Galactic Dynamics SECOND EDITION James Binney and Scott Tremaine PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD ## Contents | Preface | | xiii | | |---------|--------------|---|----| | 1 | Introduction | | 1 | | | 1.1 | An overview of the observations • Stars 5 • The Galaxy 11 • Other galaxies 19 ▷ Elliptical galaxies 20 ▷ Spiral galaxies 25 ▷ Lenticular galaxies 28 ▷ Irregular galaxies 28 • Open and globular clusters 29 • Groups and clusters of galaxies 30 • Black holes 32 | 5 | | | 1.2 | Collisionless systems and the relaxation time • The relaxation time 34 | 33 | | | 1.3 | The cosmological context • Kinematics 38 • Geometry 39 • Dynamics 40 • The Big Bang and inflation 45 • The cosmic microwave background 48 | 37 | | | Pro | blems | 52 | | 2 | Pot | tential Theory | 55 | | | 2.1 | General results > The potential-energy tensor 59 | 56 | | | 2.2 | Spherical systems • Newton's theorems 60 ▷ Potential energy of spherical systems 63 • Potentials of some simple systems 63 ▷ Point mass 63 ▷ Homogeneous sphere 63 ▷ Plummer model 65 ▷ Isochrone potential 65 ▷ Modified Hubble model 66 ▷ Power-law density model 68 ▷ Two-power density models 70 | 60 | | | 2.3 | Potential-density pairs for flattened systems • Kuzmin models and generalizations 72 • Logarithmic potentials 74 • Poisson's equation in very flattened systems 77 | 72 | | | 2.4 | Multipole expansion | 78 | | | 2.5 | The potentials of spheroidal and ellipsoidal systems • Potentials of spheroidal shells 84 • Potentials of spheroidal systems 87 • Potentials of ellipsoidal systems 94 ▷ Ferrers potentials 95 ▷ Potential-energy tensors of ellipsoidal systems 95 | 83 | vi Contents | | 26 | The potentials of disks | 96 | |---|------------------------|---|-----| | | 2.0 | Disk potentials from homoeoids 96 ▷ The Mestel disk 99 ▷ The exponential disk 100 ▷ Thick disks 102 • Disk potentials from Bessel functions 103 ▷ Application to axisymmetric disks 106 • Disk potentials from logarithmic spirals 107 • Disk potentials from oblate spheroidal coordinates 109 | | | | 2.7 | The potential of our Galaxy ▷ The bulge 111 ▷ The dark halo 112 ▷ The stellar disk 112 ▷ The interstellar medium 112 ▷ The bulge as a bar 117 | 110 | | | 2.8 | Potentials from functional expansions ▷ Bi-orthonormal basis functions 120 ▷ Designer basis functions 120 | 118 | | | 2.9 | Poisson solvers for N-body codes • Direct summation 123 ▷ Softening 123 • Tree codes 125 ▷ Cartesian multipole expansion 127 • Particle-mesh codes 129 ▷ Periodic boundary conditions 131 ▷ Vacuum boundary conditions 132 ▷ Mesh refinement 135 ▷ P³M codes 135 • Spherical-harmonic codes 136 • Simulations of planar systems 137 | 122 | | | Pro | | 137 | | 3 | $\mathbf{T}\mathbf{h}$ | e Orbits of Stars | 142 | | | 3.1 | Orbits in static spherical potentials ▷ Spherical harmonic oscillator 147 ▷ Kepler potential 147 ▷ Isochrone potential 149 ▷ Hyperbolic encounters 153 • Constants and integrals of the motion 155 | 143 | | | 3.2 | Orbits in axisymmetric potentials • Motion in the meridional plane 159 • Surfaces of section 162 • Nearly circular orbits: epicycles and the velocity ellipsoid 164 | 159 | | | 3.3 | | 171 | | | 3.4 | Numerical orbit integration • Symplectic integrators 197 > Leapfrog integrator 200 • Runge-Kutta and Bulirsch-Stoer integrators 201 • Multistep predictor-corrector integrators 202 • Multivalue integrators 203 • Adaptive timesteps 205 • Individual timesteps 206 • Regularization 208 Heggie regularization 208 Kustaanheimo-Stiefel (KS) regularization 210 | 196 | | | 3. | Angle-action variables Orbital tori 212 ▷ Time averages theorem 215 ▷ Action space 216 ▷ Hamilton-Jacobi equation 217 • Angle-action variables for spherical potentials 220 • Angle-action variables for flattened axisymmetric potentials 226 ▷ Stäckel potentials 226 | 211 | Contents vii | | | \triangleright Epicycle approximation 231 \bullet Angle-action variables for a non-rotating bar 234 \bullet