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SUMMARY

The generation of galactic angular momentum by tidal forces is re-examined. We
calculate the tidal torques in linear theory on a spherical shell centred either on a
random point or on a peak in the smoothed density field. We show that when the
torque is decomposed into contributions from multipoles, the dipole term is more
important than the quadrupole, and higher multipoles are unimportant. When the
dipole contribution is taken into account, the torques of thin shells of radii » and r’
are anticorrelated for r/r'2 2. Significant contributions to the torque on any shell
come from shells that are more than five times as big. The magnitude of the torque on
a shell does not depend greatly on whether the shell is centred on a peak in the
smoothed density field rather than on a random point. The dimensionless angular
momentum parameter A of virialized objects remains fairly constant at A = 0.05 as the

object grows as a result of cosmic infall.

1 INTRODUCTION

It has often been argued that galaxies do not form suddenly,
but by the more or less steady accumulation of material as it
rains in on them (e.g. Gunn 1982). At the present epoch most
of the infalling material will be dark matter and thus hard to
detect directly. However, any material that falls in now is
expected to have very high specific angular momentum, so
that even a relatively small accumulation of mass could sig-
nificantly change the angular momentum content of the
recipient galaxy. If the angular momentum vector of the
infalling material is not parallel to that of the existing, visible
galaxy, angular momentum will be exchanged between the
visible galaxy and recently acquired dark matter, and this
exchange may manifest itself by warping the outer, and
possibly even inner, portions of the galaxy’s disc (Ostriker &
Binney 1989; Binney 1990). Hence it is important to know
the degree of misalignment between a galaxy’s existing stock
of angular momentum and the angular momentum it is
acquiring at the present epoch.

Ryden & Gunn (1987) and Ryden (1988) have studied in
detail cosmic infall in a universe dominated by cold dark
matter (CDM). In particular, Ryden (1988) calculated the
specific angular momenta of successively infalling shells of
material, including an estimate of the rate at which the
directions of these shells’ angular momentum vectors change.
Here we extend and refine Ryden’s calculations in the
following respects.

(i) The torques which spin shells up are due to fluctuations
in the cosmic density field. Galaxies are expected to form
around peaks in the density field, so to calculate the torques

on shells around a protogalaxy, one requires a knowledge of
the fluctuations in the neighbourhood of a peak. These are
actually smaller than those in the field as a whole, but
Ryden’s results were calculated in the approximation that the
reduction in the amplitude of fluctuations near a peak could
be neglected. Here we work with the fluctuations appropriate
to the neighbourhood of a peak.

(i) It is convenient to decompose the density and potential
around the peak into multipoles. Although every multipole
but the monopole contributes to the torque on a shell, Ryden
estimated the torque from the quadrupole alone. Here we
calculate the contributions from every multipole and show
that while multipoles higher than the quadrupole are un-
important, the largest contribution actually comes from the
dipole term.

(iii) From the point of view of studies of galactic warps, the
most important result of the present theory is the normalized
correlation:

cosyEM (1)

rz(r)l/zrz(rl)l/z ’
between the torques I'(r) and I'(r') on spheres of radius 7 and

r'. We recalculate this correlation and obtain a plot rather
different from that published by Ryden.

2 TORQUE ON A SHELL

The formulae of Binney & Quinn (1991; hereafter Paper I)
enable one to sample a Gaussian random field in such a way
that a peak in the smoothed field of specified magnitude,
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scale and structure is centred on the origin of coordinates.
We now calculate the gravitational torque on a spherical shell
around such a peak, using the notation and many of the
formulae of Paper 1.

