994 July 29 ; in original form 1994 May 9
ABSTRACT
We have searched for $6.6-\mathrm{GHz}$ m
We have searched for $6.6-\mathrm{GHz}$ methanol maser emission from the directions of more than 200 OH masers, together with a number of other sites of star formation. We have
also observed previously reported methanol masers south of declination 24°. Where we detected methanol emission, we measured its position and have found more than 40 instances of small clusters of sources. We present observations of a total of 245 methanol masers with peak intensities ranging from 0.3 to 5000 Jy .
For a typical source, the velocity range of the emission is quite large - commonly $10 \mathrm{~km} \mathrm{~s}^{-1}$ and, in a few instances, exceeding $20 \mathrm{~km} \mathrm{~s}^{-1}$. Some of the largest velocity Our observations over several epochs show that many sources possess at least some features whose intensity varies on a time-scale of several months. Towards most of the $6.6-\mathrm{GHz}$ masers we have searched for $12-\mathrm{GHz}$ methanol maser emission, and have made 131 detections; the median ratio of $12-$ to $6.6-\mathrm{GHz}$ intensity is 0.11 .
We discuss the general properties of this large sample of $6.6-\mathrm{GHz}$ We discuss the general properties of this large sample of $6.6-\mathrm{GHz}$ methanol
masers. They appear to be more prevalent than OH masers, with intensities typically
 tion of massive stars. Methanol masers have now joined OH
and $\mathrm{H}_{2} \mathrm{O}$ masers as immensely valuable tools for studying hese regions.
The first detection of a methanol maser occurred 20 years ago, and there are now more than 20 transitions known to
exhibit maser activity. It is only recently, however, with the exhibit maser activity. It is onlan ren 1991b), that the full potential of methanol masers has been realized. Maser emission from this transition is typically resent at the majority of OH maser sites and also at many imilar sites where OH emission is absent. Several other methanol transitions are often found as masers in close
association with the $6.6-\mathrm{GHz}$ masers, and have been categorzed as class II methanol masers by Menten (1991a). We are GHz and, to a lesser extent, those as 12 GHz . Frequently, the

Key words: masers - stars: formation - ISM: molecules - radio lines: ISM. maser emission from OH and $\mathrm{H}_{2} \mathrm{O}$, and both species have masers pinpoint dusty ultracompact $\mathrm{H}_{\text {iI }}$ regions which are often very weak in the radio continuum, and whose embedded newly formed stars are totally obscured optically by the dust. Although there is strong emission from the dust
 tar-forming regions are concentrated
The masers often show many individual spots of high
brightness which allow investigations not readily achieved brightness which allow investigations not readily achieved
by other means. These include precise measurements of the kinematics of the regions (including the systemic velocity which can be used to establish a distance) and maps of very

Galactic methanol masers at 6.6 GHz

began our survey, there were only 83 known $6.6-\mathrm{GHz}$
methanol masers (reported by Menten 1991 b) and, of these,
we have reobserved the 73 accessible to the Parkes tele-
cope. We have also searched at the positions of the few 12 -
GHz methanol masers with no known OH counterpart, at
he positions of several $\mathrm{H}_{2} \mathrm{O}$ masers without known OH
masers, and at the position of a compact $\mathrm{H}_{\text {II }}$ region,
$321.71+1.17$. Spectra of a typical source from our survey are shown in
Fig. 1, and exemplify several facets of the survey. The search
position was the direction of the OH maser OH
$345.50+0.35$, whose $1665-\mathrm{MHz} \mathrm{OH}$ spectrum is shown in
the top panel. The $6.6-\mathrm{GHz}$ spectra in the next two panels
show the strong methanol emission at this position, and the
variability that occurred over 3 months. Although super-

$$
\begin{aligned}
& \text { Radial Velocity (} \mathrm{km} \mathrm{~s}^{-1} \text {) } \\
& \text { Figure 1. Spectra of } 345.50+0.35 \text {, a typical source from our } \\
& \text { sample. The upper panel shows the } 1665-\mathrm{MHz} \mathrm{OH} \text { spectrum: the } \\
& \text { solid line denotes right-hand circular polarization; the broken line } \\
& \text { denotes left-hand circular polarization. The second and third panels } \\
& \text { show total intensity spectra of } 6.6-\mathrm{GHz} \text { methanol at two different } \\
& \text { epochs. The bottom panel shows the total intensity of the } 12-\mathrm{GHz} \\
& \text { transition of methanol. Note that the top and bottom intensity scales } \\
& \text { differ from those of the central panels. }
\end{aligned}
$$

Ultimately, large-scale unbiased surveys for methanol "
 ocate over 200 star formation sites in the southern sky, and hese provide an excellent starting point for methanol maser searches. In the present study we have searched for $6.6-\mathrm{GHz}$ star-forming regions delineated by $1665-\mathrm{MHZ} \mathrm{OH}$ masers. We have complemented this with new high-sensitivity observations of the $12-\mathrm{GHz}$ methanol transition; these supplement our earlier survey for $12-\mathrm{GHz}$ masers (Caswell et al. 1993) made before the discovery of $6.6-\mathrm{GHz}$ masers. We have detected 245 methanol masers at 6.6 GHz and have made several statistical investigations of the sample as a
whole. These have allowed us to establish the typical properties and recognize individual sources that deviate from the norm. While an extensive study of each maser is beyond the scope of the present paper, we present detailed
notes on many of the more interesting sources.
observations were made with the Parkes 64-m telescope Our observations were made September 24-29 and December 17-24, and 1993 Septem ber 27-30. Dual-channel receivers, accepting two circular polarizations, were used at both 6.6 and 12 GHz . The new
Parkes correlator was configured to record a 2048 -channel Parkes correlator was configured to record a 2048 -channel
spectrum for each polarization, spanning 2 MHz at 6.6 GHz and 4 MHz at 12 GHz . The adopted rest frequencies were 6668.518 MHz (Menten 1991 b) and 12178.595 MHz discuss further the choice of precise rest frequencies for these transitions. Our intensity calibration at 6.6 GHz is relative to Hydra A, with an assumed peak flux density (with
our beamwidth to half-power of 3.3 arcmin) of 9.84 Jy . At 12 our beamwidth to half-power of 3.3 arcmin) of 9.84 Jy . At 12
GHz the calibration is relative to Virgo A , with an intensity of 33.5 Jy (reduced to a peak of 31.4 Jy with our 2.0 -arcmin beamwidth). The calibration of individual spectra has uncer-
tainties of 5 per cent. The system noise was 100 Jy at 6.6 The principal positions searched for $6.6-\mathrm{GHz}$ methanol
masers were towards OH masers emitting in the $1665-\mathrm{MHz}$ transition. We have searched all those known to us that are
 masers are close to the Galactic plane in the longitude range
 Haynes (1983a,b, 1987a) and Caswell, Haynes \& Goss
(1980), with more accurate positions for the northern

 emission was detected, we derived a position for each maser
by observing at a grid of points around the discovery by observing at a grid of points around the discovery
position. In a surprisingly large number of cases, this led to

limit to any circular polarization is 1 per cent for the strong
features of complex sources such as $35.20-1.74$. For most eatures of complex sources such as $35.20-1.74$. For most where a later observation has lower noise; for a few weak sources, a spectrum averaged over several epochs is shown. The source spectra are ordered by increasing Galactic longi-
tude, with slight rearrangement to allow better comparison of
 The sources range in peak intensity from more than 3000
$\mathrm{Jy}(323.74-0.26,351.42+0.64,9.62+0.20)$ down to 0.3 Jy (306.33-0.34, 319.84-0.20), with features as weak as 0.1 Jy recognizable on sources observed at several epochs. Such
weak features are sometimes present in the outlying velocity weak features are sometimes present in the outlying velocity
wings of very strong sources, and thus the dynamic range needed for an adequate portrayal is very large; to achieve this
we have shown 73 of the spectral plots with superposed magnified versions of the spectra. We have chosen 228 spectral plots to display the 245
sources since, in 15 cases, a single plot satisfactorily displays two or more sources that lie very close together. In 75 of the plots, a neighbouring source near the edge of our 3.3 -arcmin
beam is also seen. In these confused sources, such as beam is also seen. In these confused sources, such as
$346.48+0.13,346.52+0.12$ and $346.52+0.08$, we have deliberately displayed spectra vertically in line and bracketed
 ing which features belong to which source, and a comment is made in the notes to the sources. In some cases, further
clarification is made on the figure either by identifying the clarification is made on the figure either by identifying the
emission associated with the principal source displayed, or by marking the unrelated emission with a cross. A few spectra are aligned to demonstrate where sources are nearby
but not confused, such as $28.15+0.00$ and $28.20-0.05$.

 spread is smaller because a feature seen on the spectrum is actually a sidelobe of a nearby source - as remarked in the notes on sources of special interest.

