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ABSTRACT

We present the first application of a ‘multiple-tracer’ redshift-space distortion (RSD) analysis

to an observational galaxy sample, using data from the Galaxy and Mass Assembly (GAMA)

survey. Our data set is an r < 19.8 magnitude-limited sample of 178 579 galaxies covering

the redshift interval z < 0.5 and area 180 deg2. We obtain improvements of 10–20 per cent in

measurements of the gravitational growth rate compared to a single-tracer analysis, deriving

from the correlated sample variance imprinted in the distributions of the overlapping galaxy

populations. We present new expressions for the covariances between the auto-power and

cross-power spectra of galaxy samples that are valid for a general survey selection function

and weighting scheme. We find no evidence for a systematic dependence of the measured

growth rate on the galaxy tracer used, justifying the RSD modelling assumptions, and validate

our results using mock catalogues from N-body simulations. For multiple tracers selected

by galaxy colour, we measure normalized growth rates in two independent redshift bins

fσ 8(z = 0.18) = 0.36 ± 0.09 and fσ 8(z = 0.38) = 0.44 ± 0.06, in agreement with standard

GR gravity and other galaxy surveys at similar redshifts.

Key words: surveys – cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

The large-scale structure of the Universe is one of the most valuable

probes of the cosmological model, enabling measurements to be

performed of the cosmic distance scale and expansion rate, the con-

stituents of the Universe and the gravitational forces which drive the

growth of structure with time. In particular, the ‘gravitational growth

rate’ is accessible through the imprint of redshift-space distortion

⋆ E-mail: cblake@astro.swin.edu.au

(RSD) in the pattern of structure. RSD describes the apparent

anisotropic clustering induced by the small shifts in galaxy red-

shifts that result from the correlated peculiar velocities that galaxies

possess in addition to the underlying Hubble-flow expansion.

This cosmic structure has been mapped out by a sequence of

galaxy redshift surveys such as the 2-degree Field Galaxy Redshift

Survey (2dFGRS; Colless et al. 2001), the 6-degree Field Galaxy

Survey (6dFGS; Jones et al. 2009), the Sloan Digital Sky Sur-

vey (SDSS; York et al. 2000), the WiggleZ Dark Energy Survey

(Drinkwater et al. 2010) and the Baryon Oscillation Spectroscopic

Survey (BOSS; Dawson et al. 2013). The accuracy of cosmological
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measurements is often limited by ‘sample variance’, the inherent

fluctuations between different portions of the Universe. In order to

obtain more precise measurements, the scientific progress of galaxy

redshift surveys has emphasized mapping ever greater cosmic vol-

umes, often targeting a relatively sparse distribution of a single

type of galaxies [with number density ∼10−4 h3 Mpc−3, where

h = H0/(100 km s−1 Mpc−1) parameterizes Hubble’s constant H0],

chosen by considerations of observational efficiency. For example,

the WiggleZ Survey obtained the spectra of emission line galax-

ies (Drinkwater et al. 2010), whereas BOSS has instead focused

on luminous red galaxies (Dawson et al. 2013). Although these

‘single-tracer’ surveys have allowed increasingly precise tests of the

cosmological model, recent examples of RSD growth-rate analyses

include Blake et al. (2011), Reid et al. (2012), Beutler et al. (2012),

Samushia, Percival & Raccanelli (2012), Contreras et al. (2013) and

de la Torre et al. (2013), there are a number of potential advantages

of multiple-tracer surveys which we explore in this study.

First, surveying multiple populations of galaxies allows the key

assumptions needed to extract cosmological measurements to be ex-

amined in an empirical way. A fundamental systematic-error test is

that our cosmological conclusions should not depend on the galaxy

population used to trace the large-scale structure. We flag in particu-

lar the importance of modelling the galaxy bias which describes how

galaxy tracers populate the underlying large-scale structure. When

using RSD to measure the growth rate of structure f = d ln δm/d ln a

in terms of the rate of change in amplitude of a density perturba-

tion δm with cosmic scale factor a, it is common to assume that the

galaxy bias is linear and deterministic, described by a single param-

eter b which links the galaxy and matter overdensities at position x,

δg(x) = b δm(x). In this case, the clustering anisotropy in redshift

space, i.e. the difference in the amplitude of galaxy clustering as

a function of the angle to the line of sight, only depends on f/b.

However, in reality the galaxy bias is non-linear, scale dependent

and stochastic (e.g. Dekel & Lahav 1999; Wild et al. 2005; Swanson

et al. 2008; Cresswell & Percival 2009; Marin 2011; Marin et al.

2013), and depends on the detailed manner in which galaxies pop-

ulate dark matter haloes. Comparison of growth-rate measurements

based on different galaxy tracers provides a strict test of the mod-

elling assumptions.

Secondly, a number of authors have pointed out that the avail-

ability of multiple galaxy tracers across a volume of space allows

improved statistical errors in the measurements of certain cosmo-

logical parameters (McDonald & Seljak 2009; Seljak 2009; White,

Song & Percival 2009; Gil-Marin et al. 2010; Bernstein & Cai

2011; Hamaus, Seljak & Desjacques 2012; Abramo & Leonard

2013). These improvements derive from the fact that, under the

assumption of linear galaxy bias, the tracers encode a common

sample variance. The simplest example of this effect is to consider

the overdensities in two different galaxy populations which trace

a single matter overdensity: δg,1(x) = b1 δm(x), δg,2(x) = b2 δm(x).

Neglecting all other forms of noise, the ratio of these measured

galaxy overdensities allows the precise determination of b2/b1 in-

dependently of the sample variance contained in δm.

The next simplest illustration, of particular relevance for our

analysis, is to consider measurements of the complex Fourier am-

plitudes δ̃g,1(k) and δ̃g,2(k) of the overdensity of two tracers for the

same wavevector k, which has some angle to the line of sight whose

cosine is denoted by μ. In a linear model of RSD (Kaiser 1987):

δ̃g,1(k) = (b1 + f μ2) δ̃m(k)

δ̃g,2(k) = (b2 + f μ2) δ̃m(k), (1)

where δ̃m(k) is the corresponding (unknown) Fourier amplitude of

the underlying matter overdensity field, which encodes the contri-

bution of sample variance. The ratio of these measurements

δ̃g,1(k)

δ̃g,2(k)
=

1 + f

b1
μ2

b2

b1
+ f

b1
μ2

(2)

in which we divide quantities on the right-hand side of the equa-

tion by b1 to clarify the observable combinations does not contain

the unknown quantity δ̃m(k), and is exactly known in this ideal-

ized case. By comparing measurements of this ratio at different

values of μ, the quantities b2/b1, f/b1 and f/b2 may be precisely

determined.

There are a number of practical obstacles to realizing the ad-

vantages outlined in the previous paragraph. First, there is an ad-

ditional stochastic error component to equation (1), for example

due to galaxy ‘shot noise’, that imposes a floor to the potential

gains. Hence, multiple-tracer techniques demand high number-

density galaxy surveys in order to be effective. Secondly, the ex-

pected gains scale rapidly with the difference in galaxy bias fac-

tors, through the strength of the variation of equation (2) with μ

(with no gain if b2 = b1). The realization of this benefit conflicts

somewhat with the high number-density requirement, given that

the number density of dark matter haloes rapidly diminishes with

increasing bias. Also, although magnitude-limited galaxy surveys

span a wide range of galaxy luminosities (hence bias factors), there

is typically a strong luminosity–redshift correlation such that at a

given redshift the range of overlapping luminosities may be rel-

atively small. Thirdly, equation (1) is only a good description of

galaxy clustering in the large-scale limit. At smaller scales, non-

linear processes become increasingly important, weakening the

shared imprint of sample variance. Fourthly, realistic survey ge-

ometries render it impossible to measure directly the quantities

of equation (1): the underlying Fourier modes are convolved with

a survey selection function, such that measured power at some

wavevector depends on the underlying power at a range of different

wavevectors.

With all this said, the potential benefits of multiple-tracer surveys

are such that they are worth exploring in detail. Indeed, although

there have been a number of studies of the theoretical implications

of the multiple-tracer technique, no analysis of data has yet been

presented. In this study, we remedy this gap by applying a multiple-

tracer power-spectrum analysis to one of the only high number-

density galaxy surveys at intermediate redshifts, the Galaxy and

Mass Assembly (GAMA) survey (Driver et al. 2011). We explore

the resulting improvements in growth-rate measurements and search

for systematic differences between results based on different galaxy

populations.

Our paper is structured as follows. Section 2 provides an overview

of our implementation of the multiple-tracer method, explaining

how it differs from the illustrative equation (2) above. Section 3

describes the GAMA survey data, the determination of the selection

function, the clustering measurements of different tracers and their

covariances. In Section 4, we fit RSD models to these measurements

and compare the parameter fits resulting from single-tracer and

multiple-tracer analyses. In Section 5, we validate our investigations

using mock catalogues derived from N-body simulations, and in

Section 6 we test our conclusions and compare with other survey

designs using Fisher matrix forecasts. Section 7 summarizes our

results.
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2 OV E RV I E W O F A NA LY S I S M E T H O D

F O R C O R R E L AT E D T R AC E R S

Before proceeding, we present an overview of our practical im-

plementation of the original insight of McDonald & Seljak (2009).

First, rather than basing our analysis on the one-point statistics of the

density illustrated by equation (1), it is more convenient to employ

two-point clustering statistics (we use the density power spectrum).

In a Fisher matrix sense, the one-point statistics of (δ̃g,1, δ̃g,2) and

the two-point statistics described by the auto-power spectra and

cross-power spectrum of the two tracers (P1, P2, Pc) contain iden-

tical information. Moreover, Fourier density modes may be binned

when measuring the power spectra, rendering the computation of a

model likelihood using the covariance matrix of the data tractable,

given the complicating effects of the realistic survey selection

function.

