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ABSTRACT

We present the data release for Galaxy Zoo 2 (GZ2), a citizen science project with more than

16 million morphological classifications of 304 122 galaxies drawn from the Sloan Digital Sky

Survey (SDSS). Morphology is a powerful probe for quantifying a galaxy’s dynamical history;

however, automatic classifications of morphology (either by computer analysis of images or

by using other physical parameters as proxies) still have drawbacks when compared to visual

inspection. The large number of images available in current surveys makes visual inspection of

each galaxy impractical for individual astronomers. GZ2 uses classifications from volunteer

citizen scientists to measure morphologies for all galaxies in the DR7 Legacy survey with

mr > 17, in addition to deeper images from SDSS Stripe 82. While the original GZ2 project

identified galaxies as early-types, late-types or mergers, GZ2 measures finer morphological

features. These include bars, bulges and the shapes of edge-on disks, as well as quantifying the

relative strengths of galactic bulges and spiral arms. This paper presents the full public data

release for the project, including measures of accuracy and bias. The majority (�90 per cent)

of GZ2 classifications agree with those made by professional astronomers, especially for

morphological T-types, strong bars and arm curvature. Both the raw and reduced data products

can be obtained in electronic format at http://data.galaxyzoo.org.

Key words: methods: data analysis – catalogues – galaxies: elliptical and lenticular – galaxies:

general – galaxies: spiral.

1 IN T RO D U C T I O N

The Galaxy Zoo project (Lintott et al. 2008) was launched in 2007 to

provide morphological classifications for nearly one million galax-

⋆ E-mail: willett@physics.umn.edu

ies drawn from the Sloan Digital Sky Survey (SDSS; York et al.

2000) Main Galaxy Sample (Strauss et al. 2002). This scale of ef-

fort was made possible by combining classifications from hundreds

of thousands of volunteers via a web-based interface. In order to

keep the task at a manageable level of complexity, only the most

basic morphological distinctions were requested, enabling the sep-

aration of systems into categories of elliptical (early-type), spiral

C© 2013 The Authors
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(late-type) and mergers.1 Following the success of this project (Lin-

tott et al. 2008, 2011), the same methodology of asking for volunteer

classifications was launched in 2009 with a more complex classifi-

cation system. This paper presents data and results from this second

incarnation of Galaxy Zoo, called Galaxy Zoo 2 (GZ2). These data

comprise detailed morphologies for more than 300 000 of the largest

and brightest SDSS galaxies.2

While the morphological distinction used in the original Galaxy

Zoo – that which divides spiral and elliptical systems – is the most

fundamental, the motivation for GZ2 was that galaxies demon-

strate a much wider variety of morphological features. There is a

long history of enhanced classifications (see Buta 2013 for a his-

torical review), but the most well-known approach (Hubble 1926)

included a division between barred and unbarred spirals, resulting

in the famous ‘tuning fork’ diagram. Furthermore, distinctions or-

dered ellipticals based on their apparent roundness and spirals on a

combination of tightness and distinction of the arms and size of the

central bulge. Along the late-type sequence, these traits are often

correlated with physical parameters of the systems being studied

(Roberts & Haynes 1994), with spirals becoming (on average) red-

der, more massive, and less gas-rich for ‘earlier’ locations in the

sequence.

Morphological features can clearly provide insights into the phys-

ical processes that shape the evolution of galaxies. Most obviously,

merger features reveal ongoing gravitational interactions, but even

the presence of a central bulge in a disk galaxy is likely to indicate

a history of mass assembly through significant mergers (Martig

et al. 2012 and references therein). On the other hand, galactic

bars and rings reveal details of slower, secular evolution and stel-

lar orbital resonances. For example, bars, are known to drive gas

inwards and are related to the growth of a central bulge (reviews

are given in Kormendy & Kennicutt 2004; Masters et al. 2011).

Careful classifications of morphological features are thus essen-

tial if the assembly and evolution history of galaxies is to be fully

understood.