 $350.01-1.34$ and $31.40-0.26$. We do not show spectra for
these, but they are discussed in the following notes. We also

 no detectable $6.6-\mathrm{GHz}$ methanol maser to a limit of typically
0.3 Jy are listed in Table 2 .
3.1 Individual sources of special interest
Here we draw attention to details seen in some of the spectra, to variability, to observations of associated continuum
sources, and to some of our unpublished OH observations.
 changes of intensity of up to 15 per cent in individual
features; most obviously, the strongest feature in September was the second strongest in June, and vice versa. The bottom panel shows the weaker emission from the $12-\mathrm{GHz}$ methanol
transition. This particular data set is discussed in the notes transition. This particular data set is discussed in the notes
on individual sources later in this section, and also in Sections 4.1, 4.2, 4.2.1, 4.2.2, 4.5, 4.6 and 4.7.
The bulk of our results are summarized in Table 1, but the rich variety in the characteristics of the sources can be seen only in the spectra themselves, and these are shown in Fig. 2.
Apart from the sample spectrum of Fig. 1, we show only the $6.6-\mathrm{GHz}$ spectra in this paper, and will present detailed results from our $12-\mathrm{GHz}$ measurements in a later paper. are ordered by Galactic longitude, with minor variations to ensure that closely related sources are adjacent to each other. In subsequent remarks we adopt the common convention of each source, with the understanding that we refer to the 6.6 GHz methanol maser at this position unless indicated other-
wise. A site is generally listed separately if it is located more wise. A site is generally listed separately if it is located more
than 30 arcsec from any neighbour, or emits in a totally different velocity range; some sources at smaller separations are distinguished if they possess some strong features that are Within the notes of Section 3.1 we remark on seven of the maser sites where we suspect that additional components are
The positions of Table 1 have been measured with the Parkes telescope and have errors of generally less than 10 have replaced these positions with more accurate values measured with the Australia Telescope Compact Array (ATCA) as published by Norris et al. (1993); these sources
are recognizable by the additional significant figure in the are recognizable by the additional significant figure in the
equatorial positions of Table 1. Throughout this paper, equatorial coordinates refer to equinox 1950.0. Most of the sources were first observed in 1992 March, and the majority
were observed again on at least two subsequent occasions. The epochs of the 1992 observations are given in column 7
of Table 1 , abbreviated to the first letters of the observing months. In view of the repeated observations, and the very ow incidence of interference at the Parkes site, we believe that even the weakest features are reliable detections. Variations in intensity are common and are discussed in Section 4.6 , with a brief summary given in Table 1. For sources observed well enough to study variability, we use
groupings into the classes ' nv ' (not variable), 'sv' (slightly variable, with variations generally less than about 10 per
cent) and ' v ' (variable, with more than 10 per cent change in at least one feature). The number of variable features and the total number of features that were suitable for assessing variations, the quoted peak intensities are representative and taken from any one of our observing epochs (for weak
sources usually measured when the signal-to-noise ratio was In the figures, the spectrum shown is the total intensity, taken as the sum of two circular polarizations. The spectra of individual polarizations were inspected, but in no case was
any significant circular polarization seen. A typical upper

	NぃMNー $N N-00$	$\forall \infty ल \infty ল$	MナNON	OサO－ OVONO	NoのNの OOVMO	$00 \omega m \pm$	N ∞ N＋ー	№ํ		NOFに 00000	N＝0N－ N0000	nN－No －00－m	O\％Nm 00000
	动 \ggg	＞＞＞ふ－	＞こ＞ふ	さるざ	さ さ こ さ	あきゝ こ		あ \gg さ	＞ミ＞	ミき＞そ	\gg	あ む	－ふ＞
후율ㅊㄹ	～윤N	$\underset{\sim}{\sim}-\underset{\sim}{*} \bar{v}$	－ $\mathrm{V}^{\text {No }}$		$N \bar{v} \underset{\sim}{\sim} \underset{\sim}{\sim} \stackrel{n}{\sim}$	VOサ		©Nin No N	$\stackrel{\infty}{=} \underset{\sim}{\infty} \underset{\sim}{\sim} \stackrel{m}{\sim}$				∇_{V}^{\sim}
Nㅗㅇ․․․	$\text { \# } \dot{\sim}$						にぃぃ～～ $\stackrel{\circ}{\mathrm{V}} \infty \dot{\mathrm{V}} \boldsymbol{\mathrm { v }}$	$\stackrel{n}{+} \dot{\sim}$	$\underset{\sim}{m}$		$\begin{array}{ll} 0 \\ \dot{O} \\ \dot{v} \dot{O} & 0 \\ 0 \end{array}$		$\sim \underset{\sim}{\infty} \underset{\sim}{\circ} \underset{\sim}{n}=\hat{i}$
					$\begin{aligned} & \text { O} \\ & E \\ & E \end{aligned} \frac{0}{E} \frac{0}{E} \frac{0}{E} \frac{0}{E}$							요	
		$\stackrel{+O n}{6}$		N $\underline{\sim}_{\underline{\sim}}^{\sim}$	¢ ¢ ¢	$\stackrel{m}{F} \underset{\forall}{*}+$		NoN	$\underset{\sim}{N} \underset{\sim}{N} \stackrel{n}{\circ}$		$\stackrel{\infty}{\sim} \stackrel{\circ}{\sim} \stackrel{\infty}{\circ} \stackrel{\infty}{-}$	$\stackrel{N}{\mathbf{N}} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{n}$	
		 		 皆		芯等芦年品	 	 审令守年管				웅ㅇㅇN N 	
	¢ ¢ ¢ ¢＋＋		$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{\sim}$		순ํㄲㄲ		へ0¢0¢\％			$\underset{\sim}{\sim}-\underset{\sim}{\sim} \times \sim$	$\underset{\sim}{\sim}$	$\text { ONONON } \underset{\sim}{\circ}$	$\stackrel{\sim}{¢} \underset{\sim}{\sim} \underset{\sim}{\infty}$
			¢ \％¢ ¢ N			M						品只8：	
8		品品品品品	－80 ¢ ¢ ¢ ¢				¢0000000	隹				退	
	\＃寸へed が心灾	N 40 m 		0000000 			$\infty-\infty$ in 	∞ 毋 ○ $\stackrel{\circ}{\sim}$ 	ハーの人。 	－ $0 \% 0 \%$ ふiNo	or ヘ O サ サ 		
$\begin{array}{ll} \text { E } & E \\ \mathbb{E} & 5 \end{array}$	 		ํํへへへ $\underline{\varphi} \varphi \underline{\varphi} \varphi$	 $\underline{\varphi} \div \subseteq \subseteq$	$\oplus \subseteq \subseteq \subseteq \subseteq$	 	 			品品历命品 	$\begin{aligned} & 88 甘 88 \\ & \text { 돋N } \end{aligned}$		
		ioioi শ్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల		아우앙 N＋ ल్ల్ల్ల్ల్ల్	온io+ ∞ ∞ ∞ 		co $1+10$ $\stackrel{+}{\infty}$ $\underset{\sim}{\infty}{\underset{\sim}{\infty}}_{\infty}^{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$ ঙ్ల్ల్ల్ల్ల్ల్ల్ల	心～ 우웅 ल్లलల్m		ロ～N゚ロ 우눈 $\stackrel{+}{\text { N }}$ 	レッツッ～ロ \rightarrow in + on 	ㄷN№ －o o o $\stackrel{+}{\mathbf{\infty}}{ }^{+}{ }^{+}+{ }_{ \pm}^{+}$ $\cdots \infty$产馬杰䔍	 웅웅 ＋＋

(1991b) lists it (as S269) with a peak intensity of 134 Jy
208.99-19.38. From this direction (an OH maser in
 comparable amplitude is also present in the vicinity, hinder ing us from measuring an accurate position for the emission

$189.03+0.78$. Note that weak emission at a velocity of
$11 \mathrm{~km} \mathrm{~s}^{-1}$ is a sidelobe response to $188.95+0.89$, as can be seen from the alignment of the two spectra.
$189.78+0.34$. OH emission (from a source designated

 quasi-thermal emission rather than a maser.

Galactic methanol masers at 6.6 GHz 103
 our value, which also suggests variability in some features.

