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Abstract

We introduce a continuous depth version of the Residual Network (ResNet) called Neural ordinary differential equations (NODE)
for the purpose of galaxy morphology classification. We carry out a classification of galaxy images from the Galaxy Zoo 2 dataset,
consisting of five distinct classes, and obtained an accuracy between 91-95%, depending on the image class. We train NODE with
different numerical techniques such as adjoint and Adaptive Checkpoint Adjoint (ACA) and compare them against ResNet. While
ResNet has certain drawbacks, such as time consuming architecture selection (e.g. the number of layers) and the requirement of a
large dataset needed for training, NODE can overcome these limitations. Through our results, we show that that the accuracy of
NODE is comparable to ResNet, and the number of parameters used is about one-third as compared to ResNet, thus leading to a
smaller memory footprint, which would benefit next generation surveys.
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1. INTRODUCTION

The problem of determining the morphology of a galaxy
plays a pivotal role in a large number of fields from galaxy evo-
lution to cosmology. Some of these applications include stellar
masses (Bundy et al., 2005), star formation history (Kennicutt,
1998), color (Skibba et al., 2009), gas and dust content (Lianou
et al., 2019), age of the galaxy (Bernardi et al., 2010), various
dynamical processes (Romanowsky and Fall, 2012), tests of
modified gravity theories (Desmond and Ferreira, 2020) etc. A
recent review on various aspects of galaxy morphology and its
connections to the rest of astrophysics can be found in Buta
(2013).

The very first morphological classification schemes pio-
neered by Hubble (1926) were based upon visual scanning of
galaxies and classifying them into different types such as spirals,
ellipticals, lenticulars. With the advent of large area optical
surveys, the task of visual classification was outsourced to the
Galaxy Zoo project (Lintott et al., 2008). The first incarnation of
the project (Galaxy Zoo 1), consisting of a dataset of more than
900,000 images by the Sloan Digital Sky Survey (York et al.,
2000), was classified by citizen scientists into four categories:
“spiral”, “elliptical”, “a merger” or “star/don’t know” (Lintott
et al., 2008). The project enabled the annotation of a million
galaxy images within several months. This was superseded by
Galaxy Zoo 2 (Willett et al., 2013), Galaxy Zoo: Hubble (Wil-
lett et al., 2017), and Galaxy Zoo: CANDELS (Simmons et al.,
2017).

Unfortunately, this manual approach of visual classification
does not scale well with the unprecedented pace of data growth
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due to the large number of meter-class telescopes equipped with
multi-CCD imagers, which have been continuously built over
the past two decades. Very soon stage IV Dark Energy surveys
such as Legacy Survey of Space and Time operated by the Vera
Rubin observatory (Abell et al., 2009), Euclid (Laureijs et al.,
2011), and Roman Space Telescope (Spergel et al., 2013) are
going to produce petabytes worth of data, rendering manual
classification impossible.

Therefore, astronomers have turned their attention to auto-
mated classification methods. Over the past few decades, a large
amount of literature has emerged on such automated methods
for measuring galaxy morphology, especially in large observa-
tional surveys. These methods range from parametric techniques,
which attempt to describe the galaxy light profiles using small
sets of parameters (Simard et al., 2002; Sersic, 1963; Odewahn
et al., 2001; Lackner and Gunn, 2012), to non-parametric meth-
ods that reduce these light distributions to single values such
as in the ‘CAS’ system (Conselice, 2003; Abraham and van
den Bergh, 2001; Menanteau et al., 2005), the Gini-M20 coef-
ficients (Lotz et al., 2004; Freeman et al., 2013), etc. Recent
reviews of some of these automated methods can be found in de
Diego et al. (2020); Martin et al. (2020).

A major game changer throughout astronomy and astro-
physics has been the widespread application of machine learning
and deep learning techniques (Ball and Brunner, 2010; Kremer
et al., 2017; Bethapudi and Desai, 2018; Baron, 2019), and
galaxy morphology is no exception to this. Applications of ma-
chine learning as well as deep learning to galaxy morphology
classifications are discussed in Dieleman et al. (2015); Tanog-
lidis et al. (2020); Tuccillo et al. (2017); Barchi et al. (2020);
Khan et al. (2019); Spindler et al. (2020); Bhambra et al. (2021);
Reza (2021).

Deep learning models, known as deep neural networks
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(DNN), have been widely used for image classification and
slowly began to beat human accuracy in these tasks, as soon as
large training sets started becoming available (LeCun et al.,
2015). DNN models, especially Convolution Neural Net-
works (CNN) (Krizhevsky et al., 2012), AlexNet, VGGNet and
GoogleNet, took the accuracy of DNNs to new heights. With
the advent of Residual Networks (ResNet) (He et al., 2015), re-
searchers were able to make these CNN models deeper than ever
before, without suffering from additional problems. Among the
machine learning techniques, CNNs (Krizhevsky et al., 2012)
have become the mainstream method for image classification.
However, CNN with a large number of layers suffer from the
vanishing gradient problem (Kolen and Kremer, 2001).

In the popular deep learning models such as ResNets, the
selection of architecture (depth of the network) and the pres-
ence of a large number of parameters can make the training
process computationally intractable. Recently, a continuous
depth counterpart to ResNets, known as NODE (Chen et al.,
2018) was introduced, which could overcome these drawbacks.
In our work, we propose to use NODE for the galaxy morphol-
ogy classification problem. We compare its performance against
ResNet, which has also been used in other works (Zhu et al.,
2019; Goddard and Shamir, 2020), as that is the state-of-the-art
deep learning approach for galaxy morphology classification
and demonstrate the benefits of NODE over ResNets.

