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ABSTRACT

Detecting abnormal health is an important issue for mobile health,
especially for chronic diseases. We present a free-living health
monitoring system based on simple standalone smart phones, which
can accurately compute walking speed. This phone app can be used
to validate status of the major chronic condition, Chronic Obstruc-
tive Pulmonary Disease (COPD), by estimating gait speed of actual
patients.

We first show that smart phone sensors are as accurate for mon-
itoring gait as expensive medical accelerometers. We then propose
a new method of computing human body motion to estimate gait
speed from the spatio-temporal gait parameters generated by reg-
ular phone sensors. The raw sensor data is processed in both time
and frequency domain and pruned by a smoothing algorithm to
eliminate noise. After that, eight gait parameters are selected as
the input vector of a support vector regression model to estimate
gait speed. For trained subjects, the overall root mean square error
of absolute gait speed is <0.088 m/s, and the error rate is <6.11%.

We design GaitTrack, a free living health monitor which runs on
Android smart phones and integrates known activity recognition
and position adjustment technology. The GaitTrack system enables
the phone to be carried normally for health monitoring by trans-
forming carried spatio-temporal motion into stable human body
motion with energy saving sensor control for continuous track-
ing. We present validation by monitoring COPD patients during
timed walk tests and healthy subjects during free-living walking.
We show that COPD patients can be detected by spatio-temporal
motion and abnormal health status of healthy subjects can be de-
tected by personalized trained models with accuracy >84%.
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1. INTRODUCTION

Supporting Population Health requires detecting abnormal health
situations and taking appropriate actions to effectively treat the pa-
tients'. “Gait speed” has been identified as the “sixth vital sign™2
with significant clinical applications® and major longitudinal stud-
ies demonstrating strong correlation between gait speed and patient
mortality®. Compared to other major vital signs, gait speed is a
simple measure that can predict health status yet be computed us-
ing only embedded sensors of ordinary mobile devices.

Walk tests are widely applied in major chronic disease assess-
ment as standard medical measures, such as Chronic Obstructive
Pulmonary Disease (COPD) 2l and Congestive Heart Failure (CHF) 8
which afflict millions of patients and are major costs for Medi-
care. For these conditions, gait speed is again correlated with pa-
tient mortality, such as with the lung disease COPD'Z. Average gait
speed can be easily computed within these tests since they are al-
ways conducted over a fixed distance or time. For example, the
standard 6-minute walk test demands that the subject walks for six
minutes back and forth over a measured distance in a hospital cor-
ridor while under the supervision of a nurse coordinator®.

Kinesiology has long studied the biomechanics of human mo-
tion for gait analysis?. Generally there are two ways to recognize
gait in medical studies which utilize expensive devices designed
for specific medical tasks: Machine Vision Based'? and Wearable
Sensor Based'l. Machine Vision Based gait analysis is monitored
by expensive multi-camera systems which limit the walking space
to small laboratories and prohibit the use in free-living conditions.



The latter approach is conducted with multi-sensors (generally pe-
dometers and accelerometers) to gather multi-dimensional data

while walking. Since wearable sensor based approach provides
higher mobility, it has been applied in free-living health monitor-
ing of COPD patients. Moy et al.'% monitored everyday step count
of COPD patients with a medical pedometer; while Pitta et al.l3
measured more complicated daily activity of COPD patients with
expensive medical accelerometers.

A medical pedometer is today less expensive than a midrange
smartphone (e.g. $20 versus $200), but less accurate for gait anal-
ysis. It must be fixed to the body, by being clipped to the belt,
and the fixed nature of the embedded software uses a single walk-
ing algorithm to count steps, even when the daily activity is not
good walking, such as walking up stairs or riding in cars. A phone
app can support personalized models for gait analysis, using only
relevant data from continuous monitors. A medical accelerome-
ter is today more expensive than even a high-end smartphone (e.g.
$6000 versus $600), but its extra power is not necessary for gait
analysis. It must again be fixed to the body, usually strapped to the
stable point in the small of the back, while measuring at a high sam-
pling rate. But, as discussed below, human motion requires only a
low sampling rate (SHz versus 100Hz), which midrange phones can
easily support for gait analysis, even while timesharing with other
applications.

Zijlstral%1 first discussed utilization of trunk accelerations to
measure spatio-temporal gait parameters during human walking.
This study showed that a lower trunk accelerometer is able to mea-
sure spatial and temporal gait parameters, even in unconstrained
walking situations. Typical walking variations between older and
younger subjects can be demonstrated by the analysis of spatio-
temporal gait parameters. Trunk accelerometry has been utilized
to demonstrate that severity of chronic diseases is strongly corre-
lated with spatio-temporal gait parameters. Moreover, these stud-
ies show that human gait features (speed, gait cycle, cadence, etc.)
are correlated to the spatio-temporal device motion (acceleration
deviation, autocorrelation coefficient, root mean square, etc.).

Annegarn et al.? specifically investigate the spatio-temporal mo-
tion of trunk accelerometer for COPD patients via six-minute walk
tests. The six-minute walk test is an efficient assessment of func-
tional exercise performance of COPD patients, which becomes a
major evaluation of the functional status of COPD patients. In this
study, tri-axial accelerometers attached at the lower back were used
to measure walking viability. The result shows that the severity of
COPD patients is strongly correlated with their walking viability,
which is reflected as the human gait parameters, as well as, the
spatio-temporal motion of accelerometry.

