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ABSTRACT

We present a systematic analysis of the constraints σγ on the mass profile slope γ obtainable
when fitting a singular power-law ellipsoid model to a typical strong lensing observation of
an extended source. These results extend our previous analysis of circular systems, Paper I.
We draw our results from 676 mock observations covering a range of image configurations,
each created with a fixed signal to noise ratio S = 100 in the images. We analyse the results
using a combination of theory and a simplified model which identifies the contribution to the
constraints of the individual fluxes and positions in each of the lensed images. The main results
are: 1. For any lens ellipticity, the constraints σγ for two image systems are well described
by the results of Paper I, transformed to elliptical coordinates; 2. We derive an analytical
expression for σγ for systems with the source aligned with the axis of the lens; 3. For both two-
image systems and aligned systems, σγ is limited by the flux uncertainties; 4. The constraints
for off-axis four-image systems are a factor of two to eight better, depending on source size,
than for two-image systems, and improve with increasing lens ellipticity. We show that the
constraints on γ in these systems derive from the complementary positional information of the
images alone, without using flux. The complementarity improves as the offset of the source
from the axis increases, such that the best constraints σγ < 0.01, for S = 100, occur when the
source approaches the caustic.
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1 INTRODUCTION

The measurement of the mass profile of a galaxy acting as a gravi-

tational lens is important in at least four areas of astronomy: i) the

determination of the Hubble constant using the time-delay method

(e.g. Suyu et al. 2010); ii) the detection of mass substructure in

galaxy haloes (e.g. Vegetti et al. 2014); iii) the accurate measure-

ment of the mass-to-light ratio in galaxies, which may be used to

estimate the stellar initial mass function (e.g. Auger et al. 2010);

iv) testing theories of the formation and evolution of galaxies (e.g.

Koopmans et al. 2009).

The prevailing view is that strong lensing (i.e. when multiple

images are formed) on its own yields only limited information on the

mass profile, and that supplementary information from dynamics is

required. The goal of this series of papers is to reexamine this ques-

tion. The first paper in the series, O’Riordan et al. (2019, hereafter

‘Paper I’) includes a literature review of the topic. As noted there,

much of the theory of how strong lensing can constrain the mass

profile makes reference only to measurement of the positions of the

images, and the theory of the constraints provided by flux infor-

⋆ E-mail: conor.oriordan15@imperial.ac.uk

mation is underdeveloped (although see below). For point sources,

i.e. quasars, the flux information cannot be used because it may

be affected by variability or microlensing, but for extended sources

the flux information provides additional constraints. In Paper I we

examined the case of a circular lens with a singular power-law mass

profile, ρ ∝ r−γ . In the current paper we extend this analysis to the

elliptical case.

This series of papers extends the theory of measurement of the

lens mass profile in fitting a parametric global model for the mass

distribution. There has been substantial progress recently in the

development of an alternative approach, termed model-independent,

which is based on the insight that the observables constrain only

certain local properties of the potential (Wagner & Bartelmann

2016; Wagner 2017; Tessore 2017; Wagner & Tessore 2018; Wagner

2019). The observables include positions and fluxes, as well as

ellipticities, orientations and time delays. The properties constrained

are derivatives and ratios of derivatives of the potential. These two

approaches are complementary and it is a requirement of any global

fit to satisfy all the model-independent constraints.

We now briefly summarise the contents of Paper I. For a cir-

cular lens modeled with a power-law mass profile there are four

parameters to be determined: the mass profile slope γ; the Einstein
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2 C. M. O’Riordan et al.

angle θE; the source angular position β; and the source flux fs.

Since it is the mass profile we are interested in, the question is how

accurately can the slope be measured, i.e. what is σγ for different

image configurations. The images provide two angular positions θ1
(inner) and θ2 (outer), and two fluxes f1 and f2, so there are po-

tentially sufficient measurements to measure the four parameters.

Working with ratios θr = θ1/θ2 and fr = f1/ f2 eliminates θE and

fs. We then showed that θr alone, or fr alone, provides constraints

on a combination of the mass profile slope γ and the source posi-

tion β (Paper I, Fig. 3). These constraints are complementary, so by

combining the position and flux information both parameters can

be measured.

We found that the uncertainty on the measured value of γ

is dominated by the uncertainty on fr, and that for this case the

positions may be treated as measured exactly provided the source

size is much smaller than θE. With this assumption we were able to

derive the uncertainty on γ as a function of: γ itself; the position

ratio θr; and the summed signal-to-noise ratio (S/N) in the two

images, parameterised by S. For the isothermal case γ = 2 this

relation reduces to the simple expression:

σγ =
2
√
θr

S(1 − θr)
. (1)

For S = 100, which is quite commonly achieved in HST images,

and for θr = 0.5, this formula implies σγ = 0.03, i.e., the profile

slope may be measured very accurately.

We confirmed these results using a series of mock observations.

We modeled the source as circular, with a Sérsic surface-brightness

profile, imaged by a circular power-law lens. Two sets of mock

observations were created with different source sizes. Noise was

added as appropriate, to produce images with S = 100. We fitted

an elliptical lens, i.e. the singular power-law ellipsoid (SPLE), and

an elliptical source, and the uncertainty σγ was recorded. The lens

position is assumed known, i.e. in a real image it would be measured

as the centroid of the light of the lens galaxy.1 The fitted model has

a total of 11 parameters, seven for the source and four for the lens

(details are provided in Section 3). Despite the larger number of

parameters, we found very close agreement between the value of

σγ obtained by fitting the mock observations and the prediction of

the simplified theoretical analysis. This demonstrates that the theory

captures all the relevant features of the problem, and that the results

are independent of the structure of the source.