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

($\boldsymbol{\Lambda}$) K!!suәp \quad xnl_

 Figure 2 - continued

 Figure 2 - continued

				298.22-0.33. The OH spectrum in this direction shows only deep absorption (at velocity $30 \mathrm{~km} \mathrm{~s}^{-1}$), but there is an
1665 MHz	RA (1950)	Dec (1950)		$\mathrm{H}_{2} \mathrm{O}$ maser at RA $12^{\mathrm{h}} 07^{\mathrm{m}} 19.0$, Dec. $-62^{\circ} 32^{\prime} 56^{\prime \prime}$. Con-
OH maser			methanol	tinuum observations with the ATCA at 5 and 8 GHz (J. M.
$(1, b)$	(h m s)	")	(Jy)	Chapman, private communication) show a source at RA
205.12-14.11	054430.3	+00 2018	<0.3	$12^{\mathrm{h}} 07^{\mathrm{m}} 19.4$, Dec. $-62^{\circ} 32^{\prime} 58^{\prime \prime}$ which is probably a compact
240.32+0.07	074245.0	-2400 22	<0.3	$\mathrm{H}_{\text {if }}$ region. Both the $\mathrm{H}_{2} \mathrm{O}$ maser and the methanol maser
285.26-0.05	102937.2	-574646	<0.2	appear to coincide with this compact source.
291.61-0.53	111251.4	-60 5943	<0.4	$300.51-0.18$. OH emission is mainly near velocity 24 km
297.66-0.98	120133.7	-63 0511	<0.3	
316.76-0.02	144109.4	-59 3545	<0.3	s^{-1}, but is also present near $3 \mathrm{~km} \mathrm{~s}{ }^{-1}$; hydrogen recombina-
319.39-0.02	145922.6	-58 2500	<0.2	tion-line emission is centred at $26 \mathrm{~km} \mathrm{~s}^{-1}$, and an associated
$324.20+0.12$	152901.8	-55 4551	<0.2	$\mathrm{H}_{2} \mathrm{O}$ maser has a large blue-shifted outflow extending to
326.77-0.26	154504.1	-54 3240	<0.3	$-50 \mathrm{~km} \mathrm{~s}^{-1}$. The methanol maser may be part of a blue-
$328.30+0.44$	155013.7	-53 0252	<0.15	shifted outflow from a systemic velocity of about $25 \mathrm{~km} \mathrm{~s}^{-1}$
333.61-0.22	161827.4	-49 5903	<0.3	shifted outfiow from a systemic velocity of about 25 km s .
338.68-0.08	163844.2	-461209	<0.15	$305.21+0.21,305.20+0.21$ and $305.25+0.25$. The first
343.13-0.06	165443.82	-42 4734.7	<0.3	two of this cluster of three sources are separated by only 22
345.70-0.09	170320.78	-40 4703.1	<0.4	arcsec (as measured with the ATCA: Norris et al. 1993), and
352.16+0.21	172124.2	-35 2211	<0.3	are shown on a single spectrum. The spectrum of the third
5.88-0.39	175726.71	-24 0359.6	<0.3	n on a single spectrum. The spectrum of the third
6.05-1.34	180149.7	-24 2656	<0.3	source has been aligned in velocity with the first spectrum,
14.17-0.06	$18 \quad 1332.3$	-16 4053	<0.4	and shows that emission from the first two sources is
27.18-0.08	183832.3	-05 1200	<0.4	detected at the edge of the beam. The first source, with a
31.24-0.11	184609.51	-0136 39.4	<0.5	k intensity of 480 Jy , is associated with an Hil region
35.58-0.03	185351.37	+02 1629.4	<0.25	peak intensity of 480 Jy , is associated with an Hin region
43.16-0.03	190758.2	+08 5958	<0.5	which is quite distant according to Caswell \& Haynes
$45.12+0.13$	191106.2	+10 4826	<0.2	(1978b) - probably at the far kinematic distance of 8.2 kpc
$48.61+0.02$	191813.00	+13 4945.8	<0.2	rather than the near distance of 3.4 kpc - and is probably

$284.35-0.42$. The weak emission visible at velocity 10 km
$\mathrm{~s}^{-1}$ was confirmed at three epochs. The OH emission cited in Table 1 lies in the velocity range 4 to $8 \mathrm{~km} \mathrm{~s}^{-1}$, and was
$285.26-0.05$. From the direction of this OH maser,
Gaylard \& MacLeod (1993) reported $6.6-\mathrm{GHz}$ methanol emission with a peak of 1.7 Jy at zero velocity in $1992 \mathrm{May} /$ June. At this position, we found no emission in 1992 March
and September, with upper limits of 0.2 Jy . Subsequent observations in 1993 December (S. P. Ellingsen, unpublished) indicate that there is a $5.5-\mathrm{Jy}$ methanol maser
offset 6 arcmin from the OH maser (and thus not closely offset 6 arcmin from the OH maser (and thus not closely
related to it) at the position of a weak infrared source, listed as IRAS $10303-5746$ in the $I R A S$ Point Source Catalog
(1985), and this presumably accounts for the maser reported (1985), and this presumably accounts for the maser reported
by Gaylard \& MacLeod
$287.37+0.65$. A search at this position was prompted by the presence of an OH maser found at an IRAS position tion). The methanol and OH masers coincide to within 10
291.28-0.71. At the position of the methanol maser there is also an $\mathrm{H}_{2} \mathrm{O}$ maser, with velocity $-30 \mathrm{~km} \mathrm{~s}{ }^{-1}$, near the systemic velocity of an associated H in complex. OH spectra
show deep absorption but no clear emission. The $\mathrm{H}_{2} \mathrm{O}$ maser has a highly blueshifted outflow (velocity $-126 \mathrm{~km} \mathrm{~s}^{-1}$), stronger than the emission from the systemic velocity, but we
find no methanol counterpart to this outflow. Note that on the expanded scale of our figure there is clear methanol absorption at velocity $-25 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}$. We find an indication
that methanol emission at velocity $-27 \mathrm{~km} \mathrm{~s}^{-1}$ is offset by that methanol emission at velocity $-27 \mathrm{~km} \mathrm{~s}^{-1}$ is offset by the baseline due to the absorption. The maser is extremely variable in the $12-\mathrm{GHz}$ methanol transition (Caswell et al.
1993), as well as at 6.6 GHz .
Galactic methanol masers at 6.6 GHz 127

'(eL86I sәuк⿺𠃊 \% Iləmseว) uoṇdiosqe HO zHW-s99]
јо Кџ!

 associated $\mathrm{H}_{\text {II }}$ emission. Is the methanol emission at velocity
 velocity centres are coincident to within 2 arcsec, supporting a view that the maser emission at $-63 \mathrm{~km} \mathrm{~s}^{-1}$ is not a separate centre of activity but represents a blueshifted
outflow, seen both in methanol at 6.6 and 12 GHz and in OH at 1665 MHz ,
$323.46-0.08$
$323.46-0.08$. In this direction there is a weak sidelobe
response to the following source, $323.74-0.26$, but its
$323.74-0.26$. This source is one of the three strongest methanol masers, and has been observed with the ATCA
(Norris et al. 1993). The many strong features allow a sensitive search for variability, and none is seen over the period 1992 March to December. Note the large velocity spread seen on the expanded-scale spectrum. With a minimum kine-
matic distance of 3.6 kpc , its luminosity of 37000 Jy kpc ranks as one of the largest well-determined values (see
$327.29-0.58$. The feature at velocity $-37 \mathrm{~km} \mathrm{~s}^{-1}$ is stable
2.3 Jy , but seviable. The at 2.3 Jy , but several other features are highly variable. The
OH emission is also variable and covers a wide velocity range from -70 to $-37 \mathrm{~km} \mathrm{~s}^{-1}$. The absorption seen in both OH and methanol is near the hydrogen recombinationline velocity of $-48 \mathrm{~km} \mathrm{~s}^{-1}$, and this seems likely to be the
systemic velocity. The OH shows some redshifted emission, and even more pronounced blueshifted emission relative to

 is too weak for an accurate positional measurement. The
near and far kinematic distances are 3.1 and 13.9 kpc , with a preference for the far value since the radio continuum $\mathrm{H}_{\text {II }}$ region has no visible counterpart (Caswell \& Haynes 1987b);

$328.81+0.63$. This source has been observed with the
ATCA by Norris et al (1993). As with the previous pair of
 kpc , and this too would then rank amongst the most luminous methanol masers.
$329.03-0.21$ and 329.03-0.20. Both sources are displayed in a single spectrum. The second, weaker, source is
offset from the first by 27 arcsec . The velocity ranges overlap
 wholly at velocities greater than $1.2 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}$, and there is weak $\mathrm{OH}(0.2 \mathrm{Jy})$ at velocity $+5 \mathrm{~km} \mathrm{~s}^{-1}$ seen $(1993 \mathrm{July})$ at
his position. $318.38-0.38$ is almost wholly at velocities less $316.41-0.31$. Weak responses to the previous two sources are seen here, but cause no significant confusion. A cataassociated with the previous source.
$316.81-0.06$. Many features are strongly variable. Weak eatures at velocities -41 and $-37 \mathrm{~km} \mathrm{~s}^{-1}$ have been confirmed at several epochs.
$318.05+0.08$. Variability is 10 per cent in several features.
$318.05-1.40$. A search at this position was prompted by he presence here of an OH maser found at an $I R A S$ position P. te Lintel Hekkert $\& \mathrm{~J} . \mathrm{M}$. Chapman, private communty OH maser is weak and its positional uncertainty is ~ 60 arcsec; to within this accuracy, both methanol and OH masers and the IRAS source coincide. Note that the large
positive velocity indicates a large unambiguous distance $318.95-0.20$. This strong source has been observed with the ATCA (Norris et al. 1993) and is confined to a single position; we have not detected any variability, but its OH
maser counterpart is highly variable. As one of the seven strongest methanol masers, its distance is of special interest. The radio continuum H il region in this general direction
Caswell \& Haynes 1987 b) has a kinematic distance of 2 or 13.1 kpc ; it has no optical counterpart, which favours the arger distance. At this distance, the methanol maser would
then have a luminosity of $134000 \mathrm{Jy} \mathrm{kpc}^{2}$, possibly the argest known (see Section 4.4). $\mathrm{H}_{2} \mathrm{O}$ maser in this direction is noteworthy in displaying a large blueshifted outflow. At first glance, the methanol
spectrum suggests that emission at velocity $-70 \mathrm{~km} \mathrm{~s}^{-1}$ may spectrum suggests that emission at velocity $-70 \mathrm{~km} \mathrm{~s}^{-1}$ may
be a blueshifted outflow relative to a systemic velocity of $-62 \mathrm{~km} \mathrm{~s}^{-1}$. However, a nearby $\mathrm{H}_{\text {il }}$ region has recombina-
tion-line emission centred at $-68 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}$, OH has its strongest peak at $-68 \mathrm{~km} \mathrm{~s}^{-1}$ and the 12 -GHz methanol transition is seen with absorption centred at $-67 \mathrm{~km} \mathrm{~s}^{-1}$.
Thus the systemic velocity may be near $-70 \mathrm{~km} \mathrm{~s}^{-1}$, and the Thus the systemic velocity may be near $-70 \mathrm{~km} \mathrm{~s}^{-1}$, and the
stronger $6.6-\mathrm{GHz}$ emission at velocity $-62 \mathrm{~km} \mathrm{~s}^{-1}$ may be a redshifted outflow. $321.71+1.17$. This position was selected as a likely compact $\mathrm{H}_{\text {Is }}$ region, detected at 5 GHz with the ATCA at RA
$15^{\mathrm{h}} 10^{\mathrm{m}} 01.8$, Dec. $-56^{\circ} 13^{\prime} 49^{\prime \prime}$ (an IRAS counterpart is present at RA $15^{\mathrm{h}} 10^{\mathrm{m}} 01 \mathrm{~s} 2$, Dec. $\left.-56^{\circ} 13^{\prime} 42^{\prime \prime}\right)$. The methanol maser is highly variable, showing a rapid rise from
1992 March to June and then a decline; there was also weak emission at velocity $-38 \mathrm{~km} \mathrm{~s}^{-1}$ in 1992 March. Weak absorption is also seen. The OH spectrum in this direction
shows prominent absorption, with possible embedded weak
$322.16+0.64$. Although the $66-\mathrm{GHz}$ maser emission is continuous in the velocity range $-66 \mathrm{to}-51 \mathrm{~km} \mathrm{~s}^{-1}$, there is a clear intensity minimum near the middle of this range,
suggesting two separate (but overlapping) centres near velocities -54 and $-63 \mathrm{~km} \mathrm{~s}^{-1}$ respectively. The corresponding $12-\mathrm{GHz}$ maser (Caswell et al. 1993) shows more
clearly that emission arises from two separate velocity clearly that emission arises from two separate velocity
ranges, and absorption is also present at one of these,

