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ABSTRACT

We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by

combining the galaxy density maps and weak lensing shear maps for a ∼116 deg2 area of the

Dark Energy Survey (DES) Science Verification (SV) data. This method was first developed

in Amara et al. and later re-examined in a companion paper with rigorous simulation tests

and analytical treatment of tomographic measurements. In this work we apply this method

to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find

the galaxy bias and 1σ error bars in four photometric redshift bins to be 1.12 ± 0.19 (z =

0.2–0.4), 0.97 ± 0.15 (z = 0.4–0.6), 1.38 ± 0.39 (z = 0.6–0.8), and 1.45 ± 0.56 (z = 0.8–1.0).

These measurements are consistent at the 2σ level with measurements on the same data set

using galaxy clustering and cross-correlation of galaxies with cosmic microwave background

lensing, with most of the redshift bins consistent within the 1σ error bars. In addition, our

method provides the only σ 8 independent constraint among the three. We forward model the

main observational effects using mock galaxy catalogues by including shape noise, photo-z

errors, and masking effects. We show that our bias measurement from the data is consistent
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with that expected from simulations. With the forthcoming full DES data set, we expect this

method to provide additional constraints on the galaxy bias measurement from more traditional

methods. Furthermore, in the process of our measurement, we build up a 3D mass map that

allows further exploration of the dark matter distribution and its relation to galaxy evolution.

Key words: gravitational lensing: weak – surveys – large-scale structure of Universe.

1 IN T RO D U C T I O N

Galaxy bias is one of the key ingredients for describing our ob-

servable Universe. In a concordance � cold dark matter (�CDM)

model, galaxies form at overdensities of the dark matter distribution,

suggesting the possibility of simple relations between the distribu-

tion of galaxies and dark matter. This particular relation is described

by a galaxy bias model (Kaiser 1984). Galaxy bias bridges the ob-

servable Universe of galaxies with the underlying dark matter. For

a full review of literature on galaxy bias, we refer the readers to

Eriksen & Gaztanaga (2015) and references therein.

Observationally, several measurement techniques exist for con-

straining galaxy bias. The most common approach is to measure

galaxy bias through the two-point correlation function (2PCF) of

galaxies (Blake, Collister & Lahav 2008; Cresswell & Percival

2009; Simon et al. 2009; Zehavi et al. 2011; Coupon et al. 2012).

Counts-in-cells (CiC) is another method where the higher mo-

ments of the galaxy probability density function (PDF) are used

to constrain galaxy bias (Blanton 2000; Wild et al. 2005; Swanson

et al. 2008). Alternatively, one can combine galaxy clustering with

measurements from gravitational lensing, which probes the total

(baryonic and dark) matter distribution. Such measurements include

combining galaxy clustering with galaxy–galaxy lensing (Simon

et al. 2007; Jullo et al. 2012; Mandelbaum et al. 2013) and lensing

of the cosmic microwave background (CMB; Schneider 1998; Gi-

annantonio et al. 2016). The method we present in this work also

belongs to this class.

With ongoing and upcoming large galaxy surveys (the Hyper

SuprimeCam,1 the Dark Energy Survey,2 the Kilo Degree Survey,3

the Large Synoptic Survey Telescope,4 the Euclid mission,5 the

Wide-Field Infrared Survey Telescope6), statistical uncertainties on

the galaxy bias measurements will decrease significantly. It is thus

interesting to explore alternative and independent options of mea-

suring galaxy bias. Such measurements would be powerful tests for

systematic uncertainties and break possible degeneracies.

In this paper, we present a new measurement of the redshift-

dependent galaxy bias from the Dark Energy Survey (DES) Science

Verification (SV) data using a novel method. Our method relies on

the cross-correlation between weak lensing shear and galaxy den-

sity maps to constrain galaxy bias. The method naturally combines

the power of galaxy surveys and weak lensing measurements in a

way that only weakly depends on assumptions of the cosmological

parameters. In addition, the method involves building up a high-

resolution 3D mass map in the survey volume which is interesting

for studies of the dark matter distribution at the map level. The re-

lation between the galaxy sample and the mass map also provides

information for studies of galaxy evolution.

1 www.naoj.org/Projects/HSC
2 www.darkenergysurvey.org
3 kids.strw.leidenuniv.nl
4 www.lsst.org
5 sci.esa.int/euclid
6 wfirst.gsfc.nasa.gov

The analysis in this paper closely follows Amara et al. (2012,

hereafter A12) and Pujol et al. (2016, hereafter Paper I). A12 ap-

plied this method to Cosmological Evolution Survey (COSMOS)

and zCOSMOS data and discussed different approaches for con-

structing the galaxy density map and galaxy bias. Paper I carried

out a series of simulation tests to explore the regime of the mea-

surement parameters where the method is consistent with 2PCF

measurements, while introducing alternative approaches to the

methodology. Building on these two papers, this work applies the

method to the DES SV data, demonstrating the first constraints with

this method using photometric data. Simulations are used side-by-

side with data to ensure that each step in the data analysis is robust.

In particular, we start with the same set of ‘ideal’ simulations used in

Paper I and gradually degrade until they match the data by including

noise, photometric redshift errors, and masking effects.

The paper is organized as follows. In Section 2 we overview the

basic principles of our measurement method. In Section 3 we intro-

duce the data and simulations used in this work. The analysis and

results are presented in Section 4, first with a series of simulation

tests and then with the DES SV data. We also present a series of sys-

tematics tests here. In Section 5 we compare our measurements with

bias measurements on the same data set using different approaches.

We conclude in Section 6.

2 BAC K G RO U N D T H E O RY

2.1 Linear galaxy bias

In this work we follow Paper I, where the overdensities of galaxies

δg is linearly related to the overdensities of dark matter δ at some

given smoothing scale R, or

δg(z, R) = b(z, R)δ(z, R). (1)

We define δ ≡ ρ−ρ̄

ρ̄
, where ρ is the dark matter density and ρ̄ is

the mean dark matter density at a given redshift. δg is defined

similarly, with ρ replaced by ρg, the number density of galaxies. b

can depend on galaxy properties such as luminosity, colour, and type

(Swanson et al. 2008; Cresswell & Percival 2009). This definition

is often referred to as the ‘local bias’ model. According to Manera

& Gaztañaga (2011), at sufficiently large scales (�40 Mpc h−1

comoving distance), b(z, R) in equation (1) is consistent with galaxy

bias defined through the 2PCF of dark matter (ξ dm) and galaxies

(ξ g). That is, the following equation holds:

ξg(r) = 〈δg(r0)δg(r0 + r)〉 = b2〈δ(r0)δ(r0 + r)〉 = b2ξdm(r), (2)

where r0 and r0 + r are two positions on the sky separated by vector

r . The angle bracket 〈〉 averages over all pairs of positions on the

sky separated by distance |r| ≡ r . Our work will be based on scales

in this regime.

2.2 Weak lensing

Weak lensing refers to the coherent distortion, or ‘shear’ of galaxy

images caused by large-scale cosmic structures between these

MNRAS 459, 3203–3216 (2016)
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galaxies and the observer. Weak lensing probes directly the total

mass instead of a proxy of the total mass (e.g. stellar mass, gas

mass). For a detailed review of the theoretical background of weak

lensing, see e.g. Bartelmann & Schneider (2001).