Traditional morphological classification relied on visual inspec-

tion of small numbers of images by experts (e.g. Sandage 1961; de

Vaucouleurs et al. 1991; Sandage & Bedke 1994; Buta 1995; Buta,

Corwin & Odewahn 2002). However, the sheer size of modern data

sets (such as the SDSS Main Galaxy Sample) make this approach

impractical. Detailed classifications of limited sub-sets of SDSS

images have been made through huge efforts of a small number

of experts. Fukugita et al. (2007) and Baillard et al. (2011) de-

termined modified Hubble types for samples of 2253 and 4458

galaxies, respectively; the largest such effort to date is Nair &

Abraham (2010), who provide detailed classifications of 14 034

galaxies. GZ2 includes more than an order of magnitude more

systems than any of these. Furthermore, each galaxy has a large

number of independent inspections, which permits estimates of the

classification likelihood (and in some cases the strength of the fea-

ture in question). The size of GZ2 allows for a more complete

study of small-scale morphological features and their correlation

with many other galaxy properties (e.g. mass, stellar and gas con-

tent, environment), while providing better statistics for the rarest

objects.

The use of proxies for morphology – such as colour, concen-

tration index, spectral features, surface brightness profile, structural

features, spectral energy distribution or some combination of these –

1 Galaxy Zoo is archived at http://zoo1.galaxyzoo.org.
2 The Galaxy Zoo 2 site is archived at http://zoo2.galaxyzoo.org.

is a common practice in astronomy. However, proxies are not an ad-

equate substitute for full morphological classification, as each has

an unknown and likely biased relation with the features being stud-

ied. For example, most ellipticals are red and most spirals are blue;

however, interesting sub-sets of both types have been found with the

opposite colour (Schawinski et al. 2009; Masters et al. 2010). With

a sufficiently large set of galaxies, the diversity of the local popula-

tion can be fully sampled and the relationship between morphology

and proxies can be quantified.

Automated morphological classification is becoming much more

sophisticated, driven in part by the availability of large training

sets from the original Galaxy Zoo (Banerji et al. 2010; Huertas-

Company et al. 2011; Davis & Hayes 2013). However, these meth-

ods do not yet provide an adequate substitute for classification by

eye. In particular, as Lintott et al. (2011) note, such efforts typically

use proxies for morphology as their input (especially colour), mean-

ing they suffer from the objections raised above. The release of the

GZ2 data set will be of interest to those developing such machine

learning and computer vision systems.

The GZ2 results were made possible by the participation of hun-

dreds of thousands of volunteer ‘citizen scientists’. The original

Galaxy Zoo demonstrated the utility of this method in producing

both large-scale catalogues as well as serendipitous discoveries of

individual objects (see Lintott et al. 2011; Fortson et al. 2012 for

reviews of Galaxy Zoo results). Since then, this method has been

expanded beyond galaxy morphologies to include supernova iden-

tification (Smith et al. 2011), exoplanet discovery (Fischer et al.

2012; Schwamb et al. 2012) and a census of bubbles associated

with star formation in the Milky Way (Kendrew et al. 2012; Simp-

son et al. 2012), as well as a variety of ‘big data’ problems outside of

astronomy.3

Several results based on early GZ2 data have already been pub-

lished. Masters et al. (2011, 2012) use GZ2 bar classifications to

measure a clear increase in bar fraction for galaxies with redder

colours, lower gas fractions and more prominent bulges. Hoyle et al.

(2011) showed that the bars themselves are both redder and longer

in redder disk galaxies. Skibba et al. (2012) demonstrated that a

significant correlation exists between barred and bulge-dominated

galaxies at separations from 0.15 to 3 Mpc. Kaviraj et al. (2012)

used GZ2 to study early-type galaxies with visible dust lanes, while

Simmons et al. (2013) discovered a population of active galactic

nucleus (AGN) host galaxies with no bulge, illustrating how black

holes can grow and accrete via secular processes. Finally, Casteels

et al. (2013) quantify morphological signatures of interaction (in-

cluding mergers, spiral arms and bars) for galaxy pairs in the SDSS.