The gravitational force density is f= — oV®, so the torque
about the origin on the spherical shell bounded by the
spheres of radii r/a and ra is:

r'%r, a)= —J o(xxXV)® d3x

—inch dr, (L= —ixXV), (2)

where p is the difference between the actual density and the
mean cosmic density o, and ® is the perturbed gravitational
potential to which p gives rise. Following Paper I we expand
pand @ as

Z Y6, ¢) JPIM( k) jikr) k dk;

¢(x)=_4ﬂGfZY 0, ¢) JPM( )Il(kr)ﬂc, (3)

k

where the p,,(k) are random functions describing the density
field. Inserting (3) into (2) yields

r'%r a)= Ssz rtar ) J'/Orm(k)l}(kr') k dk

Iml'm’

deQ Y7(6, $)LY (6, §) Jmm&k )jn(K'7) ‘Z‘ .

Since L,Y " =mY ', this leads to

ra

l"(zo)(r, a)= —8GiJ rrar Y m J'p,,,,(k)j,(kr') kdk

rla Im
oo dk
XJ'pZi,(k)//(kr) L
1
=8Gi)y 2 mJdkdk'plm(k)p?fn(k')h(:m(r, a, k, k), (5a)
I m=1
where
k’ k “ IN apqt I 12 ’
Wr, a, k, k)= P ],(kr)],(kr)r dr. (5b)
As a—»o, W0->3a(k'~2—k 2)6(k—k') and T©-0 as
expected.

2.1 Correction for displacement of the centre of mass

From the point of view of galaxy formation, the physically
interesting quantity is not so much the angular momentum of
a shell about x=0 but its angular momentum about the
centre of mass X of the material interior to it. Thus we wish to

calculate
I(r,a)= —J' d’xp(x)(x—H)X VO =T -%FxT, (6)
where the mean force f is given by

7= —J r er dQpVo.

rla

To first order in the fluctuations we have

2=—f r er kdkp (k) jkr)

deQ /% Y(Y7(6, ¢)

_ 3 I8 .
_4npb/;JdkP10(k)]2(kr>- (7)

X can be calculated from (7) by relating the coefficients in the
expansion of o with the line 8= 0 identified with the x-axis to
the p,, used here, and similarly for y. After a straightforward
calculation one finds that:

- 2%Jdk[p“<k>+pl-l<k>1j2<kr>,

S=i /31 .

y=i 4 Jdk[pn(k)_Pl—l(k)]lz(k’)- (8)
T /Ob

The mean force fis rather trickier to calculate. Since ¥ is a
first-order quantity, it is sufficient to obtain fto first order in
the fluctuations. Now

B 2 ra a
fz=4npr/:ZJkdkp’f"—(2k)J rzerdQ-Y,"'j,(kﬁ
TT im k rla 9z
=4npr/22Jdkp——IM(k)J rdr
TT im k rla

deQ (Eﬁ—s’ﬂ’i) Y7 k). 9)

The integral over solid angle manifestly vanishes for m#0.
Also

=|

Similarly,
[ z 47
dQ Y‘,’;= /? o (11)
Thus
_ 8 .
F=4xGp, \/EJ dkpy(k) D(r, a, k), (12a)
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where
1" a 2\.
D(r a, k)E;J'r/a rdr (3r+_r) Ji(kr)

ra

= J r* drjo(kr).

rla

(12b)
By analogy with the transformation from 7 to X (12a) yields

fi=4nGp, \/éjdk[Pll(k) +p1-1(k)] D(r, a, k),

f_y=4npri/éjdk[pll(k)—pl_,(k)] D(r, a, k).
Finally,
(®xF), =4iGJ dk dk'j,(kr) D(r, a, k)

x{lon(k) + 1K) [on(k) = oh(K)]
—[on(k) -pfl(k)] [Pu(kl) +/0T1(k’)]}

= _SiGJdkdk,pll(k) on(K) glr, a, k, k), (13a)

where

g(r,a, k k)= D(r, a, k)= j,(k'r) (13b)

[/2(kr) D(r, a, k)].

Comparing equations (5a), (6) and (13a), we see that the
required torque is given by (5a) but with coefficients h,
defined by

HY for [#1,

h=
! W +g for I=1.

