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ABSTRACT Many research fields are now faced with huge volumes of data automatically generated by

specialised equipment. Astronomy is a discipline that deals with large collections of images difficult to

handle by experts alone. As a consequence, astronomers have been relying on the power of the crowds,

as a form of citizen science, for the classification of galaxy images by amateur people. However, the new

generation of telescopes that will produce images at a higher rate highlights the limitations of this approach,

and the use of machine learning methods for automatic classification is considered essential. The goal of

this paper is to shed light on the automated classification of galaxy images exploring two distinct machine

learning strategies. First, following the classical approach consisting of feature extraction together with a

classifier, we compare the state-of-the-art feature extractor for this problem, the WND-CHARM, with our

proposal based on autoencoders for feature extraction on galaxy images. We then compare these results with

an end-to-end classification using convolutional neural networks. To better leverage the available citizen

science data, we also investigate a pre-training scheme that exploits both amateur- and expert-labelled data.

Our experiments reveal that autoencoders greatly speed up feature extraction in comparison with WND-

CHARM and both classification strategies, either using convolutional neural networks or feature extraction,

reach comparable accuracy. The use of pre-training in convolutional neural networks, however, has allowed

us to provide even better results.

INDEX TERMS

Astroinformatics, autoencoders, citizen science, convolutional neural networks, deep learning, feature

extraction, galaxy morphologies, image classification.

I. INTRODUCTION

Classification is one of the core tasks addressed by machine

learning (ML) algorithms [1], [2]. A classifier is usually

trained to learn patterns from input data, aiming to predict the

label to be assigned to previously unseen data instances [3].

In image classification, we pursue the categorisation of

images into two or more classes, being either mutually exclu-

sive (multi-class classification, in which only one single

class is assigned) or not (multi-label classification, where

different classes coexist). These paradigms are widely imple-

mented inmultiple real-world applications such as fingerprint

identification [4] or the recognition of facial emotions [5],

The associate editor coordinating the review of this manuscript and
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and they have also become a useful tool for data analysis in

science and engineering [6], [7].

Astronomers have seen their data processing capabilities

exceeded with the advent of modern instrumentation [8],

leading to the emergence of the astroinformatics disci-

pline [9] to help analyse the data provided. In most cases,

this entails the classification of large collections of astro-

nomical images [10]–[12]. Particularly, the morphological

classification of galaxy images aims at the categorisation of

these objects into two main classes (morphologies), elliptical

and spiral [13]. The morphology is a key indicator for under-

standing the galaxy inner structure and physical processes,

also revealing aspects about the formation and evolution of

the universe [14]. However, due to the huge amounts of

images produced in modern telescopes [15], astronomers

47232 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-8651-9377
https://orcid.org/0000-0003-0452-3784
https://orcid.org/0000-0002-2341-9993
https://orcid.org/0000-0002-0150-0651
https://orcid.org/0000-0001-9777-128X


M. Jiménez et al.: Galaxy Image Classification Based on Citizen Science Data: Comparative Study

have been drawing upon the general public for this task using

the internet, giving rise to the re-emergence of the citizen

science movement [16], [17]. This was first materialised

with the release of the Galaxy Zoo 1 (GZ1) project [18],

which generated the largest manually annotated catalogue of

galaxy images to date [19]. Nonetheless, the next generation

of astronomical surveys that will produce billions of galaxy

images [20] shows the limitations of this approach. MLmeth-

ods are needed, pursuing a robust automation of the classifi-

cation task, and several efforts have recently been developed

in this direction [21]–[24].

The traditional ML approach to image classification

requires the extraction of features from the image. Classical

learning algorithms (e.g. Decision Trees, k-Nearest Neigh-

bours) do not cope well with images directly, which is typi-

cally solved transforming the image pixels into a new feature

space by means of feature extraction (FE) techniques [25].

In contrast, deep learning (DL) based approaches [26] need

minor or no data preprocessing for the classification of

images. More specifically, convolutional neural networks

(CNNs) [27], [28] provide excellent solutions [29], being

capable of taking a raw image as input and perform an

implicit FE process along with the classification in one single

step. Recent state-of-the-art CNNs are usually composed of

a very large number of layers [30] when dealing with chal-

lenging image classification problems [31]. Alternatively,

DL can also be used to extract features of an image by

means of autoencoders (AEs) [32], which have also been

proposed to ease the learning of standard classifiers [33].

Whereas CNNs often need to learn the image features from

scratch using a large amount of labelled data, AEs enable

the encapsulation of the FE process for a particular problem

without any need of labels, which can be advantageous for

the classification of big collections of images and the use of

other kind of classifiers [33].

The classification of galaxy images has leveraged both

general strategies [34]. However, the variable characteristics

of the images commonly used in the training of ML for this

problem have systematically neglected a fair comparison of

different methods under the same learning conditions. This

work presents a comparative study of distinct approaches for

galaxy image classification, investigating their advantages

and disadvantages in a common experimental framework.

Following the classical approach, we explore the suitability

of two feature extractors. On the one hand, we take theWND-

CHARMmulti-purpose feature extractor [35] as the state-of-

the-art FEmethod [22], [36], [37] used in this problem.On the

other hand, we propose twoAE architectures for the FE of this

kind of images, which, to the best of our knowledge, has not

been explored yet. We also analyse the effect of two feature

selection methods on the resulting feature sets, and then com-

pare these results with an end-to-end approach using CNNs.