NODE is inspired by the way ResNet works, where one
models the change in the feature maps over layers using a neural
network. This can be seen as equivalent to an ordinary differen-
tial equation with the derivative modelled as a neural network
function. Consequently, the final layer feature map can be ob-
tained using numerical solvers for ODE such as Euler’s method
and Runge-Kutta method. NODE has certain advantages over
ResNet. In NODE, the network depth is implicitly determined
by the tolerance parameter of the numerical solver used, rather
than being explicitly fixed like in ResNet. Thus, by tuning the
tolerance parameter, we can trade-off between the model speed
and model accuracy. Another advantage of NODE over ResNet
is that the number of parameters in NODE is much less than
ResNet. Models with smaller number of parameters require less
data to train and do not suffer from over-fitting issues. With
new training techniques emerging in this field, like Adaptive
Checkpoint Adjoint (Zhuang et al., 2020), NODE architecture is
becoming more accurate and faster with time.

The NODE architecture has been applied to a wide variety of
fields, such as biomedical imaging, high-energy physics, image
and video processing, 3D modelling, economics, etc (Groha
et al., 2020). For example, in the case of biomedical-imaging, it
has been used for kidney segmentation (Valle et al., 2019), recon-
struction of MRI images (Chen et al., 2020), multi-state survival
analysis (Groha et al., 2020), 3-D modelling for accurate mani-
fold generation (Gupta and Chandraker, 2020), small-footprint
keyword spotting (KWS) in audio files (Fuketa and Morita,
2020), etc. In the domain of theoretical High-Energy Physics, it
has been applied to holographic QCD (Hashimoto et al., 2020).
However, to the best of our knowledge, this technique has not
been previously applied to any problem in astrophysics.

The organization of this manuscript is as follows. In Sec-

tion 2, we describe the dataset used to carry out our experiments.
Next, we shed some light on ResNet in Section 3, followed by
an in-depth explanation of the working of NODE (Section 4)
and its training with the adjoint method. We describe the various
pre-processing steps applied to the data, followed by the exact
network architecture used in Section 5. Then, in Section 6, we
discuss our experimental results. Finally, we conclude in Section
7.

2. DATASET

The dataset used in our experiments is drawn from the
Galaxy Zoo Challenge, available on kaggle. Classification la-
bels for the kaggle Dataset (KD) are drawn from Galaxy Zoo 2,
and the images used were obtained from SDSS-DR7 (Abazajian
et al., 2009). Galaxy images used in this dataset are classified
into a total of five classes viz. spiral, edge-on, cigar-shaped
smooth, in-between smooth, and completely round smooth. The
different morphological types are shown in Fig. 1. Similar to
Zhu et al. (2019), we shall use the numerical labels 0, 1, 2, 3, 4 to
annotate completely round, in-between, cigar-shaped, edge-on,
and spiral galaxies, respectively.

KD consists of around 60,000 images, and each image is
divided into five classes, with a classification probability pro-
vided for each class. We prune this dataset further and only
select those images, which are classified with high probability in
their respective classes. After pruning, we are left with a total of
28,790 images, with a single class assigned to each image. We
should however point out that there is no absolute ground truth
but rather only the truth as estimated via crowdsourcing.

This selection criteria is similar to that described in Willett
et al. (2013), in which the galaxy images classified with proba-
bilities higher than a certain threshold (discussed therein), are
selected. After these cuts, we have 7806, 3903, 578, 8069, and
8434 images in each class, in the order listed at the beginning of
this section.

The size of each image is 424×424×3 pixels, where the last
dimension denotes the number of color channels viz. RGB. The
galaxy of interest is generally located at the center of the image.
We finally split our data randomly in the ratio of 9:1 for the
purpose of training and testing, thus assigning 25911 and 2879
galaxies, respectively for each task similar to Zhu et al. (2019).
We create multiple random train and test splits and obtain the
average and variance across them in order to conduct a more
robust evaluation and to obtain error estimates on our machine
learning metrics.

3. Residual Neural Networks

Neural networks are modelled as a series of transformations
having discrete number of layers, with each one taking in a
previous hidden representation hl and producing a new hidden
representation hl+1 = F l(hl). We typically consider the transfor-
mation as F(x) = σ(

∑
i Wixi), where σ is an activation function

(e.g. RELU or a sigmoid), and θ is a collection of weight vectors.
Recently, many deep learning models were introduced based
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Figure 1: The five different galaxy morphologies in the Galaxy Zoo-2 dataset.
These classes are completely round smooth, in-between smooth, cigar-shaped
smooth, edge-on and spiral, from top to bottom. See also Fig. 1 of Zhu et al.
(2019) for more examples of different galaxy morphologies from this dataset.

on the idea that increasing the number of layers can improve
the performance. However, this may lead to problems such as
vanishing gradients (Kolen and Kremer, 2001), where the initial
layer weight vectors cannot be computed correctly through back
propagation as the error gradient becomes small.

This problem was addressed by Deep Residual Learning (He
et al., 2015). ResNets are a class of DNNs, which try to map
the residuals instead of the complete transformation itself in
the hidden layer mappings. The idea is to learn a mapping as
the difference between the layers (or equivalently adding skip
connections): hl+1 = F l(hl) + hl. In He et al. (2015), they
showed that this simple transformation avoids the vanishing
gradient problem due to skip connections and the networks can
learn the weights properly. This allowed the development of
deep learning models with a large number of layers (e.g. ResNet
with 50 and 100 layers)

ResNet and its variants were able to achieve state of the
art results for image classification. ResNet won the ILSVRC
challenge in 2015. Many other variants of ResNet, achieved
state-of-the-art (SOTA) results in other image datasets. ResNet
mainly has two types of residual blocks. In the standard block,
two 3×3 convolutions are applied, along with a skip connection.
In another block, known as the bottleneck block, 1×1 convolu-
tions are applied before and after the 3×3 convolutions, in order
to reduce feature space, so that the computational complexity is
reduced.