(14)

3 AUTOCORRELATION OF THE TORQUE

By equations (5), (6) and (13a), the autocorrelation of T, is

]
rz(rl’ r, a)= _(8G)ZZ Z mmIJdkdk,dl;dE,

LI mm'=1

X G(I:‘n)l’m’(k9 kl, iéa ]el) hl(rl’ a, ka k’) h['(r27 a, ]E’ E,)’ (15)

where

Gk, K e, )= 01 K) 01 K) 01 B) P17 K).  (16)

When x=0 is an arbitrary point in the density field, each
value o, (k) is a Gaussian random variable independent of
all others - see Paper I for details. That is,

Gillk, k)= 04(k) 0im(K)
=P(k) 6,0,,,0(k—k), (17)

where P(k)is the power spectrum of the fluctuations. So long
as the p,,(k) are independent Gaussian variables, G is
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related to G by

Glnrmi(k, K, &, K')= Gk, K') ik, K)
+ 61] [6mm Glm( ]g ) Glfrz(l;’ k/)
+ 6m, —m’G ( ) Im(iéla k,)]- (18>

When (18) is multiplied by A7, a, k, k'), which is antisym-
metric in k, k/, the first term in the expansion (18) of G}
makes no contribution to the integral of (15). The last term in
G%) cannot contribute since m, m'>0. Also Y {m?=
$1(1+1)(21+1). So the contribution to I'%(r,, 7,, a) from any
lis just

A?=—(8GRLI(I+1)(21+1)
X J dk dk P(k) P(K') hir,, a, k, k') h(r,, a, K, k). (19)

When the density field is required to peak at x=0, the
values of p,,(k) at different k are not independent of one
another for /<2. [However, p,,(k) is always independent of
Orm(K) for 1#1' or |m|#|m'|.] Consequently the contribu-
tions from /<2 to the torque I', on a sphere centred on a
peak are not given by equation (19). In the appendix we show
that the contributions from /<2 to the torque on a sphere
centred on a peak are given by

AT’ =-(8G) i i mzjdkdk'dﬁdﬁ'
x[6(k) p(k') C(K, k)+p(K) p(k) Clk, k')
+Clk, k') C(K, k)] hfry, a, k, K) hiry, a, k, &),  (20)

where 6(k) and C(k, k') are defined by equations (A1) and
(A2b) in the appendix; both carry suppressed subscripts
(I, m). The mean-square torque (20) is entirely made up of
contributions from multipoles higher than the monopole.
Interestingly, the height v of the peak one specifies to exist at
the origin does not enter the equations that constrain these
amplitudes - v only appears in the equations constraining the
monopole amplitudes o, (k). Consequently, the rms torque on
the material of a peak is strictly independent of the height of
that peak. In particular, the torque is unchanged if v is
negative, that is, if a trough rather than a peak is located at
the origin.

4 RESULTS

Fig. 1 shows the rms torque per unit mass on a shell of radius
r centred on an arbitrary point calculated by summing the
contributions A,I'2 given by (19) for: (i) /=2 only (dashed
curve), (i) /=1, 2 (full curve), and (iii) /=1,...,4
(dot-dashed curve - almost coincident with full curve). The
dashed curve agrees excellently with Ryden’s plot of I'Z; this
was obtained for the same spectrum and normalization as we
have used, and from just the quadrupole induced by uncon-
strained fluctuations. The interesting point about Fig. 1 is its
demonstration that the dipole term, /=1, makes a larger con-
tribution than the quadrupole, while the higher multipoles
are unimportant.