Secondly, we avoid taking a ratio of observables such as

equation (2), even though this explicitly illustrates the removal of

sample variance. Using a ratio in practice can lead to larger and

non-Gaussian errors, and the effects of the survey selection func-

tion imply that the sample variance would not precisely cancel. We

instead model the correlations between the tracer power spectra, in-

duced by the common sample variance, in the full covariance matrix

of the observables.

As a pedagogical illustration of our analysis method (see also

Bernstein & Cai 2011), we consider auto-power spectrum measure-

ments of two tracers in a Fourier bin containing M modes:

P1 = (b1 + f μ2)2 Pm (1 + α) + ǫ1

P2 = (b2 + f μ2)2 Pm (1 + α) + ǫ2, (3)

where Pm is the theoretical mean matter power spectrum in the bin,

which is assumed to be known exactly, α is the (single) fluctuation

from sample variance, which has a variance σ 2 = 1/M, and (ǫ1, ǫ2)

represent independent measurement errors (e.g. from shot noise)

such that 〈ǫ1〉 = 〈ǫ2〉 = 〈ǫ1ǫ2〉 = 0. By analogy with equation (2),

we consider estimating the quantities A = (b1 + fμ2)2 and B = (b2 +
fμ2)2. Noting that P1/Pm is equal to the true value of A, plus the

independent fluctuations Atrueα + ǫ1/Pm (with zero mean), the vari-

ance and covariance of the estimates of A and B are

σ 2
A = A2σ 2 + 〈ǫ2

1〉/P 2
m

σ 2
B = B2σ 2 + 〈ǫ2

2〉/P 2
m

σ 2
AB = ABσ 2. (4)

In the limit of small measurement error (〈ǫ2
i 〉 → 0), the fractional

variances in A and B are both the sample variance σ 2 – but in this

limit, the correlation coefficient between A and B, σAB/
√

σAσB ,

tends to unity. The variance in the ratio A/B is then

Var(A/B) = (A/B)2
[

〈ǫ2
1〉/A2P 2

m + 〈ǫ2
2〉/B2P 2

m

]

. (5)

This contains no contribution from sample variance (is independent

of α), reproducing the McDonald–Seljak result.

By using the power spectrum, rather than the density modes,

we have thrown away phase information. But the reason that the

McDonald–Seljak method allows us to evade the sample variance

limit is that both tracers follow the same structure; thus, a key aspect

of the method is that the phase of a given Fourier mode will be the

same, independent of tracer. Since the power spectrum does not use

this fact, it may seem that we have not used the method properly

and may not suppress sample variance in the desired way. In fact,

the phase adds no extra information to this particular analysis since

it is part of the sample variance that is cancelled in any case when

forming the original ratio in equation (2).

In the equations above, we have just considered the two auto-

power spectra, P1 = |δ̃1|2 and P2 = |δ̃2|2. What is the role of the

cross-power spectrum Pc = Re{δ̃1 δ̃∗
2}? In our above model, this

would be

Pc = (b1 + f μ2) (b2 + f μ2) Pm (1 + α) + ǫc. (6)

When the measurement errors are small, Pc = √
P1 P2 and there is

no extra information in the cross-power spectrum. However, deter-

mination of the cross-power spectrum does provide some indepen-

dent validation of the underlying assumption of a close correlation

between the two tracers (e.g., scrambling the phases of δ̃1 and δ̃2

would leave the auto-power spectrum measurements unchanged,

but yield zero cross-power) and, furthermore, serves to test the as-

sumption of linear galaxy bias. We note that for data sets where the

measurement errors ǫ are not negligible, the cross-power spectrum

adds information to the parameter determinations. In Section 6, we

use a full Fisher matrix analysis to consider this point further.

The measurement errors for the GAMA data set analysed in

this study are sufficiently small that the cross-power spectrum adds

negligible information (improving the determination of the growth

rate by only 0.2 per cent according to the Fisher matrix forecasts

presented in Section 6 below). Indeed, its inclusion in the primary

analysis causes technical difficulties with inverting the relevant co-

variance matrices, which are nearly singular. Therefore, although

for completeness we present full derivations of the covariances in-

cluding the cross-power spectrum, we restrict our parameter fits to

the auto-power spectra of the two tracers and use the cross-power

spectrum solely for validation of the method.

3 POW E R -SPE C T RU M DATA

3.1 GAMA survey

The GAMA project (Driver et al. 2011) is a multiwavelength pho-

tometric and spectroscopic survey. The redshift survey, which has

been carried out with the Anglo-Australian Telescope (AAT), has

provided a dense, highly complete sampling of the large-scale struc-

ture up to redshift z ∼ 0.5. The primary target selection is r < 19.8

(where r is an extinction-corrected SDSS Petrosian magnitude).

In this study, we analysed a highly complete subsample of the

latest survey data set, known as the GAMA II equatorial fields.

This subsample covers three 12 × 5 deg2 regions centred at 09h,

12h and 14h30m which we refer to as G09, G12 and G15, respec-

tively. The GAMA I target selection is described by Baldry et al.

(2010) and GAMA II by Liske et al. (in preparation). For GAMA II,

the fields were widened by 1◦ and the r-band selection magnitude

was changed from SDSS DR6 to DR7 (updated to ubercalibra-

tion; Abazajian et al. 2009). We restricted the input catalogue to

r < 19.8 and only included targets that satisfied the r-band star–

galaxy separation; this excluded some J − K selection because the

near-IR photometry had significant missing coverage. We obtained

the GAMA II data from TilingCatv41, selecting 185 052 targets

(SURVEY_CLASS ≥5).

Papers based on GAMA I data had used redshifts obtained from

a semi-automatic code, runz, involving some user interaction. The

redshifts for GAMA II (TilingCatv41), used here, have been

updated using a fully automatic cross-correlation code that can

robustly measure absorption and emission line redshifts (Baldry

et al., in preparation). This significantly improved the reliability

of the measured redshifts from the AAT. We restricted the redshift
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Figure 1. The average number density of GAMA galaxies as a function

of redshift. This plot is constructed by combining data in the three survey

regions.

catalogue to galaxies with ‘good’ redshifts (NQ ≥ 3) in the range

0.002 < z < 0.5. In the (G09, G12, G15) regions, we utilized

(57 194, 61 278, 60 107) galaxies in our analysis. K-corrections were

calculated with kcorrect_v4.2 (Blanton & Roweis 2007) using

SDSS model magnitudes (see Loveday et al. 2012 for more details).

Fig. 1 displays the average number density of these GAMA galaxies

as a function of redshift, illustrating the high values available for

our analysis, which exceed 10−2 h3 Mpc−3 in the range z < 0.25.

We performed clustering measurements of galaxies in two in-

dependent redshift ranges 0 < z < 0.25 and 0.25 < z < 0.5. For

each redshift range, we split the data into two subsamples in order

to apply multiple-tracer techniques. We considered splits by colour

and luminosity. First, we divided galaxies into two colour classes,

‘red’ and ‘blue’, using a redshift-dependent division in the observed

colour

g − i = 0.8 + 3.2 z (7)

which traces a clear bimodality in the observed GAMA colour dis-

tribution at all redshifts. Here, g and i are model magnitudes in

the appropriate bands. Alternatively, we explored splitting galaxies

into two luminosity classes based on the rest-frame absolute mag-

nitude in the r band. For the redshift ranges (0 < z < 0.25, 0.25 <

z < 0.5), we take these luminosity divisions at Mr − 5 log10h =
(− 21, −22). Fig. 2 illustrates the luminosity–redshift distribution

of GAMA galaxies, colour-coded to indicate galaxies selected as

‘red’ and ‘blue’.

3.2 Survey selection function

In order to quantify the GAMA galaxy clustering, we must first

define the survey selection function which describes the expected

galaxy distribution in the absence of clustering. We separated this

selection function into independent angular and radial components.

The angular selection function for each GAMA region de-

scribes the exact sky coverage of the input target imag-

ing catalogues, together with the small fluctuations in the

redshift completeness of the spectroscopic follow-up. We

used the masks and software available in the survey data

base, completeness_maps:software:mask_redshift_r and

completeness_maps:software:mask_sdss, to produce angu-

lar completeness maps in (RA, Dec.) on a fine pixel grid. These

Figure 2. The distribution of absolute magnitudes Mr and redshifts z for

the GAMA galaxies used in our analysis, which satisfy the selection criteria

described in the text. The blue and red colour subsamples are plotted as

crosses and open circles, respectively, and illustrated by appropriate colour-

ing of the data points. The ‘high-L’ and ‘low-L’ subsamples are shown by the

ranges indicated in the figure. In this plot, the galaxies have been randomly

subsampled by a factor of 20, for clarity.

maps are displayed in Fig. 3, in which we note the very high level

of redshift completeness across each survey region, with a mean

value of 97 per cent.

We determined the radial selection function of a given colour or

luminosity subsample using an empirical smooth fit to the observed

galaxy redshift distribution N(z) of that subsample. Measurements

of N(z) in individual GAMA regions contain significant fluctua-

tions; we reduced this by combining the three regions. We found

that the model

N (z) ∝
(

z

z0

)α

e−(z/z0)β (8)

provided a good fit to all the relevant redshift distributions in terms

of the three parameters (z0, α, β). Fig. 4 displays an example of this

model fitted to all GAMA galaxies in our sample (normalized such

that
∫

N(z) dz = 1).

Using the survey selection function, we can visualize the galaxy

overdensity field within each region. For the purposes of this calcu-

lation, we binned the galaxy distribution and normalized selection

function in a 3D comoving coordinate grid, denoting these grid-

ded distributions as D and R, and then determined the overdensity

field δ by smoothing these distributions with a Gaussian kernel

G(x) = e−(x.x)/2λ2
such that δ = smooth(D)/smooth(R) − 1 and

〈δ〉 = 0.

Using the 0 < z < 0.25 redshift interval of the G09 region

for illustration, Fig. 5 compares the smoothed galaxy density

fields determined from the blue and red galaxy subsamples for

λ = 2 and 5 h−1 Mpc, illustrating that qualitatively these two

populations are tracing the same underlying large-scale structure.

