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ABSTRACT

Galaxy clustering and galaxy–galaxy lensing probe the connection between galaxies and their

dark matter haloes in complementary ways. Since the clustering of dark matter haloes depends

on cosmology, the halo occupation statistics inferred from the observed clustering properties

of galaxies are degenerate with the adopted cosmology. Consequently, different cosmologies

imply different mass-to-light ratios for dark matter haloes. Galaxy–galaxy lensing, which

yields direct constraints on the actual mass-to-light ratios, can therefore be used to break this

degeneracy, and thus to constrain cosmological parameters. In this paper, we establish the

link between galaxy luminosity and dark matter halo mass using the conditional luminosity

function (CLF), �(L|M) dL, which gives the number of galaxies with luminosities in the

range L ± dL/2 that reside in a halo of mass M. We constrain the CLF parameters using

the galaxy luminosity function and the luminosity dependence of the correlation lengths of

galaxies. The resulting CLF models are used to predict the galaxy–galaxy lensing signal.

For a cosmology that agrees with constraints from the cosmic microwave background, i.e.

(�m, σ 8) = (0.238, 0.734), the model accurately fits the galaxy–galaxy lensing data obtained

from the Sloan Digital Sky Survey. For a comparison cosmology with (�m, σ 8) = (0.3, 0.9),

however, we can accurately fit the luminosity function and clustering properties of the galaxy

population, but the model predicts mass-to-light ratios that are too high, resulting in a strong

overprediction of the galaxy–galaxy lensing signal. We conclude that the combination of

galaxy clustering and galaxy–galaxy lensing is a powerful probe of the galaxy–dark matter

connection, with the potential to yield tight constraints on cosmological parameters. Since

this method mainly probes the mass distribution on relatively small (non-linear) scales, it is

complementary to constraints obtained from the galaxy power spectrum, which mainly probes

the large-scale (linear) matter distribution.

Key words: gravitational lensing – methods: statistical – galaxies: haloes – cosmological

parameters – dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

With the advent of large galaxy redshift surveys, it has become pos-

sible to obtain accurate measurements of the clustering of galaxies

as a function of their properties, such as luminosity, morphology

and colour (e.g. Guzzo et al. 2000; Norberg et al. 2001, 2002;

Zehavi et al. 2005; Wang et al. 2007). Since galaxies are believed

⋆E-mail: cacciato@mpia.de

†International Max-Planck Research School Fellow.

to form and reside in dark matter haloes, the clustering strength of

a given population of galaxies can be compared to that of dark mat-

ter haloes as predicted by numerical simulations or the extended

Press–Schechter formalism. Such a comparison reveals a wealth

of information about the so-called galaxy–dark matter connection

(e.g. Jing, Mo & Börner 1998; Ma & Fry 2000; Peacock & Smith

2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002; van den

Bosch, Yang & Mo 2003a; Yang, Mo & van den Bosch 2003; Zehavi

et al. 2005; Zheng et al. 2005; van den Bosch et al. 2007).

Unfortunately, this method of constraining the link between

galaxies and dark matter haloes using galaxy clustering has one
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important shortcoming: the halo occupation statistics inferred from

the observed clustering properties depend on the cosmological pa-

rameters adopted. More precisely, models based on different cos-

mologies can fit the clustering data equally well by simply rely-

ing on different halo occupation statistics or, equivalently, differ-

ent mass-to-light ratios. In order to break this degeneracy between

cosmology and halo occupation statistics independent constraints

on the mass-to-light ratios are required (e.g. van den Bosch, Mo

& Yang 2003b; Tinker et al. 2005). One method that can pro-

vide these constraints is galaxy–galaxy lensing (hereafter g–g lens-

ing), which probes the mass distributions (and hence the halo

masses) around galaxies. This implies that the combination of

clustering and lensing in principle holds the potential to put con-

straints on cosmological parameters (Seljak et al. 2005; Yoo et al.

2006).

The first attempt to detect g–g lensing was made by Tyson

et al. (1984), but because of the relatively poor quality of their

data they were unable to detect a statistically significant signal.

The first clear detection was obtained only 12 yr later by Brainerd,

Blandford & Smail (1996). However, only with the advent of wider

and deeper surveys, g–g lensing has been detected with very high

significance, and as function of various properties of the lensing

galaxies (e.g. Griffiths et al. 1996; Hudson et al. 1998; McKay et al.

2001; Guzik & Seljak 2002; Hoekstra et al. 2003; Hoekstra, Yee &

Gladders 2004; Sheldon et al. 2004, 2007a,b; Heymans et al. 2006;

Mandelbaum et al. 2006; Johnston et al. 2007; Parker et al. 2007;

Mandelbaum, Seljak & Hirata 2008). Unfortunately, a proper inter-

pretation of these data in terms of the link between galaxies and dark

matter haloes has been hampered by the fact that the lensing signal

can typically only be detected when stacking the signal of many

lenses. Since not all lenses reside in haloes of the same mass, the

resulting signal is a non-trivial average of the lensing signal due to

haloes of different masses. Most studies to date have assumed that

the relation between the luminosity of a lens galaxy and the mass

of its halo is given by a simple power-law relation with zero scatter

(see Limousin et al. 2007 for a detailed overview). However, it has

become clear, recently, that the scatter in this relation between light

and mass can be very substantial (More et al. 2009a, and references

therein). As shown by Tasitsiomi et al. (2004), this scatter has a

very significant impact on the actual lensing signal, and thus has to

be accounted for in the analysis. In addition, central galaxies (those

residing at the centre of a dark matter halo) and satellite galaxies

(those orbiting around a central galaxy) contribute very different

lensing signals, even when they reside in haloes of the same mass

(e.g. Natarajan, Kneib & Smail 2002; Yang et al. 2006; Limousin

et al. 2007). This has to be properly accounted for (see e.g. Guzik &

Seljak 2002), and requires knowledge of both the satellite fractions

and of the spatial number density distribution of satellite galaxies

within their dark matter haloes.

Over the years, numerous techniques have been developed to

interpret g–g lensing measurements (Natarajan & Kneib 1997;

Schneider & Rix 1997; Guzik & Seljak 2001; Brainerd & Wright

2002). Several authors have also used numerical simulations to

investigate the link between g–g lensing and the galaxy–dark mat-

ter connection (e.g. Tasitsiomi et al. 2004; Limousin, Kneib &

Natarajan 2005; Natarajan, De Lucia & Springel 2007; Hayashi

& White 2008). It has become clear from these studies that g–g

lensing in principle contains a wealth of information regarding the

mass distributions around galaxies; in addition to simply probing

halo masses, g–g lensing also holds the potential to measure the

shapes, concentrations and radii of dark matter haloes, and the first

observational results along these lines have already been obtained

(Natarajan et al. 2002; Hoekstra et al. 2004; Mandelbaum et al.

2006, 2008; Limousin et al. 2007).

In this paper we use an analytical model, similar to that devel-

oped by Seljak (2000) and Guzik & Seljak (2001), to predict the

g–g lensing signal as a function of the luminosity of the lenses

starting from a model for the halo occupation statistics that is con-

strained to fit the abundances and clustering properties of the lens

galaxies. The occupation statistics are described via the conditional

luminosity function (CLF; see Yang et al. 2003), which specifies

the average number of galaxies of given luminosity that reside in a

halo of given mass. A comparison of g–g lensing predictions with

the data allows us to test the mass-to-light ratios inferred from the

halo occupation model, and ultimately to constrain cosmological

parameters.

In a companion paper (Li et al. 2009), we use the Sloan Digital

Sky Survey (SDSS) galaxy group catalogue of Yang et al. (2007,

hereafter Y07) to predict the g–g lensing signal, which we compare

to data from the SDSS. Although, Li et al. obtain their halo occupa-

tion statistics from a galaxy group catalogue, rather than from the

galaxy clustering properties, they obtain very similar results.

The present paper is organized as follows. We review the nec-

essary formalism of g–g lensing in Section 2, with a detailed de-

scription of the model used to interpret the g–g lensing signal. The

CLF, used to describe the connection between galaxies and dark

matter haloes, is introduced in Section 3. The properties of the pre-

dicted g–g lensing signal are illustrated in Section 4 together with a

comparison between theoretical predictions and SDSS data. A de-

tailed analysis of the assumptions entering the model is presented

in Section 5. Conclusions are presented in Section 6.

2 TH E H A L O M O D E L D E S C R I P T I O N

O F G A L A X Y – G A L A X Y L E N S I N G

G–g lensing measures the tangential shear distortions, γ t, in the

shapes of background galaxies (hereafter sources) induced by the

mass distribution around foreground galaxies (hereafter lenses).

Since the tangential shear distortions due to a typical lens galaxy

(and its associated dark matter halo) are extremely small, and since

background sources have non-zero intrinsic ellipticities, measur-

ing γ t with sufficient signal-to-noise ratio requires large numbers

of background galaxies. In general, however, the number density of

detectable background sources is insufficient for a reliable measure-

ment of γ t around individual lenses. This problem is circumvented

by stacking many lenses according to some observable property. For

example, Mandelbaum et al. (2006) measured γ t as a function of

the transverse comoving distance R by stacking thousands of lenses

in a given luminosity bin [L1, L2]. The resulting shear γ t(R|L1, L2)

holds information regarding the characteristic mass of the haloes

that host galaxies with luminosity L1 ≤ L ≤ L2, and hence can be

used to constrain the galaxy–dark matter connection.

The tangential shear as a function of the projected radius R around

the lenses is related to the excess surface density (ESD) profile,

��(R), according to

��(R) = �(<R) − �(R) = γt(R)�crit, (1)

where �(R) is the projected surface density and �(<R) is its aver-

age inside R,

�̄(<R) =
2

R2

∫ R

0

�(R′)R′ dR′ (2)
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Clustering and galaxy–galaxy lensing 931

Figure 1. Illustration of the geometry between source, lens and observer.