Fig. 2 shows the quantity cos y defined by equation (1) for
concentric spheres centred on an arbitrary point. Again we
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plot separately results obtained by including only quadru-
pole terms (/=2; dashed curves) and both dipole and
quadrupole terms (/=1, 2; full curves). The dashed curves
differ from their equivalents in Ryden’s fig. 10 in that they do
not approach the line y=1 with a large gradient, but have
smooth maxima at r=¢' as they must on both physical and
mathematical grounds. When the dipole term is included, the
torques on shells that differ in radius by more than a factor

10

;_f|||| I T TTTTIT T T TTTT T ||[|”T I T TTTTI 3

1L -

E ]

1 B |
£ .

R = - =

01k -7 —

:1|||| L1 ||||||| | ||||“|| 11 ||||||I L1 ||H||! 3

1 10 10Q 1000 10000

M/10°M,

Figure 1. The rms torque per unit mass on a shell of radius r
around an arbitrary point in the density field. The dashed curve
shows 3 times the (/=2) quadrupole contribution A,T? after
division by the mass of the shell. The cold dark matter spectrum
having been normalized as in Ryden (1988), this curve agrees well
with Ryden’s equivalent. (The units are 10'5 cm? s~2; a torque of
magnitude 0.1 in these units acting on a particle through a radian
imparts a tangential velocity of 141 km s~'.) The full curve shows
the result of including the dipole (/=1) contribution. The
dot-dashed curve that almost coincides with the full curve shows
that adding further multipoles, specifically /=3, 4, does not
significantly change the torque obtained from the first two non-
trivial multipoles. For computational convenience the integrals over
k have been truncated by smoothing the spectrum on a scale of 50
kpe (~3%x10% M).

—IlllllllI'Llllllllllllll.
0 5 1 1.5 2 2.5
r;/Mpc
Figure 2. The quantity cos y defined by equation (1) for shells of
radius 0.35 and 1 Mpc centred on an arbitrary point. The
magnitude of cos y is a measure of the degree of alignment of the
angular momenta of concentric shells. The dashed curves show the
contribution of the quadrupole alone, while the full curves also
include the dipole’s contribution.

=2 are anticorrelated. This occurs because shells pull each
other in opposite directions along a line that in general does
not pass through the centre of mass of the enclosed material.

The full curve in Fig. 3 shows the torque on shells centred
on a peak in the smoothed density field, while the dashed
curve in that figure shows the torque on shells centred on an
arbitrary point. It will be seen that the torque is not greatly
affected by the presence of a peak at the origin ~ the only
significant change is a slight decrease in the torque at small
radii. This is a consequence of the fluctuations becoming
smaller near the centre of the peak. Fig. 4 shows the equiva-
lent of Fig. 2 for shells centred on a peak. The anticorrelation
of the torques is now more pronounced for shells whose radii
are in the ratio 2 S r,/r; S 4, but disappears for larger values
of r,/r,. The results shown in Figs 3 and 4 were obtained
with 160 values of k.

It is interesting to calculate the total angular momentum
J(M) imparted to a sphere of mass M. The square of the total

10 EHII' T Il]ﬂ_IT T TTTTITI T T TTTTIT T ||TTT|[
8 ]
1 -
£ L ]
7Y _ i

g
SR -
01 —
Ll L1 LLHII‘ 1 IJ_lllH| 1 IALIIIJIL L1 lIIIJ_l 3
1 10 10Q 1000 10000
M/10"M,

Figure 3. The same as Fig. 1 except for shells centred on a peak in
the density field when smoothed with a Gaussian filter
w(k)=exp(—k?/2k3) with k,=1/0.43 Mpc. The dashed curve
shows the torque on a randomly centred shell. Both curves include
both dipole and quadrupole contributions.

cos vy

PRSI

e Lo e by e by

1.5 2

1
r/Mpc

Figure 4. The same as Fig. 2 except for shells of radius 0.35 and 1
Mpc centred on a peak in the smoothed field. The dashed curves
show cos y for randomly centred shells. The smoothing scale is as in
Fig. 3 and all curves include both dipole and quadrupole contri-
butions.
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torque on such a sphere predicted by linear theory for the
present epoch is given by equation (15) with r, =r,=r(M)
and the limits r/a and ar of the integrals appearing in the
definitions (5b) and (12b) of A{”) and D replaced by 0 and 7,
respectively. Equation (35) of Ryden (1988) gives an
approximate prescription for deriving the time dependence
of the actual torque from this linear result: one calculates the
trajectory of the shell from the standard Newtonian closed
universe and assumes that the shells which provide most of
the torque expand according to a flat universe. Integrating up
the scaling factors furnished by this model for each time, one
obtains quantities by which the linear torque must be multi-
plied to yield the angular momentum J of each shell. On the
other hand, the binding energy of the body formed by every-
thing interior to a shell is