128 J. L. Caswell et al.

elocity $-85.6 \mathrm{~km} \mathrm{~s}^{-1}$, is clearly distinguishable from the aligned spectra, and is offset by 76 arcsec. There is no OH nd -90 km s $336.83+0.02$ and $336.86+0.01$. These two adjacent
cources are blended with our beamsize (see the aligned spectra), but neither appears variable. The weak OH emission, with velocity -88 to $-78 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}$, appears to
$336.99-0.03$. The strong peak at velocity $-125.8 \mathrm{~km} \mathrm{~s}^{-1}$ s variable, and apparently decreased monotonically from 38 $337.41-0.40$. The corresponding OH is strongest at the
same velocities as the methanol; additional weaker OH ame velocities as the methanol; additional weaker OH
emission extending to velocity $-56 \mathrm{~km} \mathrm{~s}^{-1}$ appears to be a
337.61-0.06 and 337.63-0.08. The spectrum shown is nearest the position of $337.61-0.06$, and the amplitude of
$337.63-0.08$ is seen on the spectrum at only half of its true
$337.71-0.05$. This is a strong source with many features, notable for the absence of any detectable variability. -32 to $-53 \mathrm{~km} \mathrm{~s}^{-1}$; methanol and hydrogen recombina-tion-line velocities suggest that the stronger blueshifted OH mission with no methanol counterpart may be an outflow.
$338.08+0.01$. Note the especially wide spread in velocity with weak features extending to $-30 \mathrm{~km} \mathrm{~s}^{-1}$. It is also one of the few methanol masers in which the $12-\mathrm{GHz}$ intensity exceeds that at 6.6 GHz .
$338.46-0.25$. Note the
$338.46-0.25$. Note the weak feature at velocity -63 km

1. $338.87-0.08$ and $338.93-0.06$. There is very slight con-
fusion of each source at the position of the other, as can be seen from the aligned spectra. $338.93-0.06$ is variable and
increased from a peak of 12 Jy in 1992 December to 17.5 Jy
n 1993 September.
$339.68-1.21$. The strongest features are in the velocity
ange -23 to $-21 \mathrm{~km} \mathrm{~s}^{-1}$, corresponding well with the total
 group of methanol features displaced to more negative
velocity may represent a blueshifted outflow and contains
339.88 1.26 This source was also observed with the ATCA (Norris et al. 1993). It is the fourth strongest source
$340.05-0.24$. Weak features are present, extending to
 spread yet discovered; it has been observed with the ATCA needed to check whether all features emanate from the same
 dish observations). The largest intensity is in the velocity
 his respect. Features near velocity $-90 \mathrm{~km} \mathrm{~s}^{-1}$ may be from a redshifted outflow.
$341.22-0.21$. This source has a wide velocity spread with two clearly defined ranges. OH is seen only in the range -42
 6.6 GHz and also at 12 GHz (Caswell et al. 1993). $330.88-0.37$. The weak methanol emission straddles in $330.88-0.37$. The weak methanol emission straddes in
velocity the prominent absorption. The $O H$ counterpart is one of the strongest masers in the Galaxy, with highest
emission at the centre of the velocity range and extending more weakly to velocities -72 and $-59 \mathrm{~km} \mathrm{~s}^{-1}$.
 outflow extending from -87 to $+50 \mathrm{~km} \mathrm{~s}^{-1}$, and the OH
$331.13-0.24$. This source is extremely variable. Note that on the spectrum we have identified a weak sidelobe response
to $331.28-0.19$ (whose spectrum is shown beneath, although not aligned in velocity). ATCA by Norris et al. (1993). It is one of the few methanol 6.6 GHz.
$331.34-0.35$. Note that weak emission extends to velocity
$72.5 \mathrm{~km} \mathrm{~s}^{-1}$. Several features are variable. $331.54-0.07$. The weak feature at velocity $-81 \mathrm{~km} \mathrm{~s}^{-1}$ is clearly variable. There is a complex of OH masers in this
general direction, of which at least some, notably a left-hand general direction, of which at least some, notably a left-hand
circularly polarized feature of $15 J y$ at velocity $-85 \mathrm{~km} \mathrm{~s}^{-1}$
 are shown one above the other (but not aligned in velocity) to show the weak response at each position to the other source.
There is OH emission at 7 Jy at velocity $-107 \mathrm{~km} \mathrm{~s}^{-1}$, similar to the methanol velocity, which may be related. apparent OH counterpart) was found while investigating the latter (at the position of an OH maser). The feature at
velocity $-45.5 \mathrm{~km} \mathrm{~s}^{-1}$ is highly variable.
$333.07-0.45$, 333.12-0.43 and 333.13-0.44. These sources are close together and shown in two aligned spectra.
The associated OH maser seems to be at the position of $333.12-0.43$. All three methanol masers are variable. $33.12-0.43$. All three methanol masers are variable.
$333.16-0.10,333.20-0.08$ and $333.23-0.06$. sources are close together and are shown with three spectra aligned in velocity to clarify which features belong to which source. $333.23-0.06$ is variable at velocity $-81 \mathrm{~km} \mathrm{~s}^{-1}$. All
three sources were discovered by searching at the position three sources were discovered by searching at the position
of an OH maser whose total velocity extends from -94 to
-82 km $333.23-0.06$, but may have features corresponding to the other methanol masers
$335.55-0.31$. This source was discovered while investigat-
g the following source. A weak OH counterpart, 0.2 Jy at velocity -114 to $-111 \mathrm{~km} \mathrm{~s}^{-1}$, was discovered in 1993
335.59-0.29. We have measured an improved position for the OH maser previously listed as $335.61-0.31$, which now
$335.73+0.19$ and $335.79+0.17$. Some blending of the two sources can be seen from the aligned spectra. The stronger source, $335.79+0.17$, is variable, as is its $12-\mathrm{GHz}$ counter-
part (Caswell et al. 1993); it is one of the few methanol masers in which the $12-\mathrm{GHz}$ intensity rivals that at 6.6 GHz . $336.43-0.26$ and $336.41-0.26$. The first of these has been
observed with the ATCA (Norris et al. 1993) and is slightly

Galactic methanol masers at 6.6 GHz 129

 position measured with the $V L A$ in right-hand circular
polarization, at velocity $-20 \mathrm{~km} \mathrm{~s}^{-1}$) is nominally south of

 Forster \& Caswell's (1989) data show that 348.70-1.04

$348.89-0.19$. This source has a single feature. The OH

 omplex of several features steadily decreasing.