(Miralda-Escudé 1991; Sheldon et al. 2004). The so-called critical

surface density, �crit, is a geometrical parameter given by

�crit =
c2

4πG

ωS

ωLωLS(1 + zL)
, (3)

with ωS, ωL and ωLS the comoving distances to the source, the lens

and between the two, respectively, and with zL the redshift of the

lens.

The projected surface density is related to the galaxy–dark matter

cross-correlation, ξ g,dm(r), according to

�(R) = ρ

∫ ωs

0

[1 + ξg,dm(r)] dω, (4)

where ρ is the average density of matter in the Universe and the

integral is along the line of sight with ω the comoving distance

from the observer. The three-dimensional comoving distance r is

related to ω through r2 = ω2
L + ω2 − 2ωLωcos θ (see Fig. 1 for

an illustration of the geometry). Since ξ g,dm(r) goes to zero in the

limit r → ∞, and since in practice θ is small, we can approximate

equation (4) using

�(R) = 2ρ

∫ ∞

R

[1 + ξg,dm(r)]
r dr

√
r2 − R2

, (5)

which is the expression we adopt throughout.

The main goal of this paper is to test the halo occupation statis-

tics inferred from galaxy clustering data with g–g lensing data. As

is evident from the above equations, the lensing signal ��(R) is

completely specified by the galaxy–dark matter cross-correlation,

which, as we demonstrate below, can be computed from a given

halo occupation model. For computational convenience, we will be

working in Fourier space, where the related quantity is the galaxy–

dark matter cross power spectrum,

Pg,dm(k) = 4π

∫ ∞

0

ξg,dm(r)
sin(kr)

kr
r2 dr. (6)

In order to compute this power spectrum, we follow Seljak (2000)

and Guzik & Seljak (2001), and adopt the halo model, according

to which all dark matter is partitioned over dark matter haloes (see

also Mandelbaum et al. 2005b). As usual in the halo model, it is

convenient to split Pg,dm(k) into two terms: a one-halo term, which

describes the cross-correlation between galaxies and the dark matter

particles that reside in the same halo, and a two-halo term, where

each galaxy is cross-correlated with the dark matter in all haloes

except for the one that hosts the galaxy in question. The computation

of these two terms has to account for two important complications.

First of all, because of the stacking procedure used in order to

achieve sufficient signal-to-noise ratio, the ESD contains signal

from haloes with different masses. A proper estimate of Pg,dm(k),

therefore, requires the full probability distribution that a galaxy with

the stacking property used (in this case luminosity) resides in a dark

matter halo of mass M. Secondly, central galaxies (those residing at

the centre of a dark matter halo) and satellite galaxies (those orbiting

around the centre of a dark matter halo) contribute very different

lensing signals, even when they reside in haloes of the same mass

(e.g. Yang et al. 2006). This has to be properly accounted for, and

requires knowledge of both the satellite fractions and of the spatial

number density distribution of satellite galaxies within their dark

matter haloes. Based on these considerations, we split Pg,dm(k) in

four terms:

Pg,dm(k) = fc

[
P

1h,c
g,dm(k) + P

2h,c
g,dm(k)

]

+ fs

[
P

1h,s
g,dm(k) + P

2h,s
g,dm(k)

]
, (7)

where ‘c’ and ‘s’ stand for ‘central’ and ‘satellite’, respectively.

The reason for explicitly writing the central and satellite fractions

(fc and f s = 1 − f c, respectively) in the above equation will become

apparent below, in which we describe each of these four terms in

turn.

2.1 The one-halo term

The one-halo central term of the power spectrum describes the

dark matter distribution inside haloes hosting central galaxies. For a

single, central lensing galaxy, it simply reflects the Fourier transform

of the overdensity of the dark matter halo in which the lens resides:

P
1h,c
g,dm(k) =

M

ρ
udm(k|M), (8)

where udm(k|M) is the normalized Fourier transform of the mass

density profile, ρ(r|M):

udm(k|M) = 4π

∫ r180

0

ρ(r|M)

M

sin(kr)

kr
r2 dr, (9)

with r180 the radius of the halo (see Section 2.3). However, because

the lensing signal is measured by stacking galaxies with luminosities

in the range [L1, L2], we have that

P
1h,c
g,dm(k) =

1

ρ

∫ ∞

0

Pc(M|L1, L2) M udm(k|M) dM, (10)

where Pc(M|L1, L2) is the probability that a central galaxy with

luminosity L1 ≤ L ≤ L2 resides in a halo of mass M. This probability

function reflects the halo occupation statistics, and, using Bayes’

theorem, can be written as

Pc(M|L1, L2) dM =
〈Nc〉M (L1, L2) n(M)

nc(L1, L2)
dM. (11)

Here 〈Nc〉M (L1, L2) is the average number of central galaxies with

luminosities in the range [L1, L2] that reside in a halo of mass

M, n(M) is the halo mass function and

nc(L1, L2) =
∫ ∞

0

〈Nc〉M (L1, L2) n(M) dM (12)

is the comoving number density of central galaxies in the given

luminosity range.

Combining (10) and (11), the first term of the galaxy–dark matter

power spectrum can be written as

fcP
1h,c
g,dm(k) =

1

n̄totρ̄

×
∫

〈Nc〉M (L1, L2) M udm(k|M) n(M) dM, (13)

where ntot = nc(L1, L2)/fc is the total number density of all galax-

ies (centrals plus satellites) with luminosities in the range [L1, L2].

Note that, for brevity, we do not explicitly write the luminosity de-

pendence of fc and ntot, but it is understood that f c = f c(L1, L2) and

ntot = ntot(L1, L2).

The one-halo satellite term is similar to the one-halo central term,

except for the fact that satellite galaxies do not reside at the centre

of their dark matter halo, but follow a number density distribution

ns(r|M). Consequently, the one-halo lensing signal due to satellite

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 929–946
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932 M. Cacciato et al.

galaxies involves a convolution of ns(r|M) with the mass density

profile ρ(r|M) of the host halo in which they reside. Using that in

Fourier space a convolution corresponds to a simple multiplication,

we obtain

P
1h,s
g,dm(k) =

1

ρ

∫ ∞

0

Ps(M|L1, L2) us(k|M) M udm(k|M) dM, (14)

with

us(k|M) = 4π

∫ r180

0

ns(r|M)

〈Ns〉M (L1, L2)

sin(kr)

kr
r2 dr, (15)

the Fourier transform of ns(r|M) normalized by 〈Ns〉M (L1, L2) which

is the average number of satellites with L1 ≤ L ≤ L2 that reside in

a halo of mass M. Although there is observational evidence for

luminosity segregation of satellite galaxies (e.g. Rood & Turnrose

1968; McIntosh et al. 2005), the amplitude of this effect is fairly

small (van den Bosch et al. 2008). We therefore ignore this effect

and simply assume that all satellite galaxies follow the same radial

profile.

We write the probability that a satellite galaxy with L1 ≤ L ≤ L2

resides in a halo of mass M as

Ps(M|L1, L2) dM =
〈Ns〉M (L1, L2) n(M)

ns(L1, L2)
dM, (16)

with

ns(L1, L2) =
∫ ∞

0

〈Ns〉M (L1, L2) n(M) dM, (17)

the comoving number density of satellite galaxies with luminosities

in the range [L1, L2]. The one-halo satellite term can thus be written

as

fsP
1h,s
g,dm(k) =

1

n̄totρ̄
,

×
∫

〈Ns〉M (L1, L2) us(k|M) M udm(k|M) n(M) dM,

(18)

where we have used that ntot = ns(L1, L2)/fs. Note that f s = f s(L1,

L2). The above analytical formalism neglects the contribution to

the one-halo satellite which derives from the dark matter subhaloes

hosting the satellite galaxies. In our companion paper (Li et al.

2009), we show that the contribution due to subhaloes is confined

to small scales (R < 0.1 h−1 Mpc). Li et al. (2009) show that in

the faintest (brightest) luminosity bin of interest here, the subhaloes

contribute at most 10 per cent (∼3 per cent) of the total signal.

Since the modelling of such a term would involve using uncertain

assumptions about the stripped profile of the subhaloes (see Li et al.

2009, for more details), we prefer to ignore it in the present study.

2.2 The two-halo term

The two-halo term of the power spectrum describes the correlation

between galaxies and dark matter particles belonging to separate

haloes. Within the halo model, this means cross-correlating each

galaxy with all the dark matter haloes other than the one in which the

galaxy in question resides. Using the fact that dark matter haloes are

a biased tracer of the dark matter mass distribution, the contribution

to the two-halo term due to central galaxies can be written as

P
2h,c
g,dm(k) =

P NL
dm (k)

ρ

∫ ∞

0

Pc(M|L1, L2) b(M) dM

×
∫ ∞

0

M ′ udm(k|M ′) b(M ′) n(M ′) dM ′, (19)

where PNL
dm(k) and b(M) are the non-linear power spectrum of the

dark matter and the halo bias function, respectively. The first integral

reflects the contribution of the central galaxies, while the second

integral describes the dark matter density field partitioned over

haloes. Using (11) we obtain

fcP
2h,c
g,dm(k) =

P NL
dm (k)

ntotρ

∫ ∞

0

〈Nc〉M (L1, L2) b(M) n(M) dM

×
∫ ∞

0

M ′ udm(k|M ′) b(M ′) n(M ′) dM ′. (20)

Similarly, the satellite part of the two-halo term is given by

fsP
2h,s
g,dm(k) =

P NL
dm (k)

ntotρ

∫ ∞

0

M ′ udm(k|M ′) b(M ′) n(M ′) dM ′

×
∫ ∞

0

〈Ns〉M (L1, L2) us(k|M) b(M) n(M) dM,

(21)

where the second integral now accounts for the number density

distribution of satellite galaxies in haloes of mass M.

Note that equations (20) and (21) ignore halo exclusion, i.e. the

fact that, in the halo model, haloes cannot overlap. In Appendix A,

we present an approximate method to take halo exclusion into ac-

count. Far from being a detailed treatment, the suggested procedure

accounts only for the most relevant effect, i.e. the exclusion of dark

matter particles residing in the same host halo of central galaxies

(see Appendix A for further details). Unless stated otherwise, all

the results shown throughout the paper are obtained applying halo

exclusion as modelled in Appendix A.