M GM ,
E=—J G dM’, (21)

0 Tmax

where 7., (M) is the maximum radius reached by the shell
containing mass M. Fig. 5 is a plot of the dimensionless
quantity

_JlEll/Z
T oM

yl (22)

calculated for bodies formed by the collapse of a peak in the
smoothed density field. (The collapse time-scales were
evaluated by assuming that the peak was a 2.5 ¢ fluctuation in
the density field obtained by multiplying the raw CDM
amplitudes 0, by w(k)xexp(—k?/2k3) with k;'=0.43
Mpc. Thus the amplitudes were those appropriate to the
unconstrained field rather than one constrained to have a
peak at the origin.) For 7 less than the smoothing length, Fig.
5 shows 4 to be a rapidly varying function of 7. However, this
portion of the graph is of little interest since infall is unlikely
to cease before shells that are at least a smoothing length in

0.1

0.05 |-

OIIL‘O.Slllll‘III1A5II||2I‘}I2.5

Figure 5. The dimensionless angular momentum (22) for an object
formed by the infall and virialization of shells which at the present
have unperturbed radii less than r. The time-scales over which the
torques on shells act were calculated from equation (35) of Ryden
(1988) for a 2.50 peak in the field smoothed on a 0.43-Mpc scale.
The binding energy of the body formed to radius r was obtained
from (21).

Galactic angular momentum 733

radius have fallen in. Subsequently, A rises gently from
~0.04 to ~0.06 as further shells are accreted.

Fig. 6 shows the equivalent of the full curves in Fig. 2, but
for the angular momenta of solid spheres rather than the
torques on shells. Since the great majority of any solid
sphere’s angular momentum is concentrated in its outermost
shells, Figs 2 and 6 are remarkably similar.

Which shells contribute most to the torque on any given
shell? Let the inner shell have radius r and the outer shell
have radius r'. Then the potential at points on the inner shell
due to the outer shell is by the first of equations (3) and
equation (2-120) of Binney & Tremaine (1987):

n_ 2, v Y/(64)
odb(x, r)= 4nG/;r6r%-——21+1

r\ .y
x (7) Jkdkp imlKk) ikr). (23)
The potential energy of a shell through x is
6W=r26rjp(x) 0D(x, r') dQ. (24)

We obtain the torque about the origin on this shell by
expressing 0 W as a function of ¢,, the angle through which
the shell has been rotated from its original position. This we
do by replacing ¢ in (23) by (¢— ¢,), differentiating with
respect to @, and setting ¢, = 0. From (23) and (24) we then
have

imgo !
2 g ! € L
OW(gy)=—8Gr~drr or %2“_1 (r')

XJkdk J k' dk oK) pimlk) j(K'7) jil k'), (25)
T T T T
1+ _
?E 0.5 — =
" L i
o

o - ]
0 _]
i P RS W SO (N ST S SR T SUSU O T S SR NN SR SN VT S A S R S ]

0 0.5 1 1.5 2 2.5

r./Mpc

Figure 6. The quantity cos y defined as in equation (1) but with
I'(r) having the meaning of the angular momentum acquired prior to
the collapse of its outermost shell by a solid sphere of radius ». The
two curves correspond to r; =0.35 and 1 Mpc. The shells are
centred on a random point.
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so the torque on the inner shell is

