
Abstract. Galanin is a regulatory 30- or 29-amino acid peptide,
widely distributed in the nervous system and gut, that acts via
three subtypes of G protein-coupled receptors, named GAL-R1,
GAL-R2 and GAL-R3. Findings have been accumulated that
galanin regulates neuroendocrine hypothalamic axes, including
the hypothalamic-pituitary-adrenal (HPA) one. Galanin and its
receptors are expressed in the hypothalamic paraventricular
and supraoptic nuclei, anterior pituitary and adrenal medulla.
Adrenal cortex does not express galanin, but is provided with
GAL-R1 and GAL-R2. The bulk of evidence indicates that
galanin stimulates the activity of the central branch of the HPA
axis (i.e. the release of corticotropin-releasing hormone and
ACTH), thereby enhancing glucocorticoid secretion from the
adrenal cortex. Investigations carried out in the rat show that
galanin is also able to directly stimulate corticosterone (gluco-
corticoid) secretion from adrenocortical cells, through GAL-R1

and GAL-R2 coupled to the adenylate cyclase-protein kinase A
signaling cascade, and nor-epinephrine release from adrenal
medulla. There is indication that galanin may also enhance
corticosterone release via an indirect paracrine mechanism
involving the local release of catecholamines, which in turn
activate ß-adrenoceptors located on adrenocortical cells.
The physiological relevance in the rat of the glucocorticoid
secretagogue action of galanin is suggested by the demon-
stration that the blockade of galanin system significantly
lowers basal corticosterone secretion. There is also evidence
that galanin plays a role in the modulation of HPA-axis
response to stress, as well as in the pathogenesis of pituitary
adenomas and perhaps of pheochromocytomas.
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1. Introduction

Galanin is a regulatory peptide (30- and 29-amino acid residues
in humans and other mammals, respectively) first isolated
from the pig intestine in the late 80s (1). It was named
galanin because in the pig it possesses an N-terminal Glycine
(position 1) and a C-terminal amidated Alanine (position 29).
Galanin is widely distributed in the body tissues and organs,
such as the central nervous system and gut, and regulates
several biological processes, including neuroendocrine
hypothalamic activity and food intake (reviewed in refs. 2-5).

Evidence has been accumulated that numerous neuro-
peptides involved in the central regulation of feeding (e.g.
neuropeptide-Y, leptin, orexins, cholecystokinin, neuro-
peptide-W and beacon) control the hypothalamic-pituitary-
adrenal (HPA) axis, acting on both its central (6-14 and refs.
therein) and peripheral branch (13,15-28 and refs. therein).
The interactions of peptides regulating food intake with the
HPA axis are of great relevance, because adrenal gluco-
corticoid hormones are known to be involved in the positive
control of energy homeostasis and adipogenesis (29,30).

Findings indicate that galanin may be included in this
group of regulatory peptides, but, despite the quite large mass
of investigations, only a short survey of the role of galanin in
the regulation of the HPA axis has been published (31). Thus,
after a short account on the biology of the galanin system, we
will herein review data indicating that galanin and its receptors
are expressed in all the anatomical components of the HPA
axis, and galanin is involved in the functional regulation of
HPA axis under both physiological and pathological
conditions.

2. Biology of galanin and its receptors

Galanin. Human galanin gene is located on chromosome
11q13.3-q13.5, and consists of 6 exons and 5 introns. Exons
2-5 encode prepro-galanin peptide, whose post-translational
cleavage gives rise in a stochiometric 1:1 ratio to galanin and
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galanin mRNA associated peptide (GMAP) (Fig. 1). Galanin
consists of 30-amino acid residues in humans, and 29-amino
acid residues in other species so far examined. The 1-15
N-terminal sequence is fully conserved, while the C-terminal
portion displays greater variability. The C-terminus is amidated
in all 1-29 sequences, while in humans the presence of Ser in
30 position prevents amidation (Fig. 2). Galanin is widely
distributed in the central and peripheral nervous system, where
it acts as a neurotransmitter/neuromodulator: its physiological
functions include regulation of feeding, memory, neuro-
endocrine axes, nociception and nerve regeneration. Galanin
is also present in the gut, where it modulates insulin release
and intestine contractility. GMAP function has been less
extensively investigated, but there is evidence that it may be
involved in spinal-cord transmission (3-5).