4. Neural Ordinary Differential Equations

4.1. Residual networks

Recently, Chen et al. (2018); Lu et al. (2017) have shown that
continuous depth ResNets, known as NODE, can be developed
by relating them to ordinary differential equations. Assuming
the mapping function to be the same across all the layers, and
letting ∆t ∈ R, we can rewrite the hidden representation update
of ResNets as state updates at some time t.

h(t + 1) = F(h(t)) + h(t) =
∆t
∆t

F(h(t)) + h(t) = ∆tG(h(t)) + h(t)
(1)

where G(h(t)) = F(h(t))/∆t. This reformulation is the same as
the single step of Euler’s method for solving ordinary differential
equations of the form as observed in Lu et al. (2017).

dh(t)
dt

= G(h(t), t, θ) (2)

As compared to standard differential equations, the deriva-
tive is represented by a function parameterized using a neural
network G acting on the state h(t). Here, we have assumed the
G’s to depend on t as well as some parameters θ (parameters
of the neural network). One can consider G to represent convo-
lution operation when applied to the image data. Considering
Eq. (1), the final representation (feature map) of our network is
the state h(T ) at time T . This is then fed to a fully-connected
neural network (FCNN) to predict the final output, which is a
real number for regression problems and a discrete value for
classification. For a neural network function G, we can use any
off-the-shelf ODE solvers such as Euler and Runge-Kutta (RK4)
method to solve and obtain the final representation in an iterative
manner.

h(T ) = ODESolve(h(t0),G, t0,T, θ)

4.2. Training Process

Training a NODE involves learning the parameters of the
neural network function using an appropriate loss function (cross
entropy in the case of classification). The representation learned
using an ODE solver is fed to the loss function which is opti-
mized with respect to the parameters θ

arg min
θ

L(h(T )) = arg min
θ

L(ODESolve(h(t0),G, t0, t1, θ))

The learning of the parameters requires back-propagating
through the solver by computing the gradients with respect to
the loss, and this step is computationally costly using naive back-
propagation. Chen et al. (2018) proposed an adjoint sensitivity
method to learn the parameters by running another ODE solver
backward in time.

To optimize L and the parameters θ, we need to evaluate the
gradients with respect to h(t) (the state of our system at any time
t), and θ the neural network parameters. The adjoint method
describes a way to efficiently compute the derivative of the loss
with respect to the state. In brief, we define the adjoint state as

a(t) = −∂L/∂h(t),
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which describe the gradient of the loss with respect to some state
h(t). It turns out that the dynamics of the adjoint state can be
described using another ODE.

da(t)
dt

= −a(t)T ∂G(h(t), t, θ)
∂h

(3)

The gradient of the loss at the initial state a(t0) can be computed
by running Eq. (3) in the backward direction with initial value
as a(T ). We can compute the derivative of G with respect to h
easily by computing the gradient through back-propagation in
traditional neural networks. Now, the gradient of the loss with
respect to parameters dL/dθ can be computed as

dL
dθ

= −

∫ T

t0
a(t)>

∂G(h(t), t, θ)
∂θ

dt (4)

The approach known as adjoint sensitivity has better memory
cost, linear scalability and low numerical instabilities (refer
(Chen et al., 2018) for more details).

4.3. NODE Adaptive Checkpoint Adjoint (ACA)
The “standard" NODE technique uses the adjoint method for

learning the parameters by efficient back-propagation through
the different numerical ODE solvers like Euler, Runge-Kutta,
etc. But numerical errors prevail in the computation of the gradi-
ent using the adjoint method (Zhuang et al., 2020), sometimes
giving lower accuracies than expected. To mitigate this, Adap-
tive Checkpoint Adjoint (ACA) technique has been introduced,
which estimates more robust gradients for NODE. We will refer
to the NODE trained with ACA technique as NODE_ACA in
our paper. NODE_ACA helps to achieve better accuracy by
more accurate gradient calculation and lower computation time
by removing the redundancy from the computation graph.

NODE_ACA (Zhuang et al., 2020) saves forward pass and
then applies this to backward pass, rather than backward trajec-
tory being calculated independently of the forward pass as in
the adjoint case. The adjoint method does not maintain a history
of the h(t) computed in the forward pass but remembers the
boundary conditions: h(T ) and a(T ). It then tries to solve h(t)
and a(t) backwards in time, i.e from T to 0 in order to compute
the gradient of the loss function (4). However, due to numerical
errors accumulated in the forward pass, h(t) computed in the
backward pass may not be accurate leading to the inaccurate
computation of the gradients as well as the final solution. On the
other hand, in NODE_ACA, discretization points ti and latent
states hi = h(ti) are recorded in the forward pass and reused in
the backward pass to reduce inaccuracies in the gradient com-
putation. This trajectory checkpoint strategy not only reduces
numerical errors but also deletes shallow computation graphs.
Both the constant and the adaptive stepsize solvers are supported
by NODE_ACA. Algorithm 1 provides the details of the adap-
tive step-size based numerical technique used in the forward
pass. Algorithm 1 summarizes the steps in the forward and
backward passes of the NODE_ACA approach. NODE_ACA
stores the state values computed in the forward pass and uses
them in the backward pass to make the gradient computation
more accurate.

5. Experimental Setup

5.1. Network Architecture
The network architecture used for the standard NODE train-

ing is as follows. We use a standard convolution block, consist-
ing of two CLN (Convolution, Non-Linearity, Normalization)
layers. Each convolution is done with a kernel of size 3×3.