Modern smart phones are ubiquitous and contain sophisticated
sensors including global positioning systems (GPS) measuring lat-
itude and longitude, tri-axial accelerometers measuring accelera-
tion change in three dimensions, gyroscopes measuring rotational
changes and magnetometers measuring orientation. WiFi and 4G-
LTE networks support high speed data transmission between phones
and servers. This comprehensive set of sensors combined with
the computational power of the phone processors and highly ex-
pandable operating system provides an ideal platform to deploy
widespread monitoring systems cheaply to the general population.

We have developed a phone app called GaitTrack, which can
continuously measure gait speed in free-living conditions. We show
that phone sensors are as accurate as medical accelerometers for
measuring gait, that phone software is as accurate as physical mea-
surements for walk tests with COPD patients, and that continuous
health monitors for daily free-living walking can be implemented
with smart phone applications.
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Figure 1: Sampling Frequencies for Standard Devices.

2. PHONE ACCURACY

It might be thought that phone sensors would not be adequate
for medical tasks. However, the underlying physical MEMS ac-
celerometer chips are often the same or have very similar operat-
ing characteristics in phones as in medical devices. The primary
difference between phones and dedicated medical devices lies in
the firmware of the device itself. While medical devices are de-
signed to solely read the accelerometer sensor at a high frequency
and record the results, phones are designed to conduct a myriad of
tasks including reading sensors, taking phone calls, playing games,
etc. and must handle multitasking each task in a fair manner. Thus,
medical accelerometers excel at taking raw data at high frequen-
cies but lack the capability to do computational tasks on the device
while phones must take readings at lower frequencies to handle the
multitasking but can do more computational correcting to the sen-
sor readings on the device. Our phone app for gait analysis must
be specially designed to utilize the phone’s capabilities by imple-
menting algorithms to pre-process data which correct for lower fre-
quency sampling thereby maintaining the accuracy of the readings.

2.1 Sampling Frequency

One important consideration in designing a medical walk mon-
itor is what sampling frequency is sufficient to capture a patient’s
gait accurately. Figure[I] shows the various frequency capabilities
of modern devices. The upper-end of medically validated devices
typically choose 100Hz. We believe the choice of 100Hz was not
based upon prior research, but was arbitrarily chosen. Medical
studies tend to put the required sampling frequency much lower at
3-5Hz"Y. To identify the frequency ranges with important signal in-
formation, we do the following experiment. We take measurements
with an iPhone capable of attaining the medically accepted 100
Hz frequency readings. First, acceleration measurements are taken
with the phone stationary. Then, a second set of measurements are
taken with the same phone attached to the hip of a walking subject.
These two measurements allow us to calculate the signal-to-noise
ratio in order to determine how much actual good walking signal is
present in the measurements.

Table [T] shows the results of the experiment. We first calculate
the signal to noise ratio of —6.36 dB for our stationary versus walk-
ing signal. The gravity present in the noise signal along with the
variance in the higher frequencies dominates the walking signal
therefore making the signal-to-noise ratio very bad. In fact, there
appears to be more noise than good signal. We then subtract the
gravity constant and run both the stationary data and walking data
through a 5 Hz low pass filter. The signal-to-noise ratio is then cal-
culated at 6.31 dB demonstrating a strong amount of actual walking
signal in the lower frequency data. Finally, we run the stationary

Filtering S/N Ratio
None —6.36 dB

Low Pass 5 Hz Filter 6.31 dB
High Pass 15 Hz Filter | —3.97 dB
High Pass 25 Hz Filter | —3.96 dB

Table 1: Signal-to-noise Ratios



Figure 2: Six Minute Walk Test with Smart Phone Taped to
Medical Accelerometer Attached at Stable L3 Point.

and walking data through two high pass filters with a 15 Hz cutoff
frequency and a 25 Hz cutoff frequency. The signal to noise ratio
is —3.97 dB for the 15Hz signal and —3.96 dB for the 25 Hz fil-
ter. Thus, the substantial bulk of the walking signal is found in the
lower bands and the higher frequency bands above 15 Hz primar-
ily contribute noise to a high quality medical monitor and may be
safely disregarded for use in further analysis.

Therefore, a monitoring frequency of 60Hz is more than suffi-
cient to capture walking characteristics. Sixty hertz yields a Nyquist
rate of 30Hz in the output signal. This creates a medical device ca-
pable of measuring signals that occur at thirty times a second, the
same frequency that the average hummingbird beats its wings while
in flight. While proponents of expensive medical devices may as-
sert this as being too low, there is little medical evidence that such
rapid movements are necessary to assess gait. It should be noted
that while readings above 60 Hz are not useful, arguments against
lowering the sampling frequency will be trivialized since the future
Android standard for version 4.3 requires the devices maintain a
120 Hz sampling frequency for accelerometers. This standard is
what midrange smartphones will support when our clinical trials
are run with free-living walking, two years from now.