The main weak lensing observable is the complex shear γ =

γ1 + iγ2, which is estimated by the measured shape of galaxies.

The cosmological shear signal is much weaker than the intrinsic

galaxy shapes. The uncertainty in the shear estimate due to this

intrinsic galaxy shape is referred to as ‘shape noise’, and is often

the largest source of uncertainty in lensing measurements. Shear can

be converted to convergence, κ , a scalar field that directly measures

the projected mass. The convergence at a given position θ on the

sky can be expressed as

κ(θ, ps) =

∫ ∞

0

dχ q(χ, ps)δ(θ , χ ), (3)

where q(χ , ps) is the lensing weight:

q(χ, ps) ≡
3H 2

0 �mχ

2c2a(χ )

∫ ∞

χ

dχs

χs − χ

χs

ps(χs). (4)

Here, χ is the comoving distance, �m is the total matter density

of the Universe today normalized by the critical density today, H0

is the Hubble constant today, and a is the scale factor. ps(χ ) is

the normalized redshift distribution of the ‘source’ galaxy sample

where the lensing quantities (γ or κ) are measured. In the simple

case of a single source redshift plane at χ s, ps is a δ function and

the lensing weight becomes

q(χ, χs) ≡
3H 2

0 �m

2c2a(χ )

χ (χs − χ )

χs

. (5)

In the flat-sky approximation, conversion between γ and κ in

Fourier space follows (Kaiser & Squires 1993, KS conversion):

κ̃(ℓ) − κ̃0 = D∗(ℓ)γ̃ (ℓ); γ̃ (ℓ) − γ̃ 0 = D(ℓ)κ̃(ℓ), (6)

where ‘X̃’ indicates the Fourier transform of the field X, ℓ is the

spatial frequency, κ̃0 and γ̃ 0 are small constant offsets which can-

not be reconstructed and are often referred to as the ‘mass-sheet

degeneracy’. D is a combination of second moments of ℓ:

D(ℓ) =
ℓ2

1 − ℓ2
2 + i2ℓ1ℓ2

|ℓ|2
. (7)

In this work we follow the implementation of equation (6) as

described in Vikram et al. (2015) and Chang et al. (2015) to construct

κ and γ maps as needed.

2.3 κg: a convergence template from galaxies

Following the same approach as A12 and Paper I, we now define

κg by substituting δ with δg in equation (3), or

κg(θ , ps) =

∫ ∞

0

dχ q(χ, ps)δg(θ , χ ). (8)

Physically, κg is a ‘template’ for the convergence κ . In particular,

in the case of a constant galaxy bias b, where δg = bδ everywhere,

equation (8) trivially gives κg = bκ . The relation between κ , κg, and

b in the case of redshift-dependent galaxy bias (equation 1) becomes

more complicated. This requires the introduction of the ‘partial’ κg,

or κ ′
g below. Alternatively, one can adopt the approach used in A12

and include a parametrized galaxy bias model in constructing κg.

To construct κ ′
g, instead of integrating over all foreground ‘lens’

galaxies in equation (8), we only consider the part of the template

contributed by a given lens sample. This gives

κ ′
g(θ , φ′, ps) =

∫ ∞

0

dχ q(χ, ps)φ
′(χ )δg(θ , χ )

=

∫ ∞

0

dχ q(χ, ps)φ
′(χ )

(

ρg(θ , χ )

ρ̄g(χ )
− 1

)

, (9)

where φ′(χ ) is the radial selection function of the lens sample of

interest. ρg is the number of galaxies per unit volume and ρ̄g is

the mean of ρg at a given redshift. φ′(χ ) is different from p′(χ ) in

equation (20) of Paper I only by a normalization:
∫

dχp′(χ ) = 1,

while φ′(χ ) integrates to a length, which is the origin of the �χ ′ in

equation (20) in Paper I. We choose to use φ′(χ ) here to facilitate the

derivation later, but note that equation (14) below is fully consistent

with equation (20) in Paper I. Similarly we define also a partial κ

field, which we will later use in Section 2.4,

κ ′(θ , φ′, ps) =

∫ ∞

0

dχ q(χ, ps)φ
′(χ )δ(θ, χ ). (10)

In practice, when constructing κ ′
g, we assume a fixed source

redshift χ̄s and take the mean lensing weight q̄ ′ and ρ̄g outside the

integration of equation (9). This approximation holds in the case

where q and ρ̄g are slowly varying over the extent of φ′, which is

true for the intermediate redshift ranges we focus on. We have

κ ′
g(θ , φ′, χ̄s) ≈ �χ ′q̄ ′(χ̄s)

(

∫ ∞

0
dχφ′(χ )ρg(θ , χ )

ρ̄g�χ ′
− 1

)

, (11)

where

�χ ′ =

∫ ∞

0

dχφ′(χ ). (12)

We further simplify the expression by defining the partial 2D surface

density �′ and �̄′, where

�′ =

∫ ∞

0

dχφ′(χ )ρg(θ , χ ), �̄′ =

∫ ∞

0

dχφ′(χ )ρ̄g. (13)

Equation (11) then becomes

κ ′
g(θ , φ′, χ̄s) ≈ �χ ′q̄ ′(χ̄s)

(

�′(θ )

�̄′(θ )
− 1

)

, (14)

which is what we measure as described in Section 4.1.

2.4 Bias estimation from the galaxy density field and the weak

lensing field

The information of galaxy bias can be extracted through the cross-

and autocorrelation of the κ and κ ′
g fields. (In the case of constant

bias, we can replace κ ′
g by κg in all equations below.) Specifically,

we calculate

b′ =
〈κ ′

gκ
′
g〉

〈κ ′
gκ〉

=
〈κ ′

g(θ, φ′, χ̄s)κ
′
g(θ, φ′, χ̄s)〉

〈κ ′
g(θ, φ′, χ̄s)κ(θ, ps)〉

, (15)

where 〈〉 represents a zero-lag correlation between the two fields in

the brackets, averaged over a given aperture R. We can write for the

most general case,

〈κAκB〉 =
4π

π
2R4

∫ R

0

dr1r1

∫ R

0

dr2r2

∫

π

0

dηωAB(�), (16)

where κA and κB can be any of the following: (κ, κ ′, κg, κ
′
g),

�2 = r2
1 + r2

2 − 2r1r2 cos η, and ωAB(�) is the projected two-point

angular correlation function between the two fields, defined

ωAB(�) =

∫ ∞

0

dχA

∫ ∞

0

dχBqAqBφ′
Aφ′

BξκAκB
(r), (17)

MNRAS 459, 3203–3216 (2016)
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Figure 1. Normalized redshift distribution of the lens (top) and source

(bottom) samples as estimated from the photo-z code SKYNET. Each curve

represents the stacked PDF for all galaxies in the photo-z bin determined by

zmean as listed in the labels.

where qA (qB) and φ′
A (φ′

B) are the lensing weight and lens redshift

selection function associated with the fields κA (κB). ξκAκB
(r) is the

3D two-point correlation function. In the case of κA = κB = κ ,

ξκAκB
reduces to ξ dm in equation (2).