In addition, a technical, as well as conceptual, issue arises in

calculating the two-halo terms introduced in equations (20) and

(21). Let us rewrite these two equations in the following compact

form:

P
2h,c
g,dm(k) = P NL

dm (k)INc IM (k),

P
2h,s
g,dm(k) = P NL

dm (k)INs (k)IM (k), (22)

where INc , INs (k) and IM (k) are

INc =
∫ ∞

0

〈Nc〉M (L1, L2)

nc

b(M) n(M) dM,

INs (k) =
∫ ∞

0

〈Ns〉M (L1, L2)

ns

us(k|M) b(M) n(M) dM,

IM (k) =
∫ ∞

0

M

ρ
udm(k|M) b(M) n(M) dM. (23)

The evaluation of these integrals is somewhat tedious numerically,

as it requires knowledge of the halo mass function and the halo

bias function over the entire mass range [0, ∞). Since these have

only been tested against numerical simulations over a limited range

of halo masses (109 � M � 1015 h−1 M⊙), it is also unclear how

accurate they are. In practice, though, these problems can be circum-

vented as follows. First of all, because of the exponential cut-off in

the halo mass function, it is sufficiently accurate to perform the in-

tegrations of equation (23) only up to M = 1016 h−1 M⊙. Secondly,

INc and INs (k) contain the halo occupation statistics, 〈Nc〉M (L1, L2)

and 〈Ns〉M (L1, L2), respectively, which, for all luminosities of inter-

est in this paper, are equal to zero for M � 109 h−1 M⊙. Therefore,

INc and INs (k) can be computed accurately by only integrating over

the mass range [109–1016] h−1 M⊙. Unfortunately, the integrand

of IM (k) does not become negligibly small below a given halo

mass. However, in this case we can use the approach introduced

by Yoo et al. (2006): we write IM (k) as the sum of two terms,

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 929–946
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Clustering and galaxy–galaxy lensing 933

IM (k) = IM1
(k) + IM2

(k), where

IM1
(k) =

∫ Mmin

0

M

ρ̄
udm(k|M) b(M) n(M) dM,

IM2
(k) =

∫ ∞

Mmin

M

ρ̄
udm(k|M) b(M) n(M) dM. (24)

Following Yoo et al. (2006), we use the fact that udm(k|M) = 1 over

the relevant range of k as long as M is sufficiently small. This allows

us to write

IM1
(k) ≃

∫ Mmin

0

M

ρ̄
b(M) n(M) dM

= 1 −
∫ ∞

Mmin

M

ρ̄
b(M) n(M) dM, (25)

where the last equality follows from the fact that the distribution of

matter is by definition unbiased with respect to itself. Detailed tests

have shown that this procedure yields results that are sufficiently

accurate as long as Mmin � 1010 h−1 M⊙. Throughout we adopt

Mmin = 109 h−1 M⊙.

2.3 Model ingredients

The computation of the galaxy–dark matter cross-correlation (or its

power spectrum), as outlined in the previous subsections, requires

the following ingredients.

(i) The halo mass function, n(M), specifying the comoving num-

ber density of dark matter haloes of mass M.

(ii) The halo bias function, b(M), which describes how haloes of

mass M are biased with respect to the overall dark matter distribu-

tion.

(iii) The non-linear power spectrum of the dark matter distribu-

tion, PNL
dm(k).

(iv) The mass density distribution of dark matter haloes, ρ(r|M).

(v) The number density distribution of satellite galaxies in dark

matter haloes, ns(r|M).

(vi) The halo occupation statistics for central and satellite galax-

ies, as parametrized by 〈Nc〉M and 〈Ns〉M , respectively.

All these ingredients depend on cosmology. In this paper we

consider two flat  cold dark matter (CDM) cosmologies. The

first has a matter density �m = 0.238, a baryonic matter density

�b = 0.041, a Hubble parameter h = H0/(100 km s−1 Mpc−1) =
0.734, a power-law initial power spectrum with spectral index n =
0.951 and a normalization σ 8 = 0.744. These are the parameters that

best fit the 3-yr data release of the Wilkinson Microwave Anisotropy

Probe (WMAP; see Spergel et al. 2007), and we will refer to this set

of cosmological parameters as the WMAP3 cosmology. The second

cosmology has �m = 0.3, �b = 0.04, h = 0.7, n = 1.0 and σ 8 =
0.9. With strong support from the 1-yr data release of the WMAP

mission (see Spergel et al. 2003), this choice of parameters has been

considered in many previous studies. In what follows we will refer

to this second set of parameters as the WMAP1 cosmology. For

clarity, the parameters of both cosmologies are listed in Table 1.

Table 1. Cosmological parameters.

�m � �b h n σ 8

WMAP3 0.238 0.762 0.041 0.734 0.951 0.744

WMAP1 0.3 0.7 0.040 0.7 1.0 0.9

We define dark matter haloes as spheres with an average over-

density of 180, with a mass given by

M =
4π

3
(180ρ) r3

180. (26)

Here r180 is the radius of the halo. We assume that dark matter

haloes follow the NFW (Navarro, Frenk & White 1997) density

distribution

ρ(r) =
δ ρ

(r/r∗)(1 + r/r∗)2
, (27)

where r∗ is a characteristic radius and δ is a dimensionless amplitude

which can be expressed in terms of the halo concentration parameter

cdm ≡ r180/r∗ as

δ =
180

3

c3
dm

ln(1 + cdm) − cdm/(1 + cdm)
. (28)

Numerical simulations show that cdm is correlated with halo mass,

and we use the relations given by Macciò et al. (2007), converted

to our definition of halo mass.

For the halo mass function, n(M), and halo bias function, b(M),

we use the functional forms suggested by Warren et al. (2006) and

Tinker et al. (2005), respectively, which have been shown to be

in good agreement with numerical simulations. The linear power

spectrum of density perturbations is computed using the transfer

function of Eisenstein & Hu (1998), which properly accounts for

the baryons, while the evolved, non-linear power spectrum of the

dark matter, PNL
dm (k), is computed using the fitting formula of Smith

et al. (2003).

For the number density distribution of the satellite galaxies, we

assume a generalized NFW profile (e.g. van den Bosch et al. 2004):

ns(r|M) ∝
(

r

Rr∗

)−α (
1 +

r

Rr∗

)α−3

, (29)

which scales as ns ∝ r−α and ns ∝ r−3 at small and large radii,

respectively. Similar to the dark matter mass distribution, ns(r|M)

has an effective scale radius Rr∗, and can be parametrized via the

concentration parameter cs = cdm/R. Observations of the number

density distribution of satellite galaxies in clusters and groups seem

to suggest that ns(r|M) is in good agreement with an NFW profile, for

which α = 1 (e.g. Beers & Tonry 1986; Carlberg, Yee & Ellingson

1997; van der Marel et al. 2000; Lin, Mohr & Stanford 2004; van den

Bosch et al. 2005a). Several studies have suggested, however, that

the satellite galaxies are less centrally concentrated than the dark

matter, corresponding to R > 1 (e.g. Yang et al. 2005; Chen 2007;

More et al. 2009a). For our fiducial model we adopt α = R = 1,

for which us(k|M) = udm(k|M) (i.e. satellite galaxies follow the

same number density distribution as the dark matter particles). In

Section 5.3 we examine how the results depend on α and R.

The final ingredient is a model for the halo occupation statistics.

In their attempt to model the g–g lensing signal obtained from the

SDSS, Seljak et al. (2005) and Mandelbaum et al. (2006) made

the oversimplified assumption of a deterministic relation between

central galaxy luminosity and host halo mass. In particular, they

used

〈Nc〉M (L1, L2) =

{
1 if M = M̃(L1, L2),

0 otherwise,
(30)

where M̃(L1, L2) is the ‘characteristic’ mass of a halo that hosts

a central galaxy with L1 ≤ L ≤ L2. However, a realistic relation

between central galaxy luminosity and host halo mass will have

some scatter. As demonstrated by Tasitsiomi et al. (2004), this

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 929–946
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934 M. Cacciato et al.

scatter can have an important impact on the g–g lensing signal

(see also Section 5.1). For the satellite galaxies, Seljak et al. (2005)

and Mandelbaum et al. (2006) adopted a simple double power-law

relation of the form

〈Ns〉M (L1, L2) ∝

{
M if M ≥ 3M̃(L1, L2),

M2 otherwise.
(31)

In this paper we improve upon the analysis by Seljak et al. (2005)

and Mandelbaum et al. (2006) by using a more realistic model for

the halo occupation statistics. Furthermore, rather than fitting the

model to the lensing data, we constrain the occupation statistics

using clustering data from the SDSS combined with a large galaxy

group catalogue. Subsequently we use that model to predict the g–g

lensing signal which we compare to g–g lensing data obtained from

the SDSS.

As a final remark, we emphasize that different quantities,

e.g. n(M), b(M) and PNL
dm(k), depend on redshift, z, even though

we have not made this explicit in the equations.

3 C O N D I T I O NA L LU M I N O S I T Y F U N C T I O N

3.1 Model description

In order to specify the halo occupation statistics, we use the CLF,

�(L|M) dL, which specifies the average number of galaxies with

luminosities in the range L ± d L/2 that reside in a halo of mass M

(van den Bosch et al. 2003a; Yang et al. 2003). Following Cooray

& Milosavljević (2005) and Cooray (2006), we write the CLF as

�(L|M) = �c(L|M) + �s(L|M), (32)

where �c(L|M) and �s(L|M) represent central and satellite galaxies,

respectively. The occupation numbers required for the computation

of the galaxy–dark matter cross-correlation then simply follow from

〈Nx〉M (L1, L2) =
∫ L2

L1

�x(L|M) dL, (33)

where ‘x’ refers to either ‘c’ (centrals) or ‘s’ (satellites). Motivated

by the results of Yang, Mo & van den Bosch (2008a, hereafter

YMB08), who analysed the CLF obtained from the SDSS galaxy

group catalogue of Y07, we assume the contribution from the central

galaxies to be a lognormal:

�c(L|M) =
1

√
2π ln(10) σc L

exp

[
−

(log L − log Lc)
2

2σ 2
c

]
. (34)

Note that σ c is the scatter in log L (of central galaxies) at a fixed

halo mass. Moreover, log Lc is, by definition, the expectation value

for the (10 based) logarithm of the luminosity of the central galaxy,

i.e.

log Lc =
∫ ∞

0

�c(L|M) log L dL. (35)

For the contribution from the satellite galaxies we adopt a modified

Schechter function:

�s(L|M) =
φ∗

s

L∗
s

(
L

L∗
s

)αs

exp

[
−

(
L

L∗
s

)2
]

, (36)

which decreases faster than a Schechter function at the bright end.