2.2 Accelerometer Sensor Pipeline

We design our software to actively measure the sampling rate of
the accelerometer on an Android phone. As expected, the raw sam-
pling rate varies over time due to processor allocation mostly within
the range of 20-100Hz depending on processor load. Effective use
of the data requires that the sampling rate be fixed to an effective
value after a post-process. In our case, 60Hz is selected since it is
the middle point of variation and it is high enough to sense all gait
features we need'®. For our fixed-rate post-processing, the pro-
gram takes sensor reading at the maximum speed and fills a queue
of sensor recording. A second thread spawns to pop values off the
queue and generates samples at 60Hz. If one sample is recorded
in a binning interval, the algorithm records it. If multiple samples
are recorded in a binning interval, the samples are averaged. If an
interval contains no samples, then the value of the previous and
next interval are recorded and the missing values are filled in so the
samples are linearly distributed between the known points.

We conducted the following experiment to compare phone based
GaitTrack system with a medical accelerometer. The GaitTrack
system was installed on a Samsung Galaxy Ace, a midrange An-
droid smart phone, monitoring two subject walking back and forth
on a thirty-meter corridor. The medical device is the Zephyr Bio-
Harness (100Hz sampling), used in physiological, kinesiological
and bio-medical monitoring. The subjects wear a belt on their waist
which holds both the BioHarness and phone at the lower back, or
the L3 position, known to be a stable point for monitoring walk-
ing? as shown in Figure 2l The BioHarness transmits readings
to another smart phone via Bluetooth which then logs the data for
further analysis.

Galaxy Ace BioHarness | Pearsons’ r
PF 1.90(1.79-1.92) 1.97(1.86-2.00) 0.934
RMS 1.11(1.06-1.13) 1.14(1.09-1.16) 0.985

AC | 0.863(0.761,0.926)
CV | 0.404(0.310-0.451)

0.889(0.792-0.937) 0.935
0.396(0.294-0.443) 0.992

Table 2: Calculated Spatio-temporal Gait Parameters in Mean
(Min-Max) Format. r Represents the Pearson’s Correlation
Coefficient.

Spatio-temporal gait parameters are calculated from the raw ac-
celeration data. In this study, we selected four major gait param-
eters to make the comparison: peak frequency (PF), root mean
square (RMS), autocorrelation coefficient (AC) and coefficient of
variance (CV)8. Peak frequency is the frequency of the highest
peak in the frequency domain which also indicates the periodic-
ity of gait. The root mean square, autocorrelation coefficient and
coefficient of variance are descriptions of signals in time domain.
Generally, root mean square value is negatively related with the de-
gree of gait stability. The autocorrelation coefficient indicates the
balance of gait; a higher autocorrelation value indicates higher re-
peatability of gait cycles during a period of time”. Conversely, the
coefficient of variance indicates the level of gait variability. Before
computing all gait parameters, the raw data is processed with a low
pass filter (<15Hz) to remove faster motion than human walking'.!,

Totally, the two subjects walked for thirty six times back and
forth on the thirty meter corridor, generating thirty six individual
samples. We process the raw data for each sample and retrieve
four spatio-temporal gait parameters as described above, using data
from both the GaitTrack and BioHarness devices. The correlation
coefficients were calculated between the two data sets as shown
in Table 2] The results demonstrate a strong correlation between
the data sets generated by the phone and the BioHarness. The cor-
relation coefficients of PF, RMS, AC and CV are all greater than
0.90 while the RMS and CV are correlated at 0.985 and 0.992 re-
spectively. Therefore, the raw output from the GaitTrack phone app
with the smoothing algorithm is able to match the output of the Bio-
Harness, a high performance medical device with an accelerometer.

3. FREE-LIVING HEALTH MONITOR

After proving the accelerometer integrated in a middle ranged
phone performs as well as a medical accelerometer while measur-
ing gait, we design a multi-level detection algorithm to allow the
phone to serve as a health monitor during free-living movement.
The framework of the free-living health monitor is presented in
Figure[3] We first address the energy problems present while moni-
toring health continuously in Section[3.1] We show that with proper
signal processing the phone sensor is able to detect “good walking”
from the raw data of daily activities in Section [3.2] We conduct
medical validation by concentrating on COPD severity which is
strongly related to gait speed. In Section we attempt to build an
estimator for gait speed via supervised-learning methods, in order
to detect whether a subject has COPD. Finally, Section 5] discusses
the effectiveness of detecting arbitrary abnormality of health status
during free-living conditions.

3.1 Low Energy Walk Identification

We design a multi-level walk detection algorithm to allow the
phone to go into a low-power screen off mode while still being able
to measure walking continuously. We propose to accomplish this
by noting that good walking necessitates the user be moving some-
where through space. Therefore, we expect that the signal strength
of the wireless connection on the phone would therefore fluctuate
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Figure 3: Free-living Health Monitor System

as the user moves past various obstacles. This requires very little
power since a smart phone will be continuously connected to the
wireless tower regardless if the user is monitoring gait. The al-
gorithm will also opportunistically, monitor the signal strength of
WiFi connections in the area. We recommend that the user turn
on the WiFi in order to utilize the lower power gait detection al-
gorithm. This idea uses the same principle as recent work using
WiFi to improve GPS accuracy inside buildings, but is easier since
we are only concerned with a binary decision of whether the phone
is moving or not?. If the WiFi scan indicates motion, the phone
will turn on the full accelerometer pipeline and begin taking read-
ings for the walk activity recognition and gait classification which
requires greater battery power and the screen locked in the "On"
state.