For infinitely thin redshift bins, or constant bias, b′ in equation

(15) directly measures the galaxy bias b of the lens. However, once

the lens and source samples span a finite redshift range (see e.g.

Fig. 1), b′ is a function of the source and lens distribution and is

different from b by some factor f(φ′, ps), so that

b′ = f (φ′, ps)b. (18)

Note that f can be determined if b(z) is known. Since we have

b(z) = 1 for the case of dark matter, we can calculate f by calculating

b′ and setting b(z) = 1, or

f (φ′, ps) =
〈κ ′κ ′〉

〈κ ′κ〉
=

〈κ ′(θ , φ′, χ̄s)κ
′(θ , φ′, χ̄s)〉

〈κ ′(θ , φ′, χ̄s)κ(θ, ps)〉
, (19)

where κ ′ is defined in equation (10) and follows the same assump-

tions in equation (14), where the lensing weight depends on only

the mean distance to the source sample χ̄s. f here corresponds to f2

in equation (26) in Paper I. Table 1 shows an example of the f values

calculated from the data.

Table 1. f factor (equation 19) calculated from data. f depends on the

specific sample that is used. In this table we list numbers only for the main

measurement in Section 4.4, where the NGMIX shear catalogue and the SKYNET

photo-z catalogue is used.

Source Lens redshift

redshift 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

0.4–0.6 0.61 – – –

0.6–0.8 0.61 0.58 – –

0.8–1.0 0.61 0.59 0.67 –

1.0–1.2 0.62 0.60 0.72 0.53

We use a slightly different estimator for b′ compared to equation

(15) in practice. Combined with equation (18), our estimator for

galaxy bias is

b =
1

μ
, (20)

μ = f
〈γ ′

α,gγ
′
α〉

〈γ ′
α,gγ

′
α,g〉 − 〈γ

′N
α,gγ

′N
α,g〉

, (21)

with α = 1, 2 referring to the two components of γ .

Here we replaced κ ′ by γ ′
α , which is possible since the two quan-

tities are interchangeable through equation (6). The main reason to

work with γ ′
α is that in our data set, γ ′

α is much noisier compared to

the κ ′
g due to the presence of the shape noise, therefore, converting

γ ′
α to κ ′

α would be suboptimal to converting κ ′
g to γ ′

α,g. This choice

depends somewhat on the specific data quality at hand. In addition,

the term 〈γ
′N
α,gγ

′N
α,g〉 is introduced to account for the shot noise arising

from the finite number of galaxies in the galaxy density field (see

also Paper I). The term is calculated by randomizing the galaxy

positions when calculating γ ′
α,g. Finally, since 〈γ ′

α,gγ
′
α〉 is noisy and

can become close to zero, measuring directly the inverse of equa-

tion (21) results in a less stable and biased estimator. Therefore,

we measure the inverse-bias, μ, throughout the analysis and only

take the inverse at the very end to recover the galaxy bias b. This

approach is similar to that used in A12. We show in Appendix A

the results using b instead of μ as our main estimator.

The measurement from this method would depend on assump-

tions of the cosmological model in the construction of κ ′
g and the

calculation of f. Except for the literal linear dependence on H0�m,

due to the ratio nature of the measurement, most other parameters

tend to cancel out. Within the current constraints from Planck, the

uncertainty in the cosmological parameters affect the measurements

at the per cent level, which is well within the measurement errors

(>10 per cent). All cosmological parameters used in the calcula-

tion of this work are consistent with the simulations described in

Section 3.5.

2.5 Multiple source–lens samples

Whereas equations (20) and (21) describes how we measure galaxy

bias for one source sample and one lens sample, in practice multiple

different samples of lenses and the sources are involved. We define

several source and lens samples, or ‘bins’, based on their photomet-

ric redshift (photo-z), with the lens samples labelled by ‘i’ and the

source samples labelled by ‘j’. We use the notation μα
ij to represent

the inverse-bias measured with γ α using the source bin j and lens

bin i.

Our estimate of the galaxy bias in each lens redshift bin i is

calculated by combining μα
ij estimates from the two components of

MNRAS 459, 3203–3216 (2016)
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shear and all source redshift bins j. To combine these, we consider

a least-square fit to the following model:

Di = μ̄iM, (22)

where D = {μα
ij} is the data vector containing all the measurements

μα
ij of galaxy bias in this lens bin i (including measurement from the

two shear components and possibly multiple source bins), μ̄i is the

combined inverse-bias in each bin i we wish to fit for, and M is a 1D

array of the same length as Di with all elements being 1. Our final

estimate of inverse-bias for redshift bin i, μ̄i, and its uncertainty

σ (μ̄i) are

μ̄i = MT
i C−1

i Di[M
T
i C−1

i Mi]
−1, (23)

σ (μ̄i)
2 = (MT

i C−1
i Mi)

−1, (24)

where C−1
i is the unbiased inverse covariant matrix (Hartlap, Simon

& Schneider 2007) between all μα
ij measurements, estimated by

Jack–Knife (JK) resampling:

C−1
i = τ Cov−1[Di], (25)

where τ = (N − ν − 2)/(N − 1). N is the number of JK samples,

and ν is the dimension of Ci. Note that the matrix inversion of Ci

becomes unstable when the measurements μα
ij are highly correlated.

This is the case in the noiseless simulations. For the noisy simula-

tions and data, however, it does not affect the results. The galaxy

bias and its uncertainty is then

b̄i =
1

μ̄i

(26)

and

σ 2(b̄i) =
σ 2(μ̄i)

μ̄2
i

. (27)

The uncertainty estimated through JK resampling does not ac-

count for cosmic variance and its coupling with the mask geometry.

In Section 4.3, we further include the uncertainty from cosmic vari-

ance using simulations.

3 DATA A N D S I M U L AT I O N S

In this section we describe the data and simulation used in this work.

We use the DES SV data collected using the Dark Energy Camera

(Flaugher et al. 2015) from 2012 November to 2013 February and

that have been processed through the data management pipeline

described in Ngeow et al. (2006), Sevilla et al. (2011), Desai et al.

(2012), and Mohr et al. (2012). Individual images are stacked, ob-

jects are detected and their photometric/morphological properties

are measured using the software packages SCAMP (Bertin 2006),

SWARP (Bertin et al. 2002), PSFEx (Bertin 2011), and SEXTRACTOR

(Bertin & Arnouts 1996). The final product, the SVA1 Gold

catalogue7 is the foundation of all catalogues described below. We

use a ∼116.2 deg2 subset of the data in the South Pole Telescope-

East (SPT-E) footprint, which is the largest contiguous region in the

SV data set. This data set is also used in other DES weak lensing

and large-scale structure analyses (Becker et al. 2015; Chang et al.

2015; The Dark Energy Survey Collaboration et al. 2015; Vikram

et al. 2015; Crocce et al. 2016; Giannantonio et al. 2016).

7 http://des.ncsa.illinois.edu/releases/sva1

3.1 Photo-z catalogue

The photo-z of each galaxy is estimated through the SKYNET code

(Graff et al. 2014). SKYNET is a machine learning algorithm that has

been extensively tested in Sánchez et al. (2014) and Bonnett et al.