Fig. 6 quantifies this observation by measuring the cross-correlation

coefficient between the red and blue galaxy overdensity fields

r = 〈δ1δ2〉/
√

〈δ2
1〉〈δ2

2〉 as a function of the smoothing scale λ. We

again analysed a 0 < z < 0.25 redshift slice, computing the cross-

correlation coefficient over all three survey regions. The errors in

the measurements were determined by jack-knife methods (using

100 jack-knife partitions per survey region). The cross-correlation

coefficient rises to r > 0.9 on scales λ > 5 h−1 Mpc, dropping
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Figure 3. The angular completeness maps for each of the GAMA regions

analysed in this study. The x- and y-axes correspond to RA and Dec. coor-

dinates, respectively, in degrees.

on smaller scales due to the effects of shot noise and the manner

in which different classes of galaxy populate dark matter haloes

(scale-dependent and/or stochastic galaxy bias). These analyses il-

lustrate the strong level of correlated sample variance in the multiple

GAMA galaxy populations; in the next section we quantify these

effects using power-spectrum measurements.

3.3 Power-spectrum measurements

We measured the power spectra of GAMA galaxies within each

separate survey region, fitted models to these measurements and

combined the results of the fits assuming that each region was inde-

pendent. Our measurements of the auto-power and cross-power

spectra of galaxies within each GAMA region were based on

the optimal-weighting estimation scheme of Feldman, Kaiser &

Peacock (1994, hereafter FKP), which we generalized to cross-

power spectra (also see Smith 2009).

First, we converted the galaxy distribution in a particular region

to comoving coordinates, assuming a fiducial flat 	 cold dark mat-

ter (	CDM) cosmology with matter density 
m = 0.27. We then

enclosed the survey cone within the relevant redshift interval by a

cuboid of sides (Lx, Ly, Lz) with volume V = LxLyLz, and gridded the

galaxy catalogue in cells numbering (nx, ny, nz) using nearest grid

point assignment to produce distributions N1(x) and N2(x) for the

two tracers. The cell dimensions were chosen such that the Nyquist

frequencies in each direction (e.g. kNyq,x = πnx/Lx) exceeded the

maximum frequency of measured power by a factor of at least 4.

We then applied a fast Fourier transform (FFT) to the gridded

data, weighting each pixel by factors w1(x) and w2(x) for the two

tracers, respectively:

FFT(Nw,α) ≡ Ñw,α(k) =
∑

x

wα(x) Nα(x) eik.x, (9)

where α = 1 or 2 labels the galaxy population in all equations in

this section, and the weighting factors are given by

wα(x) = 1

1 + Wα(x) Nc nα P0

. (10)

In equation (10), Nc = nxnynz is the total number of grid

cells, nα is the mean number density of each set of tracers and

P0 = 5000 h−3 Mpc3 is a characteristic value of the power spec-

trum at the scales of interest [k ∼ 0.1 h Mpc−1; we note that this

can be generalized as a function of luminosity following Percival,

Verde & Peacock (2004), which is beyond the scope of the cur-

rent study]. Wα(x) is proportional to the survey selection function

at each grid cell determined in Section 3.2, normalized such that
∑

x
Wα(x) = 1.

We note that the application of FKP weighting to multiple-tracer

analyses requires caution: this weighting is designed to minimize

the error in the measured power spectrum by balancing the effects

of sample variance and shot noise, and yet (in the ideal case) the

sample variance error is suppressed by the combination of the two

tracers. However, for realistic surveys with a selection function and

shot noise, the sample variance is only partially suppressed. We

repeated our analyses for different choices of P0: for no weighting

(P0 = 0), we found that the error in the measured growth rate in the

various cases increased by 30–40 per cent, whereas doubling the

characteristic power to P0 = 10 000 h−3 Mpc3 produced a result al-

most identical to the fiducial choice of P0 = 5000 h−3 Mpc3. We may

also be concerned that the slightly different weights (w1 = w2) ap-

plied to each subsample, owing to their different selection functions

in equation (10), may undermine the correlated sample variance and

weaken the eventual growth-rate determination. In order to test this

concern, we repeated the power-spectrum measurements applying

an identical weight to each subsample equal to (w1 + w2)/2. We

found that the error in the final growth rate was unchanged com-

pared to our default implementation. Finally, we note that more

sophisticated mass-dependent weighting schemes have been pro-

posed by some authors (Seljak, Hamaus & Desjacques 2009; Cai,

Bernstein & Sheth 2011); these will be considered in future work.

We measured the complex Fourier amplitudes of the two tracers

as

δ̃α(k) = Ñw,α(k) − Nα W̃w,α(k), (11)
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Figure 4. Determination of the radial selection function for all GAMA

galaxies in our sample in the redshift interval 0 < z < 0.5. The figure shows

the redshift distributions within each of the three GAMA regions (black

circles, red triangles and green squares) together with the combined N(z)

(jagged blue solid line) and fitted model (smooth blue solid line). The y-axis

is normalized such that
∫

N(z) dz = 1. The plotted error bars are double the

Poisson error predicted from the number of counts in each bin, noting that

this is subdominant to the region-to-region fluctuations. At higher redshifts

z > 0.35, the extra available cosmic volume results in these fluctuations

becoming less significant.

where Nα is the total number of galaxies for population α and W̃w,α

is the FFT of the weighted selection function

FFT(Ww,α) ≡ W̃w,α(k) =
∑

x

wα(x) Wα(x) eik.x . (12)

Fig. 7 compares the moduli |δ̃α| and phases φα of the complex

Fourier amplitudes δ̃α = |δ̃α| eiφα for the red and blue galaxy sub-

samples for the 0 < z < 0.25 redshift interval. The common sample

variance induces clear correlations between the moduli and phases

of the different populations.

In Appendix A, we derive the estimators of the two auto-power

spectra, P1(k) and P2(k), and cross-power spectrum Pc(k). The final

Figure 6. The cross-correlation coefficient in configuration space between

the red and blue galaxy overdensity fields, as a function of the smoothing

length λ of a Gaussian kernel. These measurements correspond to a redshift

interval 0 < z < 0.25 combining all three GAMA regions, and illustrate the

high level of correlated sampled variance in the GAMA galaxy subsamples.

expressions are

P̂α(k) = V
[

|δ̃α(k)|2 − Nα

∑

x
Wα w2

α

]

Nc N2
α

∑

x
W 2

α w2
α

P̂c(k) = V Re
{

δ̃1(k) δ̃∗
2 (k)

}

Nc N1 N2

∑

x
W1 w1 W2 w2

. (13)

We note that the expectation values of the estimators in equation (13)

are a convolution of the underlying model power spectra:

〈P̂α(k)〉 = V 3

(2π)3

∫

Pα(k′) |ñw,α(δk)|2 d3
k

′

〈P̂c(k)〉 = V 3

(2π)3

∫

Pc(k′) Re
{

ñw,1(δk) ñ∗
w,2(δk)

}

d3
k

′, (14)

Figure 5. The galaxy overdensity field within the G09 region, determined from the gridded data and selection function, and projected on to a 2D plane parallel

to the line of sight (such that the x-, y- and z-axes are oriented in the redshift, right ascension and declination directions, respectively). The left-hand and

right-hand panels show the measurements for blue and red galaxies, respectively. The top and bottom rows illustrate two choices of smoothing scale, 2 and

5 h−1 Mpc. Qualitatively, it can be seen that the different galaxy subsamples are tracing the same underlying large-scale structure.
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GAMA survey: RSD with multiple tracers 3095

Figure 7. A mode-by-mode comparison of the moduli |δ̃(k)| and phases φ(k) of the complex Fourier amplitudes δ̃(k) estimated for the red and blue galaxy

subsamples for the redshift interval 0 < z < 0.25. The points are coded by plotting symbol and colour into four wavenumber bins in the range k < 0.2 h Mpc−1.

We note the strong correlations between the measurements of a given Fourier amplitude for the two different tracers. In the right-hand panel, the data points

which appear in the upper-left and lower-right corners result from the 2π wrapping of the phases and support the correlation.

where ñw,α = Nα W̃w,α and δk = k
′ − k. We averaged the power-

spectrum amplitudes for the different Fourier modes in bins of

wavevector perpendicular and parallel to the line of sight, (k⊥, k‖).

Since in our analysis we orient the x-axis parallel to the line of

sight to the centre of each survey region, and each region has a

narrow and deep geometry, we can make the flat-sky approxima-

tion k⊥ =
√

k2
y + k2

z , k‖ = |kx| (noting that any resulting system-

atic distortion is negligible compared with the sample variance

error in our measurements). We used wavevector bins of width

�k⊥ = �k‖ = 0.05 h Mpc−1 in the analysis, only considering bins

for which |k| =
√

k2
⊥ + k2

‖ < 0.3 h Mpc−1 because of concerns

over modelling non-linearities in the power spectrum at smaller

scales, which are explored further in Section 4. We also excluded

the largest scale (lowest) bin in k‖, 0 < k‖ < 0.05 h Mpc−1, whose

measured power is prone to systematic effects from the radial se-

lection function fits. The final result was a total of 22 bins. Fig. 8

displays the binned auto-power and cross-power spectrum measure-

ments for the blue and red galaxy subsamples in the redshift interval

0.25 < z < 0.5, for each of the three GAMA regions.

Fig.9 displays an example of the structure of the Fourier transform

of the weighted selection function, |W̃w(k)|2, which determines the

relative weighting of the power-spectrum modes combined by the

convolution of equation (14). As expected, this function contains a

series of diminishing peaks along each axis spaced by �k = 2π/L,

in accordance with the dimension L of the survey cuboid parallel to

that axis. These peaks are hence particularly widely spaced parallel

to the narrow, declination direction of the survey geometry. This

structure was fully modelled in our parameter fits. When fitting

models, we recast the convolution integrals of equation (14) as

matrix multiplications for reasons of numerical speed:

〈P̂α(i)〉 =
∑

j

(Mα)ij Pmod,α(j )

〈P̂c(i)〉 =
∑

j

(Mc)ij Pmod,c(j ), (15)

where (Pmod, 1, Pmod, 2, Pmod, c) are the model auto-power and cross-

power spectra for the two populations, evaluated at the centres of

the Fourier bins. We determined the convolution matrices (M1, M2,

Mc) by evaluating the full integrals given in equation (14) for a set of

unit model vectors and tested that this produced a negligible change

in results compared to implementing the full convolution.