We also downsample the input, before passing it to the ODE
network. Downsampling consists of applying 2-D convolutions,
while reducing the number of channels. Once the input is down-
sampled, it passes from the above ODE network, followed by a
pooling layer. ODE maps the inputs to some desired latent space,
which has the same number of dimensions as input. Similar to a
classification task, as our final output has 5 dimensions (equal to
the number of classes), we use a fully connected layer at the end.
This FC (fully-connected) layer learns a linear mapping from
the ODE output to the final output.

For NODE_ACA, we use the same architecture as that for
standard NODE. Only difference being that, instead of using
the adjoint method for back-propagation, the ACA technique is
used.

For ResNet, we use two NLC (Normalization, Non-Linearity,
Convolution) layers for the architecture, instead of the CLN
layers (as in the standard NODE). This is also referred as Pre-
Activation (as the ReLU operation is carried before convolution).
The convolution operation used here is again a 3×3 convolution.
Finally, the output from these layers is added to the original input
(so that these layers only learn the residual). This constitutes one
residual block. We take six such blocks, back to back, to form
our ResNet. As mentioned above, down-sampling is applied
before this network, followed by the pooling operation and FC
layer at the end.

5.2. Preprocessing
Standard image processing is done on our image dataset

similar to that in Zhu et al. (2019), before it could be fed into
the model. This is done so as to ensure that the images carry all
the relevant information, needed to accurately train the model.

We mainly apply three image transformations. First, the
image is resized from 424 × 424 × 3 pixels to 32 × 32 × 3 pixels,
using bilinear interpolation. This makes our training process
faster as the number of dimensions in the input image is largely
reduced. The transformation applied involves randomly flipping
the image horizontally. The final transformation involves im-
age normalization, where all the three channels are normalized
according to appropriate values. The data set is randomly split
into training and testing set in the ratio 9:1 with 25911 images
for training set and 2879 images for testing set as discussed in
Section 2. We repeat this procedure 10 times and compute the
mean and variance over the evaluation metrics.

5.3. Implementation Details
We use mini-batch gradient descent with a batch size of 256.

The initial learning rate is set to 0.1 and then decreased by a
factor of 10 to 30K and 60K iterations. The weight decay is set
to 0.0001, dropout probability value to 0.8, and the weights are
initialized in the same way as in He et al. (2015).
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Algorithm 1: Numerical Integration algorithm with adaptive step-size used in the forward pass of Adjoint and adaptive
checkpoint adjoint approaches.

Input : input data h0, final time T, first stepsize s0, error tolerance etol
Initialize :h = h0, s = s0, error estimate ê =∞, t = 0
while t < T do

while ê > etol do
s← s × decay_factor(ê)
ê, ĥ = ψs(t, h) // ψs(t, h) compute the numerical solution at time t + s

end
t← t + s, h← ĥ

end

Algorithm 2: Forward and Backward passes of the adaptive checkpoint adjoint (ACA) algorithm. Forward pass uses the
adaptive step size (Algorithm 1) for numerical integration and state computation. The state values computed in the forward
pass is reused in the backward pass.

Input : initial hidden state h0, final time T, first stepsize s0, error tolerance etol
Initialize :h = h0, s = s0, error estimate ê =∞, t = 0
ForwardPass :

1. Perform numerical integration based on Algorithm 1.

2. Store discretization points t0, ...tNt and state values h0, h1, ...hNt .

3. Search for optimal stepsize by deleting local computation graphs

BackwardPass :Initialize a(T ), dL/dθ = 0
for Nt to 1 do

1. Compute hi+1 = ψsi (ti, hi) with stepsize si = ti+1 − ti

2. Update λ(t) and dL/dθ based on (3) and (4).

3. Delete local computation graphs

end

5.4. Comparison of Computational Costs

Here, we provide a brief comparison of the computational
costs between ResNet, NODE, and NODE_ACA. To keep the
comparison simple, as in Chen et al. (2018), let L be the num-
ber of ResNet layers, and L̂ be the number of forward-passes
in NODE. The computational cost depends on L and L̂ for
ResNet and NODE, respectively. While L is fixed and is a
hyper-parameter, L̂ is dependent on the error-tolerance we set
for NODE and NODE_ACA. If the error-tolerance is high, L̂ is
comparable with L. If the error tolerance is low, then L̂ is much
higher than L. More details can be found in Table 1 of Chen
et al. (2018).
Similarly, while comparing L̂ in the case of NODE and
NODE_ACA, L̂ is roughly half in case of NODE_ACA as com-
pared to NODE. This is the reason why NODE_ACA is roughly
twice as faster than NODE. More details can be found in Table
1 of Zhuang et al. (2020). For our analysis for NODE_ACA,
it took about 12 hours to run (with about 11 hours for training
and one hour for the testing) a single network on a NVIDIA
dgx server with P100 GPU. For NODE, it took about double the
processing time and for RESNET it took about 90 minutes (80

minutes for training and 10 minutes for testing).

6. RESULTS AND DISCUSSION

6.1. Model Accuracy
Standard NODE model (trained with adjoint method)

achieves an accuracy of 91-94%, when trained with the Runge-
Kutta method. The accuracy achieved by ResNet on similar
architecture is between 89-94%. With NODE_ACA, we get
accuracy between 91-95%. Thus, we can say that NODE_ACA
achieves comparable accuracy accuracy to ResNet, while having
one-third the number of parameters. For all the three networks,
we get poor accuracy for cigar-shaped images (class=2), due to
the small number of images available for training. This is also
consistent with the results in Zhu et al. (2019).