(2015) to perform well in controlled simulation tests. To test the

robustness of our results, we also carry out our main analysis using

two other photo-z codes which were tested in Sánchez et al. (2014)

and Bonnett et al. (2015): BPZ (Benı́tez 2000) and TPZ (Carrasco

Kind & Brunner 2013, 2014). We discuss in Section 4.5 the results

from these different photo-z codes.

The photo-z codes output a PDF for each galaxy describing the

probability of the galaxy being at redshift z. We first use the mean

of the PDF, zmean to separate the galaxies into redshift bins, and

then use the full PDF to calculate equation (19). In Fig. 1, we show

the normalized redshift distribution for each lens and source bin as

defined below.

3.2 Galaxy catalogue

To generate the κg maps, we use the same ‘benchmark’ sample

used in Giannantonio et al. (2016) and Crocce et al. (2016). This is

a magnitude-limited galaxy sample at 18 < i < 22.5 derived from

the SVA1 Gold catalogue with additional cleaning with colour, re-

gion, and star–galaxy classification cuts (see Crocce et al. 2016,

for full details of this sample). The final area is ∼116.2 deg2 with

an average galaxy number density of 5.6 arcmin−2. Six redshift

bins were used from zmean = 0.0 to 1.2 with �zmean = 0.2. The

magnitude-limited sample is constructed by using only the sky re-

gions with limiting magnitude deeper than i = 22.5, where the

limiting magnitude is estimated by modelling the survey depth

as a function of magnitude and magnitude errors (Rykoff, Rozo

& Keisler 2015). Various systematics tests on the benchmark

has been performed in Crocce et al. (2016) and Leistedt et al.

(2015).

3.3 Shear catalogue

Two shear catalogues are available for the DES SV data based on

two independent shear measurement codes NGMIX (Sheldon 2014)

and IM3SHAPE (Zuntz et al. 2013). Both catalogues have been tested

rigorously in Jarvis et al. (2015) and have been shown to pass the

requirements on the systematic uncertainties for the SV data. Our

main analysis is based on NGMIX due to its higher effective number

density of galaxies (5.7 compared to 3.7 arcmin−2 for IM3SHAPE).

However, we check in Section 4.5.2 that both catalogues produce

consistent results. We adopt the selection cuts recommended in

Jarvis et al. (2015) for both catalogues. This galaxy sample is there-

fore consistent with the other DES SV measurements in e.g. Becker

et al. (2015) and The Dark Energy Survey Collaboration et al.

(2015). Similar to these DES SV papers, we perform all our mea-

surements on a blinded catalogue (for details of the blinding proce-

dure, see Jarvis et al. 2015), and only unblind when the analysis is

finalized.

γ 1 and γ 2 maps are generated from the shear catalogues for five

redshift bins between zmean = 0.4 and 1.4 with �zmean = 0.2. Note

part of the highest redshift bin lies outside of the recommended

photo-z selection according to Bonnett et al. (2015) (zmean = 0.3–

1.3). We discard the highest bin in the final analysis due to low

signal-to-noise ratio (see Section 4.4), but for future work, how-

ever, it would be necessary to validate the entire photo-z range

used.
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Figure 2. Mask used in this work. The black region shows where the galaxy

bias is calculated (the bias mask). The black+grey map region is where all

maps are made (the map mask).

3.4 Mask

Two masks are used in this work. First, we apply a common mask

to all maps used in this work, we will refer this mask as the ‘map

mask’. The mask is constructed by re-pixelating the i > 22.5 depth

map into the coarser (flat) pixel grid of 5 × 5 arcmin2 we use to

construct all maps (see Section 4.1). The depth mask has a much

higher resolution (Nside = 4096 HEALPIX map) than this grid, which

means some pixels in the new grid will be partially masked in the

original HEALPIX grid. We discard pixels in the new grid with more

than half of the area masked in the HEALPIX grid. The remaining

partially masked pixels causes effectively a ∼3 per cent increase in

the total area. The partially masked pixels will be taken into account

later when generating κg (we scale the mean number of galaxy per

pixel by the appropriate pixel area). We also discard pixels without

any source galaxies.

Pixels on the edges of our mask will be affected by the smoothing

we apply to the maps. In addition, when performing the KS con-

version, the mask can affect our results. We thus define a second

‘bias mask’, where we start from the map mask and further mask

pixels that are closer than half a smoothing scale away from any

masked pixels except for holes smaller than 1.5 pixels.8 Both masks

are shown in Fig. 2.

3.5 Simulations

In this work we use the same mock galaxy catalogue from the MICE

simulations9 (Crocce et al. 2015; Fosalba et al. 2015a,b) which is

described in detail in Paper I. MICE adopts the �CDM cosmolog-

ical parameters: �m = 0.25, σ 8 = 0.8, ns = 0.95, �b = 0.044,

8 The reason for not apodizing the small masks is that it would reduce

significantly the region unmasked and thus the statistical power of our

measurement. We have tested in simulations that the presence of these

small holes does not affect our final measurements. We consider only pixels

surviving the bias mask when estimating galaxy bias. Fig. 2 shows both

masks used in this work.
9 http://cosmohub.pic.es/

�� = 0.75, and h = 0.7. The galaxy catalogue has been generated

according to a halo occupation distribution (HOD) and a subhalo

abundance matching (SHAM) prescription described in Carretero

et al. (2015). The main tests were done with the region 0◦ < RA <

30◦, 0◦ < Dec. < 30◦, while we use a larger region (0◦ < RA <

90◦, 0◦ < Dec. < 30◦) to estimate the effect from cosmic variance.

We use the following properties for each galaxy in the catalogue –

position on the sky (RA, Dec.), redshift (z), apparent magnitude in

the i band, and weak lensing shear (γ ).

In addition, we incorporate shape noise and masking effects that

are matched to the data. For shape noise, we draw randomly from the

ellipticity distribution in the data and add linearly to the true shear in

the mock catalogue to yield ellipticity measurements for all galaxies

in the mock catalogue. We also make sure that the source galaxy

number density is matched between simulation and data in each

redshift bin. For the mask, we simply apply the same mask from

the data to the simulations. Note that the unmasked simulation area

is ∼8 times larger than the data, thus applying the mask increases

the statistical uncertainty.

Finally, to investigate the effect of photo-z uncertainties, we add

a Gaussian photo-z error to each MICE galaxy according to its true

redshift. The standard deviation of the Gaussian uncertainty follows

σ (z) = 0.03(1 + z). This model for the photo-z error is simplistic,

but since we use this set of photo-z simulations mainly to test our

algorithm (the calculation of f in equation 19), we believe a simple

model will serve its purpose.

We note that the larger patch of MICE simulation used in this

work (∼30 × 30 deg2) is of the order of what is expected for the

first year of DES data (∼2000 deg2 and ∼1 mag shallower). Thus,

the simulation measurements shown in this work also serves as a

rough forecast for our method applied on the first year of DES data.