Galanin receptors and their signaling mechanisms. The bio-
logical activity of galanin, probably associated to its N-terminal
fully conserved sequence, occurs via the activation of three G
protein-coupled receptor subtypes, that have been cloned and
pharmacologically characterized: GAL-R1, GAL-R2 and GAL-
R3. Galanin-receptor distribution reflects that of galanin,
although there is indication that GAL-R3 expression is less
abundant than that of the other two subtypes. Galanin-receptor
activation involves different signaling pathways (Fig. 3). GAL-
R1 and GAL-R3 inhibit adenylate cyclase (AC) and activate
inward K+ currents via pertussis toxin-sensitive Gi/o protein,
while GAL-R2 predominantly activates phospholipase-C
(PLC)/protein kinase (PK)-C and inositol-3-phosphate (IP3)
cascade via a pertussis toxin-insensitive Gq/11 protein.
However, GAL-R2 is thought to signal also via Gi/o proteins
(32-35; and reviewed in refs. 4,5,36).

3. Expression of galanin and its receptors in the HPA axis

Hypothalamus. Immunocytochemistry (ICC) showed that
galanin is co-expressed with arginin-vasopressin (AVP) and
corticotropin-releasing hormone (CRH) in the hypothamic
paraventricular nucleus (PVN) (5,37,38), and with AVP and
oxytocin (OT) in the magnocellular neurons of the supraoptic
nucleus (SON) (39-45). The expression of galanin, AVP and
OT in the rat SON was shown to be modulated by various
physiological stimuli, among which osmotic ones (46,47).
The magnocellular SON neurons are provided with nor-
adrenergic innervation, and nor-adrenergic system was found
to activate these AVP- and OT-expressing neurons (48).
Recent findings indicated that in the rat SON nor-adrenergic
system also up-regulates galanin expression (49).

Galanin-receptor expression has been detected in the rat
hypothalamus, its level being GAL-R1>GAL-R2>GAL-R3

(35,50). ICC demonstated GAL-R1 immunoreactivity (IR) in
the rat and sheep PVN and SON (47,51-54). Osmotic stimuli

have been reported to up-regulate GAL-R1 expression in the
rat SON (55), and this observation, coupled to the above
mentioned findings (49), suggests that galanin may be involved
in the autocrine-paracrine control of AVP secretion.

Pituitary gland. Abundant evidence indicates that galanin is
expressed in the mammalian anterior pituitary as mRNA and
protein (56-61). In situ hybridization and ICC showed that
galanin-positive cells are: i) in female rats predominantly
lactotrophs (62-65), where galanin is co-localized with
prolactin in the secretory granules (66); ii) in male rats mainly
somatotrophs, thyreotrophs (61) and corticotrophs (65,67);
iii) in adult male monkeys thyreotrophs and gonadotrophs
(68); and iv) in normal human pituitary and pituitary adenomas
almost exclusively corticotrophs (69,70). Galanin-positive
nerve fibers were found in the dog, monkey and human
anterior pituitary (71,72).

The presence of high-affinity galanin binding sites has been
detected in the rat anterior pituitary (73), and subsequent
studies evidenced the expression, as mRNA and protein, of
GAL-R2 and GAL-R3, but not GAL-R1 (35). No ICC
investigations have been carried out to ascertain the cellular
localization of such receptors.