Summary 236 | | |---|-----|---|-----| | | 3.6 | Slowly varying potentials • Adiabatic invariance of actions 237 • Applications 238 ▷ Harmonic oscillator 238 ▷ Eccentric orbits in a disk 240 ▷ Transient perturbations 240 ▷ Slow growth of a central black hole 241 | 237 | | | 3.7 | Perturbations and chaos • Hamiltonian perturbation theory 243 • Trapping by resonances 246 ▷ Levitation 250 • From order to chaos 253 ▷ Irregular orbits 256 ▷ Frequency analysis 258 ▷ Liapunov exponents 260 | 243 | | | 3.8 | Orbits in elliptical galaxies • The perfect ellipsoid 263 • Dynamical effects of cusps 263 • Dynamical effects of black holes 266 | 262 | | | Pro | blems | 268 | | 4 | Equ | iilibria of Collisionless Systems | 274 | | | 4.1 | The collisionless Boltzmann equation • Limitations of the collisionless Boltzmann equation 278 ▷ Finite stellar lifetimes 278 ▷ Correlations between stars 279 • Relation between the DF and observables 280 ▷ An example 282 | 275 | | | 4.2 | Jeans theorems • Choice of f and relations between moments 285 $$ ▷ DF depending only on H 285 $$ ▷ DF depending on H and L 286 $$ ▷ DF depending on H and L_z 286 | 283 | | | 4.3 | DFs for spherical systems Ergodic DFs for systems 288 ▷ Ergodic Hernquist, Jaffe and isochrone models 290 ▷ Differential energy distribution 292 DFs for anisotropic spherical systems 293 ▷ Models with constant anisotropy 294 ▷ Osipkov-Merritt models 297 Other anisotropic models 298 ▷ Differential-energy distribution for anisotropic systems 299 ○ Spherical systems defined by the DF 299 ▷ Polytropes and the Plummer model 300 The isothermal sphere 302 ▷ Lowered isothermal models 307 Double-power models 311 ▷ Michie models 312 | 287 | | | 4.4 | | 312 | | | 4.5 | DFs for razor-thin disks • Mestel disk 329 • Kalnajs disks 330 | 329 | | | 4.6 | | 333 | | | 4.7 | Particle-based and orbit-based models • N-body modeling 339 ▷ Softening 341 ▷ Instability and chaos 341 • Schwarzschild models 344 | 338 | |---|----------------|---|-----| | | 4.8 | The Jeans and virial equations • Jeans equations for spherical systems 349 ▷ Effect of a central black hole on the observed velocity dispersion 350 • Jeans equations for axisymmetric systems 353 ▷ Asymmetric drift 354 ▷ Spheroidal components with isotropic velocity dispersion 356 • Virial equations 358 ▷ Scalar virial theorem 360 ▷ Spherical systems 361 ▷ The tensor virial theorem and observational data 362 | 347 | | | 4.9 | Stellar kinematics as a mass detector • Detecting black holes 366 • Extended mass distributions of elliptical galaxies 370 • Dynamics of the solar neighborhood 372 | 365 | | | 4.10 | • The choice of equilibrium • The principle of maximum entropy 377 • Phase mixing and violent relaxation 379 ▷ Phase mixing 379 ▷ Violent relaxation 380 • Numerical simulation of the relaxation process 382 | 376 | | | \mathbf{Prc} | blems | 387 | | 5 | Sta | ability of Collisionless Systems | 394 | | | 5.1 | Introduction Linear response theory 396 Linearized equations for stellar and fluid systems 398 | 394 | | | 5.2 | The response of homogeneous systems • Physical basis of the Jeans instability 401 • Homogeneous systems and the Jeans swindle 401 • The response of a homogeneous fluid system 403 • The response of a homogeneous stellar system 406 ▷ Unstable solutions 410 ▷ Neutrally stable solutions 411 ▷ Damped solutions 412 • Discussion 416 | 401 | | | 5.3 | General theory of the response of stellar systems • The polarization function in angle-action variables 418 • The Kalnajs matrix method 419 • The response matrix 421 | 417 | | | 5.4 | The energy principle and secular stability The energy principle for fluid systems 423 The energy principle for fluid systems 423 The energy principle for fluid systems 423 The relation between the stability of fluid and stellar systems 431 | | | | 5.5 | The response of spherical systems • The stability of spherical systems with ergodic DFs 432 • The stability of anisotropic