4 A NA LY SI S AND RESULTS

4.1 Procedure

Before we describe the analysis procedure, it is helpful to have a

mental picture of a 3D cube in RA, Dec., and z. The z-dimension

is illustrated in Fig. 1, with a coarse resolution of five redshift bins

for both lenses and sources. Each lens and source sample is then

collapsed into 2D maps in the RA/Dec. dimension. For each source

bin, we can only constrain the galaxy bias using the lens bins at the

foreground of this source bin. That is, for the highest source redshift

bin there are five corresponding lens bins, and for the lowest source

redshift bin there is only one lens bin. The analysis is carried out in

the following steps.

First, we generate all the necessary maps for the measurement:

γ 1, γ 2 maps for each source redshift bin j, and γ ′
1,g, γ ′

2,g, γ
′N
1,g , and

γ
′N
2,g maps for each lens bin i and source bin j. We generate random

maps (γ
′N
1,g , γ

′N
2,g) for the calculation of 〈γ

′N
α,gγ

′N
α,g〉 in equation (21).

All maps are generated using a sinusoidal projection at a reference

RA of 71◦ and 5 arcmin2 pixels on the projected plane. These maps

are then smoothed by a 50 arcmin boxcar filter while the map mask

is applied. The chosen pixel and smoothing scales are based on

tests described in Paper I. For a given source bin, the value of each

pixel in the γ 1 and γ 2 maps is simply the weighted mean of the

shear measurements in the area of that pixel. The weights reflect

the uncertainties in the shear measurements in the data, while we

set all weights to 1 in the simulations. For a given lens bin, the pixel

values of the γ ′
1,g, γ ′

2,g maps are calculated through equation (14),

where �′ is the number of galaxies in that pixel, and �̄′ is the mean
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number of galaxies per pixel in that lens bin. For each combination

of lens–source bins, we calculate μα
ij (equation 21) from the maps

after applying the bias mask. We assume �χ ′ ≈ the width of the

photo-z bin. f is calculated analytically through equation (19), where

we use φ′(z) ∝ p′
l(z), the estimated normalized redshift distribution

from our photo-z code for each lens bin.

We combine all estimates for the same lens bin i through equa-

tions (23) and (24), where the covariance between the different

measurements is estimated using 20 JK samples defined with a

‘k-mean’ algorithm (MacQueen 1967). The k-mean method splits a

set of numbers (centre coordinate of pixels in our case) into several

groups of numbers. The split is made so that the numbers in each

group is closest to the mean of them. In our analysis it effectively

divides our map into areas of nearly equal area, which we use as

our JK regions. The different JK samples are slightly correlated due

to the smoothing process. We estimate the effect of this smoothing

on the error bars by comparing the JK error bars on the zero-lag

autocorrelation of a random map (with the same size of the data)

before and after applying the smoothing. For 20 JK samples, this is

a ∼10 per cent effect on the error bars, which we will incorporate

in the data measurements. We have also verified that the results

are robust to the number of JK samples used. The above procedure

is applied to the data and the simulations using the same analysis

pipeline.

As hinted in Section 2.5, the error bars from JK resampling do

not fully account for the uncertainties from cosmic variance. A

more complete account for the uncertainty is to measure μ̄i for a

large number of simulations that are closely matched to the data.

We compare in Section 4.3 the resulting error estimation with and

without including cosmic variance.

4.2 Linear fit

In the final step of our analysis, we fit a simple linear model of galaxy

bias to the data. To do this, we take into account the full covariance

between the μ̄i measurements in different redshift bins, which we

estimate through simulations. In particular, we use a least-square

approach similar to equation (23) and consider a linear model for

the inverse galaxy bias in the following form:

D = μ̄Z, (28)

where D = {μ̄i} is now the vector containing the measured inverse

galaxy bias in each lens redshift bin, μ̄ = {μ̄0 μ̄1} is the vector

composed of the two coefficients for the linear fit, and Z =

(

1

z̄i

)

is

a 2D matrix with the first row being 1 and the second row containing

the mean redshift of each lens bin. The least-square fit to this model

and the errors on the fit then becomes

μ̄ = ZTC−1D[ZTC−1Z]−1, (29)

σ (μ̄)2 = (ZTC−1Z)−1, (30)

where

C−1 = τ Cov−1[D]. (31)

Here τ = (N − ν − 2)/(N − 1) corrects for the bias in the inverse

covariance matrix due to the finite number of simulations (Hartlap

et al. 2007), where N is the number of simulation samples, and ν

is the dimension of C. In Section 4.4, we only use the four lower

redshift bin for the linear fit, as the highest redshift bin is unstable

and noisy, so ν = 4 in our final measurement for the data.

4.3 Simulation tests

Following the procedure outlined above, we present here the result

of the redshift-dependent galaxy bias measurements from the MICE

simulation. We start from an ideal set-up in the simulations that

is very close to that used in Paper I and gradually degrade the

simulations until they match our data. Below we list the series of

steps we take:

(i) use the full area (∼900 deg2) with the true γ maps;

(ii) repeat above with photo-z errors included;

(iii) repeat above with shape noise included;

(iv) repeat above with SV mask applied;

(v) repeat above with 12 different SV-like areas on the sky, and

vary the shape noise 100 times for each.

Fig. 3 illustrates an example of how the γ 1, g and γ 1 maps degrade

over these tests. The left-hand column shows the γ 1, g maps while

the right-hand column shows the γ 1 maps. Note that the colour

bars on the upper (lower) two maps in the right-hand panel are two

(four) times higher compared to the left-hand column. This is to

accommodate for the large change in scales on the right arising from

shape noise in the γ 1 maps. The first row corresponds to (i) above,

and we can visually see the correspondence of some structures

between the two maps. Note that the γ 1, g map only contributes

to part of the γ 1 map, which is the reason that we do not expect

even the true γ 1, g and γ 1 maps to agree perfectly. The second row

shows the map with photo-z errors included, corresponding to the

step (ii). We find that the real structures in the maps are smoothed

by the photo-z uncertainties, lowering the amplitude of the map.

The smoothing from the photo-z is more visible in the γ 1, g map,

since the γ 1 map probes an integrated effect and is less affected

by photo-z errors. The third row shows what happens when shape

noise is included, which corresponds to the step (iii) above. We find

the structures in the γ 1 map becomes barely visible in the presence

of noise, with the amplitude much higher than the noiseless case

as expected. The bottom row corresponds to the step (iv) above,

where the SV mask is applied to both maps. For the γ 1 map this is

merely a decrease in the area. But for the γ 1, g map, this also affects

the conversion from κg to γ g, causing edge effects in the γ 1, g map

which are visible in the bottom left-hand map in Fig. 3. Step (v) is

achieved by moving the mask around and drawing different random

realizations of shape noise for the source galaxies.