Adrenal gland. Although earlier studies did not detect galanin
mRNA in the rat adrenals (74), subsequent investigations
demonstrated it in adrenal medulla not only of rats (75-77),
but also of cows (78-80) and pigs (57,81). Evidence has been
provided that galanin gene transcription is enhanced i) by Ca2+

influx and activation of PKA and PKC in bovine chromaffin
cells, its promoter possessing both TPA- and cyclic-AMP
(cAMP)-responsive elements (79,80); and ii) in the rat adrenal
medulla by surgical or chemical interruption of splanchnic-
nerve transmission (75). No galanin mRNA expression was
found in the rat adrenal cortex (77). Radioimmune assay (RIA)
demonstrated sizeable galanin-IR concentrations in the adrenal
medulla of humans (82,83), pigs and cats (57,79,84,85), rabbits
(86,87) and rats (77,88,89), where its concentration increases
after hypoglycemic shock (88), as well as in human pheo-
chromocytomas (82). Galanin-IR release from perfused pig
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Figure 1. Scheme illustrating the structure of human prepro-galanin, and the
location of galanin and GMAP. SP, signaling peptide.

Figure 2. Amino-acid sequence of human galanin (1-30 sequence) and
non-human galanin (1-29 sequence). Amino-acid substitutions in rats [1],
pigs [2] and cows [3] are indicated by arrows.
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adrenal gland was shown to increase upon splanchnic-nerve
stimulation (90). RIA indicated that the adrenal content of
galanin varies from 3 to 90-115 pmol/g in humans, pigs and
rats, which, according to Nussdorfer (91), could give rise
to local concentrations ranging from 10-8 to 10-6 M. ICC
confirmed the presence of galanin-IR in the chromaffin
cells of the mammalian adrenal medulla and human
pheochromocytomas (92-96), as well as in the avian inter-
renals (94). Galanin-positive nerve fibers have been traced
both in the zona glomerulosa and adrenal medulla of rats,
guinea pigs and hamsters (75,89,94), and in the frog interrenals
(97).

The adrenal distribution of galanin receptors has been far
less investigated. Recent findings showed the expression of
GAL-R1 and GAL-R2, but not GAL-R3, mRNAs in the zona
fasciculata-reticularis (ZF/R) cells of the rat adrenals (98).
Indirect evidence also indicated that GAL-R1 and GAL-R2

are expressed as proteins in both rat adrenal cortex and medulla
(see ‘Effects of galanin on the HPA axis. Adrenal medulla
and adrenal cortex’).

4. Effects of galanin on the HPA axis

Hypothalamus. Consisting findings indicate that galanin
plays a role in the regulation of hypothalamic AVP bio-
synthesis and release and of water balance, at least in the rat
(41,99-104). In fact, galanin intracerebroventricular (icv)
administration was found to prevent the rise in both AVP
expression in the hypothalamus and in AVP plasma level
induced by hypertonic saline treatment or water restriction.
The galanin antagonist galantide has been reported to raise
hypothalamic AVP mRNA expression in dehydrated rats,
suggesting a tonic inhibitory action of endogenous galanin
(103). The action of galanin in euhydrated rats is negligible,
although findings seem to suggest that icv galanin
administration inhibits hypothalamic AVP biosynthesis,
without affecting AVP blood levels (105). Due to the well-
known aldosterone secretagogue action of AVP (reviewed in
ref. 91), collectively these observations may account for the

moderate galanin-induced decrease in plasma aldosterone in
water-restricted rats (91,100,103) but not in euhydrated animals
(106,107).

The effects of galanin on CRH biosynthesis and release
have been far less investigated. Evidence has been provided
that galanin (minimal effective concentration, 2x10-5 M)
enhances by ~8-fold CRH (and neuropeptide-Y) secretion
from perifused fetal rat hypothalamic neurons (108).

Pituitary gland. Galanin has been reported to inhibit in vitro
ACTH secretion from rat pituitary corticotrophs (65,109,110),
the effect being quenched by galanin immuno-neutralization
(65). Accordingly, galanin intravenous (i.v.) administration was
found to slightly lower basal ACTH plasma concentration in
healthy human volunteers and to blunt ACTH response to
CRH (111). However, in the rat the acute subcutaneous (s.c.)
galanin injection was shown to evoke a significant rise in the
blood level of ACTH (107,112), although the prolonged
galanin administration (for up to 4 days) is ineffective (112).
These findings, taken together with those reviewed in the
above subsection, suggest that in the rat galanin acutely
stimulates the central branch of the HPA axis, a contention in
keeping with the demonstration that galanin in vivo
administration increases the blood levels of corticosterone,
the main glucocorticoid hormone in rodents (106,107,112-114).