This paper describes the data used in these studies, and goes fur-

ther by quantifying and adjusting for classification biases and in

comparing GZ2 classifications with other results.

This paper is organized as follows. Section 2 describes the sam-

ple selection and method for collecting morphological classifica-

tions. Section 3 outlines the data reduction and debiasing process,

and Section 4 describes the tables that comprise the public data

release. Section 5 is a detailed comparison of GZ2 to four additional

morphological catalogues that were created with SDSS imaging. We

summarize our results in Section 6.

This paper uses the cosmological parameters of

H0 = 71.8 km s−1 Mpc−1, �m = 0.273 and �� = 0.727

(Hinshaw et al. 2012).

3 See http://www.zooniverse.org/ for the full collection.
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2 PRO J E C T D E S C R I P T I O N

2.1 Sample selection

The primary sample of objects used in GZ2 comprise approximately

the brightest 25 per cent of the resolved galaxies in the SDSS North

Galactic Cap region. The sample is generated from the SDSS Data

Release 7 (DR7) ‘Legacy’ catalogue (Abazajian et al. 2009), and

therefore excludes observations made by SDSS for other purposes,

such as the SEGUE survey. Spectroscopic targets come from the

SDSS Main Galaxy Sample (Strauss et al. 2002).

Several cuts on the data were applied to the DR7 Legacy sam-

ple for selection in GZ2. The goal was to include only the near-

est, brightest and largest systems for which fine morphological

features can be resolved and classified. GZ2 required a Petrosian

half-light magnitude brighter than 17.0 in the r band (after Galac-

tic extinction correction was applied), along with a size limit

of petroR90_r>3 arcsec (petroR90_r is the radius containing

90 per cent of the r-band Petrosian aperture flux). Galaxies which

had a spectroscopic redshift in the DR7 catalogue outside the range

0.0005 < z < 0.25 were removed; however, galaxies without re-

ported redshifts were kept. Finally, objects which are flagged by the

SDSS pipeline as SATURATED, BRIGHT or BLENDED without an accom-

panying NODEBLEND flag were also excluded. The 245 609 galaxies

satisfying all these criteria are referred to as the ‘original’ sample.

An error in the selection query meant that the ‘original’ sample

initially missed objects to which the SDSS photometric pipeline

(Stoughton et al. 2002) assigned both BLENDED and CHILD flags.

These are objects that have been deblended from a larger blend

(hence CHILD), and have been identified as blended themselves

(hence BLENDED; due to containing multiple peaks). However, these

are ‘final’ objects, as the SDSS deblender does not attempt to fur-

ther deblend already deblended objects. These galaxies, which are

typically slightly brighter, larger and bluer than the general popula-

tion, were added to the GZ2 site on 2009-09-02. These additional

28 174 galaxies are referred to as the ‘extra’ sample.

In addition to galaxies from the DR7 Legacy, GZ2 also classified

images from Stripe 82, a multiply imaged section along the celestial

equator in the Southern Galactic Cap. The selection criteria were

the same as for the Legacy galaxies, with the exception of a fainter

magnitude limit of mr < 17.77. For the Stripe 82 sample only, GZ2

includes multiple images of individual galaxies: one set of images

at single exposure depth, plus two sets of co-added images from

multiple exposures. The co-added images combined 47 (south) or

55 (north) individual scans of the region, resulting in an object

detection limit approximately two magnitudes lower than in normal

imaging (Annis et al. 2011).

The primary sample for GZ2 analysis consists of the com-

bined ‘original’, ‘extra’ and Stripe 82 normal-depth images with

mr ≤ 17.0. We have verified that there are no significant differences

in the classifications between these sub-samples (i.e. no significant

bias is introduced by the fact that they were classified at different

times) and thus can be reliably used as a single data set. This is here-

after referred to as the GZ2 main sample (Table 1), and is used for

the bulk of the analysis in this paper. Data from both the Stripe 82

normal-depth images with mr > 17.0 and the two sets of co-added

images are separately included in this data release.