Table 1 provides the confusion matrix for ResNet for differ-
ent classes, while Table 2 and Table 3 provides the confusion
matrix for standard NODE and NODE_ACA, respectively, af-
ter averaging over the ten runs. The confusion matrix simply
shows the contamination and completeness a particular category
was classified into, among all the classes. It gives an idea, with
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which the other class, model confused a particular class the most.
Data shown in the confusion matrices were calculated, when
the output of the model led to the maximum correct predictions
(or purity), when summed over all the classes. There is no
other threshold which needs to be tuned for our problem. On
the whole, the results of the completely round , the in-between,
the edge-on and the spiral are extremely excellent, except for
the cigar-shaped images (class=2). It happens due to the small
number of class=2 images for training.

0 1 2 3 4
0 757 57 0 0 29
1 22 741 3 4 36
2 0 12 11 27 5
3 0 8 6 363 13
4 7 12 1 13 748

Table 1: Confusion Matrix for ResNet (averaged over all the 10 runs), where 0 :
Completely round smooth, 1 : In-between smooth, 2 : Cigar-shaped smooth, 3 :
Edge-on, and 4 : Spiral.

0 1 2 3 4
0 800 24 0 0 13
1 36 700 0 8 22
2 0 6 12 31 2
3 0 5 7 365 8
4 10 29 1 22 750

Table 2: Confusion Matrix for NODE (averaged over all the 10 runs), where 0 :
Completely round smooth, 1 : In-between smooth, 2 : Cigar-shaped smooth, 3 :
Edge-on, and 4 : Spiral.

0 1 2 3 4
0 786 36 0 0 12
1 25 721 0 3 16
2 0 4 23 20 1
3 1 4 12 361 5
4 5 36 3 15 747

Table 3: Confusion Matrix for NODE_ACA (averaged over all the 10 runs),
where 0 : Completely round smooth, 1 : In-between smooth, 2 : Cigar-shaped
smooth, 3 : Edge-on, and 4 : Spiral.

6.2. Parameters Discussion
ResNet with 6 layers has 0.6 million parameters. Stan-

dard NODE on the other hand has total of 0.2 million param-
eters, for both Euler and Runge-Kutta ODE solving methods.
NODE_ACA network also has the same number of parameters
as NODE. Thus, NODE and NODE_ACA achieve similar over-
all accuracy with about one-third of the parameters as Resnet.

6.3. Precision, Completeness (Recall), and F1
We compare the precision, Completeness (which is referred

to as Recall in the Machine Learning Community), and F1 scores
of standard NODE, ResNet, and NODE_ACA. The Precision
metric is the ratio of the total true positives to the total number of

Figure 2: Average ROC curve for ResNet for the different classes.

observations labelled positive. The Completeness tries to quan-
tify what proportion of actual positives is correctly classified.
While F1 is the harmonic mean of precision and completeness.
More detailed definitions of these metrics can be found in Betha-
pudi and Desai (2018). These three metrics for Resnet, NODE,
and NODE_ACA can averaged over all the ten iterations can be
found in Table 4. We can clearly see that the performance of
NODE and NODE_ACA is comparable to that of ResNet.

6.4. ROC Curve

ROC curve is an acronym for receiver operating character-
istic curve. It plots the true positive against false positive rate,
and shows how well a model is able to classify. Area under this
curve is called AUC. The closer AUC is to one, better is the
model in terms of classification. The ROC curves for each class,
for ResNet (Fig. 2), standard NODE (Fig. 3) and NODE_ACA
(Fig. 4) (after averaging over all the 10 runs) are shown. Micro
and macro average for all the classes are also shown in the same
figures. Micro-average is calculated by binarizing the output
of each label, while macro-average is just the unweighted aver-
age of each label. Thus, micro-average takes class-imbalance
into account, giving more weightage to bigger classes while
macro-average is forced to recognize each class correctly. These
averages are well-versed in ML community (Abdar et al., 2021).
As we can see, the ROC curves for NODE for both the adjoint
and the ACA techniques are very close to those of ResNet, for
every image class. In Fig. 5, we plot the average curve (averaged
over all the classes), for all the three aforementioned techniques.
As we can see, the performance of NODE and NODE_ACA is
comparable to ResNet.

7. CONCLUSIONS

In this paper, we have used NODE with adjoint training and
NODE_ACA technique for the task of galaxy morphology clas-
sification, and also compared its performance with ResNet. The
dataset used for this purpose is a subset of Galaxy Zoo 2 dataset.
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Class Accuracy Precision Completeness F1
ResNet NODE NODE

_ACA
ResNet NODE NODE

_ACA
ResNet NODE NODE

_ACA
ResNet NODE NODE

_ACA
0 0.897±

0.0061
0.956±
0.0008

0.939±
0.0007

0.962±
0.0029

0.946±
0.0007

0.961±
0.0012

0.897±
0.0061

0.956±
0.0008

0.939±
0.00071

0.928±
0.0029

0.951±
0.0003

0.950±
0.0006

1 0.917±
0.0039

0.914±
0.0011

0.941±
0.0013

0.892±
0.0032

0.917±
0.0017

0.896±
0.0007

0.918±
0.0039

0.914±
0.0011

0.942±
0.0013

0.905±
0.0019

0.916±
0.0009

0.918±
0.0006

2 0.193±
0.0294

0.236±
0.0050

0.468±
0.0092

0.522±
0.0491

0.595±
0.0202

0.596±
0.010

0.193±
0.0294

0.236±
0.0050

0.468±
0.0092

0.281±
0.0356

0.338±
0.0081

0.524±
0.0092

3 0.930±
0.0064

0.948±
0.0007

0.938±
0.0011

0.889±
0.0063

0.859±
0.0020

0.899±
0.0013

0.930±
0.0064

0.948±
0.0007

0.938±
0.0011

0.909±
0.0041

0.901±
0.0013

0.918±
0.0006

4 0.957±
0.0036

0.9244±
0.0011

0.924±
0.0008

0.899±
0.0037

0.944±
0.0007

0.954±
0.0008

0.957±
0.0036

0.924±
0.0011

0.924±
0.0008

0.927±
0.0024

0.934±
0.0006

0.939±
0.0006

Table 4: Accuracy, Precision, Completeness (Recall), F1 scores for ResNet, NODE, NODE_ACA along with error bars using all the 10 runs.