Adrenal medulla. In vivo studies on the effects of galanin on
adrenal medulla secretion gave rather controversial results,
perhaps depending on the species examined and the route of
galanin administration. Galanin i.v. infusion was shown to
lower basal and insulin hypoglycemia-stimulated plasma nor-
epinephrine (NE), but not epinephrine (E), levels in human
volunteers (115). Galanin infusion has been reported to
increase E, but not NE, plasma concentration in response to
psychological stress in rats, without apparently affecting the
basal level (116). Conversely, the injection of galanin into
the rat PVN was found to raise within 24 h the basal plasma
concentration of NE, but not E (117). Recent in vitro studies
provided the first evidence that galanin (from 10-8 to 10-6 M)
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Figure 3. The main signaling pathways of galanin-receptor subtypes. DAG, diacylglycerol; P, phosphorylation site; PIP2, phosphatidylinositol biphosphate.
Other abbreviations are indicated in the text.
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enhances NE, but not E, secretion from rat adrenomedullary
tissue (77).

Adrenal cortex. In addition to modulating adrenocortical
secretion indirectly, i.e. acting on the central branch of the
HPA axis, galanin also exerts a direct effect on the adrenal
cortex, which, in the rat, appears to be mainly addressed to
ZF/R. Galanin was found to increase corticosterone secretion
from freshly dispersed rat inner adrenocortical cells, the effect
being blocked by the aspecific galanin-receptor antagonist
galantide (106,118,119). In this context, it appears of interest
to mention evidence indicating that galanin, whose mRNA
has been detected in the rat testis (74), is able to enhance
either basal or agonist-stimulated testosterone secretion from
dispersed rat Leydig cells, and that galantide prevents testo-
sterone secretagogue action of galanin (120). Subsequent
studies confirmed the in vitro corticosterone secretagogue
action of galanin, and provided insight into the receptor
subtypes involved and their signaling mechanism (98). Galanin
was shown to increase, in addition to corticosterone secretion,
also cAMP (but not IP3) release from rat ZF/R cells, minimal
and maximal effective concentrations being 10-10 and 10-8 M,
respectively. All these effects were partially blocked by the
immuno-neutralization of either GAL-R1 or GAL-R2, and
completely abolished by the simultaneous blockade of both
receptor subtypes. GAL-R3 immuno-blockade was ineffective,
a finding in keeping with the fact that rat inner adrenocortical
cells are not provided with this receptor subtype (see
‘Expression of galanin and its receptors in the HPA axis.
Adrenal gland’). Both the PKA inhibitor H-89 and the AC
inhibitor SQ-22536 were shown to abolish corticosterone
response of dispersed ZF/R cells to 10-8 M galanin, while the
PLC inhibitor U-73122 and the PKC inhibitor calphostin-C
were ineffective. In light of these observations, the conclusion
was drawn that galanin stimulates corticosterone secretion
from rat adrenocortical cells through GAL-R1 and GAL-R2

coupled to the AC/PKA-dependent signaling pathway. It is to
be pointed out that these findings are in contrast with the
currently accepted signaling mechanisms of GAL-R1 and
GAL-R2 (see ‘Biology of galanin and its receptors’), which
accords well with the view that the signaling mechanisms of
receptors may vary depending on the tissue and cell type.

Evidence has been provided that several regulatory
peptides (e.g. vasoactive intestinal peptide, pituitary
adenylate cyclase-activating polypeptide, neuropeptide-Y,
tachykinins, endothelins, adrenomedullin, cerebellin and
atrial natriuretic peptide) are able to modulate adrenocortical
functions via a paracrine mechanism, involving the release
from medullary chromaffin cells of catecholamines, which in
turn stimulate secretion of adrenocortical cells via ß-adreno-
ceptors located on them (25,121-127). There is proof that
galanin may be included in this group of regulatory peptides.
It has been found that: i) galanin enhances NE release from
rat adrenal medulla (see above); and ii) the ß-adrenoceptor
antagonist l-alprenolol partially prevents galanin-stimulated
corticosterone secretion from adrenal slices containig medullary
chromaffin tissue (77,106).