To determine the power requirements of the various states of gait
monitoring, we hook a multi-meter directly between a Samsung
Galaxy Ace model 5830 smart phone and the 4.0 volt battery and
measure the current drawn. The greatest power requirement seems
to come from the screen on bright which draws roughly 400 mil-
liwatts of power. Sleep mode draws an average of only 40 mW
of power from the battery. Full walk recognition requires roughly
720 mW, a large enough power requirement that running it continu-
ously would drain the battery prematurely. Contrarily, our wireless
monitor only draws 240 mW primarily due to the extra overhead
scanning the wireless networks which could be further reduced by
increasing the times between scans. Still at 240 mW, the battery in
the phone should last for 1500’”"” = 25.0 hours assuming no other

use. This is a net decrease of 12.5 hours from the estimated time
with screen off and WiFi on of 1500”:“‘ = 37.5 hours, but a large
improvement to the cost of the walk recognition algorithm which
would reduce battery life to a mere lfgo’””‘h 8.3 hours.

3.2 Good Walking Computation

In free-living condition, good walking, defined as a compara-
tively long period of constant walking here, is only a small por-
tion of daily activities. Thus, how to recognize good walking is a
stepping stone for supporting gait analysis during free-living health
monitoring. As soon as the phone is detected as moving, the moni-
toring system starts to collect raw sensor data. Then the first step in
is to convert the low-level signals generated from the sensors into a
high-level representation of the data in the form of feature vectors
more effective for gait analysis.

To represent the spatio-temporal motion of human body from a
phone based tri-axial accelerometer, the raw data in tri-axial coor-
dinates is transformed to a horizontal-vertical body based coordi-
nates, with the help of the gravity vector generated from the phone
sensors as shown in Figure[d To implement this coordinate trans-
form, we first transform the three-dimensional coordinates to spher-
ical coordinates. Let F(Y,,0g,¢,) and F (Y, 04, ¢s) represent the
gravity vector and the acceleration vector, respectively. We know
that in the objective coordinate system the gravity always directs to
the negative vertical axis, known as F”(7,, 6, @;). Thus we have

% =Y )
6, = 0, @)
9 =0 3)
AQ = g — @ @)
it gives us the rotation of spherical coordinates. Also, because

Yo=Y ®)
6 =6, ©6)
P =¢a— A9 @)

we get the representation of acceleration in the new coordinates
F' (Y, 00 90) = F' (Ya: 0, (9a — AP)) (8)

Figure 4: 3D coordinates of mobile devices and Body-based
coordinates
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‘When the new spherical coordinates are transformed back to Carte-
sian coordinates, we get the real gravitational component and hori-
zontal component of the acceleration vector from the magnetometer
sensor and the accelerometer sensor within the smart phone.

After the coordinate transform, Fourier’s Transform is applied to
smooth the acceleration curve. It has been demonstrated that hu-
man activities almost fall in the frequency range of 0-10Hz2Y, The
signal-to-noise ratio taken on the samples above 15 Hz demonstrate
that higher frequency components are primarily composed of noise
and contain almost no actual contribution to the walking data. Thus
we set a low pass filter in the frequency After taking the FFT, we
simply clear the data of the frequency bands above 15 Hz before
applying the inverse FFT to convert the signal back into the time
domain. Thus, the higher frequency noise is removed before we
compute spatio-temporal gait parameters.

With the above processing, the put-in direction of the phone
will be normalized, and noise generated by higher frequency phone
shaking will be eliminated as well. Thus even the phone is loosely
carried, it works the same as tightly attached on the body.

3.3 Activity Recognition

Within a comparatively short period of data collection, different
types of activities need to be detected to extract the part of good
walking. There have been several studies presenting efficient clas-
sification algorithms of activity recognition2l>22523,24, 123
Recently, Lu et al.2% presented a high accuracy activity classifi-
cation algorithm based on Nokia phone sensors. Here we represent
the same algorithm using our own software to develop an effective
activity recognition algorithm. Since we are only concerned about
good walking, a binary classifier is good enough for monitoring
health. However, we still build a classifier which separates move-
ments into four major categories: stationary, walking, uneven and
other. To avoid true negative error, the subject is required to walk
in different speeds (slow, medium, fast) during the training period
as shown in Table 3(a). The description and evaluation of activity
recognition result is shown in Table 3(b).

(a) Types of Movements

Stationary | Sitting, Standing
Walking Slow, Medium, Fast
Uneven Up Hill, Upstairs, Downstairs
Other Jogging, Cycling, Vehicle
(b) Evaluation
Category Accuracy
Stationary 1.0000
Walking 0.9978
Uneven 0.9630
Other 0.9909

Table 3: Movements Classification. Tested with 2 subjects (one
young male and one old male.)

3.4 Position Recognition

Activity recognition must take into account the position of the
phone on the user to maintain high accuracy. Position recognition
of mobile devices is claimed to be possible by recent studies“”. The
accuracy of position detection is higher than 90%, which means
with good training, it is easy to tell where the phone is carried us-
ing phone sensor data. For health monitoring, it is straightforward

to know exactly where the phone is carried if we can find an ad-
justment to get a canonical gait vector. We operate an experiment
that let the subject put phones in several normal carry-on positions,
as well as fix at the L3 position, comparing the generated spatio-
temporal gait parameters. Three different positions are selected in
this experiment: pants pocket, coat pocket and handbag, which are
the ordinary positions people carry their phones.