Figure 3: Average ROC curve for standard NODE for the different classes.

Figure 4: Average ROC curve for NODE_ACA for the different classes.

Figure 5: Average Precision-Recall curves for ResNet, NODE, NODE_ACA.

We find that the number of parameters in NODE (standard and
ACA) is about one-third compared to its counterpart ResNet,
and it achieves this without compromising the performance. Ac-
curacy achieved by NODE (with adjoint training) is the same
as ResNet, while NODE (with ACA technique) achieves an
accuracy of 91-95%, where the ground truth is determined by
the Galaxy Zoo 2 classifications. Also, with both the NODE
techniques, we can easily trade-off accuracy for speed, which is
not possible for ResNet.

We also compare all the three models using other met-
rics such as precision, Completeness, F1, and AUC. Through
our results, we conclude that, the performance of NODE and
NODE_ACA is comparable to ResNet, for all these metrics,
while providing all the advantages guaranteed by ResNet. We
also illustrate this, by plotting the average performance of stan-
dard NODE, ResNet and NODE_ACA, on one graph, as shown
in Fig 5.

From our experiments, we therefore conclude that NODE
has several advantages over ResNet and can easily supersede
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ResNet. With large scale astronomical surveys coming up, and
more and more data being generated from these surveys, there is
a pressing need to replace such classification tasks with robust
deep learning models. These emerging deep learning models can
not only help speed-up the process of training and classification,
but also provide better insights, by breaking down the process
in series of small steps. Thus, researchers have better control
over the process, and can easily trade-off one parameter (like
accuracy) with another (like speed). Our methodology would
prove to be beneficial for upcoming large scale astronomical
surveys such as Vera Rubin LSST, Euclid, WFIRST etc.

All our codes used for the analysis in this work are pub-
licly available at github.com/rg321/torch_ACA. We also provide
some rudimentary guidance on how to use both NODE and
NODE_ACA for the supervised classification problem in the
appendices.
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García, A.M., Padilla Torres, C.P., Lara-López, M.A., Cerviño, M., Pérez
Martínez, R., Alfaro, E.J., Castañeda, H.O., Fernández-Lorenzo, M., Gallego,
J., González, J.J., González-Serrano, J.I., Pintos-Castro, I., Sánchez-Portal,
M., Cedrés, B., González-Otero, M., Heath Jones, D., Bland-Hawthorn, J.,
2020. Galaxy classification: deep learning on the OTELO and COSMOS
databases. A&A 638, A134. 2005.07228.

Desmond, H., Ferreira, P.G., 2020. Galaxy morphology rules out astrophysically
interesting f (R). arXiv e-prints , arXiv:2009.087432009.08743.

Dieleman, S., Willett, K.W., Dambre, J., 2015. Rotation-invariant convolutional
neural networks for galaxy morphology prediction. MNRAS 450, 1441–1459.
1503.07077.

Dupont, E., Doucet, A., Teh, Y.W., 2019. Augmented neural odes. 1904.
01681.

E, W., 2017. A proposal on machine learning via dynamical systems. Commu-
nications in Mathematics and Statistics 5, 1–11.

Freeman, P.E., Izbicki, R., Lee, A.B., Newman, J.A., Conselice, C.J., Koekemoer,
A.M., Lotz, J.M., Mozena, M., 2013. New image statistics for detecting
disturbed galaxy morphologies at high redshift. 1306.1238.

Fuketa, H., Morita, Y., 2020. Neural ode with temporal convolution and time
delay neural networks for small-footprint keyword spotting. 2008.00209.

Gholami, A., Keutzer, K., Biros, G., 2019. Anode: Unconditionally accurate
memory-efficient gradients for neural odes. 1902.10298.

Goddard, H., Shamir, L., 2020. A catalog of broad morphology of Pan-STARRS
galaxies based on deep learning. arXiv e-prints , arXiv:2010.060732010.
06073.

Groha, S., Schmon, S.M., Gusev, A., 2020. Neural odes for multi-state survival
analysis. 2006.04893.

Gupta, K., Chandraker, M., 2020. Neural mesh flow: 3d manifold mesh genera-
tionvia diffeomorphic flows. 2007.10973.

Hashimoto, K., Hu, H.Y., You, Y.Z., 2020. Neural ode and holographic qcd.
2006.00712.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image
recognition. CoRR abs/1512.03385. 1512.03385.

Hubble, E.P., 1926. Extragalactic nebulae. ApJ 64, 321–369.
Kennicutt, Robert C., J., 1998. Star Formation in Galaxies Along the Hub-

ble Sequence. Ann. Rev. of Astronomy and Astrophysics 36, 189–232.
astro-ph/9807187.

Khan, A., Huerta, E.A., Wang, S., Gruendl, R., Jennings, E., Zheng, H., 2019.
Deep learning at scale for the construction of galaxy catalogs in the Dark
Energy Survey. Physics Letters B 795, 248–258. 1812.02183.

Kolen, J.F., Kremer, S.C., 2001. Gradient Flow in Recurrent Nets: The Difficulty
of Learning LongTerm Dependencies. pp. 237–243.

Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K.S., Igel, C., 2017. Big
universe, big data: machine learning and image analysis for astronomy. IEEE
Intelligent Systems 32, 16–22.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with
deep convolutional neural networks, in: Advances in Neural Information
Processing Systems 25, pp. 1097–1105.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. ImageNet classification with
deep convolutional neural networks. Communications of the ACM 60, 84–90.