We defined the effective redshift of each power-spectrum mea-

surement by weighting each pixel in the 3D selection function by

its contribution to the power-spectrum error:

zeff(k) =
∑

x

z ×
[

n(x) P (k)

1 + n(x) P (k)

]2

. (16)

We evaluated this relation at k = 0.1 h Mpc−1 (although the results

do not depend strongly on this choice). The effective redshifts of

the measurements in the redshift intervals (0 < z < 0.25, 0.25 <

z < 0.5) are zeff = (0.18, 0.38), with a very weak dependence on

galaxy type.

3.4 Covariance matrix

The survey selection functions and correlated sample variance in-

duce covariances between the estimates of the two auto-power and

cross-power spectra of the galaxy populations for two Fourier modes

k and k
′. These covariances are derived in Appendix A; the expres-

sions for the auto-power spectrum follow Feldman et al. (1994),

and to our knowledge the other formulae are new (regarding the

inclusion of the selection function and weights, but also see Smith

2009). The results may be conveniently expressed in terms of the

functions

Qα(x) = w2
α(x) n2

α(x)

Qc(x) = w1(x) n1(x) w2(x) n2(x)

Sα(x) = w2
α(x) nα(x). (17)

Further defining

zα(k, k
′) = Pα(k) Q̃α(k′ − k) + S̃α(k′ − k)

zc(k, k
′) = Pc(k) Q̃c(k′ − k) (18)
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3096 C. Blake et al.

Figure 8. Measurements of the two auto-power spectra and cross-power spectrum for the blue and red subsamples of GAMA galaxies in the redshift interval

0.25 < z < 0.5. The columns (from left to right) correspond to (P1, P2, Pc). The rows (from top to bottom) display the measurements for the three regions (G09,

G12, G15). The solid line shows the best-fitting model (to the two auto-power spectra). The data points are ordered by looping over the bins of k⊥ and then k‖,

only plotting bins for which |k| =
√

k2
⊥ + k2

‖ < 0.3 h Mpc−1, constituting 22 bins. The x-axis represents the bin number in the ordering, and the ‘saw-tooth’

pattern is produced by the repeated looping over k⊥. The values of the χ2 statistic for the model are quoted separately for each power spectrum and region.

Figure 9. The structure of the Fourier transform of the weighted survey selection function, |W̃w(k)|2, which determines the relative weighting of the power-

spectrum modes combined by the convolution of equation (14). As an example, we display the selection function of the ‘blue’ subsample for the 0.25 < z <

0.5 redshift slice of the G09 region. We show 2D projections of this function in the space of (ky, kx) and (kz, kx), where the x-axis is oriented along the line of

sight and the y- and z-axes are parallel to the (long) right ascension and (short) declination directions, respectively. The restricted y- and z-dimensions of the

survey cuboid imprint a series of diminishing peaks with a regular spacing �k = 2π/L. The amplitude of the function is indicated by the grey-scale shown in

the upper legend; note the logarithmic scale.
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the equations for the covariances in this approximation are

〈δP̂α(k) δP̂α(k′)〉 = |zα(k, k
′)|2

Q̃α(0)2

〈δP̂1(k) δP̂2(k′)〉 = |zc(k, k
′)|2

Q̃1(0) Q̃2(0)

〈δP̂α(k) δP̂c(k′)〉 = Re
{

zα(k, k
′) zc(k, k

′)∗
}

Q̃α(0) Q̃c(0)

〈δP̂c(k) δP̂c(k′)〉 = |zc(k, k
′)|2 + Re

{

z1(k, k
′) z2(k, k

′)∗
}

2 Q̃c(0)2
, (19)

where δP̂ = P̂ − 〈P̂ 〉. The derivation of these covariance relations

involves the following approximations (Feldman et al. 1994).

(i) The Fourier coefficients δ̃(k) are Gaussian distributed, such

that the four-point function assumes a simple form (derived in Ap-

pendix A).

(ii) The galaxy distribution forms a Poisson sample of the density

field.

(iii) The power spectrum is effectively constant over the coher-

ence scale defined by the Fourier transform of the survey selection

function.

It is a useful cross-check of these equations to consider the special

case of a uniform selection function and weights. In this case,

Qα = n2
α , Qc = n1n2 and Sα = nα , and the equations simplify

to

〈δP̂α δP̂α〉 =
(

Pα + 1

nα

)2

〈δP̂1 δP̂2〉 = P 2
c

〈δP̂α δP̂c〉 = Pc

(

Pα + 1

nα

)

〈δP̂c δP̂c〉 = 1

2

[

P 2
c +

(

P1 + 1

n1

) (

P2 + 1

n2

)]

. (20)

In physical terms, the covariance within each auto-power spectrum

is driven by a combination of sample variance (Pα) and shot noise

(1/nα). The covariance between different auto-power spectra does

not involve shot noise (since each galaxy can only appear in one

subsample) but depends on sample variance via the cross-power

spectrum (Pc). Covariances involving the cross-power spectrum are

more complicated, involving both sample variance and shot noise

contributions.

We note an important technical difficulty that arises when in-

verting the full covariance matrices for the two auto-power spectra

and cross-power spectrum. In the approximation of linear bias and

common non-linear RSD damping (see Section 4), the cross-power

spectrum is a simple geometric mean of the two auto-power spec-

tra: Pc = √
P1 P2. In the limit of high galaxy number density, such

that shot noise is negligible, the cross-power spectrum measure-

ment then adds no information to that already present in the two

auto-power spectra. We can verify this mathematically by taking the

limit of equation (20) as nα → ∞. The covariance matrix for the

measurement of (P1, P2, Pc) for a single Fourier mode becomes

C(k) =

⎛

⎜

⎝

P 2
1 P 2

c P1 Pc

P 2
c P 2

2 P2 Pc

P1 Pc P2 Pc
1
2

(

P 2
c + P1 P2

)

⎞

⎟

⎠
(21)

which, given that P 2
c = P1P2, implies that |C| = 0 and the matrix

is singular. (The fact that the cross-power spectrum adds no infor-

mation as nα → ∞ is also demonstrated later by the Fisher matrix

calculations in Section 6.)

The number densities of the GAMA multiple-tracer populations

are well within the regime where the contribution of the cross-power

spectrum to the parameter constraints is negligible, and in fact we

found that the full covariance matrix was not always positive definite

(even for finite n1 and n2). We traced the cause of this issue as the ap-

proximation made in equations (A23) and (A38) which results in the

covariance matrix of equation (19); evaluating instead the exact ex-

pressions in equations (A22) and (A37) produced a positive-definite

covariance matrix but was significantly more time consuming. We

therefore restricted our fits to the two GAMA auto-power spec-

tra and excluded the cross-power spectrum; the growth-rate error

predicted by the Fisher matrix is worsened by only 0.2 per cent

for the GAMA survey specifications. We note that, as justified by

the Fisher matrix forecasts below, the cross-power spectrum does

add significant information for galaxy samples with lower number

densities (n < 3 × 10−4 h3 Mpc−3).

We instead used the measured cross-power spectrum to provide

some independent validation of the modelling assumptions. As an

example, the right-hand column of Fig. 8 compares the cross-power

spectrum measurements to the model fitted to the two auto-power

spectra, finding satisfactory agreement as judged by the values of

the χ2 statistic.

For model fitting, we defined a total data vector in which the

measurements of the two auto-power spectra were concatenated into

a longer vector ŷi ≡ [P̂1(i), P̂2(i)] (for the binned measurements)

and ŷ(k) ≡ [P̂1(k), P̂2(k)] (for the original Fourier modes). Given

that the binned estimates of power are averages within each Fourier

bin ŷi = (1/mi)
∑

k
ŷ(k), where the sum is over the mi Fourier

modes k lying in bin i, then the covariance of the binned estimates

is

Cij = 〈δŷi δŷj 〉 = 1

mi mj

∑

k,k′
〈ŷ(k) ŷ(k′)〉. (22)

We evaluated these covariance relations over the FFT grids for each

GAMA region, using equation (19). Fig. 10 illustrates the structure

of the resulting covariance matrices for the 0.25 < z < 0.5 auto-

power spectrum measurements, with each displayed as a correlation

matrix Cij/
√

Cii Cjj . We note the characteristic structure of diago-

nals, with strong correlations between different statistics measured

in the same Fourier bins, and weaker correlations between different

Fourier bins.

We tested our determination of the covariance matrix using a

large ensemble of lognormal realizations. For each realization, two

(correlated) populations of galaxies were created by Poisson sam-

pling the same underlying density field using the GAMA survey

selection functions. The diagonal and off-diagonal amplitudes of

the lognormal and analytic covariance matrices were in good agree-

ment, with the numerical values of the matrix elements differing by

less than 10 per cent.