Note that Lc, σ c, φ
∗
s , αs and L∗

s are all functions of the halo mass M.

In the parametrization of these mass dependencies, we again are

guided by the results of YMB08. In particular, for the luminosity of

the central galaxies we adopt

Lc(M) = L0

(M/M1)γ1

[1 + (M/M1)]γ1−γ2
, (37)

so that Lc ∝ Mγ1 for M ≪ M1 and Lc ∝ Mγ2 for M ≫ M1.

Here M1 is a characteristic mass scale, and L0 = 2γ1−γ2Lc(M1) is

a normalization. Using the SDSS galaxy group catalogue, YMB08

found that to good approximation

L∗
s (M) = 0.562Lc(M), (38)

and we adopt this parametrization throughout. For the faint-end

slope and normalization of �s(L|M) we adopt

αs(M) = −2.0 + a1

{
1 −

2

π

arctan[a2 log(M/M2)]

}
(39)

and

log[φ∗
s (M)] = b0 + b1(log M12) + b2(log M12)2, (40)

with M12 = M/(1012 h−1 M⊙). This adds a total of six free param-

eters: a1, a2, b0, b1, b2 and the characteristic halo mass M2. Neither

of these functional forms has a physical motivation; they merely

were found to adequately describe the results obtained by YMB08.

Finally, for simplicity, and to limit the number of free parameters,

we assume that σ c(M) = σ c is a constant. As shown in More et al.

(2009a), this assumption is supported by the kinematics of satellite

galaxies in the SDSS. Thus, altogether the CLF has a total of 11

free parameters.

Note that, with the parametrization of the CLF introduced above,

the halo occupation statistics can be rewritten as

〈Nc〉M (L1, L2) =
∫ L2

L1

�c(L|M) dL =
1

2
[erf(x2) − erf(x1)], (41)

〈Ns〉M (L1, L2) =
∫ L2

L1

�s(L|M) dL

=
φ∗

s

2

⎧
⎨
⎩Ŵ

[
αs

2
+

1

2
,

(
L1

L∗
s

)2
]

− Ŵ

[
αs

2
+

1

2
,

(
L2

L∗
s

)2
] ⎫

⎬
⎭,

(42)

where erf(xi) is the error function calculated at xi =
log(Li/Lc)/(

√
2σc) with i = 1, 2 and Ŵ is the incomplete gamma

function.

As shown in van den Bosch et al. (2003a) and Yang et al. (2003),

the CLF can be constrained using the observed luminosity function

(LF), �(L), and the galaxy–galaxy correlation lengths as a function

of luminosity, r0(L). Here we use the LF of Blanton et al. (2003a)

uniformly sampled at 41 mag covering the range −23.0 ≤ 0.1Mr

− 5 log h ≤ −16.4. Here 0.1Mr indicates the r-band magnitude

K + E corrected to z = 0.1 following the procedure of Blanton

et al. (2003b). For the correlation lengths as function of luminosity

we use the results obtained by Wang et al. (2007) for six volume

limited samples selected from the SDSS DR4. For completeness,

these data are listed in Table 2. Finally, to strengthen our constraints,

and to assure agreement with the CLF obtained from our SDSS

group catalogue, we use the constraints on Lc(M), αs(M) and φ∗
s

(M) obtained by YMB08.

For a given set of model parameters, we compute the LF using

�(L) =
∫ ∞

0

�(L|M) n(M) dM. (43)

The galaxy–galaxy correlation function for galaxies with luminosi-

ties in the interval [L1, L2] is computed using

ξgg(r) = b2
gal(L1, L2) ζ (r) ξNL

dm (r). (44)
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Clustering and galaxy–galaxy lensing 935

Table 2. Correlation lengths.

Sample 0.1Mr − 5 log h 〈z〉 r0

(1) (2) (3) (4)

V1 (−23.0, − 21.5] 0.173 7.59 ± 0.75

V2 (−21.5, − 21.0] 0.135 6.11 ± 0.33

V3 (−21.0, − 20.5] 0.109 5.62 ± 0.16

V4 (−20.5, − 20.0] 0.089 5.38 ± 0.16

V5 (−20.0, − 19.0] 0.058 4.90 ± 0.18

V6 (−19.0, − 18.0] 0.038 4.17 ± 0.23

Notes. Galaxy–galaxy clustering correlation lengths of

Wang et al. (2007) used in this paper to constrain the CLF.

Column (1) lists the ID of each volume limited sample,

following the notation of Wang et al. (2007). Columns

(2) and (3) indicate the absolute magnitude range and the

mean redshift of each sample, while column (4) lists the

correlation length plus its standard deviation (in h−1 Mpc),

obtained by fitting a power law to the projected correlation

function over the radial range [0.98, 9.6] h−1 Mpc. See Wang

et al. (2007) for details.

Here ξNL
dm(r) is the non-linear correlation function of the dark matter,

which is the Fourier transform of PNL
dm(k),

ζ (r) =
[
1 + 1.17ξNL

dm (r)
]1.49

[
1 + 0.69ξNL

dm (r)
]2.09

(45)

is the radial scale dependence of the bias as obtained by Tinker et al.

(2005) and bgal(L1, L2) is the bias of the galaxies, which is related

to the CLF according to

bgal(L1, L2) =
∫ ∞

0
〈N〉M b(M) n(M) dM∫ ∞
0

〈N〉M n(M) dM
, (46)

with

〈N〉M =
∫ L2

L1

�(L|M) dL

= 〈Nc〉M (L1, L2) + 〈Ns〉M (L1, L2), (47)

the average number of galaxies with luminosities in the range [L1,

L2] that reside in a halo of mass M.

To determine the likelihood function of our free parameters we

follow van den Bosch et al. (2007) and use the Monte Carlo Markov

Chain (MCMC) technique. We construct a chain of five million

models. Each element of the chain is a model consisting of 11 pa-

rameters. At any point in the chain we generate a new trial model

by drawing the shifts in the 11 free parameters from 11 independent

Gaussian distributions centred on the current value of the corre-

sponding model parameter. The chain is thinned by a factor of 2500

to remove the correlations between neighbouring models. The end

result is a MCMC of 2000 independent models properly sampling

the posterior distributions of the 11 free parameters. The probability

of accepting the trial model is

Paccept =

{
1.0 if χ 2

new < χ 2
old,

exp
[
−

(
χ 2

new − χ 2
old

)]
if χ 2

new � χ 2
old.

(48)

Here χ 2 = χ 2
� + χ 2

r0
+ χ 2

GC with

χ 2
� =

41∑

i=1

[
�(Li) − �̂(Li)

��̂(Li)

]2

, (49)

χ 2
r0

=
6∑

i=1

[
ξgg(r0,i) − 1

�ξ̂gg(r0,i)

]2

(50)

and

χ 2
GC =

9∑

i=1

[
log Lc(Mi) − log L̂c(Mi)

� log L̂c(Mi)

]2

+
9∑

i=1

[
αs(Mi) − α̂s(Mi)

�α̂s(Mi)

]2

+
9∑

i=1

[
φ∗

s (Mi) − φ̂∗
s (Mi)

�φ̂∗
s (Mi)

]2

. (51)

Here .̂ indicates an observed quantity and the subscripts ‘�’, ‘r0’ and

‘GC’ refer to the LF, the galaxy–galaxy correlation length and the

group catalogue, respectively. Note that, by definition, ξ̂gg(r0,i) =
1. Table 4 lists the best-fitting parameters with the corresponding

95 per cent confidence levels obtained with the MCMC technique

for both the WMAP1 and WMAP3 cosmologies, as well as the

corresponding value of χ 2
red = χ 2/Ndof . Here Ndof = 74 − 11 = 63

is the number of degrees of freedom.

3.2 Results

Fig. 2 shows the results obtained for the WMAP3 cosmology. In each

panel the blue contours indicate the 68 and 95 per cent confidence

levels obtained from the MCMC. The upper left-hand panel shows

that the CLF model accurately fits the galaxy LF of Blanton et al.

(2003a). The fit to the correlation lengths as function of luminosity,

shown in the upper middle panel, is less accurate, although data

and model typically agree at the 1σ level. We have been unable to

obtain a better fit, despite various attempts, including small changes

in the CLF model. The lower panels of Fig. 2 show the 68 and

95 per cent confidence levels on Lc(M), φ∗
s (M) and αs(M), com-

pared with the results obtained by YMB08 from the SDSS group

catalogue of Y07. Since these data have been used as additional

constraints, it should not come as a big surprise that the CLF is in

good agreement with these data. We emphasize, though, that it is

not trivial that a single halo occupation model can be found that can

simultaneously fit the LF, the luminosity dependence of the galaxy–

galaxy correlation functions and the results obtained from a galaxy

group catalogue. Note that the lower left-hand panel of Fig. 2 plots

the CLF predictions down to log Lc = 9. Although there are no data

from the group catalogue at this luminosity scale, the central galaxy

luminosity–halo mass relation at the faint end is tightly constrained

by the clustering data and the LF.

