
match, these 834 sequences formed the impostor 
test set. 

 

 
Figure 3 – Example image from the gait 

sequence 
 

Following the procedure described in section 2.2 
each vector from the training set was subtracted from 
all other vectors of the same subject to form the intra-

class training set of 1,322 vectors; we also subtracted 
every vector from every other vector where the 
subjects are not identical, to form an inter-class 
training set of 19,558 vectors. 

Using (4), (5) and (6) intra and interclass 
likelihoods were calculated for each vector in the 
client and impostor sets. These likelihoods were then 
combined using (10) to calculate posterior 
probabilities for each vector. We then performed 
thresholding on our intra and inter-class likelihoods 
and posterior probabilities at various values of t 
between zero and one. This provides us with false 
accept and false reject rates for our results. For 
comparison we used the Euclidean distance, d, as 
described in section 1 and again performed 
thresholding to calculate false accept and false reject 
rates. 

 
4. Results 

 
Using the results obtained in section 3, equal error 

rates were calculated for the intra-class likelihoods, 
inter-class likelihoods, Bayes’ probability and 
Euclidean distance (Table 1).  

 
Table 1 – Equal error rates from verification 

experiment 
 Method Equal 

Error Rate 
 

 Euclidean 
Distance 

8.6%  

 Intra-class 
likelihood 

8.0%  

 Inter-class 
likelihood 

7.7%  

 Bayes’ 
Probability 

7.3%  

 
Our experiments showed that by using likelihood 

estimates alone we can achieve a small decrease in 
error rates over the previous Euclidean distance 
method; however these improvements are not 
statistically significant. When we combine the 
likelihood estimates using Bayes’ rule we gain an 
additional improvement in error rates. The 
improvement in error rates between the Bayesian 
method and the Euclidean distance method is 
statistically significant at the 5% level using 
McNemar’s test [21]. 

Figure 4(a) and 4(b) shows the false accept rate 
versus false reject rate (Receiver Operator 
Characteristics) in our experiment both over the full 



scale and the region about the equal error rates. In 
each plot we can clearly see the improvement of the 
probabilistic techniques over the Euclidean distance 
method. Whilst the difference is small in absolute 
terms we should remember that we are dealing with 
error rates that are already fairly low. 

 

 
Figure 4(a) – ROC curve (full scale) 

 

 
Figure 4(b) – ROC curve (region of interest) 

 
It is also of interest to examine the distribution of 

the posterior probabilities to see if they meet our 
criteria stated in section 1, that the outputs should be 
well distributed and well scaled between zero and one. 
By inspection of Figure 5 we can see that the output 
from Bayes’ rule is indeed well distributed and well 
scaled, it also appears that the overlap between client 
and impostor sets is small. 

 
Figure 5 – Distribution of posterior 

probabilities for the test sets 
 

5. Conclusions 
 
In this paper we have described a novel method for 

verification of subjects based on their gait. We seek to 
improve over the more standard Euclidean distance 
methods by exploiting the intra and inter-class 
variation in subjects’ measurements. Using this 
variation we aim to both improve the recognition rate 
over the Euclidean distance method, and provide well 
distributed and well scaled outputs that are directly 
useable for data fusion without score transformation. 

We use an established dynamic method to extract 
gait parameters. We then use training data to find 
intra and inter-class variation within the parameter 
space. Using our estimates of variation we are able to 
implement logistic functions to find intra and 
interclass likelihoods which are then combined using 
Bayes’ rule. 

In tests using 1,664 sequences of clients and 
impostors from a large publicly available database we 
achieve an equal error rate of 7.3%. This result is a 
statistically significant improvement over the 
Euclidean distance method when tested using a 
McNemar’s test at the 5% level. We also observe that 
the outputs of our method are well scaled and well 
distributed which will allow them to be used directly 
with data fusion algorithms.  

In future work we hope to implement this method 
on silhouette based gait measures and other biometrics 
such that we may experiment with data fusion in gait 
and for multimodal biometrics. 
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