In the current paper we extend the analysis to the elliptical

case. As for the circular case we present a systematic treatment of

the available constraints on the mass profile slope, using lensing

data alone, i.e., without dynamics.

The lensing features of singular power-law ellipsoid (SPLE)

mass distributions were first found analytically by Bourassa & Kan-

towski (1975), to which Bray (1984) added a minor correction.

Kormann et al. (1994) found analytic expressions for the lensing

properties for the particular SPLE case γ = 2 (i.e. the isothermal

model). Later Schramm (1990) and Barkana (1998) devised numer-

ical routines that allow the analysis of the general SPLE case. More

recently, Tessore & Metcalf (2015) found elegant analytic expres-

sions for the general case, which we will make use of in this work.

The isothermal SPLE is the choice of mass model in many galaxy-

galaxy lensing observational studies including in SLACS (Bolton

et al. 2008) and in the BELLS GALLERY survey (Shu et al. 2016).

1 We follow this assumption in all this work. In principle the lens centre

could be added as two extra parameters xl, yl , which would change the

results, but this possibility is not considered here.

Regime Images Configuration Observables

1 2 all fluxes+positions

2 4 aligned fluxes+positions

3 4 off-axis positions

Table 1. The three regimes into which the different image configurations

are divided. The manner in which the observables lead to constraints on γ

is different in each regime.

For the circular power-law case we presented a complete an-

alytical treatment of the constraints on γ, but for the SPLE this is

possible for only one particular configuration. Therefore for a com-

plete treatment we must rely on analysing mock observations. In

this paper we present a set of mock observations spanning a range

of source positions and a range of lens ellipticities. In each we fit

the same 11 parameter model as before and find the 1σ uncertainty

on the slope. These results reveal that the relation between σγ and

the image configuration is more complex for the elliptical case. We

identify three separate regimes, listed in Table 1, and find that the

origin of the constraint on the slope in relation to the observables is

different in each regime. The observables contributing to the con-

straint σγ in each regime are listed in the table. Regime 1 is the

case of two images, where the source is located outside the astroid

caustic. Regime 2 is where the source lies on the optical axis, pro-

ducing a four-image Einstein cross configuration. We refer to these

as ‘aligned systems’. This regime is tractable analytically. Regime 3

is the general case of four images, where the source lies off axis but

inside the astroid caustic. To gain a detailed understanding of how

a particular configuration constrains γ we make use of a simplified

modelling apparatus which we call the position/flux model. With

this we fit directly to the positions and fluxes rather than the image

pixel values. The power of this approach is that we can determine

exactly which of the observables are responsible for the constraints

in the different regimes, because any observables – positions or

fluxes – can be enabled or disabled at will in the fitting procedure.

The paper is organised as follows. Section 2 details the rele-

vant properties of the SPLE. Section 3 gives a brief summary of the

method for creating and constraining a mock observation and Sec-

tion 4 gives the results for the mock observations. In Section 5 we

derive an expression for the uncertainty in the aligned four-image

systems. In Section 6 we use the position/flux model to treat the

general, off-axis, four-image case as well as the two-image case. In

Section 7 we present a discussion of the results and a summary.

2 THE SINGULAR POWER-LAW ELLIPSOID

The dimensionless mass density profile, or convergence, for the

SPLE is given by

κ(θε) =
3 − γ

2

(
b

θε

)γ−1

, (2)

where γ is the exponent of the power-law radial variation of density

in three dimensions, ρ ∝ r−γ . This equation is identical in form

to the circular power-law case we analysed in Paper I except the

coordinate used is now an elliptical radius θε , defined

θ2ε = q2θ2x + θ
2
y, (3)

where q is the ratio of the minor to major axis of the isodensity

contours, which are homoeoidal ellipses. The ellipticity is defined

ε = 1 − q. The Einstein radius has been replaced with the more

generic lensing strength, b, defined such that the total projected

MNRAS 000, 1–12 (2020)
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ε = 0.12 ε = 0.24

ε = 0.36 ε = 0.48

Figure 1. The image structure for an isothermal (γ = 2) SPLE at four

different ellipticities. The set of discs in the centre of each frame is a set of

six sources covering 0 ≤ β ≤ 0.5. Each source’s images are plotted in the

same colour.

mass M within an angular radius θε = b is

M(b) = Σcritπb2D2
d
/q, (4)

where Dd is the angular diameter distance to the lens and Σcrit is

the critical density, given by

Σcrit =
c2

4π

Ds

DdsDd
(5)

where Ds and Dds are the angular diameter distances to the source

and from the lens to the source respectively (e.g. Schneider et al.

1992). With this definition a lens with lensing strength b has the

equivalent Einstein radius θE = b/√q.

We restate here the main results of Tessore & Metcalf (2015)

as they will be useful later in the paper and we follow their complex

formalism where z = θx + iθy . The deflection angle α = αx + iαy
for the SPLE is given by

α(θε, ϕ) =
2b

1 + q

(
b

θε

)γ−2

eiϕ
2F1

(
1,

γ−1
2

;
5−γ

2
,− 1−q

1+q
ei2ϕ

)
, (6)

where ϕ = arctan(qθx, θy) and 2F1 is the Gaussian hypergeometric

function. By calculating the shear, one obtains the (inverse) magni-

fication as a function of convergence and deflection angle

µ−1
= 1 − 2κ(z)

[
1 − (2 − γ)

θxαx + θyαy

θ2

]
− (2 − γ)2 |α |

2

θ2
, (7)

where θ2 = θ2x + θ
2
y is the radius in circular coordinates at z. For

an isothermal slope, where γ = 2, we get µ−1
= 0 when κ = 1/2.