Here we propose a simple yet effective CNN architecture and

compare it with a deeper CNN, namely ResNet [31].

The experiments are carried out over the GZ1main dataset,

consisting of nearly 668k images annotated by amateurs for

which we also hold expert classifications for a subset of∼41k

examples. We first explore the influence in the results of

several factors such as the image size or the presence of colour

channels using the subset with expert classifications. We then

investigate the scalability of both classification approaches

in the larger dataset. Finally, we utilise the whole GZ1 data

with both label sets to pre-train the CNNs using amateur

classifications and then fine-tune them on the expert-labelled

subset.

The rest of the paper is structured as follows. In Section II,

we briefly introduce related work about the classification of

galaxy images with citizen science and the ML approaches

taken for this problem to date. Section III presents our pro-

posed models of AEs and CNN for the FE and classification

of galaxy images, respectively, including a brief explanation

of the proposed pre-training approach with citizen science

data. Then, in Section IV we explain the experimental setup

established. SectionV presents the results and discussion, and

finally Section VI concludes the paper.

II. RELATED WORK

This section provides information about the central concepts

of the paper. First, we describe in more detail the classifi-

cation of galaxy images with citizen science (Section II-A).

After this, we present related work about ML approaches for

the automatic classification of galaxy images (Section II-B).

A. GALAXY IMAGE CLASSIFICATION AND CITIZEN

SCIENCE

Here we consider the morphological classification of galaxy

images, that is, the classification of these objects according

to a blend of the galaxy shape, colour, and texture [38].

This has been standard practice since it was first applied

by E. Hubble nearly a century ago [13]. The morphology

provides a first-order descriptor about the galaxy, which is

key for astronomers in the study of fundamental questions

about their inner physics [39], interactions [40], or evolu-

tion [41]. There are two main morphological types based on

the presence or not of a disk: spiral and elliptical, respectively.

However, the multiplicity of hybrid types and the wide range

of image conditions depending on factors such as the galaxy

brightness, size or distance, turn the classification of this sort

of images into a very complex task.

Citizen science has been a partial solution for this problem,

with the engagement of amateur people from the general pub-

lic in this kind of data analysis [42]. Citizen science projects

join the endeavours of myriads of volunteers committed to

helping with a task that typically is time consuming and

tedious for experts, but also decisive for getting advances

in a certain research problem. A task usually covered is the

classification of images, for which the Galaxy Zoo project

represents the most successful implementation to date [43].

Its first edition, the Galaxy Zoo 1 (GZ1) [18], was focused

on the distinction among spiral and elliptical morphologies,

providing amateur classifications for nearly 900k galaxy

images. In addition, there are also expert classifications for a
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subset of ∼41k of the GZ1 images, as it is explained in [18].

This inclusion of amateurs in research tasks has brought

additional uncertainty into results. Nonetheless, given the

potential of this large-scale data processing from the ML

perspective, solutions are being proposed to overcome this

issue [44].

Along with numerous scientific insights,1 GZ1 and the

subsequent releases of the project have also generated enough

labelled data for the proper training of ML algorithms [19],

[45], [46]. However, ML implementations using this data

have generally aimed at replicating participants’ classifica-

tion skills [21], [23] instead of tackling the uncertainty in

the results and/or taking advantage of available expert clas-

sifications [18]. In this work, we are interested in exploring

how the inclusion of amateur labels affects the classification

results, leveraging this particular characteristic featured by

the GZ1 dataset.

B. MACHINE LEARNING STRATEGIES FOR GALAXY IMAGE

CLASSIFICATION

This section presents an overview of works found in the

specialised literature concerning the use of ML for galaxy

image classification. First, FE based approaches are reviewed

(Section II-B.1). Then, we briefly introduce CNNs and their

latest trends, and we examine their use in galaxy image

classification (Section II-B.2).

1) FEATURE EXTRACTION PLUS A CLASSIFIER

FE methods used in the classification of galaxy images can

be grouped into twomain categories: problem specific, which

have been especially devised for this particular problem, and

general, which cope with image classification regardless of

the problem definition. Among the first, we review the use

of physical parameters extracted from the image, whereas

the second category is dominated by the WND-CHARM

feature set.

The classification of galaxy images with ML started with

the extraction of a reduced number of physical parameters

from the image [47], [48]. These parameters accounted for

properties such as galaxy ellipticity, surface brightness, or

concentration. As a form of image features, they were then

classified using artificial neural networks [49] (ANNs). The

feature set was then extended to a greater number of parame-

ters and standardised with the so-called CAS (Concentration-

Asymmetry-Smoothness) methods [50], [51]. ANNs were

generally used for the classification, along with other gen-

eral classifiers such as random forests and support vector

machines [52], [53]. Nonetheless, with the improvement of

computational resources, general purpose feature extractors

that compute longer sets of features have outperformed these

first attempts.

Although it was originally developed as an image anal-

ysis tool for the classification of biological images [35],

1The complete list of peer-reviewed publications based on the Galaxy Zoo
project results is available at https://www.zooniverse.org/about/publications.

WND-CHARM represents the state-of-the-art feature extrac-

tor for the classification of galaxy images [22], [36], [37].

First, through a FE phase, it computes a set of families of

features from the raw images in a one by one fashion. These

are categorised as image content descriptors, image trans-

forms, and compound image transforms (transformations of a

previous image transformation), composing a feature vector

for the image at hand [54]. Depending on the presence or

not of colour in the image, two feature sets are available.