With all maps generated, we then calculate the redshift-dependent

galaxy bias following equations (23) and (24) for each of the steps

from (i) to (v). In Fig. 4 we show the result for the different stages,

overlaid with the bias from the 2PCF measurement described in

Paper I. In step (i), our measurements recover the 2PCF estimates,

confirming the results in Paper I, that we can indeed measure the

redshift-dependent bias using this method under appropriate set-

tings. Our error bars are smaller than that in Paper I, which is

due to the fact that we have combined measurements from several

source bins, and that we estimate inverse-bias instead of bias di-

rectly. Since the only difference between this test and the test in

Paper I is the inclusion of the KS conversion, we have also shown

that the KS conversion in the noiseless case does not introduce

significant problems in our measurements. The error bars on the

highest redshift bin are large due to the small number of source

and lens galaxies. In step (ii), we introduce photo-z errors. We find

that the photo-z errors do not affect our measurements within the

measurement uncertainties. In step (iii), the error bars increase due

to the presence of shape noise. In step (iv), we apply the SV mask,

making the result much noisier due to the smaller area. We repeat
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3210 C. Chang et al.

Figure 3. Example of simulation maps used in this work. The left-hand column shows γ 1, g maps and the right-hand column shows γ 1 maps. This γ 1, g maps

are generated from the source redshift bin z (or zmean) = 1.0–1.2 and the lens redshift bin z (or zmean) = 0.4–0.6. The γ 1 maps are generated from the source

redshift bin z (or zmean) = 1.0–1.2. The galaxy bias for the lens galaxies can be measured by cross-correlating the left- and the right-hand column. From top

to bottom illustrates the different stages of the degradation of the simulations to match the data. The first row shows the γ 1, g map against the true γ 1 map for

the full 30 × 30 deg2 area. The second row shows the same maps with photo-z errors included, slightly smearing out the structures in both maps. The third

row shows the same γ 1, g map as before against the γ 1 that contains shape noise, making the amplitude higher. Finally, the bottom row shows both maps with

the SV mask applied, which is also marked in the third row for reference. Note that the colour scales on the γ 1 maps is two (four) times higher in the upper

(lower) two panels than that of the γ 1, g maps.
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Figure 4. Redshift-dependent galaxy bias measured from simulations with

different levels of degradation from the ideal scenario tested in Paper I. The

grey line shows the bias from the 2PCF measurement, which we take as

‘truth’. The black, blue, green, orange, and red points corresponding to the

steps (i), (ii), (iii), (iv), and (v) in Section 4.3, respectively. The error bars in

(i), (ii), and (iii) correspond to the JK error bars (equation 24). The error bars

for (iv) is the mean JK error bars for 1200 simulations while the error bars

for (v) is the standard deviation of the measurements of 1200 simulations.

this step on 12 different SV-like areas in a larger (30 × 90 deg2) sim-

ulation area and vary the shape noise realization 100 times for each

area. The orange points in Fig. 4 shows the average measurement

and JK error bars of these 1200 simulations. We find that albeit the

large uncertainties, our method indeed gives an unbiased estimation

of the redshift dependent of bias which is consistent with the 2PCF

estimations. In step (v), we account for the additional uncertainty

in our measurements due to cosmic variance. The red points are

the same as the orange points, except that the error bars are esti-

mated from the standard deviation of the 1200 measurements in the

simulations. We find that the contribution to the uncertainties from

cosmic variance can be important especially at low redshift.

With the series of simulation tests above, we have shown that our

measurement method itself is well grounded, but the presence of

measurement effects and noise can introduces large uncertainties in

the results. In the next section, we continue with the same measure-

ment on DES SV data and will use the full simulation covariance

derived in this section for the final fitting process. We believe the

simulation covariance matrix captures the dominant sources of un-

certainties in the problem.

Figure 6. Redshift-dependent bias measured from the DES SV data. The

black data points show the result from this work. The red and green points

show the measurements on the same galaxy sample with different methods.

The grey dashed line is the best fit to the black data points.

4.4 Redshift-dependent galaxy bias of DES SV data

We now continue to measure redshift-dependent galaxy bias with

the DES SV data using the same procedure as in the simulations.

Fig. 5 shows some examples of the maps. The rightmost panel

shows the γ 1 map at redshift bin zmean = 1.0–1.2, while the rest

of the maps are the γ 1, g maps at different redshift bin evaluated

for this γ 1 map. We see the effect of the lensing kernel clearly: the

leftmost panel is at the peak of the lensing kernel, giving it a higher

weight compared to the other lens bins. We also see correlations

between γ 1, g maps at different redshift bins. This is a result of the

photo-z contamination.

In Fig. 6 we show the galaxy bias measurement for our

magnitude-limited galaxy sample from DES SV together with two

other independent measurements with the same galaxy sample (dis-

cussed in Section 5). We have excluded the highest redshift bin since

with only a small number of source galaxies, the constraining power

from lensing in that bin is very weak. The black data points show

the measurement and uncertainty estimated from this work, with a

best-fitting linear model of μ(z) = 1.07±0.24 − 0.35±0.42z. The error

bars between the redshift bins are correlated, and have been taken

into account during the fit. Table 2 summarizes the results.

As discussed earlier, our method becomes much less constraining

going to higher redshift, as the source galaxies become sparse. This

is manifested in the increasingly large error bars going to high

redshifts. Here we only performed a simple linear fit to the data

Figure 5. Example of maps from DES SV data. The rightmost panel shows the γ 1 map generated from the source redshift bin zmean = 1.0–1.2, while the

other panels show the γ 1, g maps generated for the source redshift bin zmean = 1.0–1.2 and for different lens redshifts (left: zmean = 0.4–0.6; middle: zmean =

0.6–0.8; right: zmean = 0.8–1.0). The title in each panel for γ 1, g indicate the lens and source redshift, while the title for γ 1 indicates the source redshift. Note

that the colour bars are in different ranges, but are matched to the simulation plot in Fig. 3. In addition, the leftmost and the rightmost panels correspond to the

bottom row of that figure.
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Table 2. Bias measurement and 1σ error bars from DES SV using the method tested in this work, with all possible lens–source combinations. We also

compare here our main measurements with that using alternative shear and photo-z catalogues. Finally, we compare our results with other measurement

methods carried out on the same data set. The Crocce et al. (2016) estimates are from table 3 in that paper, while the Giannantonio et al. (2016) estimates

are from table 2 in that paper.

Lens redshift (zmean)

0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

This work (NGMIX+SKYNET) 1.12 ± 0.19 0.97 ± 0.15 1.38 ± 0.39 1.45 ± 0.56

This work (IM3SHAPE+SKYNET) 1.21 ± 0.25 1.12 ± 0.24 0.90 ± 0.19 0.91 ± 0.28

This work (NGMIX+TPZ) 1.23 ± 0.23 1.07 ± 0.18 1.39 ± 0.40 1.29 ± 0.44

This work (NGMIX+BPZ) 0.84 ± 0.11 1.00 ± 0.16 1.13 ± 0.26 0.95 ± 0.24

Crocce et al. (2016) 1.07 ± 0.08 1.24 ± 0.04 1.34 ± 0.05 1.56 ± 0.03

Giannantonio et al. (2016) 0.57 ± 0.25 0.91 ± 0.22 0.68 ± 0.28 1.02 ± 0.31

given the large uncertainties in our measurements. In the future,

one could extend to explore more physically motivated galaxy bias

models (Matarrese et al. 1997; Clerkin et al. 2015).

Compared with A12, our data set is approximately ∼105 times

larger, but with a (source) galaxy number density ∼11.6 times lower.