4 MODEL FI TS

4.1 RSD modelling

We fit the power-spectrum measurements in each GAMA region

using a standard model for the redshift-space power spectrum as a

function of the cosine of the angle of the Fourier wavevector to the
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Figure 10. The correlation matrices between the two auto-power spectra of the blue and red galaxy subsamples in the redshift interval 0.25 < z < 0.5, for the

three GAMA regions. The measurements are ordered by looping over the bins of k⊥ and k‖ (only plotting bins for which |k| =
√

k2
⊥ + k2

‖ < 0.3 h Mpc−1,

constituting 22 bins) and then concatenating these results as (P1, P2). The result is a 44 × 44 covariance matrix containing a characteristic structure of diagonals,

with strong correlations between different statistics measured in the same Fourier bins and weaker correlations between different Fourier bins.

line of sight, μ:

Pα(k, μ) =
[

b2
αPδδ(k) + 2bαf μ2Pδθ (k) + f 2μ4 Pθθ (k)

]

× e−k2μ2σ 2
v /H 2

0 (23)

(Scoccimarro 2004) where, in terms of the divergence of the peculiar

velocity field θ , Pδδ(k), Pδθ (k) and Pθθ (k) are the isotropic density–

density, density–θ and θ–θ power spectra. This model combines

the large-scale ‘Kaiser limit’ amplitude correction with a heuristic

damping of power on smaller scales that describes a leading-order

perturbation theory correction. Here, the free parameter σ v has units

of km s−1 and H0 = 100 h km s−1 Mpc−1. When fitting multiple

tracers, we make the approximation that all populations of galaxies

trace the same value of σ v on large scales, as predicted by linear

theory:

σ 2
v = f 2H 2

0

6π2

∫

Pθθ (k) dk (24)

although, as stated above, we treat σ v as a free parameter to allow for

non-linearities in the matter clustering. On large scales, we neglect

the contribution to equation (24) from virialized galaxy motions

within dark matter haloes. Approximating Pθθ as a linear power

spectrum, the prediction of equation (24) in our fiducial cosmology

is σ v = 334 km s−1.

We generated the matter power spectrum Pδδ in equation (23)

using the ‘halofit’ model (Smith et al. 2003) as implemented by the

CAMB software package (Lewis, Challinor & Lasenby 2000) with

the cosmological parameters fixed at values inspired by fits to the

cosmic microwave background fluctuations measured by Wilkinson

Microwave Anisotropy Probe (Komatsu et al. 2011): matter density


m = 0.27, Hubble parameter h = 0.719, spectral index ns = 0.963,

baryon fraction 
b/
m = 0.166 and normalization σ 8 = 0.8. We

considered two different choices for producing the model velocity

power spectra Pδθ and Pθθ . In our fiducial model, we used the large-

scale limits of the velocity power spectra Pδθ = Pθθ = Pδδ , such

that the model of equation (23) simplified to

Pα(k, μ) = Pδδ(k)
(

bα + f μ2
)2

e−k2μ2σ 2
v /H 2

0 . (25)

Secondly, we investigated whether our results changed significantly

if we used the fitting formulae for Pδθ and Pθθ in terms of Pδδ ,

calibrated by N-body simulations, proposed by Jennings, Baugh &

Pascoli (2011).

Our model is hence characterized by four parameters (f, b1,

b2, σ v). Given that Pδδ(k) ∝ σ 2
8 , where σ 8 characterizes the root-

mean-square fluctuation of the matter density in spheres of radius

8 h−1 Mpc, this parameter set may also be written as (fσ 8, b1σ 8,

b2σ 8, σ v). We compared the fits of the four-parameter model to the

multiple tracers with fits of a three-parameter model (f, bα , σ v) to

each individual galaxy subsample. We performed the fits by eval-

uating the χ2 statistic of each model for each survey region using

the full covariance matrix of equation (22):

χ2 =
∑

ij

(ŷi − ymod,i)
[

C−1
]

ij
(ŷj − ymod,j ), (26)

where in accordance with the notation of equation (22), ŷi is a total

data vector, concatenating the auto-power spectra of the two sub-

samples, and ymod, i is the corresponding model vector. We assumed

that the measurements in each survey region were independent, and

hence summed the values of χ2 corresponding to each model.

We fit the RSD model of equation (23) to our measurements in

the range k =
√

k2
⊥ + k2

‖ < 0.3 h Mpc−1 (noting that μ = k‖/k). We

fixed the background cosmic expansion model and just varied the

RSD parameters. It is beyond the scope of this study to consider

the Alcock–Paczynski distortions that result from uncertainties in

the cosmic distance scale, although we note in general that by

improving measurements of the growth rate, a multiple-tracer anal-

ysis also enhances the determination of the geometrical Alcock–

Paczynski distortion, leading to improved distance and expansion

measurements for a galaxy sample.

We comment on the validity of the approximations of

equations (23) and (25). First, in a similar analysis of the Wig-

gleZ Dark Energy Survey, Blake et al. (2011) established that these

models (including the free damping parameter) were an acceptable

approximation to a large suite of other approaches for modelling

non-linearities in RSD, including perturbation theory techniques.

Indeed, both of these models ranked among the best performing

models, as defined by the lowest values of χ2 and the stability of

the fits when increasing the maximum wavenumber fitted in the

range kmax < 0.3 h Mpc−1.

Secondly, in Section 5 below we demonstrate that these tech-

niques recovered the input growth rate (within an acceptable mar-

gin of systematic error) in mock catalogues designed with similar

selection functions and galaxy bias factors as the GAMA popu-

lations. We found that the model of equation (25) produced no

detectable systematic bias in the growth rate, whereas the model

 at T
h
e A

u
stralian

 N
atio

n
al U

n
iv

ersity
 o

n
 Jan

u
ary

 2
9
, 2

0
1
4

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


GAMA survey: RSD with multiple tracers 3099

Figure 11. Fits for the RSD parameters (f, σ v), marginalized over the galaxy bias, for different redshift ranges and multiple-tracer subsamples (split by both

colour and luminosity). In each case, we compare the fits to the individual subsamples [blue dashed and red dotted contours for the low-bias (‘tr-1’) and

high-bias (‘tr-2’) samples, respectively] and the joint sample (black solid contours). The likelihood contours are all 68 per cent confidence regions. The captions

quote the 1D marginalized measurements of the growth rate.

of equation (23), using the Jennings et al. formulae, resulted in an

overestimation of the growth rate in the simulation at a level similar

to the statistical error, justifying our decision to choose equation

(25) as the fiducial model. The results of these sorts of tests depend

on the clustering statistic and range of scales being fitted (see also

de la Torre & Guzzo 2012). At the level of statistical precision of

the GAMA measurement, conclusions are unaffected by this choice

of RSD model.

Thirdly, our parameter fits to the individual auto-power spec-

tra alone produce consistent values of σ v for each subsample, as

illustrated by Fig. 11 (for the purpose of comparison with other

σ v measurements in the literature, we note that these values are

one-particle dispersions; a corresponding pairwise dispersion would

be larger by a factor of
√

2). We explored replacing the Gaussian

damping term e−k2μ2σ 2
v /H 2

0 by the Lorentzian [1 + (kμσ v/H0)2]−1,

finding a negligible difference in the results.

4.2 Parameter fits

In Table 1, we display the best-fitting parameters and 68 per cent

confidence regions (marginalized over all other parameters) for var-

ious fits of these RSD models. For each redshift range, defining

Table 1. Fits of RSD models in single-tracer and multiple-tracer analyses of subsamples of GAMA galaxies in two different redshift intervals

0 < z < 0.25 and 0.25 < z < 0.5, with effective redshifts z = 0.18 and 0.38, respectively. Columns 3–6 display the results of fitting the

four-parameter model (f, σ v , b1, b2). Columns 7 and 8 show the fits of an alternative parametrization (β1, σ v , b1, b2/b1). Column 9 provides

the best-fitting values of χ2 and corresponding numbers of degrees of freedom.

Redshift Sample f σ v (km s−1) b1 b2 β1 b2/b1 χ2/d.o.f.

0.0 < z < 0.25 Blue 0.49 ± 0.14 277 ± 59 0.891 ± 0.038 – 0.56 ± 0.17 – 41.6/63

Red 0.35 ± 0.15 246 ± 57 – 1.377 ± 0.041 – – 53.9/63

Joint 0.49 ± 0.12 285 ± 41 0.894 ± 0.038 1.348 ± 0.038 0.57 ± 0.15 1.509 ± 0.030 163.1/128

0.0 < z < 0.25 low-L 0.45 ± 0.15 267 ± 59 1.066 ± 0.039 – 0.43 ± 0.15 – 41.9/63

high-L 0.35 ± 0.15 211 ± 62 – 1.480 ± 0.043 – – 78.1/63

Joint 0.33 ± 0.13 192 ± 65 1.071 ± 0.038 1.467 ± 0.039 0.32 ± 0.13 1.371 ± 0.020 175.5/128

0.25 < z < 0.5 Blue 0.68 ± 0.10 269 ± 34 1.074 ± 0.034 – 0.64 ± 0.10 – 90.4/63

Red 0.48 ± 0.11 256 ± 31 – 1.707 ± 0.035 – – 79.0/63

Joint 0.66 ± 0.09 286 ± 23 1.105 ± 0.031 1.664 ± 0.030 0.60 ± 0.09 1.508 ± 0.027 167.7/128

0.25 < z < 0.5 low-L 0.63 ± 0.09 294 ± 31 1.283 ± 0.020 – 0.49 ± 0.07 – 75.6/63

high-L 0.47 ± 0.12 224 ± 37 – 1.789 ± 0.041 – – 75.7/63

Joint 0.57 ± 0.08 265 ± 28 1.283 ± 0.020 1.780 ± 0.026 0.45 ± 0.07 1.388 ± 0.018 147.5/128
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galaxy subsamples by either colour or luminosity, we compared

fits of the three-parameter model (f, σ v , b) to each individual auto-

power spectrum with fits of the four-parameter model (f, σ v , b1,

b2) to the multiple-tracer auto-power spectra (with appropriate co-

variance). The results of these fits are shown in columns 3–6 of the

table. The best-fitting values of χ2 (and corresponding numbers of

degrees of freedom) are listed in column 9; the model produces a

reasonable fit to the data.

We also considered the alternative parametrization (β1, σ v , b1,

b2/b1) where β1 = f/b1, to investigate whether the multiple-tracer

analysis allows the combinations of parameters f/b1 or b2/b1 to be

determined with any additional accuracy. These results are shown in

columns 7 and 8. We found that the ratio of the galaxy bias factors of

the multiple populations, b2/b1, was measured significantly more

accurately for the multiple-tracer fits than would be obtained by

a naive propagation of the errors in the individual bias factors in

the single-tracer fits, but the fractional errors in measuring β1 were

similar to those in determining f. We note that the precision afforded

by a multiple-tracer analysis for measuring bias ratios (which can

be carried out using the 1D monopole power spectra) could provide

a valuable test of models which predict the trend of bias with galaxy

luminosity or colour.