Then, a feature selection (FS) phase chooses the most infor-

mative subset by calculating the Fisher discriminant score of

each feature. Finally, the resulting feature vectors are classi-

fied using a modified nearest neighbour (NN) rule [55] that

weights the distances using the Fisher scores previously com-

puted. Whereas in traditional NN only the closest (or k clos-

est) examples determine the class, with WND-CHARM the

distances to all training samples of each class are measured.

In this work, we only consider the FE and FS phases of the

WND-CHARM, the so-called WND-CHARM feature map,

for the comparison of this methodwith the FE performedwith

AEs.

2) CONVOLUTIONAL NEURAL NETWORKS

CNNs have systematically outperformed the classical bench-

marks in image classification in the last few years [31], [56],

thanks to the ease of access to big datasets and the improve-

ments in computational resources. This has also been the

case in galaxy image classification, promoted by the wide

availability of astronomical surveys on the web [15]. Basi-

cally, CNNs are ANNs with many hidden layers that progres-

sively reach more abstract representations of the input data

by computing non-linear transformations. These layers are

generally one of these types: convolution layer, pooling layer,

and fully connected layer. Whereas convolution and pooling

layers build and shrink the feature maps, respectively, fully

connected layers try to learn the global information present

at the end of these processes [28].

In the recent literature, very deep networks with a large

number of layers have been investigated [56]. The network

depth is of crucial importance for challenging image classi-

fication problems [30]. Many deep neural network architec-

tures (which use hundreds of layers) such as ResNet [31],

ResNext [57] or HRnet [58], have provided an outstanding

performance in varied image datasets with multitude of dif-

ferent objects [59]. These complex architectures are usually

exploited in a pre-trained fashion [60], which saves computa-

tional efforts and allows different domains to take advantage

of their prediction capabilities when the scarcity of anno-

tated examples invalidates the training of such models from

scratch [61]–[63].

CNNs have also been widely used in the classification

of galaxy images, showing the limitations of FE methods

when the classification is not restricted to the two main

morphologies. One of the first successful implementations

took place in the framework of a Kaggle competition,
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the Galaxy Challenge,2 which aimed at classifying a sample

of ∼50,000 galaxies from the Galaxy Zoo 2 dataset [45].

The goal was to predict the participants answers to a set of

questions about morphological traits featured by the galaxy.

The winner CNN architecture [23] established a benchmark

for this problem that has been widely employed thereafter

[24], [64]. However, these models make use of datasets of

moderate size to make feasible their training and employ

larger resources in terms of computational means and

runtime.

In this work, we propose a simpler CNN architecture

to distinguish between the two main morphological types.

We test this model against a well-established deeper model,

ResNet [31], and explore how their performances are affected

by the number and size of the images as well as the presence

or not of colour channels. We then compare these results with

the classification using FE plus classifier, aiming to investi-

gate in which occasions the different approaches work better.

Additionally, we also explore the pre-training of both CNN

models considered by exploiting the availability of expert and

amateur labels within citizen science data, which to the best

of our knowledge has not been investigated before.

III. METHODOLOGY: GALAXY IMAGE CLASSIFICATION

WITH DEEP LEARNING

This section introduces the proposed AE architectures for

developing the FE of galaxy images, as well as the CNN

proposed for comparison of ML approaches for galaxy image

classification. First, we give a brief introduction to AEs

and describe the two models used through the experiments

(Section III-A). Then, we present the used CNN architecture

(Section III-B). Finally, we provide some background about

the pre-training of CNNs and explain our novel approach to

make use of amateur and expert labels (Section III-C).

A. AUTOENCODERS FOR FEATURE EXTRACTION ON

GALAXY IMAGES

AEs are a common architecture in unsupervised DL,

the referred as encoder-decoder [65]. Basically, an AE is an

ANN able to build new encodings for some input by means

of a symmetrical structure of layers that tries to resemble

the input pattern to the output as closely as possible [32].

The middle layer (symmetry axis) represents the encoding,

which is found after a training process that does not make

any use of the data labelling. As with other ANNs, the set of

weights and activation function associated with every neuron

generate the outputs layer by layer. A loss function computes

the disagreement between input and reconstruction, which

is optimised using the stochastic gradient descent [66] in

conjunction with the back-propagation algorithm [67].

AEs have been proposed for diverse tasks related to fea-

ture fusion [32] and dimensionality reduction to facilitate

the learning of canonical classifiers [33]. In astronomy, AEs

show a great potential for the processing and storage of large

2https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge

FIGURE 1. Architecture of the deep autoencoder (DAE) proposed.

TABLE 1. Topology of the DAE proposed.

datasets of images. First, their training is unsupervised, which

is key due to the scarcity of reliable image labels. Addition-

aly, they enable the encapsulation of the FE phase for the

exploration of patterns in the data and large-scale storage and

management of astronomical images. However, to the best of

our knowledge, a comparative study of their use for FE on

galaxy images has not been accomplished.