spherical systems 433 ▷ Physical basis of the radial-orbit instability 434 • Landau damping and resonance in spherical systems 437 | | | | 5.6 | | 439 | Contents ix | | Prol | olems | 450 | | |---|--------------------------------------|---|-----|--| | 6 | 6 Disk Dynamics and Spiral Structure | | | | | | 6.1 | Fundamentals of spiral structure • Images of spiral galaxies 460 • Spiral arms at other wavelengths 462 ▷ Dust 464 ▷ Relativistic electrons 465 ▷ Molecular gas 465 ▷ Neutral atomic gas 465 ▷ HII regions 467 • The geometry of spiral arms 468 ▷ The strength and number of arms 468 ▷ Leading and trailing arms 469 ▷ The pitch angle and the winding problem 471 ▷ The pattern speed 474 • The anti-spiral theorem 477 • Angular-momentum transport by spiral-arm torques 478 | 458 | | | | 6.2 | Wave mechanics of differentially rotating disks • Preliminaries 481 | 481 | | | | 6.3 | Global stability of differentially rotating disks • Numerical work on disk stability 505 • Swing amplifier and feedback loops 508 ▷ The swing amplifier 508 ▷ Feedback loops 512 ▷ Physical interpretation of the bar instability 513 • The maximum-disk hypothesis 515 • Summary 517 | 505 | | | | 6.4 | • | 518 | | | | 6.5 | Bars Observations 528 ▷ The pattern speed 531 ◑ Dynamics of bars 533 ▷ Weak bars 534 ▷ Strong bars 535 ▷ The vertical structure of bars 536 ▷ Gas flow in bars 536 ▷ Slow evolution of bars 539 | 528 | | | | 6.6 | Warping and buckling of disks • Warps 539 ▷ Kinematics of warps 540 ▷ Bending waves with self-gravity 542 ▷ The origin of warps 544 • Buckling instability 548 | 539 | | | | Pro | blems | 552 | | | 7 | Kir | etic Theory | 554 | | | | 7.1 | Relaxation processes ▷ Relaxation 555 ▷ Equipartition 556 ▷ Escape 556 ▷ Inelastic | 555 | | x Contents | | encounters 557 ▷ Binary formation by triple encounters 557 ▷ Interactions with primordial binaries 558 | | |-----|--|-----| | 7.2 | General results • Virial theorem 559 • Liouville's theorem 561 • Reduced distribution functions 563 • Relation of Liouville's equation to the collisionless Boltzmann equation 565 | 559 | | 7.3 | The thermodynamics of self-gravitating systems • Negative heat capacity 567 • The gravothermal catastrophe 568 | 567 | | 7.4 | The Fokker—Planck approximation • The master equation 573 • Fokker—Planck equation 574 ▷ Weak encounters 574 ▷ Local encounters 576 ▷ Orbitaveraging 577 • Fluctuation-dissipation theorems 578 • Diffusion coefficients 580 ▷ Heating of the Galactic disk by MACHOs 583 • Relaxation time 586 • Numerical methods 588 ▷ Fluid models 588 ▷ Monte Carlo methods 592 ▷ Numerical solution of the Fokker—Planck equation 593 ▷ N-body integrations 594 ▷ Checks and comparisons 595 | 573 | | 7.5 | • Mass loss from stellar evolution 600 • Evaporation and ejection 602 ▷ The maximum lifetime of a stellar system 605 • Core collapse 606 • After core collapse 609 • Equipartition 612 • Tidal shocks and the survival of globular clusters 615 • Binary stars 616 ▷ Soft binaries 618 ▷ Hard binaries 620 ▷ Reaction rates 621 • Inelastic encounters 625 • Stellar systems with a central black hole 629 ▷ Consumption of stars by the black hole 629 ▷ The effect of a central black hole on the surrounding stellar system 631 | 596 | | 7 | 6 Summary | 633 | | | coblems | 634 | | 8 C | ollisions and Encounters of Stellar Systems | 639 | | 8. | Dynamical friction ➤ The validity of Chandrasekhar's formula 646 • Applications of dynamical friction 647 ➤ Decay of black-hole orbits 647 ➤ Galactic cannibalism 649 ➤ Orbital decay of the Magellanic Clouds 650 ➤ Dynamical friction on bars 651 ➤ Formation and evolution of binary black holes 652 ➤ Globular clusters 654 | 643 | | 8. | High-speed encounters Mass loss 657 ▷ Return to equilibrium 657 ▷ Adiabatic invariance 658 • The distant-tide approximation 658 Disruption of stellar systems by high-speed encounters 661 The catastrophic regime 662 ▷ The diffusive regime 663 Disruption of open clusters 