 from the other emission by +18 and $+26 \operatorname{arcsec}$ in right

 centres are separated by 107 arcsec and have been mapped

 $345.00-0.22$. This source is variable in several features; note that Menten (1991b) reported \qquad

 appreciate, both centres have $12-\mathrm{GHz}$ methanol intensity similar to the $6-\mathrm{GHz}$ intensity (a rare occurrence); thus the
unusual conditions are similar at both sites, despite the large spatial offset.
$345.41-0.95$. Note the weak broad absorption. OH also
shows emission (at $-18 \mathrm{~km} \mathrm{~s}^{-1}$) and absorption (from -16
$345.50+0.35$. This source was chosen as representative of our survey, and shown in Fig. 1 to display several aspects of maser spectrum (1989 January) shows emission over the velocity range -13 to $-25 \mathrm{~km} \mathrm{~s}^{-1}$ with the stronger spectra taken in 1970 (Robinson, Caswell \& Goss 1974) and 1981 (Caswell \& Haynes 1983a), the same features are readily recognizable. The VLA positional measurements of
OH in right-hand circular polarization (Forster \& Caswell 1989) show all detected components to be confined to a region 1 arcsec in size.
The $6.6-\mathrm{GHz}$ metha
The $6.6-\mathrm{GHz}$ methanol spectra displayed in Fig. 1 show range as the OH , and with peak intensity approximately an order of magnitude larger. Between the two epochs of 1992 June and 1992 September (separated by 3 months), there are
differences of up to 15 per cent in intensity in many features, although the peak intensity is similar to the value of 171 Jy measured by Menten (1991b) in 1991 June. Furthermore, over the 18 -month period 1992 March to 1993 September,
we found variations comparable to those seen in just 3 months, rather than large monotonic increases or decreases; 'flickering' of this type on a time-scale of months is typical of our findings for many sources. The spectrum of the $12-\mathrm{GHz}$
methanol transition shows emission to be much weaker than at 6.6 GHz , as is common. Our recent measurements at 6.6 GHz with the ATCA (unpublished) confirm coincidence with
the OH position to within the 1 -arcsec spread of the OH positions. Forster \& Caswell (1989) found that the $\mathrm{H}_{2} \mathrm{O}$ position in this instance is offset by nearly 4 arcsec from the
OH and methanol masers, and the upper limit to any continuum emission is 20 mJy .
$346.48+0.13,346.52+0.12$ and $346.52+0.08$. The three
ligned spectra show clearly the features emanating from aligned spectra show clearly the features emanating from
each position. OH shows a single spike of 2 Jy at velocity -8 $\mathrm{km} \mathrm{s}{ }^{-1}$, agreeing with $346.48+0.13$. Note that Gaylard \& McLeod (1993) reported 6 Jy (in 1992 May/June) at a
velocity of $-20 \mathrm{~km} \mathrm{~s}^{-1}$, where we detected nothing in 1992
$347.63+0.15,347.63+0.21$ and $347.58+0.21$. The three aligned spectra reveal the features at each position. VLA position, coincident with $347.63+0.15$. $347.86+0.02,347.82+0.02$ and $347.90+0.05$. There is
slight confusion of these sources, as can be seen from the aligned spectra. An OH maser is present at the first position.
$0.64-0.04$ is the strongest feature, and is confined to the
elocity range 48.5 to $53 \mathrm{~km} \mathrm{~s}^{-1}$. It appears to coincide with velocity range 48.5 to $53 \mathrm{~km} \mathrm{~s}^{-1}$. It appears to coincide with
 centre, the region $0.65-0.05$ is clearly separate and corresponds with the site of $12-\mathrm{GHz}$ methanol emission.
$0.66-0.03$ and $0.67-0.03$ lie well to the north, in the

 isolated from any

ntinuum emission. $5.90-0.43$. This methanol maser, although discovered by

 searching at the position of the OH maser $5.88-0.39$ (Forster \& Caswell 1989), is distinctly offset from it, with themethanol at larger right ascension by $10 \mathrm{~s}(=150$ arcsec). The methanol maser is highly variable. It is likely to be part of the same complex and thus at the same distance as perhaps 4 kpc according to Zijlstra et al. 1990). The region
 the continuum at 1.4 GHz by Zijlstra et al., and, whereas the

$8.67-0.36$ and $8.68-0.37$. These sources are separated
by 60 arcsec, and shown on a single spectrum. The first is the
 1989). A compact (3 arcsec) H in region, of flux density 600 mJy , is also present (Wood \& Churchwell 1989). The

$9.62+0.20$. Most of the methanol emission is from the position given in Table i, but near velocity $+5.5 \mathrm{~km}-12$
there is emission with intensity 72 Jy offset +4 and -12 arcsec in right ascension and declination respectively. The ATCA methanol data (Norris et al. 1993) confirm the
positions of the two methanol centres, but we note that a

 рәи!
 15 GHz showing a $19-\mathrm{mJy}$ H II region at the position of the
 flux density of all $6.6-\mathrm{GHz}$ methanol masers and, at about 2 kpc (if we adopt the distance suggested by Forster \&
Caswell), its luminosity would be $20000 \mathrm{Jy} \mathrm{kpc}^{2}$. Garay et al.
 would then have a peak luminosity of $1000000 \mathrm{Jy} \mathrm{kpc}^{2}$,
larger than W 51 by a factor of 30 . The linear separation of

Galactic methanol masers at $6.6 \mathrm{GHz} \quad 131$

 feature. The appearance of the OH spectrum (our un-
published data) suggests that the systemic velocity is 21 km
$\mathrm{~s}^{-1}$, and that there is a redshifted OH outflow at velocity 40 s^{-1}, and that there is a redshifted OH outflow at velocity 40
$\mathrm{~km} \mathrm{~s}^{-1}$.
$19.48+0.15$ and $19.47+0.17$. On the two aligned spectra it can be seen that the sources are blended at some velocities,
so that variability is difficult to assess. We draw attention to so that variability is difficult to assess. We draw attention to
the major features that clearly belong to the other source, but there is blending in the middle velocity range.
$19.61-0.14$ and $19.61-0.12$. A single spectrum is
adequate to show the main source and the weaker offset
$19.61-0.23$. Note also the absorption. The maser is one
our weaker sources with less accurate positional
 of OH as measured with the VLA (Forster \& Caswell 1989)
may not be significant. Wood \& Churchwell (1989) reported

$20.08-0.14$. Wood \& Churchwell (1989) reported a compact $H_{\text {iI }}$ region with intensity 91 mJy and diameter 1 arcsec, at RA $18^{\mathrm{h}} 15^{\mathrm{m}} 23.0$, Dec. $-11^{\circ} 30^{\prime} 44.4^{\prime \prime}$, which co-
incides with the OH and probably the methanol also.

$22.43-0.16$. The large number of features over a wide velocity range are remarkably stable, with only the feature at temporary increase in 1992 September). $23.01-0.41$. Although only the 15 th brightest in our
ample, it is probably at the large distance of 12.8 kpc (compare the OH maser as noted by Caswell \& Haynes 983b) and thus one of the most luminous methanol masers. $23.44-0.18$. This source has many variable features and is
also strongly variable at 12 GHz (Caswell et al. 1993). An OH maser appears to coincide, but the nearest continuum

$24.33+0.14$. The methanol was detected while searching
owards a $1667-\mathrm{MHz}$ OH maser with velocity 62 to 87 km
 discovered a weak new $1665-\mathrm{MHz}$ maser and this is likely to be associated with the methanol. The methanol maser has
 $24.79+0.08$ and $24.85+0.09$. As can be seen from the two hese two close sources.

 coincides with an OH maser. $28.15+0.00$ was found while
positioning the other source, but the aligned spectra show no positioning the other source, but the aligned spectra show no

 for the nearby source $10.63-0.38$. See Section 4.4 for
further discussion.

 trongest feature in $10.47+0.03$, at $+75 \mathrm{~km} \mathrm{~s}^{-1}$, is variable, with our measurements ranging from 47 to 100 Jy ; Menten 1991b), who listed the source as W31(1), reported a peak
value of 823 Jy on 1991 June 2, while other features have intensities similar to our values (Menten, private communicaion). Thus the feature decreased by an order of magnitude in nine months and is one of the most variable strong features
discovered. Near $10.47+0.03$ there is a compact $H_{\text {II }}$ region Wood \& Churchwell 1989) and a very bright ammonia core Garay, Rodriguez \& Moran 1993b); another ammonia core $10.62-0.38$ and $10.63-0.34$. There is very little confusion between the sources, as can be seen from the two aligned spectra. The maser emission from both positions is
embedded in an extensive absorbing cloud. Within the relative positional uncertainty of 10 arcsec, $10.62-0.38$ agrees satisfactorily with the VLA OH position of Forster \& Caswell (1989), and a $3.8-\mathrm{Jy}$ compact $\mathrm{H}_{\text {II }}$ region studied by
Wood \& Churchwell (1989). $11.03+0.06$. The strongest feature is at this position, but arises from the nearby source $10.96+0.01$ reported by Schutte et al. (1993); its true peak is 20 Jy , and we detect it in
әәцч วчL 'IIO- $26 \cdot I I$ pup $\subseteq I \cdot 0-\varepsilon 6 \cdot I I$ 'tI'0-06'II pectra of these sources are aligned in velocity to indicate which features arise from which position. It can thus be seen
that the feature at $+32.1 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}$ seems to belong to $11.93-0.15$, most of whose other features lie in the range
$+45 \mathrm{to}+49 \mathrm{~km} \mathrm{~s}$
$11.94-0.62$. Wo
11.94-0.62. Wood \& Churchwell (1989) reported an
ultracompact (4 arcsec) $\mathrm{H}_{\text {II }}$ region of 1.4 Jy at RA $18^{\mathrm{h}} 11^{\mathrm{m}} 044^{\mathrm{s}} 5$, Dec. $-18^{\circ} 54^{\prime} 19^{\prime \prime}$, with recombination-line emission at velocity $+42 \mathrm{~km} \mathrm{~s}^{-1}$. OH absorption extends
from 34 to $40 \mathrm{~km} \mathrm{~s}^{-1}$. This source is a rare variety, in which