From Eq. (2) we then see that µ→ ∞ as θε → b. The ellipse where

θε = b is therefore the critical curve for the isothermal SPLE.

With z′ = βx + iβy as the complex plane source coordinate,

the lens equation is

z′ = z − α(z). (8)

With this we can transform the critical curve into the source plane

and obtain the caustic. The caustic is the curve in the source plane

on which sources are infinitely magnified and its exact form can

be computed numerically from Eq. (6). In the isothermal SPLE

the caustic is astroid shaped and increases in size with ellipticity,

vanishing to a point at the origin for q → 1. Sources outside the

caustic are lensed into two images, one inside and one outside the

critical curve. Sources inside the caustic form four images, two

inside and two outside the critical curve. Fig. 1 illustrates the image

structure for an isothermal SPLE at different ellipticities.

3 METHOD

The method for creating a mock observation and constraining its

parameters is detailed fully in Section 3 of Paper I. The process

is identical in this paper but we briefly summarise the important

features here.

The lens is modelled as an isolated, transparent SPLE with

four parameters (b, γ, q, φL), where φL defines the orientation of the

major axis of the lens. The source surface brightness is modeled by

a Sérsic profile with seven parameters (βx, βy, reff, I0, n, qs, φs). The

lenses have b =
√

q arcsec, γ = 2, φL = 0, and sources are created

with reff = 0.1 arcsec, I0 = 1, n = 2, qs = 1 (i.e. circular). After

creating a model image plane we add Gaussian noise to each pixel

such that S = 100 integrated within a well-defined mask contain-

ing most of the signal. By fixing S within the mask, ‘all lenses are

created equal’, so that it is possible to quantify the relative effec-

tiveness of different configurations for constraining γ. The model

parameters are then constrained via ensemble Markov chain Monte

Carlo (MCMC) sampling. The uncertainty on the profile slope, σγ ,

is taken to be the mean distance from the 16th and 84th percentiles

to the median in the posterior samples. For a normal posterior this

is equivalent to the 1σ uncertainty on γ.

For a real galaxy treating the lens as isolated will give incor-

rect results if there are significant contributions to the potential from

other galaxies nearby or along the line of sight. Perturbations from

other galaxies need to be treated explicitly unless their effect can be

shown to be negligible in the context of the scientific question being

addressed. In this regard we consider that modelling a perturbing

galaxy by adding external shear only, without convergence, is in-

correct, since the external convergence will affect the parametric fit.

This point is demonstrated explicitly with simulations by McCully

et al. (2017), who show how treating the shear and convergence from

perturbing galaxies in a self-consistent manner removes biases in

the fitted parameters of the lens.

4 RESULTS FROM MOCK OBSERVATIONS

Our results are drawn from a set of 676 mock observations. A small

sample of images is shown in Fig. 2. The full set spans a uniformly

spaced grid of 26 source positions (0 arcsec ≤ β ≤ 0.5 arcsec) and

26 ellipticities (0.0 ≤ ε ≤ 0.5). Here β2 = β2x + β
2
y , and the source

is moved diagonally along the line βx = βy (as in Fig. 1) such that a

system with source position β has βx = βy = β/
√

2. This choice of

source positions and ellipticities means that the majority of strong

lens systems with a single source will resemble a system somewhere

on this grid. This set of configurations does not include those where

the source lies in the cusp of the caustic. This is a special case and

so we exclude it here for the sake of brevity. However, in analysing

MNRAS 000, 1–12 (2020)
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Figure 2. A small sample of the 676 mock observations used in this paper. Caustics and critical lines are shown as dashed curves on each image plane. To

more clearly show the behaviour in the four image systems, only a truncated range of source positions (0 arcsec < β < 0.24 arcsec) is plotted. The source

position is marked with a cross. The image planes are 6 arcsec × 6 arcsec in modelling, but for clarity only the inner 4 arcsec × 4 arcsec region is shown here.

The systems labelled A, B and C are examples of each regime that we identify and the posterior density distributions for these systems are in Fig. 5.

a number of cusp systems we have found them to fit with the more

general theories established in the next two sections.

The measurements of σγ for all 676 mock observations are

summarised in Fig. 3, plotting σγ as a function of θr. For a general

lens system with multiple images we calculate the elliptical radius,

according to Eq. (3), at each image. We then define θr as the ratio

of the minimum over the maximum elliptical radius. The figure is

colour coded by image multiplicity, with blue representing 2-image

systems, orange representing 4-image systems, and a gradation in

colour saturation as the source crosses the astroid caustic and the

multiplicity changes between two and four. It is immediately appar-

ent that even though all systems are created with the same total S/N,

S = 100, the constraints on γ are better for 4-image systems than

for 2-image systems, by up to a factor of 5.