664 ▷ Disruption of binary stars 665 ▷ Dynamical constraints on MACHOs 668 Disk and bulge shocks 669 ▷ High-speed interactions in clusters of galaxies 672 | 655 | | | 8.3 | Tides | 674 | |----|--------------|---|-----| | | | • The restricted three-body problem 675 • The sheared-sheet or Hill's approximation 678 ▷ The epicycle approximation and Hill's approximation 679 ▷ The Jacobi radius in Hill's approximation 680 • Tidal tails and streamers 681 | | | | 8.4 | Encounters in stellar disks • Scattering of disk stars by molecular clouds 687 • Scattering of disk stars by spiral arms 691 • Summary 695 | 685 | | | 8.5 | Mergers • Peculiar galaxies 696 • Ring galaxies 699 • Shells and other fine structure 701 • Starbursts 705 • The merger rate 708 | 695 | | | Pro | blems | 710 | | 9 | Gal | axy Formation | 716 | | | 9.1 | Linear structure formation • Gaussian random fields 719 ▷ Filtering 720 ▷ The Harrison— Zeldovich power spectrum 721 • Gravitational instability in the expanding universe 722 ▷ Non-relativistic fluid 722 ▷ Relativistic fluid 726 | 717 | | | 9.2 | Nonlinear structure formation • Spherical collapse 733 • The cosmic web 735 • Press–Schechter theory 739 ▷ The mass function 744 ▷ The merger rate 746 • Collapse and virialization in the cosmic web 748 | 733 | | | 9.3 | N-body simulations of clustering • The mass function of halos 752 • Radial density profiles 753 • Internal dynamics of halos 756 ▷ The shapes of halos 756 ▷ Rotation of halos 757 ▷ Dynamics of halo substructure 759 | 751 | | | 9.4 | Star formation and feedback ▷ Reionization 760 ▷ Feedback 761 ▷ Mergers, starbursts and quiescent accretion 762 ▷ The role of central black holes 764 ▷ Origin of the galaxy luminosity function 765 | 760 | | | 9.5 | Conclusions | 765 | | | Prol | olems | 766 | | Aı | pper | dices | | | | \mathbf{A} | Useful numbers | 770 | | | В | Mathematical background • Vectors 771 • Curvilinear coordinate systems 773 • Vector calculus 775 • Fourier series and transforms 778 • Abel integral equation 780 • Schwarz's inequality 780 • Calculus of variations 781 • Poisson distribution 781 • Conditional probability and Bayes's theorem 782 • Central limit theorem 783 | 771 | | C | Special functions • Delta function and step function 785 • Factorial or gamma function 786 • Error function, Dawson's integral, and plasma dispersion function 786 • Elliptic integrals 787 • Legendre functions 788 • Spherical harmonics 789 • Bessel functions 790 | 785 | |--------------|---|-----| | D | Mechanics • Single particles 792 • Systems of particles 794 • Lagrangian dynamics 797 • Hamiltonian dynamics 797 ▷ Hamilton's equations 797 ▷ Poincaré invariants 799 ▷ Poisson brackets 800 ▷ Canonical coordinates and transformations 800 ▷ Extended phase space 803 ▷ Generating functions 803 | 792 | | ${f E}$ | Delaunay variables for Kepler orbits | 805 | | F | Fluid mechanics • Basic equations 807 ▷ Continuity equation 807 ▷ Euler's equation 808 ▷ Energy equation 810 ▷ Equation of state 811 • The ideal gas 812 • Sound waves 813 ▷ Energy and momentum in sound waves 814 • Group velocity 817 | 807 | | \mathbf{G} | Discrete Fourier transforms | 818 | | \mathbf{H} | The Antonov-Lebovitz theorem | 822 | | \mathbf{I} | The Doremus-Feix-Baumann theorem | 823 | | J | Angular-momentum transport in disks • Transport in fluid and stellar systems 825 • Transport in a disk with stationary spiral structure 826 • Transport in perturbed axisymmetric disks 828 • Transport in the WKB approximation 829 | | | \mathbf{K} | Derivation of the reduction factor | 830 | | ${f L}$ | The diffusion coefficients | 833 | | \mathbf{M} | The distribution of binary energies • The evolution of the energy distribution of binaries 838 two-body distribution function in thermal equilibrium 839 distribution of binary energies in thermal equilibrium 839 principle of detailed balance 841 | 838 | | Refer | rences | 842 | | Index | <u> </u> | 857 | | | | 001 |