Lackner, C.N., Gunn, J.E., 2012. Astrophysically motivated bulge-disk decom-
positions of sdss galaxies. 1201.0763.

Lahav, O., Naim, A., Buta, R.J., Corwin, H.G., de Vaucouleurs, G., Dressler,
A., Huchra, J.P., van den Bergh, S., Raychaudhury, S., Sodre, L., J., Storrie-
Lombardi, M.C., 1995. Galaxies, Human Eyes, and Artificial Neural Net-
works. Science 267, 859–862. astro-ph/9412027.

Laureijs, R., et al., 2011. Euclid Definition Study Report 1110.3193.
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436–444.
Lianou, S., Barmby, P., Mosenkov, A.A., Lehnert, M., Karczewski, O., 2019.

Dust properties and star formation of approximately a thousand local galaxies.
A&A 631, A38. 1906.02712.

Lintott, C.J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D.,
Raddick, M.J., Nichol, R.C., Szalay, A., Andreescu, D., Murray, P., Vanden-
berg, J., 2008. Galaxy Zoo: morphologies derived from visual inspection
of galaxies from the Sloan Digital Sky Survey. MNRAS 389, 1179–1189.
0804.4483.

8

https://github.com/rg321/torch_ACA
0812.0649
2105.08590
0912.0201
astro-ph/0109358
0906.2173
1901.07047
1904.07248
0910.1093
1704.04659
2110.08288
2110.08288
astro-ph/0502204
2006.13825
1806.07366
astro-ph/0303065
2005.07228
2009.08743
1503.07077
1904.01681
1904.01681
1306.1238
2008.00209
1902.10298
2010.06073
2010.06073
2006.04893
2007.10973
2006.00712
1512.03385
astro-ph/9807187
1812.02183
1201.0763
astro-ph/9412027
1110.3193
1906.02712
0804.4483


Lotz, J.M., Primack, J., Madau, P., 2004. A New Nonparametric Approach
to Galaxy Morphological Classification. AJ 128, 163–182. astro-ph/
0311352.

Lu, Y., Zhong, A., Li, Q., Dong, B., 2017. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. 1710.
10121.

Martin, G., Kaviraj, S., Hocking, A., Read, S.C., Geach, J.E., 2020. Galaxy
morphological classification in deep-wide surveys via unsupervised machine
learning. MNRAS 491, 1408–1426. 1909.10537.

McNamara, A., Treuille, A., Popovi, Z., Stam, J., 2004. Fluid control using the
adjoint method. ACM Transactions on Graphics 23, 449.

Menanteau, F., Ford, H.C., Motta, V., Benitez, N., Martel, A.R., Blakeslee, J.P.,
Infante, L., 2005. The morphological demographics of galaxies in the acs
hubble ultra deep parallel fields. astro-ph/0509759.

Odewahn, S.C., Cohen, S.H., Windhorst, R.A., Philip, N.S., 2001. Automated
galaxy morphology: A fourier approach. astro-ph/0110275.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., Édouard Duchesnay, 2012. Scikit-learn: Machine learning in python.
1201.0490.

Peth, M.A., Lotz, J.M., Freeman, P.E., McPartland, C., Mortazavi, S.A., Sny-
der, G.F., Barro, G., Grogin, N.A., Guo, Y., Hemmati, S., Kartaltepe, J.S.,
Kocevski, D.D., Koekemoer, A.M., McIntosh, D.H., Nayyeri, H., Papovich,
C., Primack, J.R., Simons, R.C., 2015. Beyond spheroids and discs: Classi-
fications of candels galaxy structure at 1.4 < z < 2 via principal component
analysis. 1504.01751.

Reza, M., 2021. Galaxy morphology classification using automated machine
learning. Astronomy and Computing 37, 100492.

Roehrl, M.A., Runkler, T.A., Brandtstetter, V., Tokic, M., Obermayer, S., 2020.
Modeling system dynamics with physics-informed neural networks based on
lagrangian mechanics. 2005.14617.

Romanowsky, A.J., Fall, S.M., 2012. Angular Momentum and Galaxy Formation
Revisited. ApJS 203, 17. 1207.4189.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015.
Imagenet large scale visual recognition challenge. 1409.0575.

Scarlata, C., Carollo, C.M., Lilly, S., Sargent, M.T., Feldmann, R., Kampczyk,
P., Porciani, C., Koekemoer, A., Scoville, N., Kneib, J.P., Leauthaud, A.,
Massey, R., Rhodes, J., Tasca, L., Capak, P., Maier, C., McCracken, H.J.,
Mobasher, B., Renzini, A., Taniguchi, Y., Thompson, D., Sheth, K., Ajiki, M.,
Aussel, H., Murayama, T., Sanders, D.B., Sasaki, S., Shioya, Y., Takahashi,
M., 2007. COSMOS morphological classification with the zurich estimator
of structural types (ZEST) and the evolution since z = 1 of the luminosity
function of early, disk, and irregular galaxies. The Astrophysical Journal
Supplement Series 172, 406–433.

Schawinski, K., Lintott, C., Thomas, D., Sarzi, M., Andreescu, D., Bamford,
S.P., Kaviraj, S., Khochfar, S., Land, K., Murray, P., Nichol, R.C., Raddick,
M.J., Slosar, A., Szalay, A., VandenBerg, J., Yi, S.K., 2009. Galaxy zoo: a
sample of blue early-type galaxies at low redshift. Monthly Notices of the
Royal Astronomical Society 396, 818–829.