The majority (73%) of the systems in the population have two

images, and belong to Regime 1. The black solid line is the relation

Eq. (1), which is the theoretical curve for σγ as a function of θr
for circular systems, derived in Paper I. The figure shows that any

MNRAS 000, 1–12 (2020)
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

θr
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σ
γ
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ε = 0.1

Exterior to caustic (2 images)

Crossing caustic (∼ 3 images)

Interior to caustic (4 images)

Two-image system theory (Eq. (1))

Aligned system theory

Figure 3. The uncertainty on the mass-profile slope σγ for all 676 mock observations as a function of image position ratio θr. Systems are coloured according

to their source’s position in relation to the caustic. Systems with the same ellipticity are connected by dotted lines. Along these tracks of ellipticity, systems

with β = 0 arcsec are furthest right and those with β = 0.5 arcsec are furthest left. The ellipticity of every fifth track is labelled. The solid black line is the

expected uncertainty for a circular system with image position ratio θr and S/N = 100, Eq. (1). The dashed curve is the result of the analysis for aligned systems

in Section 5.
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σ
γ
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Figure 4. The uncertainty on the slope measured from the mock observa-

tions as a function of source position, for three different source sizes, for

lenses of ε = 0.5. The curves for other values of ε show similar behaviour.

system in Regime 1 lies on this curve, when plotted using elliptical

coordinates, regardless of the ellipticity of the lens. Although we

are unable to derive a complete analytical treatment of two-image

systems for elliptical lenses, this plot shows that the nature of the

constraint on γ for these systems is the same as for circular lenses, for

which we do have a complete analytical treatment. This means that

in Regime 1 the origin of the constraints on γ is the complementarity

of the constraints from the image positions and the constraints from

the fluxes, breaking the degeneracy between γ and source position

β. While this is a satisfying explanation, there is in fact a subtlety

hidden here, which we examine in Section 6.3.

Consider now a row in Fig. 2, which are mock observations

of fixed ellipticity, with source position β increasing from left to

right. As β increases, θr = θmin/θmax decreases, as is evident in the

figure. In Fig. 3 systems with the same value of ε are joined by a

dotted line. Moving left to right along a row in Fig. 2 corresponds

to moving along a dotted line from right to left in Fig. 3. Sources

at the right-hand end of a line of constant ellipticity in Fig. 3 are

the aligned systems with β = 0, i.e. four-image Einstein crosses.

Following a single track of ellipticity in this figure, as β increases,

and θr decreases, we see that the constraint on γ first improves (σγ
decreases), is best for a source near to but inside the caustic, and

then worsens (σγ increases) as the image multiplicity changes from

four to two. The systems with the best constraints are four-image

systems possessing two distinct images near the critical line, such

as panels five and six in the top row of Fig. 2. It is also evident

from Fig. 3 that an aligned system, β = 0, achieves a similar σγ to

a two-image system of the same ellipticity.

The effect on these results of the size of the source is illustrated

in Fig. 4. For the circular case, Paper I, we showed that the constraint

σγ was independent of source size, provided the source size is

substantially smaller than the Einstein angle. The figure plots σγ
against β, for a lens ellipticity ε = 0.5, for three different source sizes

reff = 0.05, 0.1, 0.2 arcsec (recall that the points in the main plot,

Fig. 2, are for reff = 0.1 arcsec). The points for reff = 0.05 arcsec

may not be as accurate, because the cuspy Sérsic profiles are not as

well sampled by the 0.04 arcsec pixels. It can be seen that size has

no effect onσγ at large values of β, as would be expected since these

systems conform to the theory for the circular case. However in the

region of the best constraints, where the curves dip down, size has

a significant effect. These are four-image systems where the source

MNRAS 000, 1–12 (2020)



6 C. M. O’Riordan et al.

is near to but inside the caustic. In this region the constraints σγ
improve significantly for smaller source sizes. At β = 0 there is at

most only a small effect of size.

5 REGIME 2: ALIGNED FOUR-IMAGE SYSTEMS

To understand the behaviour of four-image systems in Fig. 3, we

begin with aligned systems, Regime 2, which are tractable analyti-

cally. We can derive an expression for the uncertainty on the slope in

aligned systems by calculating the image positions and fluxes when

β = 0. Our treatment of these Einstein cross systems follows a sim-

ilar route to our treatment of circular lenses in Paper I. Although

these systems nominally have 12 observables (eight positions, four

fluxes), because the system is symmetric there are in fact only four

relevant observables: the image angular positions along the princi-

pal axes, θ1 and θ2, and their fluxes f1 and f2. With two angles and

two fluxes, we are in the same situation as we were in analysing a

circular lens. These four observables are sufficient to determine the

four relevant parameters; b, γ, q and fs.

With the source on the origin the images are fixed to the prin-

cipal axes, so the inner image (at ϕ = 0) has z1 = θ1 and the outer

image (at ϕ = π/2) has z2 = iθ2. There is only one component of

the deflection angle at each image so we have

α(z1) = αx(z1) =
2b

1 + q

(
b

qθ1

)γ−2

f (γ, q), (9)

α(z2) = iαy(z2) =
2b

1 + q

(
b

θ2

)γ−2

f (γ, 1/q), (10)

where

f (γ, q) = 2F1

(
1,

γ−1
2

;
5−γ

2
;− 1−q

1+q

)
. (11)

The lens equation, Eq. (8), gives the image positions when z′ = 0

as a function of b, γ and q,

θ1 = b

[
2 f (γ, q)

(1 + q)qγ−2

]1/(γ−1)
, (12)

θ2 = b

[
2 f (γ, q−1)

1 + q

]1/(γ−1)
. (13)

We can eliminate b by using the position ratio θr = θ1/θ2,

θr
γ−1
=

f (γ, q)
f (γ, q−1)

q2−γ . (14)

The flux at each image is

f1 = fs |µ(z1)| = fs

���(γ − 3)(γ − 1)
[
(b/qθ1)γ−1 − 1

] ���
−1
, (15)

f2 = fs |µ(z2)| = fs

���(γ − 3)(γ − 1)
[
(b/θ2)γ−1 − 1

] ���
−1
. (16)

Dividing one by the other and substituting Eqs. (12) and (13) for

the image positions gives the flux ratio fr = f1/ f2 as

fr =
f (γ, q)

f (γ, q−1)

[
2 f (γ, q−1) − (q + 1)

]

[
(q + 1)/q − 2 f (γ, q)

] . (17)

Equations (14) and (17) provide the relations between the observ-

ables θr and fr, and the two relevant parameters γ and q. By nu-

merically inverting these equations we can plot contours of γ and q

in the (θr, fr) space. The results are provided in Fig. 6, illustrating

that from measurements of θr and fr for an Einstein cross system,

the two parameters γ and q are uniquely determined. The procedure

we have followed here is similar to the procedure used in Paper I to

determine γ and β′ = β/θ2. Equations (12) and (17) in the earlier

paper are the analogues of Eqs. (14) and (17) here.