"
0 = Qi2 S S 7 (rfr)
T =8iGr orr or Z/__2l+1 mZ)() m

xjdkj dk o (k') o1 k) FO K, K 7, F), (26a)

where
Ok, k', 7, )= kK'[j{kr') jAK'r) = (kr) jAK'T)]. (26b)

On squaring this and taking the expectation value for an
unconstrained field, one finds for the mean-square torque
about the origin:

TP =GR or or Y X UL

" 6(21+1)

X [ dkdk' P(k) P(K)[f'k, K, r, 7). (27a)

By analogy with equation (20), the corresponding expression
for amplitudes which are constrained to produce a peak is

2

(T =(8G)*(r*drr' 6r') ZZ S S (rr' Y

x[6(k) B(K) C(K, k)+p(K) p(k) Clk, k')
+C(k, k') C(K, ) fOKk, K, 1, ¥') fOk, K, r, ). (27D)

The torque OI around the centre of mass of the material
interior to r is OI'¥'—%x 6f, where 6f is the mean force
exerted on the inner shell by the outer. One finds:

T 4 U . !
0f.=4nGp, /; r’orér Jkdk[le(k)+PT1(k)]]1(kr ),

T 4 U . !
6fy=4”G/0bi\/; r*oror Jkdk[pll(k)_prl(k)]/l(kr ),

(28)
SO
(®x Of),= —8iG(r*drér')
X{dkdk,pll(k) pTl(k,)f(ka k,9 r, r’)’ (298)
where
flk, K v r') =y (kr) KK ¥') = jo(K'r) Kjiy(Kr'). (29b)

Comparing (29a) with (26) we see that the mean-square
torque about the centre of mass is given by (27) but with f{¥
replaced by
o+ (30)

r

Fig. 7 shows (6Fz)2]/z/(4npbr26r6r’) for shells of radii

0.35 and 1 Mpc around a peak in the density field smoothed

2 ————— — —
1.5+ |

s :
0 1+ |
E - ]
= =
i ]

0.5 ]
OO 2 4 6 8

1/2

Figure 7. (0I',)2 "/(4mp,r?dr or') for concentric shells of radii 0.35
and 1 Mpc. (These shells contain M=0.29, 6.7x10"" M, of
material respectively.) The full and dashed curves include the
contributions from the /=1, 2 harmonics, while the dotted curves
include the quadrupole contributions only. The dashed curves are
for shells centred on a 2.50 peak in the field smoothed on a 0.43-
Mpc scale, while the full and dotted curves are for shells centred on
random points.

on a 0.43-Mpc scale. The torque on a shell of radius r due to
one of radius 7' > r first rises as ' increases away from 7, due
to the increasing misalignment of the two shells. When »' ~ 27
the torque begins to fall as a result of the difficulty which the
multipole fields experience in propagating between the
shells. For ' >> r the torque declines roughly as 1/r'. This can
be understood as follows. The asymptotic behaviour is
governed by the dipole contribution to (27). The mass of a
shell of constant thickness &r' increases as r'2, so similar
shells of increasing radii ¥' would make equal contributions to
the coefficients of Y7 at r. However, once a shell is larger
than the largest structures predicted by the spectrum, the
amplitude of a shell’s global irregularity declines as the
square root of its area. Hence the torque between shells of
radii r <7’ eventually declines as 1/7'.

It is not so easy to predict the speed with which the net
torque of a shell of radius r converges to its final value as
contributions from successively larger shells #' are added in,
since this depends on the range in » over which shells are
coherently aligned. If the coherence length remained ~ r' as
is the case with a CDM spectrum for 7' S 1 Mpc, the torque
would never converge since it would be the distance travelled
after an infinite number of random steps. Clearly the torque
does converge if the coherence length dr' tends to a constant,
but for spectra of interest we cannot expect the convergence
to be rapid.