 $-18^{\circ} 25^{\prime} 05^{\prime \prime} 7$, approximately coincides with $12.21-0.10$, as does a compact H ir region (Wood \& Churchwell 1989).
$12.89+0.49$. OH measurements in 1993 July show 3.8 Jy
 in the velocity range 20 to $25 \mathrm{~km} \mathrm{~s}^{-1}$, and is embedded in absorption. Wood \& Churchwell (1989) reported a 1 -arcsec
diameter, $0.16-\mathrm{Jy}$ ultracompact $\mathrm{H}_{\text {II }}$ region at RA
$16.59-0.05$. This source is slightly variable, with the

 incides with a continuum source of 1.9 mJy at 15 GHz (Heaton \& Little 1988) which is an ultracompact Hir region,
optically thick at 5 GHz . Extensive studies of other

 12 GHz (Caswell et al. 1993). In the continuum, Wood \& Churchwell (1989) have studied a strong compact nearby $01^{\circ} 09^{\prime} 02^{\prime \prime}$, are offset from the OH maser and probably the methanol maser as well.
$40.62-0.14$. The feature at velocity $+36 \mathrm{~km} \mathrm{~s}^{-1}$ is offset
right ascension and declination by +15 and +7 arcsec respectively, and is variable, with intensity decreasing in
W49N. This well-known molecular complex contains a number of $\mathrm{H}_{\text {II }}$ regions and OH masers as tabulated by
Gaume \& Mutel (1987). From our single-dish measurements, Gaume \& Mutel (1987). From our single-dish measurements,
we are able to distinguish at least four methanol centres of activity, and these are shown on two spectra. There is no
marked variability, but it is difficult to set limits due to $43.15+0.02$ is the 23 -Jy methanol peak at velocity +13 $\mathrm{km} \mathrm{s}^{-1}$. A $1665-\mathrm{MHz}$ OH maser has a peak of 5.6 Jy at velocity $13.8 \mathrm{~km} \mathrm{~s}^{-1}$, RA $19^{\mathrm{h}} 07^{\mathrm{m}} 477^{5}$, De Dec. $09^{\circ} 00^{\prime} 23^{\prime \prime}$. $\mathrm{Jy}),+18.3$ and $+19.6 \mathrm{~km} \mathrm{~s}^{-1} ;$ a $1665-\mathrm{MHz} \mathrm{OH}$ maser, with peak intensity of 99 Jy at velocity $17 \mathrm{~km} \mathrm{~s}^{-1}$, is at RA
$19^{\mathrm{h}} 07^{\mathrm{m}} 49: 6$, Dec. $09^{\circ} 01^{\prime} 16^{\prime \prime}$ and may correspond with the methanol site. $43.17+0.01$ has velocity $+20.3 \mathrm{~km} \mathrm{~s}^{-1}(10$ Jy); it may be the counterpart of a $1665-\mathrm{MHz}$ OH maser with a peak of 9 Jy at velocity $16 \mathrm{~km} \mathrm{~s}^{-1}$, and RA
$19^{\mathrm{h}} 07^{\mathrm{m} 515} 50$. Dec. $09^{\circ} 00^{\prime} 57^{\prime \prime}$. For velocities near +19 km s^{-1}, there appears to be a blend of emission from
$43.16+0.02$ and $43.17+0.01$, and indeed the Gaume \& $43.16+0.02$ and $43.17+0.01$, and indeed the Gaume \&
Mutel OH observations show several other centres of activity. $43.17-0.00$ is a weak source with velocity -1 km
$\mathrm{~s}^{-1}$ which is clearly distinct from the other features.

 arcsec diameter) H H r region (Forster \& Caswell 1989; see

 aligned spectra. Both methanol masers were discovered
while searching at the position of $\mathrm{OH} 45.47+0.05$ (Forster \& Caswell 1989), but the methanol positional errors make it uncertain whether either coincides precisely with the
OH and $\mathrm{H}_{2} \mathrm{O}$ masers. Furthermore, the entire evelocity range of the OH emission, +62 to $+77 \mathrm{~km} \mathrm{~s}^{-1}$, is at higher
velocity than any of the methanol emission, so the associa-

 s^{-1} is a sidelobe from the 200-Jy peak of 29.95-0.02, offset $6 \operatorname{arcmin}$ (see the following spectrum). 0.04 . Our single-dish
 different positions but overlapping velocities (in the range 95
to $105 \mathrm{~km} \mathrm{~s}^{-1}$). The emission is variable, but the variability is difficult to assess quantitatively because of the spatial complexity. We show two spectra and attempt to distinguish
$29.95-0.02$, the strongest source, has a $12-\mathrm{GHz}$ counterpart and was originally thought to have no OH maser. with an intensity of nearly 1 Jy and, clearly, more intense han when searched unsuccessfully several years ago. The extending over 5 arcsec (Wood \& Churchwell 1989). The pəsnjuoo mq дәsщo К К slightly in our single-dish spectra
$30.20-0.17$ and $30.22-0.18$.
$30.20-0.17$ and $30.22-0.18$. To a good approximation,
the sources as seen in the two aligned spectra emit over different velocity ranges and are not confused. A corresponding OH maser with velocity range 101 to $109 \mathrm{~km} \mathrm{~s}^{-1}$ methanol maser $30.20-0.17$ has shown no variability to date, whereas $30.22-0.18$ shows clear variability. from the three aligned spectra that $30.76-0.05$ confuses, and is
confused by, the two others. There are two OH masers in this

 30.82-0.05. near $30.82+0.27$; it has no detectable OH counterpart. $30.79+0.20$. This source was discovered while searching
near $30.82+0.27$; an OH counterpart was discovered in $30.82+0.27$. The OH counterpart's velocity range extends $3128+0.06$. This source is one of the few methanol masers in which the peak flux density on the $12 . \mathrm{GHz}$ tran-$31.40-0.26$. From this direction (an OH maser reported by Cohen et al. 1988) we detected weak (0.4 Jy) emission in
 $31.41+0.31$. The corresponding continuum source has a
diffuse (6 arcsec) halo and a $5-\mathrm{mJy}$ peak at RA $18^{\mathrm{h}} 44^{\mathrm{m}} 5995$,
33.09-0.07. This source was discovered while investigat-
ing $33.13-0.09$; there is no detectable OH maser here.
$34.24+0.13$ and $34.26+0.15$. The aligned spectra indicate confusion between the sources at some velocities. $34.24+0.13$ is the slightly weaker methanol maser and has
no known OH counterpart. $34.26+0.15$ corresponds with a strong OH maser, which in turn coincides with a $43-\mathrm{mJy} \mathrm{H}_{\text {II }}$ region with diameter less than $1 \operatorname{arcsec}$ (Wood \& Churchwell 1989). confusion was exacerbated by the larger beamwidth used. Our list does not include observations of 33 masers recently
reported by Schutte et al. (1993) in the directions of $I R A S$
 the region that we have studied.
4.2 C omparison with $1665-\mathrm{MHz} \mathrm{OH}$ masers

Most of the sources have been found as a result of searching at the positions of $1665-\mathrm{MHz}$ OH masers already cata-
logued. In Fig. 1 we showed a typical comparison of OH and methanol spectra. The positions are in agreement to within 1 arcsec, and the velocity ranges are similar. There is, however,
no detailed similarity of the spectra for the two species, and the $6.6-\mathrm{GHz}$ methanol intensity is an order of magnitude sample.
4.2.1 Positional coincidence of methanol and OH masers We are concerned here not with detailed coincidence of
maser spots and velocities, but with whether both species are xcited by the same activity centre or compact $\mathrm{H}_{\text {II }}$ region. Published observations allow precise positional com-
parisons of five methanol masers (Norris et al. 1993) with
 \& Caswell 1989). In four of the five associations

 Our new data allow comparisons for a further 62 associa-

 səyле d ano u! sə!
 the methanol is weak and may have a larger positional error):

 determined precise OH positions, we measurements with the
 this further; these unpublished observations confirm, for
 in Fig. 1 as typical of our results)
masers coincident to within 1 arcsec