As we did for the circular case, we can use Eqs. (14) and (17)

to find the uncertainty on the slope. We start with the assumption

that the positions are measured to a much higher precision than the

fluxes. In Paper I’s Section 2.5 we showed that the ratio between the

position ratio and flux ratio uncertainties is ∼ reff/θE. For the mock

observations we use here this ratio is∼ 0.1 and so it is safe to assume

that, compared to the flux ratio, the position ratio is essentially fixed

when constraining the slope. This is equivalent to moving along a

vertical line in Fig. 6.

Under this assumption the uncertainty on the slope is

σγ =

����
dγ

d fr

����σfr, (18)

where

σfr =
1

S
( fr + 1)

√
fr. (19)

Because S is the total S/N for all four images, this accounts for the

fact that there are two independent measurements of each quantity

θ1, θ2, f1, f2.

By considering a curve of constant θr in the (γ, q) plane, it can

be shown that

d fr

dγ
=

∂ fr

∂γ
− ∂ fr

∂q

∂θr

∂γ
/ ∂θr
∂q
, (20)

and similarly for the axis ratio

d fr

dq
=

∂ fr

∂q
− ∂ fr

∂γ

∂θr

∂q
/ ∂θr
∂γ
. (21)

The partial derivatives are obtained by differentiating Eqs. (14)

and (17). The final expression for σγ is too complex to be included

here but its value for any pair θr, γ can be easily computed. In this

way the curve of σγ as a function of θr may be derived for any value

of γ.

The result for γ = 2, the value chosen for the mock obser-

vations, is plotted as the black dashed curve in Fig. 3. We expect

this to match the mock observations for the case β = 0, i.e. at the

RH end of each curve of constant ε. It can be seen that there is

a good match between theory and simulation for larger values of

ellipticity 0.3 < ε < 0.5, but as ε decreases the results for the mock

observations lie systematically below the line i.e. the constraints are

better than the theory predicts. Referring to Fig. 1, and considering

β = 0 i.e. the red images, one observes that for fixed source size as

ε decreases, the images become increasingly extended and contain

higher-order information in addition to position and flux. It seems

likely that it is this extra information which explains why the mock

observations have smaller uncertainties, and lie below the theoreti-

cal curve. The same phenomenon was noted in discussing Paper I’s

Figure 4.

This theory of aligned systems, β = 0, predicts that σγ is

independent of source size, provided reff ≪ θE. As noted in the

previous section, with reference to Fig. 4, in the mock observations

there is at most only a small effect of size at β = 0, and the results

may be consistent with no effect since, looking at the curve at large

values of β, there is a hint that the blue points are systematically

slightly low due to sampling effects.
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Figure 5. Examples of the posterior densities in γ, q and b for a system from each of the three regimes we have identified. System A is a two-image system and

belongs to regime 1. System B has the source on the axis and so belongs to regime 2. System C is a four-image system with the source just inside the caustic

and belongs to regime 3. In the 1D marginal posteriors the dashed lines are the 16th and 84th percentiles. In the 2D posteriors the contours indicate the 68%,

95% and 99% credible regions. To aid comparison, all plots use the same size of range in parameter values, centred on the input values which are indicated by

the solid lines. These same three systems are highlighted in Fig. 2.

6 REGIME 3: THE GENERAL FOUR-IMAGE SYSTEM

While the behaviour in Regimes 1 and 2 may be understood from

theoretical considerations, the behaviour of the general four-image

system, Regime 3, is more complicated and is not amenable to

an analytical treatment. In Regimes 1 and 2 the constraints come

from combining all the position and flux information. For these

two regimes the results are independent of the structure of the

source, since the theory, which makes no assumptions about the

structure of the source, matches the mock observations well. The

situation in Regime 3 is different because the problem is effectively

over-constrained. This may be understood by considering a com-

pact source producing four images. Suppose one chooses to fit to

the measured positions and fluxes, rather than to the full pixel in-

formation. Then the only relevant information about the source is

the position (βx, βy) and the flux fs. The lens is parameterised by

b, γ, q, φL. Each image offers a triplet of observables, two positions

(θxi , θyi ) and a flux fi . There are therefore twelve constraints for

seven parameters, leading to the possibility of poor fits and mean-

ingless parameter estimates if the real lens cannot be well described

by the elliptical mass models.

To understand how these constraints combine in the measure-

ment of γ we have developed a simplified treatment of the general

problem. First we use the SPLE model (Section 2) to compute po-

sitions and fluxes analytically for any particular combination of the

seven parameters. Next we create synthetic observables by adding

appropriate uncertainties. We then fit to the observables using the

same model, and compute the uncertaintyσγ . We call this the ‘posi-

tion/flux model’ to distinguish the method from mock observations

where we fit to the pixel data. The great advantage of this treatment

is that we can select which observables to use in making the fit.

For example we could ignore all the flux information, or we could

remove the position information for one or more of the images. This

allows us to determine exactly which observables contribute to con-

straining the slope. We can also use this model to understand the

transition between Regime 3 and Regime 2 and between Regime 3

and Regime 1. The results reveal that the three regimes each differ

in terms of the information that constrains γ, whether positions,

fluxes, or combinations of the two, and whether or not the source is

extended.