Finally, the upper right-hand panel of Fig. 2 shows the satellite

fraction,

fs(L) =
1

�(L)

∫ ∞

0

�s(L|M) n(M) dM, (52)

as function of luminosity. This is found to decrease from

∼0.27 ± 0.03 at 0.1Mr − 5 log h = −17 to virtually zero at
0.1Mr − 5log h = −23. The fact that the satellite fraction decreases

with increasing luminosity is in qualitative agreement with previous

studies (Mandelbaum et al. 2006; Tinker, Weinberg & Zheng 2006;

van den Bosch et al. 2007).

We have repeated the same exercise for the WMAP1 cosmology.

As evident from Fig. 3, for this cosmology we can obtain a CLF

that fits the data almost equally well (the reduced χ 2 is only slightly

higher than for the WMAP3 cosmology; see Table 3). Note that the

group data (shown in the lower panels) differ from that in Fig. 2,

even though the group catalogue is the same. This owes to the

fact that the halo mass assignments of the groups are cosmology

dependent (see Y07 for details). The satellite fractions inferred for

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 929–946

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
9
4
/2

/9
2
9
/1

0
7
2
1
8
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



936 M. Cacciato et al.

Figure 2. Upper row, left-hand and central panels: the LF of galaxies and the luminosity dependence of the galaxy correlation length are plotted. Data come

from the analysis of Blanton et al. (2003a) and Wang et al. (2007). The blue contours indicate the 68 and 95 per cent confidence level obtained from the MCMC.

The agreement is extremely accurate for the LF whereas is modest for the correlation length. Lower row, three panels: the additional information coming from

the group catalogue of YMB08 is plotted together with the corresponding 68 and 95 per cent confidence level derived with the MCMC. In particular, the halo

mass dependence of the central galaxy luminosity, the satellite CLF normalization φ∗
s and the exponent αs are shown in the left-hand, central and middle panel,

respectively. Upper row, right-hand panel: the 68 and 95 per cent confidence levels of the satellite fraction, f s, obtained from the CLF (see equation 52).

Figure 3. Same as Fig. 2 but for the WMAP1 cosmology.

this cosmology, shown in the upper right-hand panel of Fig. 3, are

similar, though slightly higher, than for the WMAP3 cosmology, in

excellent agreement with van den Bosch et al. (2007).

The fact that both cosmologies allow an (almost) equally good

fit to these data, despite the relatively large differences in halo mass

function and halo bias, illustrates that the abundance and clustering

properties of galaxies allow a fair amount of freedom in cosmolog-

ical parameters. However, as demonstrated in van den Bosch et al.

(2003b), the best-fitting CLFs for different cosmologies predict

different mass-to-light ratios as function of halo mass. This is evi-

dent from Fig. 4, which shows the mass-to-light ratios M/〈L19.5〉M
as function of halo mass inferred from our CLF MCMCs for the

WMAP1 and WMAP3 cosmologies. Here 〈L19.5〉M is the average,

total luminosity of all galaxies with 0.1Mr − 5 log h ≤ −19.5 that

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 929–946
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Clustering and galaxy–galaxy lensing 937

Table 3. Best-fitting CLF parameters obtained from SDSS cluster-

ing analysis.

WMAP3 WMAP1

χ2
red 1.42 1.70

log L0 9.935 ± 0.043 9.915 ± 0.052

log M1 11.07 ± 0.11 11.16 ± 0.16

γ 1 3.273 ± 0.575 3.336 ± 1.012

γ 2 0.255 ± 0.008 0.248 ± 0.007

a1 0.501 ± 0.069 0.484 ± 0.057

a2 2.106 ± 1.437 2.888 ± 1.943

log M2 14.28 ± 0.16 14.54 ± 0.14

b0 −0.766 ± 0.146 −0.854 ± 0.159

b1 1.008 ± 0.197 0.906 ± 0.187

b2 −0.094 ± 0.065 −0.062 ± 0.054

σ c 0.143 ± 0.005 0.140 ± 0.005

Notes. The best-fitting CLF parameters and the corresponding

95 per cent confidence levels obtained from the MCMC analysis

for the WMAP3 and WMAP1 cosmologies and the value of the

corresponding reduced χ2. Masses and luminosities are in h−1 M⊙
and h−2 L⊙, respectively. Note that, for both cosmologies, all the

parameters are tightly constrained except γ 1, a2 and b2.

Figure 4. The 68 and 95 per cent confidence levels for the mass-to-light

ratios, M/〈L19.5〉M , obtained from the CLF MCMCs for the WMAP3 and

WMAP1 cosmologies.

reside in a halo of mass M, which follows from the CLF according

to

〈L19.5〉M =
∫ ∞

Lmin

�(L|M) L dL, (53)

with Lmin the luminosity corresponding to a magnitude 0.1Mr −
5 log h = −19.5. Clearly, the mass-to-light ratios inferred for the

WMAP1 cosmology are significantly higher than for the WMAP3

cosmology [see also van den Bosch et al. 2007, where a similar

result was obtained using data from the 2dF Galaxy Redshift Sur-

vey (2dFGRS)]. Hence, the abundance and clustering properties of

galaxies can be used to constrain cosmological parameters, as long

as one has independent constraints on the mass-to-light ratios of

dark matter haloes. This is exactly what is provided by g–g lensing.

In the next section, we therefore use the CLF models presented here

to predict the g–g lensing signal, which we compare to SDSS data.

4 G A L A X Y – G A L A X Y L E N S I N G

4.1 Model predictions

In order to compute the ESD, ��, as a function of the comoving

separation on the sky, R, we proceed as follows. We start by cal-

culating the four different terms of the galaxy–dark matter cross

power spectrum defined in Sections 2.1 and 2.2. Next, we inverse

Fourier transform each of these terms using

ξ
μ,x

g,dm(r) =
1

2π
2

∫
fx P

μ,x
g,dm(k)

sin(kr)

kr
k2 dk, (54)

where ‘μ’ stands for 1 h or 2 h, and ‘x’ refers to either ‘c’ (centrals)

or ‘s’ (satellites). These are used to compute the corresponding four

terms of the surface density, �μ,x(R),

�μ,x(R) = 2ρ

∫ ∞

R

ξ
μ,x

g,dm(r)
r dr

√
r2 − R2

. (55)

Note that we are allowed to neglect the contribution coming from

the constant background density, ρ̄ (cf. equation [5]), because it will

cancel in defining the ESD (this is known in gravitational lensing

theory as the mass-sheet degeneracy). The final ESD then simply

follows from

��(R) = ��1h,c(R) + ��1h,s(R)

+��2h,c(R) + ��2h,s(R),
(56)

in which the relative weight of each term is already included via the

central and satellite fractions in the definitions of the corresponding

power spectra.1

Before comparing the g–g lensing predictions from our CLF mod-

els to actual data, we first demonstrate how the four different terms

contribute to the total ESD. The left-hand panel of Fig. 5 shows the

��(R) obtained from our best-fitting CLF model for the WMAP3

cosmology for three different luminosity bins, as indicated.2 Note

that the fainter luminosity bins reveal a more ‘structured’ ESD pro-

file, with a pronounced ‘bump’ at R ∼ 1 h−1 Mpc, which is absent

in the ��(R) of the brighter galaxies. The reason for this is evident

from the middle and right-hand panels of Fig. 5, which show the

contributions to ��(R) from the four different terms for the faint

(−16 ≥ 0.1Mr − 5 log h ≥ −17) and bright (−21 ≥ 0.1Mr − 5 log h ≥
−22) luminosity bins, respectively. In both cases, the one-halo cen-

tral term dominates on small scales. In the case of the faint galaxies,

the one-halo satellite term dominates over the radial range 0.1 �

R � 5 h−1 Mpc, and is responsible for the pronounced bump on

intermediate scales. In the case of the bright bin, however, the one-

halo central term dominates all the way out to R ∼ 2 h−1 Mpc. This

owes to the fact that bright centrals reside in more massive haloes,

which are larger and cause a stronger lensing signal, and due to the

fact that the satellite fraction of brighter galaxies is smaller. The fact

that the one-halo satellite term peaks at intermediate scales, rather

than at R = 0, owes to the fact that ��1h,s(R) reflects a convolution

of the host halo mass density profile with the number density distri-

bution of satellite galaxies. On large scales (R � 3 h−1 Mpc), which

roughly reflects two times the virial radius of the most massive dark

matter haloes, the ESD is dominated by the two-halo terms. Note

1 Note that our notation differs slightly from that in Mandelbaum et al.

(2006).
2 Here, for simplicity, we have used the halo mass function and halo bias

function computed at z = 0. In Section 4.2, when we compare our models

to data, we will use the halo mass function and halo bias function at the

average redshift of the lenses instead.
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938 M. Cacciato et al.

Figure 5. The predicted ESD up to large scales (R ∼ 30 h−1 Mpc) for three luminosity bins, as indicated. The solid lines refer to the total signal as predicted

according to our model. The dotted lines refer to the one-halo central term, whereas the dashed lines refer to the one-halo satellite term. Note that they dominate

the signal on different scales (see text). The long dashed lines refer to the two-halo central term. It rises steeply at relatively large scales due to our halo

exclusion treatment (see Appendix A). The two-halo satellite term is indicated with the dotted–dashed line.

that the faint galaxies, with −16 ≥ 0.1Mr − 5 log h ≥ −17, have the

same large-scale ESD as the bright galaxies with −21 ≥ 0.1Mr −
5 log h ≥ −22, indicating that they have similar values for their bias.

This owes to the fact that many of the faint galaxies are satellites

which reside in massive haloes. Note also that the two-halo central

term reveals a fairly abrupt truncation at small radii, which owes

to halo exclusion (see Appendix A). This truncation also leaves a

signature in the total lensing signal, which is more pronounced for

the fainter lenses. We caution, however, that the sharpness of this

feature is partially an artefact due to our approximate implementa-

tion of halo exclusion. Nevertheless, it is clear from Fig. 5 that the

excess surface densities obtained from g–g lensing measurements

contain a wealth of information regarding the galaxy–dark matter

connection.