In our comparative study, we implement two different AE

models that showed the best performance among a wide set of

topologies that were tested. The first one uses fully connected

layers in a more classical approach, while the second imple-

ments a CNN-based architecture. These models are based on

architectures originally designed for the classification of the

MNIST dataset [68].
• The Deep AE (DAE) model deploys the architecture of

a deep and undercomplete AE, that is, an AE with more

than one hidden layer and the encoding having a lower

dimensionality than the input [32]. It holds two fully

connected layers between input and encoding. Follow-

ing this, the reverse structure is deployed from encoding

to output layer, thus completing the symmetrical struc-

ture as it is shown in Figure 1. For this model, the encod-

ing dimension is the same regardless of the input image

size: 256 features. The activation function used in all

neurons is the rectified linear unit (ReLU) [69], except

for the last layer (output), which applies the sigmoid

function. The DAE architecture is specified in Table 1.

• The Convolutional AE (CAE) model uses the mecha-

nism of CNNs for learning the encoding, implementing
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FIGURE 2. Architecture of the convolutional autoencoder (CAE) proposed.

TABLE 2. Topology of the CAE proposed. The reverse structure is
deployed for the decoder, using the sigmoid function in the last layer.

convolution and pooling layers. The model proposed

deploys three pairs of convolution – pooling layers

from input to encoding. After the third pooling layer,

the resulting tensor is flatten to obtain the encoding,

as Figure 2 shows. Unlike the DAE model, for CAE

the number of features depends on the input image size.

The first convolution layer holds 16 kernels and the

remaining two hold 8 kernels. The receptive fields are

3 × 3 pixels size, and pooling layers implement max

poolingwith 2×2 pixels windows. As in theDAE, ReLU

activation functions are used along the network except

in the output layer, which applies the sigmoid function.

The complete specifications are presented in Table 2.

B. CONVOLUTIONAL NEURAL NETWORK FOR GALAXY

IMAGE CLASSIFICATION

Pursuing a fair comparison with the classification using the

two AE models introduced above, the CNN architecture pro-

posed here resembles the CAE topology presented in the

previous section. Hence, this consists of three consecutive

pairs of convolution – pooling layers, which performs the FE

phase, followed by three fully connected layers that complete

the features classification. As with the CAE, the network

computes 16 feature maps in the first convolution layer, and

then 8 in second and third convolution layers. Pooling layers

implement the max pooling using 2 × 2 pixels windows.

After this, two layers of 256 and 128 neurons hold dense

TABLE 3. Topology of the proposed CNN.

connections and produce the network output, consisting of

two neurons (binary classification). These output layer gives

the class probabilities, which are rounded to produce the final

classes labels. ReLU activation functions are used through

the whole structure except for the output layer, which applies

the softmax function that enables us to obtain probability

distributions. The architecture proposed is shown in Figure 3,

and all specifications presented in Table 3.

Deeper architectures were tested prior to the experiments,

implementing up to six pairs of convolution – pooling lay-

ers and/or different numbers of feature maps. Nonetheless,

the improvement was marginal or even diminished the accu-

racy in the results. Consequently, we opted to select the

CAE’s topology presented above and compare this simpler

architecture against one of the state-of-the-art models more

widely used in computer vision. Particularly, we selected

the lighter implementation of ResNet, ResNet50 [70], which

is composed of fifty layers to exploit the residual learning

blocks that characterise this DL approach [31].

C. PRE-TRAINING WITH CITIZEN SCIENCE DATA

The final stage of our comparative study involves the pre-

training and fine-tuning of the proposed CNN and the ResNet

using citizen science data. By this, we aim to investigate

the learning of such models from both amateur and expert
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FIGURE 3. Architecture of the proposed CNN.

labels at the same time, thus leveraging the whole range of

knowledge featured by citizen science projects.

In the literature, pre-training has been used to alleviate the

scarcity of labelled examples and also save the higher com-

putational capacity and time required for the training of deep

architectures [63]. Hence, pre-trained networks, which have

been previously fully-trained using a more generic dataset,

are adapted (fine-tuned) to the particular classification prob-

lem at hand employing more specific data [61]. In practical

terms, this process generally entails the top dense layers of

the network that performs the classification of the deep fea-

tures extracted by the convolutional layers. Taking advantage

of the set of weights previously learned in the pre-training

step, the dense layers are modified and trained to fulfil the

requirements of the targeted classification problem [70].

Inspired by the problem of coarse supervision [71],

in which image labels followed a hierarchical structure (e.g.

coarse: big cat, finer: leopard, cheetah, tiger), here we explore

a special case of pre-training by taking advantage of citizen

science data. First, we train the CNN using amateur-labelled

data, which is more abundant with respect to expert-labelled

data and considered less reliable [44]. Then, we complete the

fine-tuning with examples labelled by experts, which we take

as ground truth for this problem.

IV. EXPERIMENTAL SETUP

In this section, we explain the experimental setup deployed

for the comparative analysis of the classification approaches

introduced above. First, we present the selected standard

classification algorithms (Section IV-A) and the two chosen

FSmethods (Section IV-B), alongwith their parameters. Both

standard classifiers and FS methods are applied to either

AEs or WND-CHARM feature sets. Then, we provide the

experimental details of the DL-based models, which include

both AEs, the proposed CNN, and ResNet (Section IV-C).

Finally, we introduce the GZ1 image data and the perfor-

mance evaluation of the experiments (Section IV-D).

A. STANDARD CLASSIFICATION ALGORITHMS

The standard classification algorithms selected for the com-

parative study were made according to their proven accurate

behaviour in many real-world applications [72]. Here we

use k-nearest neighbours, random forests, and support vector

machines. The basics of each algorithm and their configu-

rations are summarised in Table 4. We are not interested in

performing a fine tuning of these algorithms, and we thus

employ the standard parameters.