This yields roughly ∼3 times lower statistical uncertainty in our

measurement. Our sample occupies a volume slightly larger than

the 0 < z < 1 sample in A12. Note, however, that due to photo-z

uncertainties and the high shape noise per unit area, we expect a

slightly higher level of systematic uncertainty in our measurement.

Since in A12, the emphasis was not on measuring linear bias, one

should take caution in comparing directly our measurement with

A12. But we note that the large uncertainties at z > 0.6 and the

weak constraints on the redshift evolution in the galaxy bias is

also seen in A12. To give competitive constraints on the redshift

evolution, higher redshift source planes would be needed.

4.5 Other systematics test

In Section 4.3, we have checked for various forms of systematic

effects coming from the KS conversion, finite area, complicated

mask geometry, and photo-z errors. Here we perform three addi-

tional tests. First, we check that the cross-correlation between the

B-mode shear γ B and γ g is small. Next, we check that using the

second DES shear pipeline, IM3SHAPE gives consistent answers with

that from NGMIX. Finally, we check that using two other photo-z

codes also give consistent results. These three tests show that there

are no significant systematic errors in our measurements.

4.5.1 B-mode test

Lensing B-mode refers to the divergent-free piece of the lensing

field, which is zero in an ideal, noiseless scenario. As a result,

B-mode is one of the measures for systematic effects in the data. In

Jarvis et al. (2015), a large suite of tests have been carried out to

ensure that the shear measurements have lower level of systematic

uncertainties compared to the statistical uncertainties. Neverthe-

less, here we test in specific the B-mode statistics relevant to our

measurements.

We construct a γ B field by rotating the shear measurements in

our data by 45◦, giving

γ B = γB,1 + iγB,2 = −γ2 + iγ1. (32)

Substituting γ B into γ in our galaxy bias calculation (equation 21)

gives an analogous measurement to b, which we will refer to as

bB. Since we expect γ B not to correlate well with γ g, 1/bB would

ideally go to zero. In Fig. 7, we show all the bB measurements using

Figure 7. All 1/bB(z) measurements from the B-mode shear and the same

γ g in our main analysis. Each small blue data point represents a measurement

from a combination of lens redshift, source redshift, and shear component.

Note that the low-redshift bins contain more data points, as there are more

source galaxies that can be used for the measurement. The large blue points

are the weighted mean of all measurements at the same redshift bin from the

DES SV data, while the red points are that from simulations that are well

matched to data.

both shear component and all lens–source combinations. We see

that all the data points are consistent with zero at the 1–2σ level,

assuring that the B-modes in the shear measurements are mostly

consistent with noise. We also show the weighted mean of all the

data points and the corresponding B-mode measurements from one

of the simulation used in Section 4.3 (iv). We see that the level and

scatter in the data are compatible with that in the simulations.

4.5.2 IM3SHAPE test

As described in Section 3.3, two independent shear catalogues from

DES SV were constructed. Here, we perform the same measurement

in our main analysis using the IM3SHAPE catalogue. The IM3SHAPE

catalogue contains less galaxies, thus the measurements are slightly

noisier. The resulting redshift-dependent galaxy measurements are

shown in Table 2 and are overall slightly higher than the NGMIX

measurements, and there is almost no constraining power on the

evolution. The best-fitting linear bias model is μ(z) = 0.64±0.28 +

0.56±0.52z, which is consistent with the NGMIX measurements at the

1σ level. The B-modes (not shown here) are similar to Fig. 7.

4.5.3 Photo-z test

As mentioned in Section 3.1, several photo-z catalogues were gen-

erated for the DES SV data set and shown in Bonnett et al. (2015) to
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meet the required precision and accuracy for the SV data. All above

analyses were carried out with the SKYNET photo-z catalogue. Here

we perform the exact same analysis using the other two catalogues:

BPZ and TPZ. In specific, to be consistent with the other DES SV anal-

yses (Becker et al. 2015; The Dark Energy Survey Collaboration

et al. 2015), we keep the tomographic bins unchanged (binned by

SKYNET mean redshift), but use the p(z) from the different photo-z

codes to calculate f. The lensing or galaxy maps themselves remain

unchanged.

Table 2 lists the results from the different photo-z catalogues.

Since SKYNET and TPZ are both machine learning codes and respond to

systematic effects in a similar fashion, while BPZ is a template fitting

code, we can thus view the difference between the results from

BPZ and the others as a rough measure of the potential systematic

uncertainty in our photo-z algorithm (see also discussion in Bonnett

et al. 2015), which is shown here to be within the 1σ error bars.

5 C O M PA R I S O N W I T H OT H E R

MEA SUREM ENTS

The redshift-dependent galaxy bias has been measured on the same

data set using other approaches. Here we compare our result with

two other measurements – galaxy clustering (Crocce et al. 2016,

hereafter C16) and cross-correlation of galaxies and CMB lensing

(Giannantonio et al. 2016, hereafter G16). We note that both these

analyses assumed the most recent Planck cosmological parameters

(Planck Collaboration XVI 2014), which is slightly different from

our assumptions (see Section 3.5). But since our measurement de-

pends very weakly on the assumption of cosmological parameters

(as discussed in Section 2.4), the stronger cosmology dependencies

come from the cosmological parameters assumed in C16 and G16,

which are known well within our measurement uncertainties. We

also note that the results we quote in Table 2 are based on the photo-z

code TPZ, which means our redshift binning is not completely iden-

tical to theirs.

5.1 Bias measurement from galaxy clustering

In C16, galaxy bias was estimated through the ratio between the

projected galaxy angular correlation function (2PCF) in a given

redshift bin and an analytical dark matter angular correlation func-

tion predicted at the same redshift. The latter includes both linear

and non-linear dark matter clustering derived from CAMB (Lewis,

Challinor & Lasenby 2000) assuming a set of cosmological pa-

rameters. In C16, a flat �CDM+ν cosmological model based on

Planck 2013+Wilkinson Microwave Anisotropy Probe (WMAP)

polarization+Atacama Cosmology Telescope (ACT)/South Pole

Telescope (SPT)+baryon acoustic oscillations (BAO) was used.

The results in C16 as listed in Table 2 were shown to be consis-

tent with the independent measurement from the Canada–France–

Hawaii Telescope Legacy Survey (CFHTLS; Coupon et al. 2012).

Compared to C16, our work aims to measure directly the lo-

cal galaxy bias (equation 1) instead of the galaxy bias defined

through the 2PCF (equation 2). Although the two measurements

agree in the linear regime where this work is based on, comparing

the measurements on smaller scales will provide further insight to

these galaxy bias models. Our method is less sensitive to assump-

tions of cosmological parameters compared to the 2PCF method.

In particular, it does not depend strongly on σ 8, which breaks the

degeneracy between σ 8 and the measured galaxy bias b in other

measurement methods. Finally, since our measurement is a cross-

correlation method (compared to C16, an autocorrelation method),

it suffers less from systematic effects that only contaminate either

the lens or the source sample. On the other hand, however, lensing

measurements are intrinsically noisy and the conversion between

shear and convergence is not well behaved in the presence of noise

and complicated masking. In addition, we only considered a one-

point estimate (zero-lag correlation), which contains less informa-

tion compared to the full 2PCF functions. All these effects result in

much less constraining power in our measurements.