We computed the eight spatio-temporal gait parameters which
are the features in our gait speed prediction model as presented in
Section[f-1-1] To adjust features calculated from ordinary positions
to a standard validation data, we use a linear regression model. We
get a weight vector B, and an intercept vector €,. For each feature
f the original value is x;¢. The adjusted value is presented in @)

ng = ﬁprx,‘f-f—Ep )

The results show that spatio-temporal gait parameters from gen-
erated different position are correlated with the L3 stable point as
shown in Table E[ In the table, the confidence interval (CI) of
each weight coefficient is presented. The results show that ex-
cept for 3 outliers (MeanAcc, AC for coat pocket and AC for pants
pocket), all other spatio-temporal gait features for three ordinary
positions can be adjusted to a stable L3 position with high confi-
dence (p < 0.05). Thus, a linear model can be used to normalize
the gait parameters and effectively remove the effects of position-
ing of the phone.

3.5 Spatio-Temporal into Body Motion

To compute walking patterns, the spatio-temporal motion has to
be transformed into body motion. Cadence, the steps taken per
minute, is an important feature to measure gait. The first step of
using phone to compute gait is to count steps, functioning as a pe-
dometer. Digital pedometers have been applied in gait tracking for
years, especially in free-living due to its low cost. We provide an
algorithm for step counting using the “good walking” data from the
phone, more accurate than Omron HJ-720ITC, a commercial medi-
cal pedometer which is commonly used in COPD daily tracking'Z.

Zijstra and Hof'# implement a basic step counting algorithm
over accelerometer by detecting zero crossing. However, any noise
in the raw data will affect zero crossing so that the accuracy de-
creased. Computing the variation of sliding windows increases
noise tolerance of step counting?8. With previous knowledge that
human stepping frequency is basically within 15Hz, we set an addi-
tional low pass filter in frequency domain as pre-processing. Thus,
our step counting algorithm is shown in Algorithmm

The step counting algorithm is validated by compared to an Om-
ron HJ-720ITC pedometer??. 2 subjects (1 young male and 1 old
male) are involved in the validation, carrying the phone and the

Linear Model Coefficients
Feature Pants Pocket | Coat Pocket | Handbag
MeanAcc | *x — Kk
StdAcc * %k * %k * %k
MCR * ok % * ok % * % %
AC — — *
CvV * ok % * ok % * % %
RMS * ok % K% * ok %
PF * ok % * ok % * %k %
Entropy * * % % *ok

Table 4: Linear Model Evaluation for Position Adjustment.
sxk:p < 0.0015 #x:p < 0.015 *:p < 0.05; —:p > 0.05



Algorithm 1 Step Counting Algorithm

X < FFT on the RawData;

Y < LowPassFilter(X, 15Hz);

Z <+ Inverse FFT on Y,

HighPassFilter(Z,Mean(2));

Initialize(W);

while i < length(Z)-WindowSize do
region=Z[i:(i+WindowSize)];
add Variance(region) to W[i];
i++;

MinPeak ¢ oo;

for each cycle c in W do
MinPeak=Min(MinPeak,Max(c));

Initialize(L);

for (i = 1; i<length(W); i++) do
L[i]= W[i]>MinPeak?1:0;
if W[i-1]==1 && W[i]==0 then

Count++;
return Count;

pedometer simultaneously and walking for 500 steps. The result
shows that the absolute error rate of the phone algorithm is 0.012;
while the error rate of pedometer is 0.052. Additionally, we can
easily detect when the subjects are walking in free-living condition.
With the time stamps phone provided along with the acceleration
data, cadence is computed. Thus, our phone system is better than
pedometers not only for higher step counting accuracy, but also be-
cause it computes cadence only during good walking periods.

To attempt medical validation of cadence computation, six sub-
jects (three COPD patients and three healthy subjects) were tested
with IRB approval. Each subject completed a session of six-minute
walk test, while cadence is computed from phone sensors. The re-
sult compares the cadence between COPD patients and healthy sub-
jects, shown in Table E} The average cadence, maximum cadence
and minimum cadence of COPD patients are lower than those of
healthy subjects. Since it is known that digital pedometers under-
count the steps of COPD patients Y, due to their cadence being
slower than the fixed calibration of these devices, our phone app is
a superior health monitor.

COPD patients  Healthy Subjects
Average Cadence 49.6 60.0
Standard Deviation 9.3 9.2
Maximum 61.5 79.5
Minimum 36.0 51.7

Table 5: Cadence Comparison of COPD versus Healthy Sub-
jects (steps/min)

4. GAIT SPEED ESTIMATION

Gait speed is a significant vital sign’® for measuring health. One
major strategy of accelerometer based gait speed estimation is cal-
culating the product of cadence and stride length''Z. Thus, these
methods are usually separated in to two independent steps: gait
cycle extraction and stride length computation®!. Each step may
introduce computational errors in estimation of gait speed. As pre-
viously discussed, none of the current cadence computation meth-
ods can guarantee absolute accurate step counting even though the
device is tightly fixed on the L3 position. With phones, the accu-

racy will be even lower if we want the phone to be put in its normal
carrying positions, such as pants pocket. Conversely, the computa-
tion of stride length is based on an ideal triangle model, assuming
that the legs form an isosceles triangle so that the step length is
computable when the leg length [ and step angle 8323110 which
is highly inaccurate.