6.1 Position/flux model

We now briefly describe the process for creating a position/flux

observation and constraining its parameters. From the above, the

model has seven parameters, p = (βx, βy, fs, b, γ, q, φL). For a given

set of lens and source parameters we compute the image positions

(θxi , θyi ) by numerically finding the two or four values of z for

which

|z′ + z − α(z)| = 0. (22)

The image flux fi is then found by multiplying the source flux fs by

the magnification at each image, i.e., fi = fs |µ(θxi , θyi )|, given by

Eq. (7). We then add an amount of noise n to each observable, where

n is drawn from a normal distribution with a variance determined

as appropriate for the observable. The variances for the positions

and fluxes are based on the noise model described in Section 2.2 of

Paper I. The noise model makes the assumption that the variance in

any image is proportional to the size, and therefore proportional to

the flux. i.e. σ2
f
= a f . The total signal to noise ratio is then

S =

∑Nim

i
fi

√∑Nim

i
a fi

, (23)

where Nim is the number of images. We fix S, allowing us to elimi-

nate a and find

σ2
fi
=

fi

S2

Nim∑

j

fj . (24)

The positional uncertainties are more complicated since they de-

pend on the shape and orientation of the magnified images. The

purpose of applying the position/flux model is to understand where

the constraints come from, rather than to reproduce accurately the
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Figure 6. Contours of γ in the space of the observables θr and fr for a system with the source fixed to the origin. The slope is plotted in increments of ∆γ = 0.1

generally and in increments of ∆γ = 0.02 for 1.9 < γ < 2.1. The dashed line is the isothermal (γ = 2) contour. Error bars for the flux ratio are given by

Eq. (19) (see Section 2.4 of Paper I). The dotted lines are contours of constant axis ratio with the q = 1 contour coincident with the line fr = 1.

uncertainties found in the mock observations. For this reason we use

a simple prescription for the position uncertainty. For the circular

case, and for γ = 2, the uncertainty on the radial position of the

image is

σθi =
reff

Si
. (25)

This is the characteristic uncertainty on the image centroid, in any

direction. For simplicity we assume that the positional uncertainties

on each axis are given by this equation. With this assumption we

ensure that the uncertainties on position ratios are much smaller

than the uncertainties on flux ratios (by ∼ reff/θE, see Paper I for

details). Our data is then a set of 3Nim ‘observations’, two positions

and one flux for each image, to which appropriate noise has been

added.

We then constrain the model parameters following the method

in Section 3 of Paper I, with one important difference. The likeli-

hood, ∝ exp
(
−χ2/2

)
, no longer compares measured and predicted

pixel values but ‘observables’: image positions and fluxes. The data

now take the form of estimates of these, which for the i’th image

are the measured position, (θ̂xi , θ̂yi ), and the measured flux, f̂i . The

model, specified by the seven parameters p, gives predictions for

these observables, θxi (p), θyi (p) and fi(p). Then χ2 is given by

χ2
=

Nim∑

i




[θ̂xi − θxi (p)]2 + [θ̂yi − θyi (p)]2

σ2
θi

+

[ f̂i − fi(p)]2

σ2
fi



.

(26)

Any of the observables for any of the images may be removed from

the fit simply by excluding the relevant term from the χ2 sum.

6.2 General four-image systems

Following each track of ellipticity in Fig. 3 shows that the best con-

straints on the slope occur if the source is inside and close to the

caustic. These systems have the most highly magnified images in the

population but, as we will show in this section, the strong constraints

do not come from the flux information. Rather, these systems’ im-

age positions each provide complementary constraints on the slope

which, when combined, are powerful enough to constrain the slope

without flux information.

We show this using the position/flux model. In a general four

image system, where β , 0, there are 12 observables and seven

parameters. If we discard the fluxes, in principle we still have enough
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Figure 7. The complementary constraints from image positions, excluding fluxes, for three four-image systems with (left, centre, right) β =

(0.0, 0.06, 0.12) arcsec, each with q = 0.6. The coloured contours are the 68% posterior density confidence regions using different combinations of five

of the eight image x, y positions, as described in the text. The black contours are the results for all eight image x, y positions. The insets show the equivalent

extended-source mock observation for the same parameters.

observables (eight) to constrain the model. In such a case, one might

expect the loss of flux information to negatively impact σγ . In fact,

the loss of flux information does not significantly change σγ and

we find that the positional information is solely responsible for

constraining the slope.

The reason for this becomes clear when considering the con-

straints provided by individual images, something we can do ex-

plicitly using the position/flux model. If we consider positions only

then there are six parameters (dropping the source flux fs), and eight

observables. By discarding three of the positions and fitting a six

parameter model to a system with five observables, we force the

solution into a degeneracy between the parameters. If we choose to

drop one image’s pair of positions, plus one position from another

image, there are 4 × 6 = 24 possible degenerate fits of this kind for

a four image system.

Figure 7 shows the results of this exercise for three systems; one

with the source aligned with the axis, one with the source just off the

axis, and one with the source approaching the caustic. In each panel

the degeneracy between q and γ is shown for the 24 combinations of

position information. The colours correspond to which image is fully

removed i.e. in each panel there are six degeneracies of the same

colour. The black contour is the error ellipse when all eight positions

are used. For the centre and right panels, where the source is off axis

but inside the caustic, the plots make clear how the complementary

information from the positions of the different images combine

to provide the overall constraint on the parameters. Adding the

flux information does not change the final black contours, showing

that the constraints come from position information alone, because

positions are measured more accurately than fluxes. Near the caustic

the complementary constraints are less aligned and so the overall

constraint is better. As the source moves closer to the origin, the

different constraints become more closely aligned, and the overall

constraint is worse.