4.2 Data

The g–g lensing data used here are described in Seljak et al. (2005)

and Mandelbaum et al. (2006) and have been kindly provided to

us by R. Mandelbaum. The catalogue of lenses consists of 351 507

galaxies with magnitudes −17 ≥ 0.1Mr − 5 log h ≥ −23 and red-

shifts 0.02 < z < 0.35 taken from the main galaxy catalogue of the

SDSS Data Release 4 (Adelman-McCarthy et al. 2006). This sample

is split in seven luminosity bins (see Table 4), and for each of these

luminosity bins the ESD profiles, ��(R), have been determined

from measurements of the shapes of more than 30 million galaxies

in the SDSS imaging data down to an apparent r-band magnitude

of r = 21.8. The resulting data cover the range between 0.04 and

2 h−1 Mpc. Data are shown as solid dots with error bars in Fig. 6. We

refer the reader to Mandelbaum et al. (2005a, 2006) for a detailed

description of the data and of the methods used to determine the

ESD profiles.

4.3 Results for the WMAP3 cosmology

Using the methodology outlined in Sections 2 and 4.1, we now

use the CLF for the WMAP3 cosmology obtained in Section 3 to

predict the g–g lensing signal for the seven luminosity bins listed

in Table 4. For each luminosity bin we compute the ESD profile,

��(R), at the mean redshift of the sample, i.e. we use the halo

mass function, n(M), the halo bias function, b(M), and the non-

linear power spectrum, PNL
dm(k), that correspond to the mean redshift

Table 4. Luminosity bins of the SDSS g–g

lensing data.

ID 0.1Mr − 5 log h 〈z〉
(1) (2) (3)

L1 (−18.0, −17.0] 0.032

L2 (−19.0, −18.0] 0.047

L3 (−20.0, −19.0] 0.071

L4 (−21.0, −20.0] 0.10

L5f (−21.5, −21.0] 0.14

L5b (−22.0, −21.5] 0.17

L6f (−22.5, −22.0] 0.20

Notes. Luminosity bins of the lenses.

Column (1) lists the ID of each luminosity

bin, following the notation of Mandelbaum

et al. (2006). Column (2) indicates the

magnitude range of each luminosity bin

(all magnitudes are K + E corrected to

z = 0.1). Column (3) indicates the mean

redshift of the lenses in each luminosity

bin. See Mandelbaum et al. (2006) for details.

listed in the third column of Table 4. We have verified, though, that

computing ��(R) simply at z = 0 instead has a negligible impact

on the results.

The results are shown in Fig. 6, where the solid dots with error

bars correspond to the SDSS data and the solid lines are the predic-

tions of our best-fitting CLF model (whose parameters are listed in

Table 3). Note that this model fits the data remarkably well, which

is quantified by the fact that the reduced χ 2 is 3.1. We emphasize

that there are no free parameters here: the ESD has been computed

using the CLF that has been constrained using the LF and the clus-

tering data. The good agreement between model and lensing data

thus provides independent support for the halo occupation statistics

described by our WMAP3 CLF model, in particular for the mass-to-

light ratios and satellite fractions, which have an important impact

on the lensing signal.

The different curves in each of the panels in Fig. 6 show the

contribution to the lensing signal due to the four separate terms:

��1h,c (dotted lines), ��1h,s (short-dashed lines), ��2h,c (long-

dashed lines) and ��2h,s (dot–dashed lines). In agreement with

the examples shown in Fig. 5, the one-halo central term becomes

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 929–946
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Clustering and galaxy–galaxy lensing 939

Figure 6. The ESD �� as a function of the comoving transverse separation R is plotted for different bins in luminosity of the lens galaxy (see Table 4). The

solid line represents the total signal as predicted by the model, data points and error bars come from Seljak et al. (2005), see text. The different contributions

to the signal are also plotted. The dotted line represents the one-halo central term which obviously dominates at the smallest scales in all cases. Note that this

term dominates on larger and larger scales when brighter galaxies are considered, reflecting the idea that brighter galaxies live on average in more massive

haloes. The dashed line represents the one-halo satellite term which is dominant only for faint galaxies and only on intermediate scales (0.1–1 h−1 Mpc). The

two-halo central is plotted with a long dashed line and it becomes relevant on large scales (R > 1 h−1 Mpc). Note that the strong truncation of this term at small

scales is due to our implementation of halo exclusion (see Appendix A). The two-halo satellite term (dotted–dashed line) never dominates but it can contribute

up to 20 per cent of the total signal.

increasingly more dominant for more luminous lenses. In fact, in

the brightest luminosity bin (L6f) it dominates over the entire radial

range probed. In the low-luminosity bins, most of the observed

lensing signal at R � 200 h−1 kpc is dominated by the one-halo

satellite term. The fact that our model accurately fits the data, thus

supports the satellite fractions inferred from our CLF model, and

shown in the upper right-hand panel of Fig. 2.

Both Seljak et al. (2005) and Mandelbaum et al. (2006) did not

account for the contributions of the two-halo terms in their analyses

of the g–g lensing signal. Our model indicates that, although the

two-halo terms never dominate the total signal, they can contribute

as much as 50 per cent at large radii (R ≃ 1 h−1 Mpc). We thus

conclude that the two-halo terms cannot simply be ignored.

4.4 Comparison with the WMAP1 cosmology

As shown in Section 3.2, the WMAP3 and WMAP1 cosmologies

both allow a good fit to the clustering data, LF and galaxy group

results. However, the corresponding CLFs predict mass-to-light ra-

tios that are significantly different. Since the g–g lensing signal is

very sensitive to these mass-to-light ratios, it is to be expected that

our WMAP3 and WMAP1 CLFs will predict significantly different

ESD profiles, thus allowing us to discriminate between these two

cosmologies.

Fig. 7 shows the 95 per cent confidence levels for ��(R) obtained

from our CLF MCMCs for both the WMAP3 (blue) and WMAP1

(green) cosmologies. Indeed, as anticipated, for the WMAP1 cos-

mology we obtain excess surface densities that are significantly

higher than for the WMAP3 cosmology, in accord with the higher

mass-to-light ratios (cf. Fig. 4). A comparison with the SDSS

data clearly favours the WMAP3 cosmology over the WMAP1 cos-

mology. In fact, for the latter our best-fitting CLF model yields

a reduced χ 2 of 29.5, much larger than for the WMAP3 cos-

mology (χ 2
red = 3.1). Note that the cosmological parameters for

these two cosmologies are very similar: �m and σ 8 differ only by

∼20 per cent (in addition to a ∼5 per cent difference in n). Yet, we

can very significantly favour one cosmology over the other. This in-

dicates that the combination of clustering data and g–g lensing data
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940 M. Cacciato et al.

Figure 7. The predictions for the lensing signal, ��(R), are shown for two different sets of cosmological parameters (WMAP1 and WMAP3, see text). The

green (blue) shaded area corresponds to the 95 per cent confidence level of the WMAP1 (WMAP3) model. Note that, although the cosmological parameters of

these two cosmologies only differ by �20 per cent (see Table 1), the ESD predictions are very different, and can easily be discriminated.

can be used to put tight constraints on cosmological parameters. A

detailed analysis along these lines is deferred to a forthcoming paper

(Cacciato et al., in preparation). Note, additionally, that the most

recent results from the WMAP mission (Dunkley et al. 2008) favour

a cosmological model with (�m, σ 8) = (0.258, 0.796). Since these

two cosmological parameters are those mostly responsible for the

amplitude of the g–g lensing predictions and since their values lie in

between those of the WMAP1 and WMAP3 cosmologies, we expect

the lensing predictions also to lie in between those corresponding

to WMAP1 and WMAP3.

5 MOD EL D EPENDENCIES

Although our computation of the g–g lensing signal does not involve

any free parameters (these are already constrained by the clustering

data), a number of assumptions are made. In particular, haloes are

assumed to be spherical and to follow a NFW density distribution,

central galaxies are assumed to reside exactly at the centre of their

dark matter haloes and satellite galaxies are assumed to follow a

radial number density distribution that has the same shape as the

dark matter mass distribution. In addition, we made assumptions

regarding the functional form of the CLF. Although most of these

simplifications are reasonable, and have support from independent

studies, they may have a non-negligible impact on the predictions

of the g–g lensing signal. If this is the case, they will affect the

reliability of the cosmological constraints inferred from the data.

In this section we therefore investigate how strongly our model

predictions depend on these oversimplified assumptions.

Some of these dependencies were already investigated in our

companion paper (Li et al. 2009). In particular, we have shown that

the fact that realistic dark matter haloes are ellipsoidal, rather than

spherical, can be safely ignored (i.e. its impact on the ESD profiles

is completely negligible). On the other hand, if central galaxies are

not located exactly at the centre of their dark matter haloes, this may

have a non-negligible impact on the lensing signal on small scales (R

� 0.1 h−1 Mpc). Fortunately, for realistic amplitudes of this offset

(van den Bosch et al. 2005b), the effect is fairly small and only re-

stricted to the most luminous galaxies (see Li et al. 2009 for details).

Furthermore, we have made two additional assumptions: (i) we have

neglected the contribution to the ESD due to subhaloes hosting satel-

lite galaxies, and (ii) we have assumed that luminosity segregation in

satellite galaxies can be neglected. As shown in Li et al. (2009), the

contribution due to subhaloes hosting satellite galaxies is confined

on the smallest scales of interest here and it accounts for few per cent

of the signal. Moreover, van den Bosch et al. (2008) have shown
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Clustering and galaxy–galaxy lensing 941

that, although present, luminosity segregation in satellite galaxies is

negligible.

Below we investigate three additional model dependencies: the

scatter in the relation between light and mass, the concentration

of dark matter haloes and the radial number density distribution

of satellite galaxies. To that extent we compare our fiducial model

(the best-fitting CLF model for the WMAP3 cosmology presented

above) to models in which we change only one parameter.