4.2.2 Comparison of methanol and OH intensities

For this comparison we use the peak flux density of each detectability above noise. For the $1665-\mathrm{MHz} \mathrm{OH}$ data, we
 by single-dish observations, and show three aligned spectra.
No marked variability was seen, but small variations would be difficult to discern because of the blending of features.
 to $61.8 \mathrm{~km} \mathrm{~s}^{-1}$. Gaume \& Mutel (1987) found a nearby
$1665-\mathrm{MHz} \mathrm{OH}$ maser with $0.6-\mathrm{Jy}$ peak and total velocity
$49.49-0.39$ refers to the strongest emission, nearly 900 Jy, which probably coincides with the OH position of Forster \& Caswell (1989). The precise velocity range of methanol is down to at least $51 \mathrm{~km} \mathrm{~s}^{-1}$. Note that the OH velocity range of emission is about 63 to $50 \mathrm{~km} \mathrm{~s}^{-1}$, but absorption extends over a larger range, from 50 to $70 \mathrm{~km} \mathrm{~s}^{-1}$; some OH is from a site 5 arcsec north where there is also $\mathrm{H}_{2} \mathrm{O}$ (quoted as $\mathrm{H}_{2} \mathrm{O}$ position by Forster \& Caswell; see also Gaume \& Mutel 1987). This is the fifth strongest methanol maser in our sample, but is the most luminous of the tive

$$
\text { of } 7.7 \mathrm{kpc}(\text { see section } 4.4) \text {. coincides with the } 12-\mathrm{GHz}
$$

 methanol maser (Caswell et al. 1993). Because of confusion, only the single bright feature can be confidently assigned to
this position. From approximately this position, Gaume \& Mutel (1987) reported a 1.6-Jy OH maser, slightly offset from
the H II region W51d (flux density 5 Jy , angular size $4 \operatorname{arcsec}$). $59.78+0.06$. This source shows clear variability, with some features stable, some increasing and some decreasing
monotonically from 1992 June to December. OH was first reported by Braz \& Sivagnanam (1987); our 1993 July data shown a peak OH flux density of 1.7 Jy in the velocity range (1981) at RA $19^{\mathrm{h}} 41^{\mathrm{m}} 04.23$, Dec. $+23^{\circ} 36^{\prime} 42^{\prime \prime} 4$. Note that the listing of this source as V645 Cyg by Menten (1991b) \& Wood (1994) reported that there is no ultracompact $\mathrm{H}_{\text {II }}$ \& Wood (1994) reported that there is no ultracompact HI
region, with an upper limit of 0.3 mJy as observed with a 0.9 arcsec beam at 8.4 GHz .

DISCUSSION

 First, we briefly compare our data with other observations ofthe $6.6-\mathrm{GHz}$ methanol transition. We observed the 73 masers reported by Menten (1991b) that are accessible to the Parkes telescope and, for most of these, detected e.g. $345.50+0.35$ as shown in Fig. 1. In a few cases, however, the peak changed by a factor of 2 or more, with the most extreme variations occurring in $345.00-0.22$ which
increased three-fold and $10.47+0.03$ which decreased tenfold. Towards W33 (12.80-0.19), we detected the absorption reported by Menten but found the emission in this direction to be merely from nearby sources at the edge

During the compilation of our southern observations, the brighter ones have been reported as a result of several imilar period of time (MacLeod, Gaylard \& Nicolson 1992; MacLeod \& Gaylard 1992; Gaylard \& MacLeod 1993). In which previously known strong OH sources were intentionally excluded. More appropriately, these 33 sources should be added to our list (with the total becoming 273
methanol masers), resulting in a median ratio of 9 . Finally, methanol masers), resulting in a median ratio of 9 . Finally,
we note that, on using the full sample of 297 sources (with
For all of the above samples, the distribution of the intensity ratio is smooth and shows no evidence of being
For the sample with both OH and methanol detected, the extreme ratios of methanol-to- OH intensity are 3575 for strong methanol with weak OH ; and 0.072 for $327.29-0.58$ and 0.003 for $330.88-0.37$ in the case of weak methanol with strong OH. Extreme limits to the ratio where no OH is
found are $535(291.28-0.71)$ and $340(30.76-0.05)$. Extreme limits to the ratio where no methanol is found are
$.003(343.13-0.06)$ and $0.005(43.16-0.03)$.
In other words, the non-detections have limits wholly within the range of the intensity ratios measured for sources
 preferentially OH or preferentially methanol masers

The general correspondence of the methanol and OH species of maser suggests that they require similar conditions and have similar lifetimes. Future investigation of sources
with especially high or low ratios of methanol-to-OH intensity may, however, give some indication of differences. Overall, the study of methanol masers as probes of star-
forming regions has advantages compared with the study of
OH masers, for several reasons.
(i) Methanol masers are stronger, on average.
(ii) Methanol masers are less often confused by strong absorption. Indeed, in the directions of some methanol

None the less, there remain maser sites that are detectable only (or more readily) as OH masers, and, where possible, The majority of the masers lie in the directions of infrared an 60 and $100 \mu \mathrm{~m}$. IRAS sources heve also proved to be a useful means of finding some of the methanol masers Schutte et al. 1993). Due to confusion in the IRAS

ur distances are overestimated by a factor of $10 / 8.5$ and our luminosities by a factor $(10 / 8.5)^{2}$, as is also the case for the
luminosities of $1665-\mathrm{MHz}$ OH masers studied by Caswell \& luminosities of $1665-\mathrm{MHz}$ OH masers studied by Caswes the
Haynes (1987a). Of the five strongest methanol masers, the

 A slightly higher luminosity ($50000 \mathrm{Jy} \mathrm{kpc}^{2}$) is found for
$49.49-0.39$ which is weaker but at larger distance (7.7 kpc). For some of the 20 brightest sources there is a kinematic distance ambiguity, with no reliable means yet of distinguish-
ing between near and far alternatives. If any of these are at
 all. As we discussed in the notes to individual sources, likely
candidates are $318.95-0.20(134000 \mathrm{Jy} \mathrm{kpc}$

$9.62+0.20$ has the highest flux density of the presently

 would be $20000 \mathrm{Jy} \mathrm{kpc}^{2}$. Garay et al. (1993a) suggest that it
is at 16.1 kpc , and it would then have a peak luminosity of

 uо̣pəs u! pəis
 the most luminous maser, but not by very much.

The luminosity function and Galactic distribution of OH
 9
5
5
0
0
0
0
0
0
0
0
0
0
0
 masers necessarily mimics the distribution of the OH search

 similar, and thus the OH maser distribution will remain the

 than 10000 Jy kpc
the in the Galactic disc out to the distance of
the most luminous methanol masers suggests that there may be

In addition to sources showing emission of comparable intensity over the whole range, there are some sources with
 he occurrence of weak features at the extreme velocities need not imply that they occur only there; it is possible that
 not recognizable in the central regions where they are
 sources that have double velocity ranges (even after rejecting
those arising from nearby, but separate, sources). They are insufficient in number to cause a subsidiary peak in the histo-
gram of the velocity distribution, and must be recognized on gram of the velocity distribution, and must be recognized on with separation too small to distinguish with our beamsize. In some instances, however, they may represent outflows (or nflows) spatially coincident with emission at the systemic
velocity. In the notes to individual sources, we have drawn attention to several possible examples of outflow emission; eight promising candidates deserving further investigation are $300.51-0.18,320.23-0.29,322.16+0.64$,
$327.29-0.58,339.68-1.21,340.79-0.10,341.21-0.21$
and $20.23+0.07$

Again we use the example of Fig. 1 to show the typical properties of our sample. The second and third panels show
that the intensity of $6.6-\mathrm{GHz}$ methanol emission varies by about 10 per cent in several features over a 3 -month period. The principal purpose of our observations was to detect
new sources and to measure their positions, but the resulting data set has proved to be valuable for initial variability investigations on several different time-scales. When measuring positions of strong sources with many spectral
features, we obtained six spectra within 20 min and found no variability. When system performance checks were made on

 between observing sessions.
 readily recognize this even at a level of a few per cent, since relative variability does not rely on the accuracy of the

 a source shows almost continuous emission over several

 and then a return to the original value. The generally low
amplitude of the variation suggests that the maser gain is

 parison of individual peaks has a larger scatter.
 further paper, where the $12-\mathrm{GHz}$ results will be given in
detail. One result from the $12-$ and $6.6-\mathrm{GHz}$ comparisons hould be mentioned briefly here, however, since it is especially relevant to the $6.6-\mathrm{GHz}$ observations. The clear correspondence between features seen at both 12 and 6.6
GHz was noted by Menten (1991b) in his initial discovery of $6.6-\mathrm{GHz}$ masers. No precise laboratory measurement of the
 and so Menten used the comparison of source spectra to
derive the currently accepted value, 6668.518 MHz , relative derive the currently accepted value, 6668.518 MHz , relative
o the value of 12178.595 MHz for the other transition. In our large sample of sources we find that, with this choice of
rest frequencies, there is a very slight offset of $0.07 \mathrm{~km} \mathrm{~s}^{-1}$ between corresponding features from the two transitions. This would be eliminated if the adopted rest frequency near the rest frequency near 12 GHz were decreased by 3 kHz). Since the laboratory value for the $12-\mathrm{GHz}$ transition has an uncertainty of 3 kHz , it would seem best to defer any change

 spectra.

Finally, we note that in a few sources the peak $12-\mathrm{GHz}$
 ratio exceeding or approaching unity are $31.28+0.06$,
$24.33+0.14, \quad 345.01+1.80$, its nearby companion

 GHz emission.

4.8 Absorption at 6.6 GHz

Absorption is evident in 11 of the $6.6-\mathrm{GHz}$ spectra that we show in Fig. 2. Individual examples are discussed in the
notes. In all cases, we see corresponding absorption on our $12-\mathrm{GHz}$ spectra (not shown). In general, the absorption is
 discussion of absorption until the $12-\mathrm{GHz}$ observations are published in full. Note that a $12-\mathrm{GHz}$ absorption study of

From a practical viewpoint, the absorption present at 6.6 GHz rarely obscures any maser emission, whereas absorption often creates problems in recognizing weak masers on
the $\mathrm{OH} 1665-\mathrm{MHz}$ transition if studied with a single dish with large beamsize.