Selim, I.M., Aziz, M.A.E., 2017. Automated morphological classification
of galaxies based on projection gradient nonnegative matrix factorization
algorithm. Experimental Astronomy 43, 131–144.

Sersic, J., 1963. Influence of the atmospheric and instrumental dispersion on the
brightness distribution in a galaxy.

Simard, L., Willmer, C.N.A., Vogt, N.P., Sarajedini, V.L., Phillips, A.C., Weiner,
B.J., Koo, D.C., Im, M., Illingworth, G.D., Faber, S.M., 2002. The deep
groth strip survey ii. hubble space telescope structural parameters of galaxies
in the groth strip. astro-ph/0205025.

Simmons, B.D., Lintott, C., Willett, K.W., Masters, K.L., Kartaltepe, J.S.,
Häußler, B., Kaviraj, S., Krawczyk, C., Kruk, S.J., McIntosh, D.H.,
Smethurst, R.J., Nichol, R.C., Scarlata, C., Schawinski, K., Conselice, C.J.,
Almaini, O., Ferguson, H.C., Fortson, L., Hartley, W., Kocevski, D., Koeke-
moer, A.M., Mortlock, A., Newman, J.A., Bamford, S.P., Grogin, N.A.,
Lucas, R.A., Hathi, N.P., McGrath, E., Peth, M., Pforr, J., Rizer, Z., Wuyts,
S., Barro, G., Bell, E.F., Castellano, M., Dahlen, T., Dekel, A., Ownsworth,
J., Faber, S.M., Finkelstein, S.L., Fontana, A., Galametz, A., Grützbauch,
R., Koo, D., Lotz, J., Mobasher, B., Mozena, M., Salvato, M., Wiklind, T.,
2017. Galaxy Zoo: quantitative visual morphological classifications for 48
000 galaxies from CANDELS. MNRAS 464, 4420–4447. 1610.03070.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for
large-scale image recognition. 1409.1556.

Skibba, R.A., Bamford, S.P., Nichol, R.C., Lintott, C.J., Andreescu, D., Edmond-
son, E.M., Murray, P., Raddick, M.J., Schawinski, K., Slosar, A., Szalay,
A.S., Thomas, D., Vandenberg, J., 2009. Galaxy Zoo: disentangling the envi-
ronmental dependence of morphology and colour. MNRAS 399, 966–982.
0811.3970.

Spergel, D., Gehrels, N., Breckinridge, J., Donahue, M., Dressler, A., Gaudi,
B.S., Greene, T., Guyon, O., Hirata, C., Kalirai, J., Kasdin, N.J., Moos, W.,
Perlmutter, S., Postman, M., Rauscher, B., Rhodes, J., Wang, Y., Weinberg,
D., Centrella, J., Traub, W., Baltay, C., Colbert, J., Bennett, D., Kiessling, A.,
Macintosh, B., Merten, J., Mortonson, M., Penny, M., Rozo, E., Savransky,
D., Stapelfeldt, K., Zu, Y., Baker, C., Cheng, E., Content, D., Dooley, J.,
Foote, M., Goullioud, R., Grady, K., Jackson, C., Kruk, J., Levine, M.,
Melton, M., Peddie, C., Ruffa, J., Shaklan, S., 2013. Wide-Field InfraRed
Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA
Final Report. arXiv e-prints , arXiv:1305.54221305.5422.

Spindler, A., Geach, J.E., Smith, M.J., 2020. AstroVaDEr: Astronomi-
cal Variational Deep Embedder for Unsupervised Morphological Classi-
fication of Galaxies and Synthetic Image Generation. arXiv e-prints ,
arXiv:2009.084702009.08470.
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Appendix A. Instructions for using NODE_ACA within
PyTorch

We provide some bare-bones guidelines on how to ac-
cess and use NODE_ACA for any classification problem.
NODE_ACA is available in both TensorFlow and PyTorch. For
this work, we have used PyTorch and hence provide some a
rudimentary guide on the usage of NODE_ACA in PyTorch.
Our full analysis has also been provided in a github link at
github.com/rg321/torch_ACA_gz.

Zhuang et al. (2020) provide a PyTorch package at https:
//github.com/juntang-zhuang/torch_ACA, which
can be easily plugged into the existing models, with support for
multi-GPU training and higher-order derivative. A simple way
to plug NODE_ACA into your existing code is as follows.

from torch_ACA import odesolve_adjoint as odesolve
out = odesolve(odefunc, x, options)

One then needs to write a custom data-loader in order to load
the data into the model. For example, to load the Galaxy Zoo
data images into the model for training and testing purposes,
a custom data-loader get_gz_loaders in file data_loader.py is
written and used. This loader is written in PyTorch’s standard
DataLoader style. It fetches the images using PyTorch’s Image-
Folder function, apply necessary transformations, splits them
into training and testing parts and finally returns train and test
DataLoader, which are standard PyTorch objects used for data
loading.

Once the data-loaders are in place, rest of the flow is the same
as for any other dataset like CIFAR10, ImageNet (Russakovsky
et al., 2015) etc. The only thing that needs to be done now is
tuning the hyper-parameters in order to get the best accuracy or
whatever desired. For example, to run it on galaxy-zoo datset,
run the following command -:

python train.py --num_epochs 15 --dataset galaxyzoo
--batch_size 64 --test_batch_size 32

An example usecase of NODE_ACA in the TensorFlow li-
brary can be found in https://github.com/titu1994/
tfdiffeq

Appendix B. Instructions for using NODE within PyTorch

After creating the DataLoader as described in above section,
use the following command (on the Linux prompt) to use NODE
architecture on your data (for example, dataset used is MNIST
here) -:

python train.py --data galaxyzoo
--optimizer sgd --lr 0.1 --solver runge_kutta --use_ode
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