2.2 Image creation

Images of galaxies for classification were generated from the SDSS

ImgCutout web service (Nieto-Santisteban, Szalay & Gray 2004)

Table 1. Basic properties of the galaxy samples in GZ2, including the

total number of galaxies (Ngal), the median number of classifications

per galaxy (Nclass) and the apparent magnitude limit.

Sample Ngal Nclass mr

(median) (mag)

Original 245 609 44 17.0

Extra 28 174 41 17.0

Stripe 82 normal 21 522 45 17.77

Stripe 82 normal (mr < 17) 10 188 45 17.0

Stripe 82 co-add 1 30 346 18 17.77

Stripe 82 co-add 2 30 339 21 17.77

Main 283 971 44 17.0

Original + Extra + S82 (mr < 17)

from the Legacy and Stripe 82 normal-depth surveys. Each im-

age is a gri colour composite 424 × 424 pixels in size, scaled to

(0.02 ×petroR90_r) arcsec per pixel.

Co-added images from Stripe 82 were generated from the cor-

rected SDSS FITS frames. Frames were combined using Montage

(Jacob et al. 2010) and converted to a colour image using a slightly

modified version of the Skyserver asinh stretch code (Lupton et al.

2004), with parameters adjusted to replicate the normal SDSS colour

balance. The parametrization of the stretch function used is

f (x) = asinh(αQx)/Q, (1)

where Q = 3.5 and α = 0.06. The colour scaling is

[1.000,1.176,1.818] in g, r and i, respectively.

The first set of Stripe 82 co-added images were visually very dif-

ferent from the single-depth images. Changing the colour balance to

maximize the visibility of faint features, however, resulted in more

prominent background sky noise; since each pixel is typically dom-

inated by a single band, the background is often brightly coloured

by the Lupton et al. (2004) algorithm. Due to concerns that this

noise would be an obvious sign that the images were from deeper

data (potentially biasing the classifications), we created a second

set of co-add images in which the colour of background pixels was

removed. This was achieved by reducing the colour saturation of

pixels outside of a soft-edged object mask.

The original and desaturated co-add image sets are labelled

‘stripe82_coadd_1’ and ‘stripe82_coadd_2’, respectively (Table 1).

Subsequent analysis revealed very few differences between the

classifications for the images using the two co-add methods (see

Section 4.2).

2.3 Decision tree

Morphological data for GZ2 were collected via a web-based in-

terface. Volunteers needed to register with a username for their

classifications to be recorded. Like Galaxy Zoo, classification be-

gins with the user being shown an SDSS colour composite image of

a galaxy alongside a question and set of possible responses. More

detailed data is then collected via a multistep decision tree. In this

paper, a classification is defined as the total amount of information

collected about one galaxy by a single user completing the decision

tree. Each individual step in the tree is a task, which consists of a

question and a finite set of possible responses. The selection of a

particular response is referred to as the user’s vote.

The first GZ2 task is a slightly modified version of Galaxy Zoo,

identifying whether the galaxy is either ‘smooth’, has ‘features or a

disk’, or is a ‘star or artifact’. The appearance of subsequent tasks in
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Figure 1. Flowchart of the classification tasks for GZ2, beginning at the top centre. Tasks are colour-coded by their relative depths in the decision tree. Tasks

outlined in brown are asked of every galaxy. Tasks outlined in green, blue and purple are (respectively) one, two or three steps below branching points in the

decision tree. Table 2 describes the responses that correspond to the icons in this diagram.

the interface depends on the user’s previous responses. For example,

if the user clicks on the ‘smooth’ button, they are subsequently asked

to classify the roundness of the galaxy; this task would not be shown

if they had selected either of the other two responses.