The physiological relevance of the adrenocortical secreta-
gogue action of galanin remains uncertain in light of the fact
that, under normal circumstancies, the blood levels of the

peptide do not exceed 10-10 M in rats (128), i.e. its minimal
in vitro effective concentration (see above). However, the
release from medullary chromaffin cells of galanin may give
rise to local concentrations of 10-8/10-6 M, i.e. higher that its
maximal effective concentration (see ‘Expression of galanin
and its receptors in the HPA axis. Adrenal gland’), making it
likely an autocrine/paracrine regulatory action of this peptide.
A physiological regulatory role of endogenous galanin has been
suggested by the observation that the prolonged administration
of galantide causes a sizeable decrease in the basal plasma
corticosterone concentration in rats (113). Recent studies gave
support to this contention (77). In fact, the galanin immuno-
neutralization, obtained with antibody concentrations able to
suppress galanin glucocorticoid secretagogue effect on
dispersed rat ZF/R cells, was shown to lower basal cortico-
sterone production from adrenal slices containing medullary
tissue, without affecting that from dispersed adrenocortical
cells. These findings strongly suggest that in the rat endo-
genous galanin secreted from medullary chromaffin cells may
be involved in the maintenance of a normal basal gluco-
corticoid secretion from adrenal cortex.

An opposite role for endogenous galanin has been reported
in rats with regenerating adrenal cortex after gland enucleation
and contralateral adrenal removal (114,129). The aspecific
galanin-receptor antagonist [D-Thr6,D-Trp8,9,15-ol]-galanin
(1-15) administration (three s.c. injections 28, 16 and 4 h before
the sacrifice) was shown to markedly increase both the blood
level of corticosterone and the mitotic index of regenerating
gland. Galanin administration was per se ineffective, but
blocked the effects of the antagonist. The conclusion was
drawn that endogenous galanin exerts a tonic inhibitory
action on rat adrenal regeneration. In this connection, it is
worth mentioning that other peptides possessing a stimulating
action on normal adrenal cortex, e.g. AVP, Met-enkephalin
and cholecystokinin (reviewed in refs. 23,91), have been shown
to exert a tonic inhibitory effect on the secretion and growth
of regenerating adrenal cortex (130-132).

Before concluding, it is to be recalled that galanin has been
reported to exert a direct inhibitory action on the amphibian
interrenal gland (97). Galanin (from 10-9 to 3x10-6 M) was
shown to induce a dose-dependent inhibition of corticosterone
and aldosterone release from perifused frog interrenal slices.
Moreover, repeated pulses of 10-6 M galanin at 90-min
intervals were found to reduce the steroidogenic response to
ACTH, but not angiotensin-II.

5. Involvement of galanin in the pathophysiology of the
HPA axis

Modulation of responses to stresses. Findings are available that
in the rat galanin, either systemically or centrally administered,
enhances basal and stress-induced sympathetic outflow, as
evidenced by the rise in the plasma levels of catecholamines
(116,117). Malendowicz et al (107) examined the short-term
effects of systemic galanin administration on the rat HPA-axis
response to ether and cold stresses. They found that ether
stress exerts a markedly stronger HPA-axis stimulation than
cold stress. Galanin was shown to potentiate ACTH response
to ether, but not cold stress, suggesting that the galaninergic
mechanisms involved in the stimulation of ACTH secretion do
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not interfere with ether stress-activated ones and are probably
similar to those underlying the cold-stress action. Galanin did
not affect the intense corticosterone response to ether stress,
but within 60 min magnified the cold stress-induced moderate
rise in corticosterone plasma concentration. These investigators
concluded that steroidogenic capacity of adrenal cortex, as
least in terms of glucocorticoid hormones, is a rate-limiting
step in the response of rat HPA axis to severe stress, and that
the direct secretagogue action of galanin on the adrenal cortex
(see ‘Effects of galanin on the HPA axis. Adrenal cortex’)
can manifest itself only in the case of the submaximally cold
stress-stimulated HPA axis.