Recently, machine learning and regression models have been
used in gait speed estimation. Vathsangam et al.2 demonstrated
that Gaussian process based regression can predict gait speed using
sensor data from a belt worn tri-axial accelerometer. Alternatively,
hand held medical devices have also been applied to estimate gait
speed and with error rates of 12-15%2%Z. However, machine learn-
ing methods are hard to interpret since the input features have no
actual meaning. In this paper, we utilize the support vector ma-
chine (SVM), a typical machine learning method, in gait speed es-
timation®>. For better interpretation and explanation, the features
selected as input vectors for SVM are not from the raw acceleration
but from real spatio-temporal gait features which have been proven
to be correlated with human health''$.

4.1 Methodology

We have also designed and implemented an effective algorithm
for detecting the turns so that the walk test data can be divided into
lap length “good walking” samples. Our algorithm is based on two
important insights: first, the amplitude at and around the turns is
significantly smaller than while walking; second, two consecutive
turns are not likely to happen in close proximity. According to
these insights, our algorithm first transforms the raw walking data
into the smoothed time-amplitude series. After that, rough regions
of the turns are estimated by a peak finding algorithm. Finally,
the number of turning points during the six minute walk period is
identified by incorporating the proximity constraints.

4.1.1 Feature Computation

Previous work shows that the previously mentioned four spatio-
temporal gait parameters, peak frequency (PF), root mean square
(RMS), autocorrelation coefficient (AC) and coefficient of variance
(CV), are strongly correlated to gait speed and human health'18-34,
In addition, four other basic features of motion description are se-
lected; mean of acceleration (MeanAcc), standard deviation of ac-
celeration (StdAcc), mean crossing rate (MCR) and entropy of ac-
celeration spectrum in frequency domain?%. Totally eight features
are selected and computed as the input vector of the support vector
machine model to estimate gait speed.

4.1.2 Model Construction

One of the open-source R Support Vector Machine package (pack-
age 1071) is applied in model construction¥. We utilize the Fisher
linear kernel for the selected gait features in order to construct an
eps-support vector regression model=32.

1
fxi) =Y aK(xi,xj)+b (10)
j=1

K(xi,xj) = 0(xi)" ¢ (x)) (11)

Equation (I0) demonstrate how the model is constructed, where x;
is a feature vector and K (x;,x) is the kernel function. The regression
output is &, while b represents the noise vector. When a linear
function is applied, K (x;,x) is shown as Equation .

Then refer to the position adjustment, Equation [9] the adjusted



regression model function is (I2) and the linear kernel is (I3).

1
fxi)=Y aK(Blxi+ep, By xj+e,)+b (12)
i=j

K(Byxi+ep,Byxj+e) = 0(Byxi+e) d(Byxj+ep) (13)

4.2 Medical Validation

4.2.1 Experimental Setup

We implemented the gait monitoring system to operate a six
minute walk test using the phone app shown in Figure [3] running
on a Samsung Galaxy Ace. The program runs for six minutes, giv-
ing voice and vibrating instruction to guarantee a real six minute
walk test environment, recording sensor data at 60Hz, as well as
recording real time heart rate and blood oxygen level via Bluetooth
connected pulse oximeter during the test. The program computes
strides taken during the test and estimated walking distance with a
pre-calibrated stride length. The results, as well as the raw sensor
data, are securely archived and transmitted back to our server for
further analysis.

With IRB approval, six COPD patients (five females, three mild
COPD and two moderate COPD, and one male) from the Univer-
sity of Illinois Hospital and Health Sciences System in Chicago and
six healthy subjects (three females and three males) from Univer-
sity of Illinois at Urbana-Champaign participated in our study. The
walking data for the COPD patients was collected during a stan-
dard medical six-minute walk test® is operated for each individual,
with observation and instruction of the nurse. All patients walked
along a 15.24 meters (50 feet) corridor back and forth in the clinic,
while all healthy subjects walked along a 30 meters (98 feet) corri-
dor back and forth in the laboratory. Shoes and clothes during the
test does not affect their gait and medical measurement.

4.2.2 Model Evaluation

Each subject did accomplish a full six-minute walk test. Since
subjects walked along a flat corridor with a self-chosen speed with-
out being interrupted during the walk test, which is classified as
“good walk” except for the turns, we select each lap of the walk
test as the sampling unit so that each sample only contains straight
walking along a fixed length of walkway. The average walking
speed for each lap, calculated by phone program, is regarded as
the label of each sample. Totally 168 samples (83 healthy and 85

COPD Walk Test Beta

Heart Rate

97

Oxygen Saturation

5:39

Remaining

Bluetooth Status
Connected
toNonin_Medical_Inc.

Figure 5: GaitTrack V2 Phone App

Egpms (m/s)  ER

Personalized 0.032 2.13%
Unified 0.088 6.11%
Cross Validation 0.133 9.98%

Table 6: Evaluation of SVM Model. Egys: Root mean square
error. ER: Standard error rate of gait speed prediction.