The GZ2 tree has 11 classification tasks with a total of 37 possible

responses (Fig. 1 and Table 2). A classifier selects only one response

for each task, after which they are immediately taken to the next task

in the tree. Tasks 01 and 06 are the only questions that are always

answered for each and every classification. Once a classification is

complete, an image of the next galaxy is automatically displayed

and the user can begin classification of a new object. Importantly,

in no case could a volunteer choose which galaxy to classify.

Data from the classifications were stored in a live Structured

Query Language (SQL) data base. In addition to the morphology

classifications, the data base also recorded a timestamp, user iden-

tifier and image identifier for each classification.

2.4 Site history

GZ2 launched on 2009-02-16 with the ‘original’ sample of 245 609

images. The ‘extra’ galaxies from the Legacy survey were added

on 2009-09-02. The normal-depth and the first set of co-added

Stripe 82 images were mostly added on 2009-09-02, with an ad-

ditional ∼7700 of co-added images added on 2010-09-24. Finally,

the second version of the co-added images were added to the site

on 2009-11-04.

For most of the duration of GZ2, images shown to classifiers

were randomly selected from the data base. To ensure that each

galaxy ultimately had enough responses to accurately characterize

the likelihood of the classification, images with low numbers of

classifications were shown at a higher rate towards the end of the

project. The main sample galaxies finished with a median of 44 clas-

sifications; the minimum was 16, and >99.9 per cent of the sample

had at least 28 classifications. The ‘stripe82_coadd_2’ galaxies had

a median of 21 classifications and >99.9 per cent had at least 10

(Fig. 2).

The last GZ2 classifications were collected on 2010-04-29,

with the project spanning just over 14 months. The archived

site continued to be maintained, but classifications were no

longer recorded. The final data set contains 16 340 298 clas-

sifications (comprising a total of 58 719 719 tasks) by 83 943

volunteers.
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Table 2. The GZ2 decision tree, comprising 11 tasks and 37 responses. The

‘Task’ number is an abbreviation only and does not necessarily represent

the order of the task within the decision tree. The text in ‘Question’ and

‘Responses’ are displayed to volunteers during classification, along with the

icons in Fig. 1. ‘Next’ gives the subsequent task for the chosen response.

Task Question Responses Next

01 Is the galaxy simply smooth Smooth 07

and rounded, with no sign of Features or disk 02

a disk? Star or artifact End

02 Could this be a disk viewed Yes 09

edge-on? No 03

03 Is there a sign of a bar Yes 04

feature through the centre No 04

of the galaxy?

04 Is there any sign of a Yes 10

spiral arm pattern? No 05

05 How prominent is the No bulge 06

central bulge, compared Just noticeable 06

with the rest of the galaxy? Obvious 06

Dominant 06

06 Is there anything odd? Yes 08

No End

07 How rounded is it? Completely round 06

In between 06

Cigar-shaped 06

08 Is the odd feature a ring, Ring End

or is the galaxy disturbed Lens or arc End

or irregular? Disturbed End

Irregular End

Other End

Merger End

Dust lane End

09 Does the galaxy have a Rounded 06

bulge at its centre? If Boxy 06

so, what shape? No bulge 06

10 How tightly wound do the Tight 11

spiral arms appear? Medium 11

Loose 11

11 How many spiral arms 1 05

are there? 2 05

3 05

4 05

More than four 05

Can’t tell 05

3 DATA R E D U C T I O N

3.1 Multiple classifications

In a small percentage of cases, individuals classified the same

image more than once. In order to treat each vote as an in-

dependent measurement, classifications repeated by the same

user were removed from the data, keeping only their votes

from the last submission. Repeat classifications occurred for

only ∼1 per cent of all galaxies. The removal of the repeats only

changed the morphological classifications for �0.01 per cent of the

sample.

Figure 2. Distribution of the number of classifications for the sub-samples

within GZ2.