From equation (12a) it follows that the autocorrelation of
the net force F(r) on the solid sphere of radius r is

f(ri, 1) = F(r)) F(r;) =8(47Gp,
dekP(k) D(r,, k) D(r, k), (31)

where D(r, k) is defined by (12b) with the integration limits
set to 0 and r. The mean velocity of a sphere will be pro-
portional to F(r)/M,, where M, is its mass. Thus the rms
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difference between the mean velocity of a sphere of radius 7,
and an embedded sphere of radius r, is

Y L 1 I 2, 2 1,12 12
(v, —v,)?] = [f(juzr )+f(rM2r ) f]“(;r,]‘;rz) .

" n

-2 (32)

In Fig. 8 this is plotted as a fraction of v, for r, =0.35 Mpc.
The autocorrelation f(r,, r,) of F, unlike that of T, remains
positive even for large r, —r;, and thus the rms fractional
velocity difference plotted in Fig. 8 is smaller than unity
throughout the plotted range of r,. On the other hand, f is
second order in the fluctuations, while the autocorrelation of
T is a fourth-order quantity. So while T"T is dominated by
relative velocities of shells, in f such contributions are
swamped by much larger, positively correlated velocities
associated with large-scale streaming. For -example,
measurements of the microwave background show that our
own Galaxy has v, ~ 600 km s~!. Hence a fractional velocity
difference of order 0.15 corresponds to an actual velocity
difference ~90 km s~'. This then gives the order of the
momentum exchange that must have taken place between the
inner Galaxy and the bulk of the dark halo over a Hubble
time. To effect this exchange the inner Galaxy must have
been displaced from the centre of mass of the halo as a
whole. We defer investigation of the distortions of the inner
Galaxy to which this displacement gives rise to another

paper.

5 CONCLUSIONS

We have calculated the rms torques on shells surrounding
both arbitrary points and peaks in the smoothed cosmic
density field. We find that significant contributions to the
torque arise from both the dipole and quadrupole terms in a
spherical harmonic decomposition of the cosmic density and
potential. Multipoles higher than the quadrupole make
negligible contributions to the torque. The dipole contribu-
tion causes the overall torques on shells that differ in radius
by more than a factor 2 to be anticorrelated.

The torque on a shell depends significantly on whether the
shell is centred on a peak or a random point only when the
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Figure 8. The rms fractional difference between the velocity
acquired gravitationally by the material inside 0.35 Mpc and that of
all the material inside the sphere of radius 7,.
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shell’s radius is comparable to the scale size of the peak -
then the torque is smaller when the shell is centred on a peak.
Furthermore, the tendency for shells to have anticorrelated
torques is enhanced when the shells are centred on a peak.

The dimensionless angular momentum A of the virialized
body that forms from a peak in the smoothed density profile
quickly reaches a value =0.05 and then remains fairly
constant as further shells are accreted by the body.

Any individual shell receives non-negligible contributions
to the torque on it from shells larger by a factor of 5 or more.
Thus it is important that n-body simulations of the virializa-
tion of peaks in the cosmic density field represent a region
around the peak that contains considerably more mass than
the peak itself.

Since this work is based on linear theory, its conclusions
should be treated with caution pending confirmation by
appropriate n-body simulations. In particular, we have taken
no account of angular momentum exchange within a shell. In
hierarchical clustering models, such exchanges become
important at even modest distances from a peak, as the shell
fragments into subclumps (e.g. Katz 1991). However, this
work does represent an advance on that of Ryden & Gunn
(1987) and Ryden (1988) in two respects. (i) We have
clarified the significance for infall of galaxies forming at
peaks rather than random points in the cosmic density field.
These effects are not large but may be significant for certain
applications. (ii) We find that the dipole term, which was
discounted in previous work, is important in two respects.