COPD) were collected. Three different ways of validation are ap-
plied to evaluate the support vector regression model: personal-
ized training, leave one out and cross validation within subjects as
shown in Table[6l

First, we train a personalized model for each subject, and evalu-
ate each model by leave one out validation. The root mean square
error (Egyrs) between the predicted and actual gait speed is 0.032m /s
and the standard error rate is 2.13%. Secondly, we constructed a
unified model by leaving one sample out each trial. The root mean
square error is 0.088m /s and standard error rate is 6.11%. After
that, we want to know whether the gait speed is predictable when
features of this subject do not contribute to the model training. Thus
we evaluate the unified model by cross validation within subject, by
leaving one entire subject out of the dataset while training then vali-
dating the model on that subject’s data, instead of leave one sample
out. This test produces root mean square error is 0.133m/s and
standard error rate is 9.98%.The comparison between actual gait
speed and predicted gait speed is presented in Figure[f]

Table[7]is the comparison of our model to several recent studies.
The comparison shows that our model is better than the previous
ones in prediction accuracy. Mannini et al.?? implemented cas-
cading SVM gait speed estimators both by individual training and
trunk training. The root mean square error of individual training is
0.28km/h, which is 0.08m/s; while the root mean square error of
the trunk training is 0.70km/h, which is 0.19m/s. Park et al.*” im-
plemented a regularized least squared (RLS) model to estimate gait
speed. The overall root mean square error is 0.098m/s, while the
root mean square error increases to 0.154m/s when the test subjects
do not participate in training.

Egms (m/s) SIG-SVM | ¢-SVM | RLS
Personalized 0.032 0.077 -

Unified 0.088 0.194 | 0.098
Cross Validation 0.133 - 0.154

Table 7: Comparison of Different Models for Gait Speed Esti-
mation. SIG-SVM: Our SVM model with signal processing in
feature selection. c-SVM: cascading SVM by Mannini et al.=3.
RLS: Regularized Least Square implemented by Park et al.2”

Moreover, the standard six-minute walk test brings in 12.5% er-
ror for distance/speed evaluation due to the variation of walkway
length, turning times and other factors2Z. Thus, gait speed esti-
mation model with error of less than 6.11%, given some training,
is more accurate with automatic phone software than with manual
walkway tests.

S. FREE-LIVING ABNORMAL HEALTH

In free-living condition, the health monitor must be able to detect
“abnormal health”. Generally, abnormal health is defined as the
deviation from the “normal range”38. The normal range of health
varies in different cases. In COPD, severity levels are used to reflect
abnormality. With healthy persons, there is no strict definitions on
“normal” and “abnormal” gait, but for each individual, it is not hard
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Figure 6: Comparison between actual gait speed and predicted gait speed. Green circles represent healthy subjects and red crosses
represent COPD patients. COPD (Abnormal) and Healthy (Normal) subjects are clearly distinguished by speed.

to define a overall normal range of health. Thus any deviation from
this normal range can be regarded as “abnormal”.

5.1 Normal and COPD

Since the previous work shows that gait speed is strongly corre-
lated with health status (Healthy or COPD) in free-living condition,
we attempt to detect health status from the spatio-temporal gait pa-
rameters directly. First, we train the model with walk test data of
six healthy subjects and six COPD patients as we did in gait speed
estimation. Here we select a support vector machine"3 and a C4.5
decision tree?? as the learning methods to train the classifier and
make comparison. We evaluate the models by leave one out and
cross validation within subjects. The evaluation result is shown in
Table[8] The classification of healthy and COPD subjects is abso-
lutely correct. The result indicates a high quality of our models in
classifying healthy subjects and COPD patients.

SVM (Accuracy)

1.000
1.000

C4.5 (Accuracy)

1.000
1.000

Leave-one-out
Cross Validation

Table 8: classification result for health subjects and COPD pa-
tients. Here Accuracy= (Ntruefhealthy + Ntrueﬁunhealthy)/NALL

Subject Gender Age Body Size  Abnormality
Subject MYS | Male Young Small Vertebra Hurt
Subject MYM | Male Young Medium Ankle Injury
Subject MYL | Male Young Large Tiredness
Subject MOM | Male Old Medium Back Injury
MYM2 Male Young Medium N/A
FYS1(twin) Female Young Small N/A
FYS2(twin) Female Young Small N/A

FOS Female Old Small N/A

FOM Female Old Medium N/A

FOL Female Old Large N/A

Table 9: Free-Walking Subjects. Age varying from “Young”,
defined in range of 20-29 years old, to “Old”, defined in range
of 50-59 years old.