5.1 Scatter in the Lc–M relation

An important improvement of our halo occupation model over that

used by Seljak et al. (2005) and Mandelbaum et al. (2006) is that

we allow for scatter in the relation between light and mass. In par-

ticular, we model the probability function Pc(L|M) = �c(L|M) as

a lognormal with a scatter, σ c, that is assumed to be independent

of halo mass. As demonstrated in More et al. (2009a), this assump-

tion is consistent with the kinematics of satellite galaxies, and it is

supported by semi-analytical models for galaxy formation. Note,

though, that this does not imply that the scatter in Pc(M|L), which

is the probability function which actually enters in the computation

of the g–g lensing signal, is also constant. In fact, it is not. This

is illustrated in Fig. 8, which shows Pc(M|L1, L2) of our fiducial

model for four luminosity bins. Two trends are evident: more lu-

minous centrals reside, on average, in more massive haloes, and

they have a larger scatter in halo masses. As discussed in More, van

den Bosch & Cacciato (2009b), the fact that the scatter in Pc(M|L)

increases with luminosity simply owes to the fact that the slope of

Lc(M) becomes shallower with increasing M (see the lower right-

hand panels of Figs 2 and 3). As is evident from Fig. 8, this is

a strong effect, with the scatter in Pc(M|L) becoming extremely

large at the bright end. Note that this scatter is not dominated by

the width of the luminosity bin. Hence, even if one were able to

use infinitesimally narrow luminosity bins when stacking lenses,

the scatter in Pc(M|L) will still be very appreciable.

Figure 8. The average number of central galaxies as a function of halo

mass obtained from our best-fitting CLF for the WMAP3 cosmology. This

is equivalent to the probability Pc(M|L1, L2) that a central galaxy with

L1 ≤ L ≤ L2 is hosted by a halo of mass M. Results are shown for four

different luminosity bins, as indicated. Note that brighter centrals reside, on

average, in more massive haloes. In addition, the width of Pc(M|L1, L2)

also increases with luminosity.

As first shown by Tasitsiomi et al. (2004), scatter in the relation

between light and mass can have a very significant impact on the

ESDs. This is demonstrated in the upper panels of Fig. 9, which

show the impact on ��(R) of changing σ c by 0.05 compared to our

best-fitting CLF value of σ c = 0.14; all other parameters are kept

fixed at their fiducial values (see Table 3). Note that these changes

in σ c have a negligible impact on ��(R) for the low-luminosity

bins. At the bright end, however, relatively small changes in σ c

have a very significant impact on ��(R). In particular, increasing

the amount of scatter reduces the ESD. This behaviour owes to the

shape of the halo mass function. Increasing the scatter adds both

low-mass and high-mass haloes to the distribution, and the overall

change in the average halo mass depends on the slope of the halo

mass function. Brighter galaxies live on average in more massive

haloes where the halo mass function is steeper. In particular, when

the average halo mass is located at the exponential tail of the halo

mass function, an increase in the scatter adds many more low-mass

haloes than massive haloes, causing a drastic shift in the average

halo mass towards lower values. On the other hand, fainter galaxies

live in less massive haloes, where the slope of the halo mass function

is much shallower. Consequently, a change in the scatter does not

cause a significant change in the average mass.

Clearly, if the g–g lensing signal is used to constrain cosmolog-

ical parameters, it is important that one has accurate constraints

on σ c. From the clustering analysis presented in Section 3.2, we

obtain 0.14 ± 0.01 (for both WMAP1 and WMAP3). This is in good

agreement with previous studies: Cooray (2006), using a CLF to

model the SDSS r-band LF, obtained σ c = 0.17+0.02
−0.01. YMB08, us-

ing a SDSS galaxy group catalogue, obtained σ c = 0.13 ± 0.03 and

More et al. (2009a), using the kinematics of satellite galaxies in the

SDSS, find σ c = 0.16 ± 0.04 (all errors are 68 per cent confidence

levels). Although it is reassuring that very different methods obtain

values that are in such good agreement, it is clear that the remain-

ing uncertainty may have a weak impact on our ability to constrain

cosmological parameters. Fortunately, the scatter only impacts the

results at the bright end, so that one can always check the results by

removing data from the brightest luminosity bins.

5.2 The dark matter halo concentration

The g–g lensing signal on small scales reflects the projected mass

distribution of the haloes hosting the lensing galaxies. Therefore,

the detailed shape of ��(R) on small scales is sensitive to the

mass distribution of dark matter haloes. In our model, we have

assumed that dark matter haloes follow NFW profiles, which are

characterized by their concentration parameters, cdm. Halo concen-

trations are known to depend on both halo mass and cosmology,

and various analytical models have been developed to describe

these dependencies (Navarro et al. 1997; Bullock et al. 2001; Eke,

Navarro & Steinmetz 2001; Macciò et al. 2007; Neto et al. 2007;

Macciò, Dutton & van den Bosch 2008). Unfortunately, these mod-

els make slightly different predictions for the mass dependence of

cdm (mainly due to the fact that the numerical simulations used

to calibrate the models covered different limited mass ranges). In

Li et al. (2009), we have shown that changing cdm by a factor

of 2 has a very large impact on the ESD profiles. However, this

is much larger than the typical discrepancies between the differ-

ent models for cdm(M). The second row of panels in Fig. 9 shows

��(R) obtained for three of these models: the solid lines (labelled

MAC) corresponds to our fiducial model for which we have used

the cdm(M) relation of Macciò et al. (2007). The dotted lines

(labelled BUL) and dashed lines (labelled ENS) correspond to the
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942 M. Cacciato et al.

Figure 9. The impact of various model parameters on ��(R). Results are shown for three luminosity bins, as indicated at the top of each column. In each

panel the solid line corresponds to our fiducial model (the best-fitting CLF model for the WMAP3 cosmology presented in Fig. 6), while the dotted and dashed

lines correspond to models in which we have only changed one parameter or model ingredient. Upper panels: the impact of changes in the parameter σ c, which

describes the amount of scatter in �c(L|M) (see equation 34). Second row from the top: the impact of changes in the halo concentration, cdm(M). In particular,

we compare three models for the mass dependence of cdm: Macciò et al. (2007; MAC), Bullock et al. (2001; BUL) and Eke et al. (2001; ENS). Third row from

the top: the impact of changes in R = cdm/cs, which controls the concentration of the radial number density distribution of satellite galaxies relative to that of

the dark matter. Lower panels: the impact of changes in α, which specifies the central slope of the radial number density distribution of satellite galaxies. See

text for a detailed discussion.

cdm(M) relations of Bullock et al. (2001) and Eke et al. (2001),

respectively. The BUL model predicts halo concentrations that are

about 15 per cent higher than for the MAC model. The ENS model

predicts a cdm(M) that is somewhat shallower than the BUL and

MAC models. As is evident from Fig. 9, though, the results based

on these three different models are very similar. We thus conclude

that our results are robust to uncertainties in the relation between

halo mass and halo concentration.

5.3 Number density of satellite galaxies

In our modelling of the g–g lensing signal, we have assumed that the

number density distribution of satellite galaxies can be described

by a generalized NFW profile (equation 29), which is parametrized

by two free parameters: α and R. In the models presented above,

we have assumed that α = R = 1, so that the number density

distribution of satellite galaxies has exactly the same shape as the

dark matter distribution. As discussed in Section 2.3, though, there

is observational evidence which suggests that satellite galaxies are

spatially antibiased with respect to the dark matter (i.e. their radial

distribution is less concentrated than that of the dark matter). This

is also supported by numerical simulations, which show that dark

matter subhaloes (which are believed to host satellite galaxies) are

also spatially antibiased with respect to the dark matter (e.g. Moore

et al. 1999; De Lucia et al. 2004).

The panels in the third row of Fig. 9 show the impact of changing

the concentration of the radial number density distribution of satel-

lite galaxies. In particular, we compare the ESD profiles obtained

for our fiducial model (R = 1.0, solid lines) with models in which

R = 0.5 (dotted lines) and R = 2.0 (dashed lines). Recall that

R = cdm/cs, so that R > 1(R < 1) corresponds to satellite galax-

ies being less (more) centrally concentrated than the dark matter.

Note that changes in R have a negligible effect on ��(R) for the

bright luminosity bins. This simply owes to the fact that the ESD of

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 929–946
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Clustering and galaxy–galaxy lensing 943

bright lenses is completely dominated by the one-halo central term

(i.e. the satellite fraction of bright galaxies is very small). For the

fainter luminosity bins, however, an increase (decrease) in R causes

a decrease (increase) in ��(R) on intermediate scales (0.1 � R �

1 h−1 Mpc), which is the scale on which the one-halo satellite term

dominates. The effect, though, is fairly small (typically smaller than

the error bars on the data points).

The last row of Fig. 9 shows the impact of changing the cen-

tral slope, α, of ns(r). If the number density distribution of satellite

galaxies has a central core (α = 0), rather than a NFW-like cusp

(α = 1), it has a similar impact on the lensing signal as as-

suming a less centrally concentrated ns(r). In fact, the ESD pro-

files for (α, R) = (0.0, 1.0) are very similar to those for

(α, R) = (1.0, 2.0). The main conclusion, though, is that our

results are not very sensitive to the exact form of ns(r) (see also Yoo

et al. 2006). Clearly, our conclusion that the WMAP3 cosmology is

strongly preferred over the WMAP1 cosmology is not affected by

uncertainties in the radial distribution of satellite galaxies.

6 C O N C L U S I O N S

Galaxy clustering and g–g lensing probe the galaxy–dark matter

connection in complementary ways. Since the clustering of dark

matter haloes depends on cosmology, the halo occupation statistics

inferred from the observed clustering properties of galaxies are

degenerate with the adopted cosmology. Consequently, different

cosmologies imply different mass-to-light ratios for dark matter

haloes. G–g lensing, on the other hand, yields direct constraints

on the actual mass-to-light ratios of dark matter haloes. Combined,

clustering and lensing therefore offer the opportunity to constrain

cosmological parameters.