• The k-nearest neighbours (kNN) [55] is a well-known

algorithm in supervised learning. The kNN algorithm

uses the whole training set as to classify new instances

via a similarity function, which is usually defined by a

distance on the feature space. First, distances are com-

puted from the new example to the entire training set,

and then the k closest training instances are selected.

The final label is chosen in accordance to the prevalent

class in the k-subset. Here, we use the Euclidean distance

and k = 3.

• Random forests (RF) [73] is a classifier based on the

decision tree algorithm [2]. It trains a number n of

decision tree classifiers and provides the majority class

among them as a result. Each sub-tree, referred as an

estimator, is trained using a sub-sample of the original

training set. Here we run the experiments with n = 100.

To measure the quality of a split, the Gini impurity is

used.

• Support vector machine (SVM) [74] is capable of learn-

ing a mapping from the input attributes to the set of

classes by means of a higher-dimensional feature space.

For this, a kernel function enables the computations of

the inner product between two feature vectors. After the
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TABLE 4. Parameters for the selected standard classifiers.

instances are mapped to the new feature space, the algo-

rithm looks for the optimal separating hyperplane, that

is, the one that maximises the distance to the different

classes clusters. Here we train the SVM using the linear

kernel.

B. FEATURE SELECTION METHODS

We consider two feature selection (FS) methods through

the comparative study, aiming to investigate the impact of

FS over the extracted feature sets in terms of classification

runtime and accuracy:

• Asmentioned in Section II-B.1, a FSmethod is proposed

as part of theWND-CHARM classifier [35] and is based

on a feature ranking involving the use of Fisher discrim-

inant scores as feature weights [75]. First, the weights

are calculated for each feature following Equation (1):

Wf =

∑N
c=1(Tf − Tf ,c)

2

∑N
c=1 σ

2
f ,c

·

N

N − 1
, (1)

where Wf is the Fisher score of feature f , N is the

number of classes in the problem, Tf is the mean of

the values of feature f in the entire dataset, Tf ,c is the

mean of the values of feature f in the class c, and σ
2
f ,c

is the variance of feature f values across all examples

of class c. After the features are ranked according to

this weighting, the 35% holding a lower Fisher score are

rejected, as originally proposed in [35]. Therefore, this

Fisher FS method results in a fixed number of features.

• The second FS method proposed is part of the so-called

embedded FS techniques, which highlights as a simple

yet fast strategy especially suitable for high-dimensional

data [76]. It implements a randomised decision tree

with 50 trees to choose the most relevant features. This

method also makes use of the labels, searching an opti-

mal subset of features in the combined space of features

and hypotheses. As such, the final number of features

selected is variable, depending on the data sample

considered [77].

C. DL-BASED MODELS

In this paper we pursue a fair comparison between distinct

approaches for the classification of galaxy images. Thus,

as stated above, the DL-based models used in the exper-

iments share a similar architecture and most parameters.

Nonetheless, to compare the proposed CNN against a

well-established deep neural network for end-to-end image

classification, we introduce the ResNet [31] model as a com-

parison algorithm. ResNet is an architecture normally trained

to distinguish between multiple classes. Given that we focus

on a binary classification problem, we use one of the lightest

versions of this network, the ResNet50 [70].

AE models, the proposed CNN and ResNet were trained

over 100 epochs with a batch size of 256 examples. CAE,

CNN and ResNet were optimised with stochastic gradient

descent [77], whereas DAE used the adadelta optimiser [78].

D. DATA AND EVALUATION OF EXPERIMENTS

The data used in the experiments is part of the collection of

galaxy images classified by the GZ1 project, which results

were published in the so-called GZ1 Table 2 (GZ1-T2) after

the project closure3 [19]. This dataset includes amateur clas-

sifications for a total of 667,944 galaxy images. In addition,

we also hold expert classifications for a subset of the GZ1-

T2 data. This sample, referred from now on as GZ1 Expert

subset (GZ1-E), comprises an amount of 41,424 examples

that were classified as elliptical or spiral by a team of expert

astronomers [18].

The entire GZ1-T2 image dataset was primarily down-

loaded from the Sloan Digital Sky Server (SDSS) CAS

server.4 In order to establish a fair comparison, we follow the

original GZ1 project specifications [18], taking 423 × 423

pixels JPEG images centred in the galaxy. The image scale

is particular for each image and varies in accordance to

the formula 0.024Rp arcsec/pixel, where Rp is the Petrosian

radius for the galaxy, that is, a good estimator of its physical

size. However, we found that this automatic scaling tends to

leave the galaxy isolated in the centre of the image, with a

dominance of background pixels and/or other meaningless

artifacts around the target object. Therefore, in order to speed

up the image processing by both FE methods and the CNNs,

we simplified the images’ presentation and ended up con-

sidering two image sizes through the experiments, aiming to

study the influence of the image size and resolution in the

classification performance: 128 × 128 (128x) and 64 × 64

(64x) pixels images. To accomplish this, we first cropped

the original images in the GZ1-T2 dataset to their half size

(212 × 212 pixels) and converted them to TIFF format,

keeping the galaxy in the centre of the image. After this,

we compressed the resulting images to the two sizes referred

above.