3.2 Individual user weighting and combining classifications

The next step is to reduce the influence of potentially unreliable

classifiers (whose classifications are consistent with random se-

lection). To do so, an iterative weighting scheme (similar to that

used for Galaxy Zoo) is applied. First, we calculated the vote frac-

tion (fr = nr/nt) for every response to every task for every galaxy,

weighting each user’s vote equally. Here, nr is the number of votes

for a given response and nt is the total number of votes for that

task. Each vote is compared to the vote fraction to calculate a user’s

consistency κ:

κ =
1

Nr

Nr
∑

i=1

κi, (2)

where Nr is the total number of possible responses for a task and

κi =

{

fr if vote corresponds to this response,

(1 − fr) if vote does not correspond.
(3)

For example, if a question has three possible responses, and the

galaxy corresponds best to response a, then the vote fractions for

responses (a, b, c) might be (0.7, 0.2, 0.1).

(i) If an individual votes for response a, then

κ = (0.7 + (1 − 0.2) + (1 − 0.1))/3 = 0.8.

(ii) If an individual votes for response b, then

κ = ((1 − 0.7) + 0.2 + (1 − 0.1))/3 = 0.467.

(iii) If an individual votes for response c, then

κ = ((1 − 0.7) + (1 − 0.2) + 0.1)/3 = 0.4.

Votes which agree with the majority thus have high values of

consistency, whereas votes which disagree have low values.

Each user was assigned an overall consistency (κ̄) by taking the

mean consistency of every response. From the distribution of results

for the initial iteration (Fig. 3), a weighting function is applied that

down-weights classifiers in the tail of low consistency.

w = min
(

1.0, (κ̄/0.6)8.5
)

(4)

For this function, w = 1 for ∼95 per cent of classifiers and w < 0.01

for only ∼1 per cent of classifiers. The vast majority of classifiers

are thus treated equally; there is no up-weighting of the most con-

sistent classifiers. The top panel of Fig. 3 also shows that the lowest

weighted classifiers completed only a handful (<10) of objects on
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Figure 3. Distribution of the user consistency κ . Top: mean number of

galaxies classified per user as a function of their consistency. Bottom: Cu-

mulative distribution of consistency. The dotted line shows the first iteration

of weighting, and the solid line the third iteration. The second iteration is

not shown, but is almost identical to the third. Dashed lines indicate where

the user weighting function takes values of 0.01 and 1.

average. This may demonstrate either that the volunteers are becom-

ing more accurate as they classify more galaxies, or that inconsistent

people are less likely to remain engaged with the project; further

work on user behaviour is needed to distinguish between the two

possibilities.

After computing κ , vote fractions were recalculated using the new

user weights, and then repeated a third time to ensure convergence.

For each task, individual responses are combined to produce the

total vote count and a vote fraction for each task. The weighted votes

and vote fractions generated by equation (4) are used exclusively

hereafter when discussing GZ2 votes and vote fractions; for brevity,

we typically drop the term ‘weighted’.

3.3 Classification bias

The vote fractions are adjusted for what is termed classification

bias. The overall effect of this bias is a change in observed mor-

phology fractions as a function of redshift independent of any true

evolution in galaxy properties, a trend also seen in the Galaxy Zoo

data (Bamford et al. 2009). The SDSS survey is expected to be

shallow enough to justify an assumption of no evolution, and so

the presumed cause is that more distant galaxies, on average, are

both smaller and dimmer in the cutout images. As a result, finer

morphological features are more difficult to identify. We note that

this effect is not limited to crowd-sourced classifications; expert and

automatic classifications must also suffer from bias to some degree,

although smaller sample sizes make this difficult to quantify.

Fig. 4 demonstrates the effect of classification bias for the GZ2

tasks. The mean vote fraction for each response is shown as a

function of redshift; the fraction of votes for finer morphological

features (such as identification of disk galaxies, spiral structure or

galactic bars) decreases at higher redshift. The trend is strongest for

the initial task of separating smooth and feature/disk galaxies, but

almost all tasks exhibit some level of change.

Part of the observed trends in type fractions at high redshifts

is due to the nature of a magnitude-limited sample; high-redshift

galaxies must be more luminous to be detected in the SDSS and are

thus most likely to be giant red ellipticals. However, there is clear

evidence of classification bias in GZ2 even in luminosity-limited

samples. Since this bias contaminates any potential studies of galaxy

demographics over the sample volume, it must be corrected to the

fullest possible extent.