Although the advent of wide and deep surveys has resulted in

clear detections of g–g lensing, a proper interpretation of these

data in terms of the link between galaxies and dark matter haloes

has been hampered by the fact that the lensing signal can only be

detected when stacking the signal of many lenses. Since not all

lenses reside in haloes of the same mass, the resulting signal is a

non-trivial average of the lensing signal due to haloes of different

masses. In addition, central galaxies (those residing at the centre of

a dark matter halo) and satellite galaxies (those orbiting around a

central galaxy) contribute very different lensing signals, even when

they reside in haloes of the same mass (e.g. Yang et al. 2006). This

has to be properly accounted for, and requires knowledge of both

the satellite fractions and of the spatial number density distribution

of satellite galaxies within their dark matter haloes.

In this paper, we model g–g lensing with the CLF, �(L|M), which

describes the average number of galaxies of luminosity L that reside

in a halo of mass M. This CLF is ideally suited to model g–g

lensing. In particular, it is straightforward to account for the fact

that there is scatter in the relation between the luminosity of a

central galaxy and the mass of its dark matter halo. This represents

an improvement with respect to previous attempts to model the g–g

lensing signal obtained from the SDSS, which typically ignored this

scatter (e.g. Seljak et al. 2005; Mandelbaum et al. 2006). However,

in agreement with Tasitsiomi et al. (2004), we have demonstrated

that the scatter in this relation has an important impact on the g–g

lensing signal and cannot be ignored. Given this dependence on

the scatter it seems advantageous to use stellar mass as a stacking

property rather than luminosity (r band). However, as shown in

Yang, Mo & van den Bosch (2008b), although the scatter in stellar

mass–halo mass is significantly smaller than for the luminosity–halo

mass relation, it is still substantial. Consequently, it is important that

scatter is properly accounted in the model when stellar mass is used

to stack lens galaxies. We also improved upon previous studies by

modelling the two-halo term (the contribution to the lensing signal

due to the mass distribution outside of the halo hosting the lens

galaxy), including an approximate treatment for halo exclusion.

Following Cooray & Milosavljević (2005), we split the CLF

in two components: one for the central galaxies and one for the

satellites. This facilitates a proper treatment of their respective con-

tributions to the g–g lensing signal. The functional forms for the

two CLF components are motivated by results obtained by Yang

et al. (2008b) from a large galaxy group catalogue. For a given

cosmology, the free parameters of the CLF are constrained using

the LF, the correlation lengths as function of luminosity and some

properties extracted from the group catalogue. We have performed

our analysis for two different CDM cosmologies: the WMAP1

cosmology, which has �m = 0.3 and σ 8 = 0.9 and the WMAP3

cosmology with �m = 0.238 and σ 8 = 0.744. For both cosmolo-

gies we have obtained CLFs that can accurately fit the abundances

and clustering properties of SDSS galaxies. However, these CLFs

predict mass-to-light ratios that are very different. This reflects the

degeneracy between cosmology and halo occupation statistics al-

luded to above. In order to break this degeneracy, we use these

CLFs to predict the g–g lensing signal (with no additional free pa-

rameters), which is compared to the SDSS data obtained by Seljak

et al. (2005) and Mandelbaum et al. (2006). While the WMAP3 CLF

predictions are in excellent agreement with the data, the CLF for

the WMAP1 cosmology predicts excess surface densities that are

much higher than observed. Although the cosmological parameters

of the WMAP1 and WMAP3 cosmologies only differ at the 20 per

cent level, the combination of clustering and lensing allows us to

strongly favour the WMAP3 cosmology over the WMAP1 cosmol-

ogy. In a companion paper by Li et al. (2009), we use a completely

different technique to model g–g lensing, but nevertheless reach

exactly the same conclusion.

In order to test the robustness of our results we have performed a

number of tests. In particular, we have shown that small uncertain-

ties in the expected concentrations of dark matter haloes, or in the

radial number density distributions of satellite galaxies, only have

a very small impact on the predicted lensing signal. In addition,

although our treatment of halo exclusion is only approximate, we

have demonstrated that it is sufficiently accurate. Finally, as shown

by Li et al. (2009), making the oversimplified assumption that dark

matter haloes are spherical rather than ellipsoidal also has a negli-

gible impact on the lensing predictions. We thus conclude that our

method yields accurate and reliable predictions for g–g lensing.

To summarize, as already discussed by Yoo et al. (2006), the

combination of clustering and lensing can be used to put tight

constraints on cosmological parameters. In this pilot study we have

shown that current data from the SDSS strongly favours the WMAP3

cosmology over the WMAP1 cosmology. In a follow-up paper we

will present a more detailed analysis of the cosmological constraints

that can be obtained using this technique.
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APPENDI X A : H ALO EXCLUSI ON

By definition, the two-halo terms of the galaxy–dark matter cross-

correlation, ξ g,dm(r), only considers pairs of galaxies and dark mat-

ter particles that reside in different haloes. Since two haloes can-

not overlap spatially, this implies that the two-halo terms given by

equations (20) and (21) need to be modified to take account of halo

exclusion. The concept of halo exclusion is illustrated in Fig. A1

for the two-halo central and two-halo satellite terms separately.

Consider a spherical halo of mass M and radius r180 that hosts a

central galaxy. It is clear that this central galaxy cannot contribute

any signal to the two-halo term on scales smaller than r180. Hence,

if all central galaxies lived in haloes of a fixed mass M, then 1 +
ξ

2h,c
g,dm(r) = 0 for r < r180. In reality, though, one needs to account
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Figure A1. Illustration of halo exclusion. The upper panel shows two

haloes, of masses M and M′, and corresponding radii r180 and r′
180, re-

spectively. The halo of mass M hosts a central galaxy. Since two haloes

cannot overlap, this central galaxy does not contribute any signal to the

two-halo central term of the galaxy–dark matter cross-correlation function

on scales r < r180. In the case of the two-halo satellite term, illustrated

in the lower panel, there is still a contribution even on very small scales

(r ≪ r180), simply because satellite galaxies can reside near the edge of the

halo.

for the fact that centrals occupy haloes that span a range in halo

masses, even if the centrals all have the same luminosity. In the case

of the satellite galaxies the situation is even more complicated. In

particular, since satellite galaxies can reside at the outskirts of dark

matter haloes, the two-halo satellite term can still have non-zero

power at r ≪ r180. Thus, halo exclusion has less impact on the

two-halo satellite term than on the two-halo central term.

Although the concept of halo exclusion is quite simple, a proper

implementation of it in the halo model is extremely tedious numer-

ically. We therefore use only an approximate treatment, which has

the advantage that it is straightforward to implement numerically.

First of all, we ignore halo exclusion for the two-halo satellite term.

Since this term is always smaller than the two-halo central term,

and since halo exclusion is less important for satellites than for cen-

trals, this should not have a significant impact on the results. For the

two-halo central term we proceed as follows: for each luminosity

Figure A2. The ESD is shown for three luminosity bins. The black lines refer to the fiducial model (HE) and the red lines to the model without halo exclusion

(NOHE). The solid lines indicate the total signal, whereas the long dashed lines show the two-halo central terms (note that the we ignore halo exclusion for

the two-halo satellite term). Although the two-halo central term is strongly affected by halo exclusion, the impact on the total ESD is only mild. Note that the

sharpness of the dip in the black solid lines is (at least partially) an artefact of our oversimplified treatment of halo exclusion, as discussed in the text.

bin, [L1, L2], we simply set 1 + ξ
2h,c
g,dm (r) = 0 for r < r180(M̄). Here

M̄ is the average halo mass of the central galaxies:

M̄ =
∫ ∞

0

Pc(M|L1, L2) M dM, (A1)

where Pc(M|L1, L2) is the probability that a central galaxy with

luminosity L1 ≤ L ≤ L2 resides in a halo of mass M, and is given

by equation (11). The corresponding radius, r180(M̄), follows from

equation (26).

Although this treatment of halo exclusion is clearly oversimpli-

fied, we emphasize that previous attempts to include halo exclusion

in the halo model are also approximations (e.g. Magliocchetti &

Porciani 2003; Tinker et al. 2005; Yoo et al. 2006). In our com-

panion paper (Li et al. 2009), halo exclusion is, by construction,

taken into account. Our oversimplified approach shows a qualita-

tive agreement with the numerical method presented in Li et al.

(2009). As is evident from Fig. A2, halo exclusion only has a mild

impact on the overall results. The black lines, labelled HE, show the

ESDs obtained from our fiducial model in which halo exclusion is

implemented using the method outlined above. For comparison, the

red lines, labelled NOHE, show the results in which we ignore halo

exclusion altogether (i.e. in which the two-halo terms are simply

computed using equations 20 and 21). The dashed lines show the

corresponding two-halo central terms, which are clearly suppressed

on small scales in the HE model. Since brighter central galaxies are

hosted by more massive (and therefore more extended) haloes, the

effect of halo exclusion is apparent out to larger radii for brighter

galaxies. Note also that the truncation is fairly sharp; this, however,

is partially an artefact due to our approximate treatment in which we

have only considered the average halo mass M̄(L1, L2). In reality,

the central galaxies live in haloes that span a range in halo masses,

and thus a range in sizes. If this were to be taken into account, the

truncation would still occur at roughly the same radius, but be less

sharp.

Although halo exclusion clearly has a strong impact on the two-

halo central term, the impact on the total ESD is only modest.

This mainly owes to the fact that the total signal on small scales

is completely dominated by the one-halo terms. Overall, halo ex-

clusion only results in a small reduction of the total ESD on inter-

mediate scales. Because of the artificial sharpness of the break in

the two-halo central term, halo exclusion introduces a sharp fea-

ture in the total ESD at the radius corresponding to this break.

Although the sharpness of this feature is an artefact of our oversim-

plified treatment of halo exclusion, it does not influence our overall
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results. In fact, including or excluding halo exclusion has only a

∼50 per cent impact on the total χ 2 values of our models. For ex-

ample, for the WMAP3 cosmology, the reduced χ 2 of our fiducial

model is 3.1, compared to 4.6 if halo exclusion is ignored (we find a

similar impact for the WMAP1 cosmology). We therefore conclude

that our approximate treatment of halo exclusion is sufficiently

accurate, and does not impact our conclusion that the WMAP3 cos-

mology is strongly favoured over the WMAP1 cosmology.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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