For the GZ1-E, we used the expert classifications available

as image labels, which we take as ground truth for the prob-

lem. In contrast, the GZ1-T2 data provides the record of votes

for the options offered on the GZ1 web to project partici-

pants [18]. Hence, when using the whole data we assigned the

majority voted class among spiral and elliptical, considering

the original amateur classifications. However, this criterion

left 8,759 examples for which both scores coincided and thus

could not be labelled in this way. We opted to remove these

3The GZ1 results are available at http://data.galaxyzoo.org.
4http://cas.sdss.org
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TABLE 5. Description of the two data samples taken from the
GZ1-T2 dataset used in the experiments.

images from the GZ1-T2 data for consistency, then using

the remaining 659,185 images. We refer to this sample as

GZ1 Amateur subset (GZ1-A) from now on. The classes dis-

tribution of both GZ1-T2 data samples are shown in Table 5.

In all the experiments, we used a 5-fold cross-validation

scheme. For AEs, CNN and ResNet, the training set was

split into 70/30 for training and validation. In the classi-

fication with extracted feature sets, the classifiers training

were carried out consistently: same data partitions defined

for the AEs training were used for the training and testing

of the classifiers, aiming to resemble real working conditions

for the classification of unseen data.

Since the problem classes are balanced (Table 5), we drew

upon the classification rate or accuracy (Acc) measure, which

accounts for the proportion of correct classifications with

respect to all classified examples [2]. We took as final mea-

sure the average over the five test data partitions. We also

analysed the performance in terms of runtime, aiming to esti-

mate a runtime comparison between the different approaches

studied here. We examined the FE runtime, taken by both AE

models and WND-CHARM, and the classification runtime

employed by the classifiers, including the CNN and ResNet.

For AEs, the runtime shown accounted for the training and

computation of features, whereas WND-CHARM directly

computed the features with no training. The classification

runtime presented accounts for the training and classification

stages, considering negligible the time taken by the FS phase,

when applied.

All experiments involving the classification of the fea-

ture sets were carried out in a single node with an Intel(R)

Xeon(R) CPU E5-1650 v4 processor (12 cores) at 3.60GHz,

and 64 GB of RAM. For the training of the DL-based models,

we employed a NVIDIA Titan Xp GPU. In terms of software,

the Keras5 Python package was used for the AEs, CNN

and ResNet, and the Scikit-learn6 library for all experiments

involving either the training and classification phases of the

standard classifiers introduced above. The WND-CHARM

implementation used here is freely available in Python lan-

guage at https://github.com/wnd-charm/wnd-charm.

V. RESULTS AND ANALYSIS

This section presents the experimental results. First, we carry

out a comparative study using the GZ1-E subset and consider-

ing both image sizes as well as colour and greyscale images

(Subsection V-A). Then, we focus on the GZ1-A subset to

investigate the scalability of the best classifier from GZ1-E,

5https://keras.io/
6https://scikit-learn.org

TABLE 6. Number of extracted features in GZ1-E.

FIGURE 4. FE runtime in logarithmic scale for GZ1-E sample.

FIGURE 5. Sample of galaxy images reconstructed by the proposed AE
models. Top row presents the original 128x images from the
GZ1-T2 dataset. Middle and bottom rows show their reconstructions
performed by DAE and CAE architectures, respectively.

and to leverage the larger number of amateur-based classi-

fications with our proposed pre-training scheme for CNNs

(Subsection V-B). Finally, we analyse the results obtained

(Section V-C).

A. GZ1-E: EXPERT SUBSET

Due to its reduced size, we first used the GZ1-E sample

with expert labels, investigating the performances of both AE

models proposed as well as the influence of image size and

use of colour in classification results. The CAE was tested

with colour and greyscale images, whereas the DAEwas only

tested with greyscale images. For WND-CHARM, the two

feature sets available for colour and greyscale images were

computed. Thus, we obtained a distinct feature set for each

FE method and image colour/size configuration.

The resultant number of features is indicated in Table 6,

and a visual comparison of the runtime spent by these

methods is presented in Figure 4. For visual illustration

of the behaviour of both AEs, Figure 5 plots the image
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FIGURE 6. Classification runtimes in logarithmic scale for 64x images of
the GZ1-E sample. Classifiers and FS methods are represented by colour
and intensity, respectively.

reconstructions performed for a selection of images from

the GZ1-E sample. As it is shown, the DAE model disre-

gards colour channels and is less sensitive to the presence

of artefacts in the image and galaxy contours. Conversely,

the CAEmodel defines borders more accurately and partially

replicates colour in the images.

These feature sets were taken as input to the classifiers

selected for the study. In first place, we carried out the classi-

fications with no FS, pursuing a first comparison of the entire

AEs andWND-CHARM feature sets for greyscale and colour

images and both image sizes proposed. We then investigated

the application of the two FS methods proposed aiming to

speed up the classification phase. Accuracy results for these

experiments are shown in Table 7 for both image sizes,

and comparative representations of the runtime are presented

in Figures 6 and 7 for 64x and 128x images, respectively.

These values correspond to the average of the classification

runtime over the five data partitions.

In third place, we performed the classification of the

GZ1-E images using the proposed CNN and the ResNet

model as a comparative algorithm. Here we also explored the

use of greyscale and colour images and the two image sizes

established for the study. These results are shown in Table 8.