Fig. 11 shows likelihood contours in the space of (f, σ v) marginal-

ized over the bias parameter(s), comparing the single-tracer and

multiple-tracer fits. In all cases, we found that the parameter mea-

surements from different tracers were mutually consistent, and that

the fit to the combined data produced a significant shrinkage in the

size of the 68 per cent confidence region. In terms of the width of the

68 per cent confidence interval for the posterior probability distri-

bution of f, the multiple-tracer fits produced reductions in the range

10–20 per cent. In Section 6, we will demonstrate in a Fisher matrix

analysis that truly large improvements in the accuracy of determi-

nation of the growth rate require higher galaxy number densities

(n > 10−2 h3 Mpc−3).

Fig. 12 displays the marginalized measurements of the normal-

ized growth rate fσ 8(z) for the GAMA multiple-tracer analysis split

Figure 12. Marginalized measurements of the normalized growth-rate

fσ 8(z) fit to multiple-tracer GAMA galaxy subsamples split by colour. The

prediction of a flat 	CDM model with matter density 
m = 0.27 and nor-

malization σ 8 = 0.8 is also shown as the solid line. The open squares display

the results of RSD analyses of a series of other galaxy surveys in a similar

redshift range, taken from 6dFGS (z = 0.067; Beutler et al. 2012), 2dFGRS

(z = 0.17; Hawkins et al. 2003), the SDSS Luminous Red Galaxy sample

(z = 0.25 and 0.37; Samushia et al. 2012) and the WiggleZ Survey (z = 0.22

and 0.41; Blake et al. 2011).

by colour, compared to the prediction of a flat 	CDM model with

matter density 
m = 0.27 and normalization σ 8 = 0.8. The mea-

surements of fσ 8(z) in redshift slices (0 < z < 0.25, 0.25 < z <

0.5) are (0.36 ± 0.09, 0.44 ± 0.06), respectively. We compared

the GAMA measurements with the published RSD analyses of a

series of other galaxy surveys in a similar redshift range, which

are plotted as the open squares in Fig. 12. These measurements

were taken from 6dFGS (z = 0.067; Beutler et al. 2012), 2dFGRS

(z = 0.17; Hawkins et al. 2003), the SDSS Luminous Red Galaxy

sample (z = 0.25 and 0.37; Samushia et al. 2012) and the WiggleZ

Survey (z = 0.22 and 0.41; Blake et al. 2011). Our GAMA mea-

surements are consistent with the results of these other surveys at

similar redshifts.

5 VALI DATI ON U SI NG N- B O DY SI M U L AT I O N S

We tested the validity of the non-linear RSD model of equation (23),

in particular the amplitude of any systematic modelling error that

may impact the growth-rate measurements, by fitting it to power-

spectrum measurements of dark matter halo catalogues generated

from N-body simulations. We carried out these tests using the Gig-

gleZ N-body simulation (Poole et al., in preparation), a 21603 par-

ticle dark matter simulation run in a 1 h−1 Gpc box (with resulting

particle mass 7.5 × 109 h−1 M⊙). Bound structures were identified

using SUBFIND (Springel et al. 2001), which uses a friends-of-friends

(FoF) scheme followed by a substructure analysis to identify bound

overdensities within each FoF halo. We employed each halo’s maxi-

mum circular velocity Vmax as a proxy for mass and used the centre-

of-mass velocities for each halo when introducing RSD.

We divided the GiggleZ simulation into eight non-overlapping

realizations of the GAMA survey for the redshift range 0.25 < z <

0.5, where each realization consists of the three survey regions.

(We note that since we are just using one simulation, there will

be low-level correlations between these realizations deriving from

common large-scale modes; hence, the scatter in results between

the realizations may be slightly underestimated.) In each region, we

selected two populations of haloes which approximately reproduce

the bias factors of the blue and red GAMA populations, a ‘low-bias’

set with 80 < Vmax < 135 km s−1 and a ‘high-bias’ set with 135 <

Vmax < 999 km s−1, and subsampled these haloes using the full

survey selection functions. We note that our intention here was not

to produce full mock GAMA catalogues, since we incorporated no

information about colour, luminosity or halo occupation distribu-

tion, but rather to validate that the RSD model of equation (23) was

able to reproduce the input growth rate of the N-body simulation on

quasi-linear scales, with minimal systematic error.

We measured the auto-power spectra of the two populations in

each survey region for each realization and fitted the RSD model of

equation (25), using the same techniques we applied when analysing

the real data (using the range k < 0.3 h Mpc−1). Fig. 13 shows

the marginalized measurements of (f, σ v) for each of the eight

realizations, with the 68 per cent confidence region displayed as the

dotted (coloured) lines. The solid black contours denote the 68 and

95 per cent confidence regions obtained by combining these eight

measurements, assuming that they were independent. The vertical

dashed line indicates the predicted growth rate f = 0.69 based on

the input cosmological parameters of the N-body simulation (at

z = 0.408); the fits reveal no evidence for systematic modelling

errors. The average best-fitting χ2 for the eight realizations is 91.4

for 128 degrees of freedom.

With the caveat that we only used eight realizations, we compared

the errors in the measured growth rates of the simulations and

 at T
h
e A

u
stralian

 N
atio

n
al U

n
iv

ersity
 o

n
 Jan

u
ary

 2
9
, 2

0
1
4

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


GAMA survey: RSD with multiple tracers 3101

Figure 13. Growth-rate fits to multiple-tracer power spectra measured in

eight different realizations of the GAMA survey extracted from a large

N-body simulation. In each realization, two halo catalogues were extracted

with bias factors close to two GAMA populations and were subsampled in

three survey regions using the appropriate selection functions for the 0.25 <

z < 0.5 redshift range. The eight sets of dotted coloured contours represent

the 68 per cent confidence region of (f, σ v) fits (marginalized over bias

parameters) to each of the eight realizations, using the same RSD model and

fitting range as applied to the GAMA data. The solid black contours denote

68 and 95 per cent confidence regions obtained by combining these eight

measurements, assuming that they were independent. The vertical dotted

line shows the growth rate deduced from the input cosmological parameters

of the simulation.

data. The average error in the growth rate in the fits to the mock

catalogues was �f = 0.11, compared to �f = 0.09 for the data, and

the standard deviation in the best-fitting values for each realization

was σ f = 0.07. Given that these mock catalogues do not match the

galaxy populations of the data sample exactly, we consider the more

conservative value obtained from the data covariance matrix to be

the more reliable estimate.

6 FISHER M ATRIX FORECASTS

We compared our measurements with Fisher matrix forecasts, which

also indicate how our results would extend to surveys with a differ-

ent design (also see McDonald & Seljak 2009; White et al. 2009;

Abramo 2012). In this section, we adopt the notation Pij to describe

the auto-power spectra between tracers (with j = i) and cross-power

spectra (with j = i). We assume that the covariance matrix for the

measurement of (P11, P22, P12) using an individual Fourier mode

k = (k, μ) can be written following equation (20) as

C(k) =

⎛

⎜

⎝

Q2
1 P1P2 Q1

√
P1P2

P1P2 Q2
2 Q2

√
P1P2

Q1

√
P1P2 Q2

√
P1P2

1
2
(P1P2 + Q1Q2)

⎞

⎟

⎠
, (27)

where we have written Pi = Pii and Qi = Pi + 1/ni, where ni is

the number density of the tracers. The RSD power-spectrum model

[using equation (25) for simplicity] is then

Pij (k, μ) = (bi + f μ2) (bj + f μ2) Pm(k) e−k2μ2σ 2
v /H 2

0 , (28)

where bi are the bias factors of the tracers. The derivatives with

respect to the parameters are

∂Pij

∂f
=

[

(bi + bj )μ2 + 2f μ4
]

Pm(k) e−k2μ2σ 2
v /H 2

0

∂Pii

∂bi

= 2Pii

bi + f μ2

∂Pii

∂bj

= 0 (j = i)

∂Pij

∂bi

= Pij

bi + f μ2
(j = i)

∂Pij

∂σ 2
v

= −k2μ2

H 2
0

Pij . (29)

The Fisher matrix of the parameter vector pα = (f , σ 2
v , b1, b2) is

written as

Fαβ =
∑

k,μ

m(k, μ)
∑

i,j

∂Pij (k, μ)

∂pα

[

C(k, μ)−1
]

ij

∂Pij (k, μ)

∂pβ

,

(30)

where m(k, μ) is the number of modes in a (k, μ) bin of width (�k,

�μ), which we deduce from the survey volume V as

m(k, μ) = V

(2π)3
2π k2 �k �μ. (31)

We considered five bins in μ in the range 0 < μ < 1 and six bins in

k in the range 0 < k < 0.3 h Mpc−1, although our results were not

sensitive to the bin widths. The covariance matrix of the parameters

follows as Cαβ = (F−1)αβ , and we focused in particular on the fore-

cast error in the growth-rate measurement, �f = √
C11 = (F−1)11.

In our fiducial model of the GAMA II survey, we fixed

the RSD parameters (f, σ v) = (0.59, 300), number densities

ni = 5 × 10−3 h3 Mpc−3, bias factors (b1, b2) = (1.0, 1.4) and

volume V = 6.42 × 106 h−3 Mpc3. These values are representa-

tive of the two-sample data set for 0 < z < 0.25. The forecast

marginalized error in the growth rate for this case is �f = 0.096 for

the multiple-tracer fits, and �f = 0.124 and 0.156 for the low-bias

and high-bias single-tracer fits, respectively (such that the multiple-

tracer analysis produces an ≈20 per cent improvement compared to

the low-bias case). These forecasts are a little better than, although

comparable to, the measurements quoted in Table 1, and we note

that the Fisher matrix forecast assumes a perfect-cuboid survey with

no correlations between different Fourier modes.

We then considered two sets of variations which allow us to

explore other survey designs.