- CONCLUSIONS

Fig. 1 shows a typical comparison of spectra of the 6.6- and $12-\mathrm{GHz}$ methanol transitions. The $12-\mathrm{GHz}$ intensity is much
lower than the $6.6-\mathrm{GHz}$ intensity, but its peak coincides in velocity with a major $6.6-\mathrm{GHz}$ peak. There are, however, some strong $6.6-\mathrm{GHz}$ peaks with no detectable counterparts.
For seven of our $2456.6-\mathrm{GHz}$ masers we have no $12-\mathrm{GHz}$ measurement. We have detected a $12-\mathrm{GHz}$ counterpart to 131 of the remaining 238 , with flux densities ranging from
$1100 \mathrm{Jy}(351.42+0.64)$ to $0.4 \mathrm{Jy}(33.09-0.07)$, and a median flux density of 7 Jy ; for the remainder, we have upper limits or uncertain detections of typically 0.5 Jy . The detec-
tion rate of $12-\mathrm{GHz}$ masers is lower than that of the weaker $6.6-\mathrm{GHz}$ masers. For the $6.6-\mathrm{GHz}$ masers stronger than 19 Jy , we detected 95 of the 121 sources searched, and the median
ratio of $12-$ and $6.6-\mathrm{GHz}$ intensities is 0.11 (where we include the 26 masers with upper limits to the $12-\mathrm{GHz}$ flux density, so that the ratio is applicable to a complete sample of
 GHz emission falls below the level of detectability.
with that of $\mathrm{H}_{2} \mathrm{O}$ masers, the possible explanations may be Peng (1989a,b), and we suggest that his conclusions may be applicable to methanol masers. The study of OH variability
by Clegg \& Cordes (1991) also provides useful comparisons
in interpretation. each source we estimated the number of individual peaks that showed variability in our observations, and the total number of distinguishable peaks suitable for a variability
investigation. The number of variable peaks is necessarily a lower limit in view of (1) our limited number of observing epochs, (2) the signal-to-noise ratio limitation, and (3) the
calibration uncertainty which allows us to recognize with confidence only relative variations (whole-source variations are significant only if larger than ~ 10 per cent). Averaged
over all sources, the fraction of variable features is 0.28 . We also subdivided the sources into four equal groups, ranked by flux density. The number of individually recognizable account of the poorer signal-to-noise ratio. The fraction of variable features, however, dropped by an insignificant

We have also summarized the variability with a classification in column 10 of Table 1: 'nv' (where no variations have yet been seen), 'sv' (variable in at least one feature but with
only slight variations to date, of <10 per cent), or ' v ' (at least one feature shows variability of >10 per cent).

The variability of $12-\mathrm{GHz}$ masers was investigated by
Caswell et al. (1993). A few sources showed strong variCaswell et al. (1993). A few sources showed strong vari he majority of $6.6-\mathrm{GHz}$ masers to be variable, overall they
are less variable than the $12-\mathrm{GHz}$ masers (see also Section Are there velocity changes? We have seen no obvious examples of features that retain their appearance but change as would be expected when two blended features vary by as would be expect
different amounts.

4.7 Comparisons of $6.6-$ and $12-\mathrm{GHz}$ masers

The present results constitute a comprehensive search for
$6.6-\mathrm{GHz}$ methanol towards OH masers readily accessible to 6.6-GHz methanol towards OH masers readily accessible to
the Parkes telescope (south of declination 24°) along the Galactic plane, especially in the longitude range 270°
Clegg A. W., Cordes J. M., 1991, ApJ, 374, 150
Cohen R. J., Baart E. E., Jonas J. L., 1988, MNRAS, 231, 205
Cragg D. M., Johns K. P., Godfrey P. D., Brown R. D., 1992, MNRAS, 259,203
Fix J. D., Mutel R. L., Gaume R. A., Claussen M. J., 1982, ApJ, 259, Forster J. R., Caswell J. L., 1989, A\&A, 213, 339

Forster J. R., Caswell J. L., Okumura S. K., Hasegawa T., Ishiguro | M., 1990, A\&A, 231, 473 |
| :--- | Gaines L., Casleton K. H., Kukolich S. G., 1974, ApJ, 191, L99

Garay G., Rodriguez L. F., Moran J. M., Churchwell E., 1993a, ApJ, Garay G., Rodriguez L. F., Moran J. M., 1993b, in Cassinelli J. P. Churchwell E. B., eds, ASP Conf. Ser. Vol. 35, Massive Stars:
Their Lives in the Interstellar Medium. Astron Soc. Pac., San Francisco, p. 114
Gardner F. F., Whiteoak J. B., Forster J. R., Pankonin V., 1986, MNRAS, 218,385
Gaume R. A., Mutel R. L Gaume R. A., Mutel R. L., 1987, ApJS, 65, 193
Gaylard M. J., MacLeod G. C., 1993, MNRAS, 262, 43 IRAS Point Source Catalog, 1985, IRAS Science Working Group UAS Government Printing Office, Washington DC
USing Group Kurtz S., Churchwell E. B., Wood D. O. S., 1994, ApJS, 91, 659
Lada C. J., Blitz L., Reid M. J., Moran J. M., 1981, ApJ, 243, 769
 Kesteven M. J., Reynolds J. E., Peng R. S., 1988, ApJ, 333, L79
MacLeod G. C., 1991, MNRAS, 252, 36p
MacLeod G. C., Gaylard M. J., 1992, MNRAS, 256, 519 MacLeod G.C., Gaylard M. J., Nicolson G. D., 1992, MNRAS, 254, Menten K. M., 1991a, in Haschick A. D., Ho P. T., eds, ASP Conf. Ser. Vol. 16, Skylines: Proc. 3rd Haystack Obs. Meeting. Astron.
Soc. Pac., San Francisco, p. 119
Menten K. M., 1991b. ApJ, 380, L75
Mirabel I. F., Rodriguez L. F., Ruiz A., 1989, ApJ, 346, 180 Norris R. P., McCutcheon W. H., Caswell J. L., Wellington K. J., Reynolds J. E., Peng R.-S. Kesteven M. J., 1988, Nat, 335, 149
Norris R. P., Whiteoak J. B., Caswell J. L., Wieringa M. H., Gough R. G., 1993 , ApJ, 412, 222
Peng R.S., 1989a, A\&A, 216, 165
Peng R.S., 1989b, A\&A, 216, 173 Peng R. S., 1989b, A\&A, 216, 173
Peng R. S., Whiteoak J. B., 1992, MN \qquad d M. J., Moran J. M., 1988, in Verschuur G. L., Kellermann K. I.,
eds, Galactic and Extragalactic Radio Astronomy, 2nd edn Robinson B. J., Caswell J. L., Goss W. M., 1974, Aust. J. Phys., 27, Schutte A. J., van der Walt D. J., Gaylard M. J., MacLeod G. C., Zood D. O. S., Churchwell E. B., 1989, ApJS, 69,831
Zijlstra A. A., Pottasch S. R., Engels D., Roelfsma P. R., te Lintel Hekkert P., Umana G., 1990, MNRAS, 246, 217 hrough 360° to 50°. It provides a current catalogue of welltudied southern methanol $6.6-\mathrm{GHz}$ masers with positions dequate to eliminate confusion. The sensitivity and velocity

 marked variability which deserves more extensive investigation. More precise positions will be obtained in future studies
 masers offset from the target OH positions points to the existence of many more methanol masers. As discussed in Section 4.4 , surveying of the Galactic plane for $6.6-\mathrm{GHz}$
methanol masers appears to be a most practical means of increasing our inventory of Galactic sites of massive star

ACKNOWLEDGMENTS

We are grateful to Rafik Kandalian and Marc Elmouttie for heir valued assistance with some of the observing, to Rick spectral-line reduction program, and to Henrietta May for adding several new features to the reduction program.
R., Menten K. M., Gomez-Gonzalez J., Barcia A., 1990,

Braz M. A., Sivagnanam P., 1987, A\&A, 181, 19 Brebner G. C., Heaton B., Cohen R. J., Davies S. R., 1987, MNRAS 229, 679
Caswell J. L., Haynes R. F., 1983a, Aust. J. Phys., 36, 361
Caswell J. L., Haynes R. F., 1983b, Aust. J. Phys., 36, 417 Caswell J. L., Haynes R. F., 1983b, Aust. J. Phys., 36, 417
Caswell J. L., Haynes R. F., 1987a, Aust. J. Phys., 40, 215 Caswell J. L., Haynes R. F., 1987b, A\&A, 171, 261
Caswell J. L., Murray J. D., Roger R. S., Cole D. J., Cooke D. J., Caswell J. L., Haynes R. F., Goss W. M., 1980, Aust. J. Phys., 33, 639
Caswell J. L., Gardner F. F., Norris R. P., Wellington K. J., Caswell J. L., Vaile R. A., Ellingsen S. P., Norris R. P., 1994, Proc. Churchwell E., 1993, in Cassinelli J. P., Churchwell E. B., eds, ASP Conf. Ser. Vol. 35, Massive Stars: Their Lives in the Interstellar
Medium. Astron. Soc. Pac., San Francisco, p. 35

REFERENCES

 A\&A, 240, 116Benson J. M., Johnston K. J., 1984, ApJ, 277, 181 Caswell J. L., Haynes R. F., 1987b, A\&A, 171, 261