Finally, we carried out a comparison among the total clas-

sification time of both strategies analysed using the GZ1-E

subset. As an estimation of this time for the approaches with

FE, we added the FE time of both AE models and WND-

CHARM to the classification times obtained for each image

configuration (Figures 4, 6 and 7). For the sake of simplicity,

here we selected the tandem Embedded FS plus RF classifier

for both AE models and WND-CHARM feature sets classi-

fication, since this setting offered the best accuracy/runtime

FIGURE 7. Classification runtimes in logarithmic scale for 128x images of
the GZ1-E sample. Classifiers and FS methods are represented by colour
and intensity, respectively.

FIGURE 8. Total classification runtime in logarithmic scale for both
strategies studied with the GZ1-E sample. For FE approaches,
the classification is performed with the RF classifier and embedded FS.
This runtime is subdivided in FE runtime and classification runtime.

trade-off in the experiments presented above (Table 7 and

Figures 6 and 7). This is represented in Figure 8.

For a visual illustration of the classification problem inves-

tigated and how the different approaches and algorithms

work, Figure 9 displays a wide-ranging selection of images

from the GZ1-E subset. For simplicity, we restrict the illus-

tration to 128x colour images and select as well the combi-

nation Embedded FS plus RF classifier for both AE models

and WND-CHARM feature sets classification. We include

the result of DAE, CAE, and WND-CHARM FE methods,

and both CNN and ResNet classifiers. We also indicate the
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TABLE 7. Accuracy results for 64x and 128x images of GZ1-E sample, with no FS (top sector of the table), Fisher scores FS (middle sector) and embedded
FS (bottom sector).

TABLE 8. Results of proposed CNN and ResNet for 64x and 128x images
of GZ1-E sample.

amateur label for the object shown, considering the expert

classification as ground truth.

B. GZ1-A: AMATEUR SUBSET

Using the GZ1-A subset, the aim of this subsection is

two-fold. First, we used this bigger dataset to analyse the

scalability of the methods compared in the previous section

(Subsection V-B.1). Second, we exploited the huge number of

existing amateur-labelled galaxy images by pre-training both

CNN and ResNet models on this dataset (Subsection V-B.2).

1) SCALABILITY OF METHODS

After the first set of experiments using the GZ1-E subset,

we extended the comparative study to the GZ1-A sample. For

this larger dataset, we only compared the features obtained

with the CAE and theWND-CHARM for 64x colour images.

We completed the classification with RF algorithm, which

showed the best balance between runtime and accuracy in

the previous experiments with the GZ1-E sample. We also

examined the application of both FS methods proposed.

These results are shown in Table 9. The representation of

classification runtime is presented in Figure 10, which also

includes the FE runtime for the CAE and WND-CHARM.

In line with the previous study of GZ1-E, we also carried

out the classification with the proposed CNN and ResNet

on this sample. Results of accuracy and runtime are shown

in Table 10.

TABLE 9. Accuracy results for GZ1-A sample. CAE and WND-CHARM
feature sets are classified with RF.

TABLE 10. Results of the CNN proposed and ResNet for GZ1-A sample.

Finally, we compared an estimation of the total classifi-

cation time of both approaches analysed with the GZ1-A

sample. As we did with the GZ1-E subset, we added

the FE time to the classification runtime for CAE and

WND-CHARM. These results are represented in Figure 11.

2) PRE-TRAINING WITH AMATEUR AND EXPERT LABELS

Aswe explain in Section III-C, citizen science projects enable

a novel methodology for the pre-training and fine-tuning of

CNNs. By making use of amateur and expert classifications,

the network can be pre-trained employing amateur labels,

which are expected to be higher in number and coarser in

comparison with their expert counterparts. Then, the inclu-

sion of expert labels permits the fine-tuning, occasionally re-

defining the output (number of classes) of the network.

For this experiment, we considered 64x colour images.

We first trained CNN and ResNet on GZ1-A using ama-

teur labels, and then re-trained the network (from previ-

ously learned weights for all layers) on GZ1-E with expert

labels carrying out the usual cross-validation established

for all experiments. Since the smaller GZ1-E sample is

included in GZ1-A, we removed the overlapping between

both samples. That is to say, the pre-train phase skipped the
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FIGURE 9. Sample of 128x colour images from the GZ1-E subset showing a wide-range of image qualities and
difficulty. Two top rows are classified by experts as elliptical and two bottom rows as spiral. For each of the images,
we indicate which approaches misclassify (red) or correctly predict the label (blue), considering expert
classifications as ground truth.

examples in GZ1-A later used in the fine-tuning with GZ1-E.

We refer to this data sample as GZ1-A*, which consisted

of 617,986 examples. In contrast with usual pre-training

approaches [61]–[63], here the number of classes does not

change and therefore we kept the dense part of both networks

for the fine-tuning. Results for this experiment are shown

in Table 11.

C. ANALYSIS OF RESULTS

An examination of the tables and charts presented above

allowed us to conclude the following remarks after the

experiments:

• Among the FE approaches compared, AEs have demon-

strated to perform the extraction of features in a shorter

amount of time, as it is shown in Figures 4 and 10. How-

ever, the classification with the WND-CHARM feature

set provided better accuracy compared to AE features

across both GZ1 data samples (Table 7 for GZ1-E and 9

for GZ1-A). In broad terms, RF generally outperformed

the kNN and SVM algorithms and the use of 64x or

128x images did not make a big difference. Nonetheless,

the presence of colour provided better accuracy with

respect to greyscale images. This was accomplished at

the cost of higher runtime as well, in particular for

47242 VOLUME 8, 2020



M. Jiménez et al.: Galaxy Image Classification Based on Citizen Science Data: Comparative Study

FIGURE 10. FE and classification runtimes in logarithmic scale for GZ1-A
sample.