As shown in Fig. 6 and listed in Table 2, our measurements and

C16 agree very well except for the redshift bin z = 0.4–0.6 (slightly

more than 1σ discrepancy). We note, however, both C16 and our

work may not have included the complete allocation of systematic

errors (especially those coming from the photo-z uncertainties),

which could introduce some of the discrepancies.

5.2 Bias measurement from cross-correlation of galaxies and

CMB lensing

In G16, galaxy bias is estimated by the ratio between the galaxy–

CMB convergence cross-correlation and an analytical prediction of

the dark matter–CMB convergence cross-correlation, both calcu-

lated through the 2PCF (and also in harmonic space through the

power spectrum). Since the lensing efficiency kernel of the CMB

is very broad and the CMB lensing maps are typically noisy, this

method has less constraining power than C16. However, by using an

independent external data, the CMB lensing maps from the SPT and

the Planck satellite, this measurement serves as a good cross-check

for possible systematic effects in the DES data.

In calculating the theoretical dark matter–CMB convergence

cross-correlation, G16 also assumed a fixed cosmology and de-

rived all predictions using CAMB. The σ 8–b degeneracy is thus also

present in their analysis. We note, however, that one could apply

our method to the CMB lensing data and avoid this dependency. In

our framework, the CMB lensing plane will serve as an additional

source plane at redshift ∼1100. We defer this option to future work.

The results from G16 are shown in Fig. 6 and listed in Table 2.

These results come from the ratio between the measured and the

predicted power spectrum, which suffers less from non-linear effects

compared to the measurement in real space (2PCF). We find that

G16 are systematically lower than our measurement at the 1–2σ

level for all redshift bins. G16 also have more constraining power at

high redshift compared to our results, as expected. Possible reasons

for the discrepancy at low redshift include systematic errors (in e.g.

the photo-z estimation) that are not included in either C16, G16, or

this work. In addition, the redshift bins are significantly covariant,

making the overall discrepancy less significant. Finally, the scales

used in the three studies are slightly different. We refer the readers

to G16 for more discussion of this discrepancy.

6 C O N C L U S I O N

In this paper, we present a measurement of redshift-dependent bias

using a novel technique of cross-correlating the weak lensing shear

maps and the galaxy density maps. The method serves as an al-

ternative measurement to the more conventional techniques such

as two-point galaxy clustering, and is relatively insensitive to the

assumed cosmological parameters. The method was first developed

in A12 and later tested more rigorously with simulations in a com-

panion paper (Paper I). Here we extend the method and apply it

on wide-field photometric galaxy survey data for the first time. We

measure the galaxy bias for a magnitude-limited galaxy sample in

the DES SV data.
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Following from Paper I, we carry out a series of simulation tests

which incorporate step-by-step realistic effects in our data including

shape noise, photo-z errors, and masking. In each step, we investi-

gate the errors introduced in our estimation of galaxy bias. We find

that shape noise and cosmic variance are the main sources of uncer-

tainties, while the photo-z affects the measurements in a predictable

way if the characteristics of the photo-z uncertainties are well un-

derstood. As the measurement itself is very noisy, simulation tests

where we know the ‘truth’ provide a good anchor for building the

analysis pipeline.

In our main analysis, we measure the galaxy bias with an

18 < i < 22.5 magnitude-limited galaxy sample in four tomo-

graphic redshift bins to be 1.12 ± 0.19 (z = 0.2–0.4), 0.97 ± 0.15

(z = 0.4–0.6), 1.38 ± 0.39 (z = 0.6–0.8), and 1.45 ± 0.56 (z =

0.8–1.0). Measurements from higher redshifts are too noisy to be

constraining. The best-fitting linear model gives b−1(z) = μ(z) =

1.07±0.24 − 0.35±0.42z. The results are consistent between different

shear and photo-z catalogues.

The galaxy bias of this same galaxy sample has also been mea-

sured with two other techniques described in C16 and G16. The

three measurements agree at the 1–2σ level at all four redshift

bins, though the results from G16 are systematically lower than our

measurements. We note that our method is more constraining at

low-redshift regions where there are more source galaxies behind

the lens galaxies. As pointed out in A12, to constrain the evolution

of galaxy bias, our current data set may not be optimal. A more

efficient configuration would be combining a wide, shallow data

set with a narrow, deep field. We plan on exploring these possibil-

ities in the future. The main uncertainty in this work comes from

the combined effect of masking, shape noise, and cosmic variance.

However, as we demonstrated with simulations, moving to the larger

sky coverage of the first and second year of DES data would reduce

this effect significantly.

We have demonstrated the feasibility and validity of our method

for measuring galaxy bias on a wide-field photometric data set.

Looking forward to the first and second year of DES data

(∼2000 deg2 and ∼1 mag shallower), we expect to explore a vari-

ety of other topics using this method with the increased statistical

power. For example, the same measurement could be carried out on

different subsamples of lens galaxies (in magnitude, colour, galaxy

type, etc.) and gain insight into the different clustering properties

for different galaxy populations. Also, one can extend the measure-

ment into the non-linear regime and measure the scale dependencies

of the galaxy bias. Finally, it would be interesting to compare the

measurement from the 2PCF method and our method (which is a

measure of local bias) on different scales to further understand the

connections between the two galaxy bias models.
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A P P E N D I X A : C H O I C E O F E S T I M ATO R

In our main analysis, we use the inverse-galaxy bias μ = 1/b as

our main estimator instead of estimating galaxy bias directly. In

this appendix we show the effect of using b as the estimator. The

origin of the difference comes from the fact that when combining

the multiple measurements in the same lens bin, we use the least-

square formalism equation (23), which relies on the covariance

Figure A1. Same as Fig. 4, but using b as the estimator.

Figure A2. Same as Fig. 6, but using b as the estimator.

matrix Ci estimated through JK resampling. This covariance matrix

can become ill-behaved depending on the estimator used. In our

case, the denominator of b (the inverse of equation 21) can become

close to zero, which makes the inversion of the covariance matrix

unstable. We find that this introduces a bias in our final result, which

will need to be calibrated.

In Fig. A1 we show the equivalent of Fig. 4 using b as an esti-

mator instead of μ. As the distribution of b estimated through the

simulations have large outliers, we exclude simulations with bias

estimates below 0 and above 5. We find that the main difference

between Fig. 4 and Fig. A1 is in the orange and red points, where

all the observational effects are included. For the less noisy scenar-

ios (i), (ii), and (iii), the change is very minor. This is because the

effect is more manifested when the measurements are noisy. The

final (red) points in Fig. A1 is biased from the ‘truth’ by �b due to

the matrix inversion discussed above.

Once we calibrate �b from these simulations and apply it to

the data measurements, we have Fig. A2, which is the equivalent

of Fig. 6 but using b as an estimator instead of μ. We find that

after taking into account the bias derived from Fig. 4, the final

measurements from the data is still consistent with our main analysis

in Fig. 6. Nevertheless, as using b relies heavily of the quality of the

simulations and the outlier rejection described above is not entirely

objective, we choose to use the estimator μ instead.
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