The aligned system behaves as we would expect from the anal-

1.92 1.96 2.00 2.04 2.08

γ

0.56

0.58

0.60

0.62

0.64

q

Positions only

Positions + flux

Constant θr

Constant fr

Constant fr ±σf r

Figure 8. The 68% posterior density credible regions for an aligned (Regime

2) system with ε = 0.4. This system is identical to that in the leftmost panel

of Fig. 7. The blue contour shows the result from the position/flux model

using positional information only, while the orange contour is the constraint

when the flux constraints are added. The observables θr and fr are plotted

as dotted and dashed line respectively.

ysis in Section 5. We showed previously that the positional infor-

mation alone is not enough to constrain the slope and the figure

explains why this is the case. Now all the 24 degeneracies line up

to the same degenerate curve and so adding all the positional in-
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formation together is still not enough to constrain γ and q, despite

there being more observables than parameters. This is made ex-

plicit by the black contour which shows the constraints when using

all eight positions. The degeneracy is only broken by adding the

flux information.

The importance of flux information for Regime 2 is made clear

by reference to Fig. 8. Here the blue contour is the degeneracy

between γ and q found using the position/flux model with the eight

positional constraints only (this is the same as the black contour

in the left panel of Fig. 7). The orange ellipse is the constraint

when the flux information is added in. In this particular figure the

only model parameters are γ and q. Therefore we can calculate the

observables θr and fr analytically everywhere in the plane using

Eqs. (14) and (17). Contours of these observables make the origin

of the constraint clear. The dotted line is the contour of constant

θr, which matches the degeneracy. The black dashed line is the

line of constant fr corresponding to this configuration, and the solid

black lines show the 1σ uncertainties, which agree perfectly with the

position/flux model result. This plot shows why the final uncertainty

σγ is controlled by the uncertainty on the flux ratio.

These results, together, provide an explanation for the be-

haviour shown in Fig. 4. There we found that there was little if

any effect of source size on σγ in Regimes 1 and 2. Using the posi-

tion/flux model we have shown that in Regime 3 the constraints on

the value of γ come from positional information alone. Since the

uncertainty on position scales as reff (Eq. (25)), this predicts that in

Regime 3 we expect the approximate relation σγ ∝ reff . Referring

to Fig. 4 we see that near the minimum this is indeed approximately

the case in that at the minimum σγ for reff = 0.05 arcsec is nearly

four times smaller than for reff = 0.2 arcsec. These results show how

in Regime 3 the uncertainty on γ is controlled by how accurately

positions are measured, and that there is a transition in moving to

Regimes 1 and 2 where the uncertainty on γ is set by how accurately

fluxes are measured.

6.3 Two image systems

We noted in Section 1 that the two-image systems at any ellipticity

(Regime 1) agree with the theory we established in Paper I for circu-

lar systems. For circular systems it is the combination of positional

and flux information which provides a constraint on the slope. Nev-

ertheless the uncertainty on the constraint σγ ultimately depends

only on the uncertainty on the flux measurement. This is because

the positions are measured to a much higher precision relative to

the fluxes and they can be treated as fixed quantities when deter-

mining the slope. Evidently the same is true for two-image systems

in the elliptical case. Yet further consideration of the position/flux

analysis reveals an apparent paradox. A generic two-image ellipti-

cal system in Regime 1 has seven parameters (βx, βy, fs, b, γ, q, φL)
but only six observables (four positions, two fluxes). Running the

position/flux model for a configuration in Regime 1 indeed shows

the system constrained only to a degenerate line in parameter-space.

An example of this is shown by the blue contour in Fig. 9.

It is evident that the disagreement between the results from the

mock observations and those from the position/flux analysis comes

about because the source is extended in the mock observations.

Since the value of σγ is controlled by the flux uncertainties, we can

reconcile these results if we postulate that in the mock observations

there is additional information of a positional nature contributing to

the fit. We can show this for the simulations used here if we identify

the position angle of the outer image, i.e. the direction of the shear,

as an additional observable (the information from the outer image
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Figure 9. Upper: The constraint on the slope in the Regime 1 system shown

in the inset. This system has q = 0.6 and β = 0.16 arcsec. The upper

frame shows the 68% posterior density credible regions for the three fits

listed in the key. Lower: Circles and crosses are representative values of

the respective missing observable along the blue contour i.e. position angle

for the positions+flux fit, and flux ratio for the positions+angle fit. The red

horizontal lines mark the 1σ uncertainty on the flux ratio, given by Eq. (19).

will dominate over that from the inner image). It is interesting to

note that image position angle is one of the observables used in the

model-independent approach of Wagner (2017), described in the

introduction. Since this is a positional quantity we will assume that

the uncertainty is small. The position angle is readily calculated

from the expression for the complex shear. If η(z) = η1 + iη2 is the

complex shear then the position angle ϕ of a small image at z, from

a circular source, is given by the solution of the two equations

η1 = c cos[2ϕ(z)], (27)

η2 = c sin[2ϕ(z)], (28)

where c is a positive constant.