FIGURE 11. Total classification runtime in logarithmic scale for both
strategies studied with the GZ1-A sample. For FE approaches,
the classification is performed with the RF classifier and embedded FS.
This runtime is subdivided in FE runtime and classification runtime.

TABLE 11. Results for the proposed CNN and ResNet, implementing the
pre-training and fine-tuning with the GZ1-A* and GZ1-E subsets,
respectively.

the WND-CHARM Colour feature extractor, which has

proved to be the best feature set in terms of classification

accuracy.

• The two FS methods proposed did not have a big impact

on the classification accuracy. However, they consid-

erably diminished the classification runtime, especially

for the WND-CHARM feature sets, as it is presented

in Figures 6 and 7. The most promising results were

obtained for the embedded FS method, probably due to

the dynamic nature of this approach that selects a vari-

able number of features. Conversely, the method based

on Fisher scores always filters a fixed number of fea-

tures, thus providing a runtime reduction that remained

steady.

• Although theWND-CHARMColour feature set yielded

better classification accuracy, both AE models proposed

here have proved to greatly accelerate the FE process

(Figures 4 and 10), which could be decisive for the

classification of big volumes of data. Among the AE

models proposed, the CAE provided the best results in

terms of accuracy with respect to the DAE, also enabling

the use of colour images. For this architecture, the global

classification time with the GZ1-E dataset is comparable

to the classification using the proposed CNN (Figure 8).

This confirms the potential utility of AEs in the classi-

fication of large amounts of image data, given that the

AE’s training would be completed only once.

• Both analysed CNNs provided the best performance in

comparison with the three FE approaches studied in

terms of accuracy/runtime balance for both data sam-

ples used in the study (Tables 8 and 10). Nonethe-

less, the WND-CHARM Colour feature set was able to

obtain comparable accuracy in the GZ1-E subset when

the classification was made using the SVM algorithm

(Table 7). The difference was enlarged with the GZ1-A

sample (Table 9), showing that CNNs coped better with

the learning from larger amounts of data that probably

contain more noise in the labels, and also revealing

that amateur labels tended to degrade the classification

accuracy.

• ResNet generally outperformed the proposed CNN

model in terms of accuracy in the experiments with

GZ1-E with expert labels. However, this was achieved

at the cost of a much higher runtime that grew up to

seven times for greyscale images (Table 8). In contrast,

the improvement was marginal in the classification of

GZ1-A with amateur labels, where a huge increase of

the runtime did not provide a much better accuracy

(Table 10). These experiments reveal that deeper archi-

tectures do not always translate in much more improved

results, and that the selection of the model can be critical

for an optimal DL classification approach in terms of

time.

• The proposed pre-training and fine-tuning scheme,

using both amateur and expert labels, showed a promis-

ing result as a way of leveraging all the potential of cit-

izen science projects (Table 11). Here the improvement

in accuracy (comparing with the previous experiment

with GZ1-E only, Table 8), was greater for the proposed

CNN, indicating that the addition of more layers in the

network did not provide any substantial improvement

with coarser labels. However, the pre-training phase

considerably enlarged the total runtime for both CNNs.

This experiment confirmed the adequacy of considering

expert and amateur labels to feed the learning of a ML

approach, which specially applies in complex classifica-

tion problems such as the one studied in this paper. For

example, images 9d, 9e, 9l and 9n demonstrate that even

the best approaches compared in the study are prone to

fail (if we consider experts’ judgements as ground truth),

and an integrated use of all knowledge about the problem

(e.g. expert classifications, additional astronomical data,

citizen science results) can be crucial.

VI. CONCLUSION

In this paper, we have presented a comparative study about

the performance of two different strategies for the automated

classification of galaxy images, either classifying a feature
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set obtained from the image or with convolutional neural net-

works. Through a set of experiments, we have compared the

state-of-the-art feature extractor, the WND-CHARM, with

the suitability of autoencoders for feature extraction of galaxy

images. We have then compared these results with the end-

to-end classification provided by two models of convolu-

tional neural networks under the same experimental setting.

We have explored the impact of the image size and the pres-

ence or not of the colour channels in the classification results,

also studying the effect of two distinct feature selection

methods. The experiments have been run using two different

samples from the Galaxy Zoo 1 image dataset, also studying

the scalability of both approaches to larger data and the influ-

ence of amateur and expert classifications in the classification

accuracy. In addition, we have introduced a novel approach

based on pre-training and fine-tuning of convolutional neural

networks that have proven to take advantage of both label sets

available for this problem.

The results allow us to conclude that convolutional neu-

ral networks offer the best trade-off between runtime and

accuracy although the addition of a big depth and complex-

ity in the network does not always provide a significant

improvement in their prediction capability, depending on the

classification problem at hand. Also, autoencoders represent

a promising alternative for the classification of these images

with feature extraction. This is a consequence of their ability

to separate the feature extraction and learning processes,

which could eventually be beneficial when the amount of data

to be classified expands. Finally, it has been shown that very

promising results may eventually come from the learning of

both amateur and expert label sets that citizen science projects

offer. Following the work presented here, we plan to enhance

the learning phase with the consideration of unlabelled data in

conjunction with different levels of confidence in the images

labelling.
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