(i) Varying the bias factor of the second tracer in the range

1 < b2 < 4 for different choices of n2, fixing b1 = 1 and

n1 = 5 × 10−3 h3 Mpc−3.

(ii) Varying the number density of both tracers in the range

1 × 10−4 < ni < 5 × 10−2 h3 Mpc−3 for different choices of

b2, fixing b1 = 1.

The results are displayed in Fig. 14, with the solid circles indicating

the fiducial GAMA case quoted above.

The upper panel of Fig. 14 indicates the improvement in the

multiple-tracer growth-rate measurement that results as the differ-

ence between the bias factors of the galaxy populations increases.

For n2 = n1 = 5 × 10−3 h3 Mpc−3 and b1 = 1, the growth-rate mea-

surement improves by (8, 22, 35, 44, 51) per cent for b2 = (1.2, 1.4,

1.6, 1.8, 2.0). These forecast gains will be impacted by the practical

difficulty of maintaining a high target number density as the galaxy

bias increases, as described by the set of lines for different values

of n2 in the upper panel of Fig. 14.

The lower panel of Fig. 14 displays the increasing efficacy of

the multiple-tracer method as the number density of the galaxy
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Figure 14. Fisher matrix forecasts for the error in the growth rate, �f,

marginalized over the other RSD parameters. We consider two-tracer survey

configurations varying the bias parameters (b1, b2) and number densities (n1,

n2), fixing the survey volume V = 6.42 × 106 h−3 Mpc3 and b1 = 1 for all

cases. In the upper panel, we fix n1 = 5 × 10−3 h3 Mpc−3 and plot �f as a

function of b2 for various choices of n2. In the lower panel, we plot �f as

a function of n = n1 = n2 for various choices of b2. The triple-dot–dashed

black curve in the lower panel, compared to the solid black curve, shows the

effect of dropping the cross-power spectrum information. The solid circles in

the panels indicate the fiducial GAMA values of these parameters. Changing

the survey volume V will simply scale the results by �f ∝ V−1/2.

populations increases. For n > 10−3 h3 Mpc−3, the gains from

single-tracer RSD saturate (as indicated by the solid black line),

but the growth-rate measurement from multiple tracers improves

by (12, 22, 37, 53, 66) per cent for n = (0.23, 0.5, 1.1, 2.4,

5.2) × 10−2 h3 Mpc−3 assuming (b1, b2) = (1.0, 1.4). The black

triple-dot–dashed line in Fig. 14, which should be compared with

the black solid line, illustrates the effect of dropping the information

from the cross-power spectrum. For low values of number density

n < 10−3 h3 Mpc−3, the cross-power spectrum adds some informa-

tion due to shot noise. For high number density n > 10−3 h3 Mpc−3,

the cross-power spectrum may be entirely predicted from the two

auto-power spectra (under the assumption of linear galaxy bias) and

hence its inclusion does not improve the growth-rate measurements

within the assumed RSD model.

7 SU M M A RY

In this study, we have presented the first observational multiple-

tracer analysis of RSD using data from the GAMA survey. We per-

formed a Fourier analysis of the two auto-power spectra of galaxy

populations split by both colour and luminosity, deriving new ex-

pressions for the covariances between these measurements in terms

of a general survey selection function and weighting scheme, and

verified our results by also measuring the cross-power spectrum.

We fit models to the redshift-space power spectra in terms of the

gravitational growth rate, f, linear galaxy bias factors and an em-

pirical non-linear damping parameter. We find that, in the case of

GAMA, the multiple-tracer analysis produces an improvement in

the measurement accuracy of f by 10–20 per cent (depending on

the sample). The growth rates determined from the separate popu-

lations, split by colour and luminosity, are consistent, showing no

evidence for strong systematic modelling errors. The precision of

our measurements is similar to a Fisher matrix forecast, which in-

dicates how our analyses would extend to surveys with a different

design: for samples with higher number densities or bias factor dif-

ferentials, much stronger improvements in the accuracy of growth-

rate determination are expected. We tested our methodology using

mock catalogues from N-body simulations, demonstrating that the

systematic error in the measured growth rate was much smaller than

the statistical error. The normalized gravitational growth rate deter-

mined in two independent redshift slices, fσ 8(z = 0.18) = 0.36 ±
0.09 and fσ 8(z = 0.38) = 0.44 ± 0.06 using multiple-tracer sub-

samples selected by colour, is consistent with results from other

RSD surveys in a similar redshift range, and with standard 	CDM

models.
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APPEN D IX A : D ERIVATION O F AUTO-POWER

AND C ROSS-POWER SPECTRU M

E S T I M ATO R S A N D C OVA R I A N C E S

A1 Fourier conventions

First we note our conventions for Fourier transforms and inverse

Fourier transforms:

FT(y) = ỹ(k) = 1

V

∫

y(x) eik.x d3
x (A1)

IFT(ỹ) = y(x) = V

(2π)3

∫

ỹ(k) e−ik.x d3
k, (A2)

where V is the Fourier volume. Some useful relations involving the

Dirac delta function δD and its transform are
∫

eik.x d3
x = V δ̃D(k) (A3)

∫

eik.x d3
k = (2π)3

V
δD(x) (A4)

∫

δD(x − x0) δ3
x = V (A5)

∫

y(x) δD(x − x0) δ3
x = V y(x0) (A6)

∫

δ̃D(k − k0) δ3
k = (2π)3

V
(A7)

∫

ỹ(k) δ̃D(k − k0) δ3
k = (2π)3

V
ỹ(k0). (A8)

It is also useful to list our conventions for evaluating FFTs, which

we will employ in practice for implementing these calculations:

FFT(y) =
∑

xi

y(xi) eik.xi (A9)

IFFT(ỹ) =
∑

ki

ỹ(ki) e−iki .x . (A10)

Noting the equivalences (1/V )
∫

d3
x ≡ (1/Nc)

∑

x
and

[V /(2π)3]
∫

d3
k ≡ ∑

k
, we deduce that FFT(y) = Nc FT(y)

and IFFT(ỹ) = IFT(ỹ), where Nc is the total number of FFT cells.

A2 Estimator for the auto-power spectrum

We first develop the estimator for the auto-power spectrum of a

galaxy number-density distribution n(x), given an underlying selec-

tion function 〈n(x)〉 describing the average over many realizations,

and allowing for a general weighting function w(x). This deriva-

tion follows Feldman, Kaiser & Peacock (1994) and Smith (2009);

we will then provide the extension to the galaxy cross-power spec-

trum and the various covariances. The normalization of the number

density in terms of the total number of galaxies N is such that
∫

n(x) d3
x = N. (A11)

First, we define the weighted galaxy overdensity

δ(x) = w(x) [n(x) − 〈n(x)〉] (A12)

and consider the Fourier transform of this expression, δ̃(k). In order

to perform this evaluation, it is convenient to split the sample volume

into many small cells i at positions xi with infinitesimal volumes

δVi, such that the number of galaxies Ni in the ith cell is 0 or 1, and

we can write the number-density distribution as

n(x) = 1

V

∑

i

Ni δD(x − xi) (A13)

which satisfies
∫

n(x) d3
x = ∑

i Ni = N . Writing the weighted

number density nw(x) ≡ w(x) n(x), we find that

ñw(k) = 1

V

∫

nw(x) eik.x d3
x = 1

V

∑

i

wi Ni eik.xi (A14)

hence

δ̃(k) = ñw(k) − 〈ñw(k)〉 = 1

V

∑

i

wi (Ni − 〈Ni〉) eik.xi . (A15)

Then, using the fact that

〈(Ni − 〈Ni〉)(Nj − 〈Nj 〉)〉 = 〈Ni Nj 〉 − 〈Ni〉〈Nj 〉 (A16)

we find that

〈δ̃(k) δ̃∗(k′)〉 =
1

V 2

∑

i,j

wi wj

(

〈Ni Nj 〉 − 〈Ni〉〈Nj 〉
)

ei(k.xi−k
′.xj ). (A17)

We evaluate this double sum by splitting it into two parts, with j = i

and j = i. The part of the sum with j = i can be simplified using

〈N2
i 〉 − 〈Ni〉2 = 〈Ni〉 = 〈ni〉 δVi (A18)

which holds given that N2
i = Ni (for Ni = 0 or 1) and 〈Ni〉2 ∝ (δVi)

2

is negligible. We can express the part of the sum with j = i in terms

of the galaxy correlation function ξ using

〈Ni Nj 〉 − 〈Ni〉〈Nj 〉 = (〈ni〉δVi) (〈nj 〉δVj ) ξ (xi, xj ). (A19)
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Making these substitutions,

〈δ̃(k) δ̃∗(k′)〉

= 1

V 2

∑

i =j

wi wj 〈ni〉 〈nj 〉 δVi δVj ξ (xi, xj ) ei(k.xi−k
′.xj )

+ 1

V 2

∑

i

w2
i 〈ni〉 δVi ei(k−k

′).xi . (A20)

Now we transform the sums into integrals and substitute the relation

ξ (x, x
′) = 1

(2π)3

∫

P (k′′) e−ik′′.(x−x
′) d3

k
′′ (A21)

between the correlation function and auto-power spectrum P (k) in

volume units. After some algebra we find

〈δ̃(k) δ̃∗(k′)〉

= 1

(2π)3

∫

P (k′′) ñw(k − k
′′) ñ∗

w(k′ − k
′′) d3

k
′′

+ 1

V 2

∫

w(x)2 n(x) ei(k−k
′).x d3

x, (A22)

where for clarity we have dropped the angled brackets in the sym-

bols n and nw in this and all subsequent equations. If P (k) varies

sufficiently slowly compared to the width of ñw(δk), we can ap-

proximate the first term as

1

(2π)3
P (k)

∫

ñw(k − k
′′) ñ∗

w(k′ − k
′′) d3

k
′′ (A23)

where writing ñw(k) = (1/V )
∫

nw(x) eik.x d3
x we find that

∫

ñw(k − k
′′) ñ∗

w(k′ − k
′′) d3

k
′′

= (2π)3

V 2

∫

n2
w(x) ei(k−k

′).x d3
x. (A24)