The result of adding the image position angle to the fit is il-

lustrated in Figure 9. As noted above, fitting the seven parameter

position/flux model to the six original observables (four positions

and two fluxes) produces the blue contour, a degenerate curve with

no constraint on the slope. If instead we use only the positional
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information, the four positions and the position angle, we now have

five observables and six parameters (we have discarded the source

flux). Fitting with this combination produces an identical degener-

acy to the blue contour. Along the blue contour, i.e. the degeneracy

between γ and q for both a positions+flux and positions+angle fit,

we take representative points from the MCMC samples and select

the missing observable not used in the fit, either the position angle

or the flux ratio. In the lower frame we plot the respective missing

observables at the sample value of γ, showing that each quantity

varies along the degeneracy.

Combining all seven observables (four positions, two fluxes,

one angle) breaks the degeneracy and constrains the slope. This is

plotted as the orange contour. The constraints match those from the

extended-source mock observation, plotted as the green contour.

For this calculation the uncertainty we used on the position angle

was arbitrarily small (in line with it being a positional variable).

This ensures that the flux measurement is still the dominant source

of error, and in all cases the uncertainty on the flux is set by the

fixed total S/N in the images. These results indicate that it is indeed

the additional position information provided by the extended source

that reconciles the two calculations. We hence recover the same

behaviour as in the circular systems of Paper I, explaining the close

match between the Regime 1 results and Eq. (1) in Fig. 3. Despite the

larger number of model parameters and observables the constraint

on the slope still comes from a combination of positional and flux

information, with the precision of the constraint determined by the

uncertainty on the flux.

7 DISCUSSION AND SUMMARY

In this paper we have extended the analysis of circular systems in

Paper I to consider how strong gravitational lenses can be used to

measure the slope γ of a power-law density distribution in elliptical

lenses, the SPLE model. We have found that the manner in which

the observables constrain the measured slope γ is different in three

separate regimes.

Systems with two-images define Regime 1. In this regime the

measured uncertainty on the slope σγ was found to match the the-

oretical prediction for circular systems, developed in Paper I, when

transformed to elliptical coordinates. Also, in contrast with the other

two regimes, in Regime 1 it is only possible to measure the slope

if the images are resolved, because otherwise there are insufficient

constraints. In this regime the constraints rely on the combination

of position and flux information, with the size of the slope uncer-

tainty determined by the precision of the flux measurements. This

explains why σγ measured for these more complicated elliptical

systems matches the prediction of the simple analysis for circular

systems.

A four-image system in general gives much more accurate

constraints than a two-image system with the same lens ellipticity,

and the same total image S/N, by a factor of two to eight, depending

on the source size. We split the four-image systems into two regimes.

Regime 2 concerned the special case of a source fixed to the axis,

producing an Einstein cross image. For these systems we derived

analytical expressions for γ, q and σγ as a function of the ratios

between the minor and major axes of the positions and of the fluxes,

and their uncertainties. In this regime the flux uncertainties again

dominate the error budget.

Finally, we analysed the best-constrained systems, those of

Regime 3. These are the systems with the source inside but close

to the caustic, producing four bright images embedded in a ring. In

these systems the measurements of the image positions alone are

enough to constrain the slope because each image position offers

complementary information on the mass profile. In Regime 2 the

positional information alone provides only degenerate constraints,

but as the source moves away from the axis the constraints from

each image become successively more complementary, reaching a

maximum just before the source crosses the caustic.

In these first two papers in the series we have investigated the

general constraining power of strong lensing information for power-

law mass profiles. In both papers we have identified some common

results. We showed that for a fixed S/N, the relative uncertainties on

the positions of the images are smaller than those of the fluxes, and

they depend on the sizes of the images, which depend in turn on

the size of the source and the resolution of the observations. Since

flux errors are larger relatively, when flux information is important

for constraining the slope, as in Regimes 1 and 2, it controls the

value of σγ , and therefore the structure and size of the source

(which determine the positional uncertainties) are largely irrelevant.

In Regimes 1 and 2, in cases where the source structure is complex,

the extra information does not provide additional constraints on the

mass profile. Rather it can be used to produce a more complex

model of the source. In Regime 3, where the positional information

constrains the slope without flux, the constraint on the slope will

depend on the size and structure of the source because a larger

source makes the image positions less accurate (for fixed total S/N).

Regime 3 is the most interesting for measuring the mass profile

of a gravitational lens. For four-image systems with S = 100, we

have shown that measurement of γ to an accuracy of σγ < 0.01 is

feasible. Given this, for codes that combine full surface-brightness-

fitting of gravitational lensing data with dynamical information,

such as CAULDRON (Barnabè & Koopmans 2007; Barnabè et al.

2009), if the images are of high S/N it would appear that the accuracy

of the measurement of γ will be strongly dominated by the lensing

fit.

Since in Regime 3 only the positional information contributes

to the measurement of γ, this reveals the interesting possibility of

constraining more complicated mass models because there are un-

used additional constraints provided by the four fluxes. In fact in

principle resolved sources contain even more information. Positions

and fluxes are determined by respectively the deflection angle and its

first derivative, which correspond to the first and second derivatives

of the potential. With resolved sources the radial curvature of the

deflection angle, i.e. the third derivative of the potential, should also

be measurable. This is in the same spirit as the model-independent

approach (Wagner 2017; Wagner & Tessore 2018), which uses mul-

tiple observables in addition to positions and fluxes. However in the

model-fitting approach all the constraints are used simultaneously

but implicitly through fitting the pixel data, rather than explicitly

through measuring observables.

In Papers I and II we have obtained very good agreement be-

tween the results of analysing mock observations and the predictions

of analytical treatments. This is valuable because in future papers

we will rely on mock observations only, as the models become too

complex for an analytical treatment. In the next two papers in this

series we will introduce and use a broken power-law model to deter-

mine the available constraints on the slope interior to the images and

to measure the sensitivity of the images to the slope as a function

of radius.
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