In this connection, it is of interest to mention that other
regulatory peptides, including some of those which, like
galanin, regulate feeding (see Introduction), have been
reported to exert different effects on rat HPA-axis responses
to ether and cold stresses. To summarize, evidence has been
provided that i) substance-P potentiates ACTH response to
ether stress and dampens that to cold stress (133); ii)
proadrenomedullin N-terminal 20 peptide depresses HPA-
axis response to cold stress, without affecting that to ether
stress (134); iii) leptin impairs ACTH response to ether
stress, but potentiates that to cold stress (135); iv) orexin-A
magnifies ACTH response to cold, but not ether stress (136);
and v) beacon suppresses ACTH response to ether, but not
cold stress (12).

Pituitary adenomas. Findings showed that in many pituitary
adenomas galanin-positive cells were almost exclusively
corticotrophs (69), although some ACTH-secreting
adenomas did not express galanin (70). Direct evidence is
lacking, but some observations may suggest that galanin is
involved in the development of pituitary-cell hyperplasia and
tumorigenesis. Galanin mRNA expression was found to be
markedly increased in estrogen-induced rat lactotroph
hyperplasia (56,58,60,62,66,73,137-141) and prolactinomas
(66,73,139,140,142,143). Human growth hormone-releasing
hormone (GHRH) was shown to enhance galanin release
from dispersed mouse anterior pituitary cells, and human
GHRH-gene transgenic mice were found to develop soma-
totroph adenomas associated with elevated galanin-mRNA
expression (142,144,145). The appealing possibility that
endogenous galanin acts as an autocrine/paracrine growth
and tumor promoter in the anterior pituitary remains to be
addressed.

Pheochromocytomas. Studies carried out on a series of 16
pheochromocytomas revealed a galanin concentration ~8-fold
higher than that in the normal adrenal tissue (21.0 versus
2.6 pmol/g) (80). Human pheochromocytomas are known to
synthesize and secrete, in addition to catecholamines, a pleiad
of peptides (e.g. CRH, proopiomelanocortin-derived peptides,
endorphins, enkephalins, leptin, orexins, neuropeptide-Y,
substance-P, vasoactive intestinal peptide, pituitary adenylate
cyclase-activating polypeptide, calcitonin gene-related
peptide, adrenomedullin, proadenomedullin N-terminal 20
peptide, somatostatin and natriuretic peptides), that may
variously modulate their functions (reviewed in refs.
13,16,25,91,121,126,146). Could galanin be included in this
group of peptides regulating pheochromocytoma secretion?

6. Concluding remarks

The preceding sections of this survey have shown that, in the
18 years elapsed from the discovery of galanin, considerable
amount of data has been accumulated indicating that this
peptide plays a potentially important role in the autocrine/
paracrine functional regulation on the central and peripheral
branches of the HPA axis.

We consider the following topics of interest for future
investigations: i) the effects of galanin on aldosterone and
medullary catecholamine secretion are doubtful, and surely
merit further study; ii) the majority of investigations have
been carried out in rodents, and their results need to be
confirmed in humans: for example, neither galanin-receptor
expression nor in vitro galanin secretory effects have been
examined in human adrenals and adrenal tumors; and iii) the
response of HPA axis to stresses must be studied in galanin-
gene knocked-out mice or in animals where the galanin
system had been pharmacologically suppressed.

The elucidation of these and many other basic topics, along
with the development of new selective and potent antagonists
of galanin receptors, will not only increase our knowledge
of the physiology of the HPA axis, but also, and more
importantly, will shed light on possible novel strategies in the
therapy of diseases caused by or causing dysregulation of
adrenal functions.
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