Hence, we derive the final expression

〈δ̃(k) δ̃∗(k′)〉 ≈ 1

V

[

P (k) Q̃(k − k
′) + S̃(k − k

′)
]

(A25)

in terms of

Q(x) = n2
w(x) ≡ n2(x) w2(x) (A26)

S(x) = n(x) w2(x). (A27)

Considering the special case k
′ = k, we see that an estimator for

the auto-power spectrum is

P̂ (k) = V |δ̃(k)|2 − S̃(0)

Q̃(0)
(A28)

such that

〈P̂ (k)〉 = V 〈|δ̃(k)|2〉 − S̃(0)

Q̃(0)
≈ P (k), (A29)

where we note that the exact expression is the convolution

〈P̂ (k)〉 = V 3

(2π)3

∫

P (k′) |ñw(k − k
′)|2 d3

k
′. (A30)

We note the special case of a constant selection function n(x) =
n0 = N/V and weights w(x) = 1. In this case, Q = N2/V2 and

S = N/V, such that

P̂ (k) = V

[

V 2 |δ̃(k)|2 − N

N2

]

. (A31)

Converting these relations to an FFT-based estimator, we grid

the galaxy number distribution into the FFT cells and write this

number distribution as N (x). Imposing the normalization that
∑

x
N (x) = N , we find that N (x) = (V /Nc) n(x). We define the

selection function grid as W (x), adopting the normalization con-

vention that
∑

x
W (x) = 1. In this case, W (x) = (V /NcN )〈n(x)〉.

Writing Nw(x) = w(x) N (x) and Ww(x) = w(x) W (x), we have

δ̃(k) = 1

V

[

Ñw − N W̃w

]

, (A32)

where Ñw ≡ FFT(Nw) and W̃w ≡ FFT(Ww). The power-spectrum

estimator becomes

P̂ (k) = V

[ |Ñw − N W̃w|2 − N
∑

W (x)w(x)2

Nc N2
∑

W (x)2 w(x)2

]

. (A33)

A3 Estimator for the cross-power spectrum

The development of the cross-power spectrum estimator follows a

similar course, where we consider the two galaxy overdensity fields

δ1(x) = w1(x) [n1(x) − 〈n1(x)〉] (A34)

δ2(x) = w2(x) [n2(x) − 〈n2(x)〉] . (A35)

The generalization of equation (A17) is

〈δ̃1(k) δ̃∗
2 (k′)〉 = 1

V 2

∑

i,j

w1,i w2,j

(

〈N1,i N2,j 〉

− 〈N1,i〉〈N2,j 〉
)

ei(k.xi−k
′.xj ). (A36)

The terms with j = i now vanish, and the equivalent of equa-

tions (A19) and (A21) now involves the cross-correlation function

ξc(x, x
′) and cross-power spectrum Pc(k). We obtain

〈δ̃1(k) δ̃∗
2 (k′)〉

= 1

(2π)3

∫

Pc(k′′) ñw,1(k − k
′′) ñ∗

w,2(k′ − k
′′) d3

k
′′ (A37)

with the approximation, which again holds if Pc(k) varies suffi-

ciently slowly compared to the width of ñw,α(δk),

〈δ̃1(k) δ̃∗
2 (k′)〉 ≈ Pc(k)

V 2

∫

nw,1(x) nw,2(x) ei(k−k
′).x d3

x. (A38)

We define

Qc(x) = nw,1(x) nw,2(x) = w1(x) n1(x) w2(x) n2(x) (A39)

such that

〈δ̃1(k) δ̃∗
2 (k′)〉 ≈ 1

V
Pc(k) Q̃c(k − k

′). (A40)

The estimator for the cross-power spectrum is then written as

P̂c(k) = V Re
{

δ̃1(k) δ̃∗
2 (k)

}

Q̃c(0)

= V
[

δ̃1(k) δ̃∗
2 (k) + δ̃∗

1 (k) δ̃2(k)
]

2 Q̃c(0)
(A41)

such that it is symmetric in the two indices, and

〈P̂c(k)〉 = V
[

〈δ̃1(k) δ̃∗
2 (k)〉 + 〈δ̃∗

1 (k) δ̃2(k)〉
]

2 Q̃c(0)
≈ Pc(k) (A42)

with the exact expression

〈P̂c(k)〉= V 3

(2π)3

∫

Pc(k′′) ñw,1(k−k
′′) ñ∗

w,2(k′−k
′′) d3

k
′′. (A43)
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The FFT-based estimator is

P̂c(k) = V Re{[Ñw,1 − N1 W̃w,1][Ñw,2 − N2 W̃w,2]∗}
Nc N1 N2

∑

W1(x) w1(x) W2(x) w2(x)
. (A44)

A4 Covariance between estimators

We now consider the covariance between the estimators for the

auto-power spectra of the two galaxy populations, P̂1 and P̂2, and

the estimator for the cross-power spectrum P̂c. Defining δP̂ (k) ≡
P̂ (k) − 〈P̂ (k)〉, these covariances can be written as

〈δP̂1(k) δP̂1(k′)〉 = V 2 〈δ̃1(k) δ̃∗
1 (k) δ̃1(k′) δ̃∗

1 (k′)〉
Q̃1(0)2

(A45)

〈δP̂1(k) δP̂2(k′)〉 = V 2 〈δ̃1(k) δ̃∗
1 (k) δ̃2(k′) δ̃∗

2 (k′)〉
Q̃1(0) Q̃2(0)

(A46)

〈δP̂1(k) δP̂c(k′)〉 = V 2

2 Q̃1(0) Q̃c(0)

×
[

〈δ̃1(k) δ̃∗
1 (k) δ̃1(k′) δ̃∗

2 (k′)〉

+ 〈δ̃1(k) δ̃∗
1 (k) δ̃∗

1 (k′) δ̃2(k′)〉
]

(A47)

〈δP̂c(k) δP̂c(k′)〉 = V 2

4 Q̃c(0)2

×
[

〈δ̃1(k) δ̃∗
2 (k) δ̃1(k′) δ̃∗

2 (k′)〉

+ 〈δ̃1(k) δ̃∗
2 (k) δ̃∗

1 (k′) δ̃2(k′)〉

+ 〈δ̃∗
1 (k) δ̃2(k) δ̃1(k′) δ̃∗

2 (k′)〉

+ 〈δ̃∗
1 (k) δ̃2(k) δ̃∗

1 (k′) δ̃2(k′)〉
]

. (A48)

Taking the first expression as an example, these relations may be

evaluated by substituting δ̃(k) = ∑

x
δ(x) eik.x . We can then write

the product 〈δ̃(k) δ̃∗(k) δ̃(k′) δ̃∗(k′)〉 as
∑

x1,x2,x3,x4

〈δ(x1)δ(x2)δ(x3)δ(x4)〉 ei[k.(x1−x2)+k
′.(x3−x4)]. (A49)

Expectation values of individual terms in the product satisfy

〈δ(x)〉 = 0; non-zero terms are those in which the indices of the

sum satisfy (1 = 2, 3 = 4), (1 = 3, 2 = 4) or (1 = 4, 2 = 3).

Splitting the sum into these combinations, it can be expressed as
∑

x,x′
{〈δ(x)δ(x)〉〈δ(x

′)δ(x
′)〉

+ 〈δ(x)δ(x)〉〈δ(x
′)δ(x

′)〉 ei(k−k
′).(x−x

′)

+ 〈δ(x)δ(x)〉〈δ(x
′)δ(x

′)〉 ei(k+k
′).(x−x

′) }. (A50)

We obtain

〈δP̂1(k) δP̂1(k′)〉 = V 2 |〈δ̃1(k) δ̃∗
1 (k′)〉|2

Q̃1(0)2
(A51)

〈δP̂1(k) δP̂2(k′)〉 = V 2 |〈δ̃1(k) δ̃∗
2 (k′)〉|2

Q̃1(0) Q̃2(0)
(A52)

〈δP̂1(k) δP̂c(k′)〉 =
V 2 Re

{

〈δ̃1(k) δ̃∗
1 (k′)〉 〈δ̃1(k) δ̃∗

2 ( �k′)〉
}

Q̃1(0) Q̃c(0)
(A53)

〈δP̂c(k) δP̂c(k′)〉 = V 2

2 Q̃c(0)2

{

|〈δ̃1(k) δ̃∗
2 (k′)〉|2

+ Re
{

〈δ̃1(k) δ̃1(k′)〉〈δ̃2(k) δ̃2(k′)〉
}}

. (A54)

Writing δk = k − k
′ and using the approximate relations in equa-

tions (A25) and (A40) gives

〈δP̂1(k) δP̂1(k′)〉 = |P1(k) Q̃1(δk) + S̃1(δk)|2
Q̃1(0)2

(A55)

〈δP̂1(k) δP̂2(k′)〉 = |Pc(k) Q̃c(δk)|2
Q̃1(0) Q̃2(0)

(A56)

〈δP̂1(k) δP̂c(k′)〉 = Re
{[

P1(k) Q̃1(δk) + S̃1(δk)
]

Pc(k) Q∗
c (δk)

}

Q̃1(0) Q̃c(0)

(A57)

〈δP̂c(k) δP̂c(k′)〉 = 1

2 Q̃c(0)2
|Pc(k) Q̃c(δk)|2

+ Re
{[

P1(k) Q̃1(δk) + S̃1(δk)
] [

P2(k) Q̃2(δk) + S̃2(δk)
]∗}

.

(A58)

For a uniform selection function, the equations simplify to

〈δP̂1 δP̂1〉 =
(

P1 + 1

n1

)2

(A59)

〈δP̂1 δP̂2〉 = P 2
c (A60)

〈δP̂1 δP̂c〉 = Pc

(

P1 + 1

n1

)

(A61)

〈δP̂c δP̂c〉 = 1

2

[

P 2
c +

(

P1 + 1

n1

) (

P2 + 1

n2

)]

, (A62)

where n1 = N1/V and n2 = N2/V.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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