First, it gives rise to an anticorrelation in the spins
acquired by neighbouring shells. This anticorrelation must
make it harder for galaxies to maintain a common rotation
axis from their centres to their edges, since it accelerates the
rate at which the angular momentum of infalling matter
slews. In particular, our calculations suggest that a typical
galactic spin axis now is on the average antiparallel to its
orientation at z=0.3. It remains to be shown that galaxies
can in fact accomplish this re-orientation. If they can, the flux
of off-axis angular momentum through the disc from large
radii to the centre will manifest itself in warping of the disc
wherever the latter’s self-gravity is weak (Ostriker & Binney
1989). Polar rings, counter-rotating cores and other features
frequently observed in early-type galaxies may arise when a
galaxy cannot keep up with the rate at which the angular
momentum of accreting material slews, and simply incorpo-
rates accreted material in something close to its original state
of spin.

The second way in which the dipole term may have
observable consequences is more direct: this term causes
successive shells of infalling material to have differing net
momenta. In effect the galaxy is being pushed in one direc-
tion or another by the downpour of accreting material to
which it is exposed. We need to understand how the under-
lying galaxy responds to this impulse. An intriguing possi-
bility is that the m=1 distortions seen in galaxies as diverse
as M101 and NGC 1275 arise from this cause.
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APPENDIX: THE CONSTRAINED TWO- AND
FOUR-k CORRELATIONS

Equation (11) of Paper I expresses p,,(k) as a sum of a mean
field 6(k) characteristic of the peak being studied and a
fluctuating component 3, a, w!® (k) which is proportional to
independent, Gaussianly distributed random variables a:

plk)=u(k)+ 2 | b v (k) +a, ¥ k§'v' (k)
a>0 B>0
=6(k)+ 2 a,w(k). (A1)

a>0

In this equation the Im subscripts on p,, have been
suppressed, the continuous variable k is represented by a
discrete set of N values k; and Greek indices also run over N
values. The quantities u, v'%, b, and ki) are all uniquely
determined by the nature of the peak and the power
spectrum. With o expressed in the form (Al) the two-k
correlation is readily obtained:

Gk, k)= <k,~> o (k)= p(k) pk)+ wwPa ay

=0(k;) (k,)+w wﬂa

=p(k;) p(k;) + C(k;, k), (A2a)
where w; = w(k;),
Clk, k)= Y. wwa, (A2b)

a>0

and the dispersion o, of a, is defined in Paper I [The
relevant equation in Paper I, (A25), could be misleading in
that it suppresses the summation over (/, m). One has to
remember that when m # 0 the same quantity | a,|? occurs in
the action § twice, once for positive m and once for negative
m. Hence its overall factor in S is 1/6? rather than the value
1/2 6% shown by equation (A25) of Paper L]

We require Gk, k;, k,, k) only in the case m, m'>0.

There are two subcases to con51der

(i) (L, m)#(I', m'). Given that m, m'>0, p,, and o/,
cannot be correlated. So
G}:r)l’m’(kh kj’ kk’ k1>= Glm(kn k) G <kk9 kl)

(Im|#|m]).  (A3)
(i) (L, m)=(l,
Glmlm(k k;, ky, k)= p0(k;) 6(k;

is Vs

m'). From (A1) we have

+ 2 [6(k;) 6lk) wiewiog + 6(ky) B(k) wiw) o,

a>0
+06(k) 6 (k) wwag + (k) B(k,) Wi wi o]
+ 5 WO W ara A
afyo>0

With the definition (A2b) and the standard result that for a
complex Gaussian variable

4,850,05 = 020450205+ 00,5030, (AS)
this becomes
G(Ifn)lm(ki, k,', ke, k/)= 5(k;) ( ) 5(ky) (kl)

+0(k;) o(k;) Clky, kp)+ p(ki) p(k)) Clk;, kj)

+0(ki) p(ki) Clk, k) + p(ki) p(k;) Clks, ki)
+ C( kis k ) (kka kl) + C( ) (k/’ kk) <A6)

When this expression for G, is multiplied by
h(r,, a, k;, k;) h(r,, a, k;, k;), which is symmetric in (i) and
(kl), only three of its seven terms survive and we obtain

equation (20).
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