SVM (Accuracy) C4.5 (Accuracy)
Personalized Model 0.842 0.890
Unified Model 0.758 0.819

Table 10: Result of Free-living Abnormal Health Detection.
Here Accuracy=(N, rue_healthy + Nirue_unhealthy )/NarL

5.2 Individual Abnormal Health

To monitor individual abnormal health in free-living condition,
we collected data from ten normal healthy subjects, demograph-
ically varying in age, sex and body sizes, each participating for
around one week. This study was not an Android phone app, but
a simulation of one using an existing iPhone app. The subjects
were asked to walk for ten minutes each day with an iPhone car-
ried in their pants pockets using SensorData, a commercial soft-
ware app on iOS. Some subjects used an iPod Touch, which has the
same sensors as the iPhone. Abnormal health status happened for
four of our subjects with the others only healthy during the period
as shown in Table[0] The collected data is split into equal-length
pieces (1000 sample points each). Spatio-temporal gait parameters
are calculated as presented in Section [.1.1]

Since there are only four subjects with abnormal health status,
we concentrate on detecting the health differentiation for these sub-
jects. Two strategies are applied in building a classification model
for detecting abnormal health: personalized training (train models
for each individual with their own data) and unified training (train
a single model for all subjects with the whole dataset). The com-
plete system may integrate these two strategies to train the model
with a minimized group of people and apply it to the whole pop-
ulation. We use the eight calculated spatio-temporal gait parame-
ters as input. Support vector machine and C4.5 decision tree are
applied to build classification models. Models are evaluated by
leave one sample out. The result is presented in Table [T0] The
results show that abnormal health can be roughly detected by the
applied models. When utilizing a personalized model trained by
daily ten minute sessions for a week, the accuracy is higher than
84.2%. When utilizing a unified model, the accuracy is higher than
75.8%.

5.3 Future Work

The next stage of our research is to combine all of our exist-
ing components into a fully-fledged free-living health monitoring
system with smart phones. We will develop an integrated system,



encompassing energy conservation, activity recognition, and posi-
tion adjustment as initial preparation for extracting good walking
data from daily activities with continuous monitoring. This will be
used for experiments in future work. Additionally, physiology data
will be collected during tests for future correlations including oxy-
gen saturation using pulse oximeters and heart rate variation using
a chest strap monitor.

To train the gait model, we will collect free-living walking of
healthy subjects and show that their abnormal health is detectable
directly by spatio-temporal motion of smart phones carried in cus-
tomary positions. This will help determine whether the model need
to be trained individually, or can be trained for larger groups. If
individually, we will determine the minimum training for a reliable
detection model so that the system can be applied with the least
training.

To demonstrate the utility of the complete GaitTrack system, it
will be used to assess more subjects. Under approval of a new
IRB in progress, we plan to assess 80 unhealthy (chronic disease)
patients, with walk tests and with free walking, as well as several
healthy subjects for comparison. This will enable us to determine
how many patients must be tested, to evaluate the validity of our
phone app across sex and age and severity. We will then design
and implement a clinical trial to assess health status for the ma-
jor chronic condition COPD, across the full range of demographic
variation.

6. CONCLUSION

This study presents a health monitor system based on simple
standalone phones and separately discusses each module of the sys-
tem, concentrating on two major issues: gait speed estimation in a
timed walk test and free-living abnormal health detection. The for-
mer is to match medical validation and the latter is to apply spatio-
temporal motion in daily life.

Subjects in our experiments vary in age, sex and body size. Our
walk test result shows that gait speed of healthy subjects varying
in age and sex has comparatively small variation range when com-
pared to the variation between healthy subjects and COPD patients.
The reason for this is that walking for six minutes is beyond the fit-
ness tolerance of COPD patients so they have to slow down to fin-
ish it; while healthy people, even old people, can easily accomplish
this test. Thus, in gait speed estimation, we assume that the effect
of demography is a minor factor; oppositely, the COPD severity is
the major effect of gait speed.

We select several supervised learning methods to construct mod-
els. It means not only the methodology, but also the size of training
dataset determines the quality of models. Although the study size
at present is small, the root mean square error of gait speed estima-
tion is limited to 9.98% evaluated by untrained subjects, which is
still better than results (12%-15%) of current related work, which
uses medical accelerometers2Z. As noted, our results show our es-
timation error rate decreased even more, half as much as the results
of previous work, when the subject’s data contribute to model train-
ing.

For a free-living health monitor, we construct classification mod-
els from spatio-temporal motion to detect health status. The abnor-
mal health here stands for any deviation from the normal health
range. In specific situations, the binary classification on healthy or
unhealthy can be modified to a multi-category classification. For
example, to measure COPD severity, the categories can be severity
levels of COPD (healthy, mild, moderate, severe). Or to measure
daily living as in our pilot studies with phone apps, the categories
can be well or sick, energetic or tired, happy or sad.

Medical literature shows that gait is able to assess major chronic

diseases like COPD (lung disease) and CHF (heart disease). Gait
speed can be effectively measured by medical accelerometers, but
their expense limits the population that can use them. Healthcare
costs prohibit medical devices as monitors for the millions of pa-
tients with COPD and CHEF, but nearly all currently have mobile
phones. Within four years, the cheapest mobile phone will have the
same sensor capability as the current smart phone.

We have demonstrated that simple smart phones have the ability
to measure gait as accurately as expensive medical devices. Gait
speed can be predicted from the phone sensor data, with proper
spatio-temporal motion computation. The experiment with both
healthy subjects and COPD patients clearly shows that after pre-
processing of the raw sensor data, a support vector machine is able
to construct a model for accurate gait speed prediction. Medical lit-
erature shows that COPD patients walk slower than healthy people
for a comparatively long distance. Thus, simple phones can contin-
uously monitor chronic disease to validly predict COPD severity.
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