Bamford et al. (2009) corrected for classification bias in the

Galaxy Zoo data for the elliptical and combined spiral classes.

Their approach was to bin the galaxies as a function of absolute

magnitude (Mr), the physical Petrosian half-light radius (R50) and

redshift. They then computed the average elliptical-to-spiral ratio

for each (Mr, R50) bin in the lowest redshift slice with significant

numbers of galaxies; this yields a local baseline relation which

gives the (presumably) unbiased morphology as a function of the

galaxies’ physical, rather than observed parameters. From the local

relation, they derived a correction for each (Mr, R50, z) bin and then

adjusted the vote fractions for the individual galaxies in each bin.

The validity of this approach is justified in part since debiased vote

fractions result in a consistent morphology–density relation over a

range of redshifts (Bamford et al. 2009). We modify and extend this

technique for the GZ2 classifications.

There are two major differences between the Galaxy Zoo and GZ2

data. First, GZ2 has a decision tree, rather than a single question and

response for each vote. This means that all tasks, with the exception

of the first, depend on responses to previous tasks in the decision

tree. For example, the bar question is only asked if the user classifies

a galaxy as having ‘features or disk’ and as ‘not edge-on’. Thus,

the value of the vote fraction for this example only addresses the

total bar vote fraction among galaxies that a user has classified as

disks and are not edge-on, and not as a function of the total galaxy

population (see Casteels et al. 2013 for further discussion).

For a galaxy to be used in deriving a bias correction for a particular

task, this method requires both a minimum weighted vote fraction

for the preceding response(s) and a minimum number of votes for

the task in question. The value of the threshold is determined by

finding the minimum vote fraction for the preceding response for

which >99 per cent of galaxies with Nvotes ≥ Ncrit are preserved. We

compute thresholds for both Ncrit = 10 and Ncrit = 20 (Table 3). The

effect is to remove galaxies with high vote fractions but low (and

potentially unreliable) numbers of total votes.

Applying the thresholds to galaxies for deriving the bias correc-

tion does increase the number of bins with large variances; however,

it is critical for reproducing accurate baseline measurements of in-

dividual morphologies. The correction derived from well-classified

galaxies is then applied to the vote fractions for all galaxies in the

sample.

The second major difference is that the adjustment of the Galaxy

Zoo vote fractions assumed that the single task was essentially

binary. Since almost every vote in Galaxy Zoo was for a response

of either ‘elliptical’ or ‘spiral’ (either anticlockwise, clockwise or

edge-on), this ratio was employed as the sole metric. No systematic

debiasing was done for the other Galaxy Zoo response options

(‘star/don’t know’ or ‘merger’), and the method of adjusting the

vote fractions assumes that these other options do not significantly

affect the classification bias for the most popular responses. This

is not possible for GZ2: many tasks have more than two possible
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Figure 4. Type fractions as a function of redshift for the classification tasks in GZ2. Solid (thin) lines show the vote fractions, while the thick (dashed) lines

show the debiased vote fractions adjusted for classification bias. This is a luminosity-limited sample for Mr < −20.89. The data for each task is plotted only

for galaxies with enough votes to characterize the response distribution (Table 3). Vertical dashed lines show the redshift at z = 0.01 (the lower limit of the

correction) and z = 0.085 (the redshift at which the absolute magnitude limit reaches the sensitivity of the SDSS).

Table 3. Thresholds for determining well-sampled galaxies in

GZ2. Thresholds depend on the number of votes for a classifica-

tion task considered to be sufficient – this table contains thresh-

olds applied to previous task(s) for both 10 and 20 votes. As an

example, to select galaxies that may or may not contain bars, cuts

for pfeatures/disk > 0.430, pnotedgeon > 0.715 and Nnotedgeon ≥ 20

should be applied. No thresholds are given for Tasks 01 and 06,

since these are answered for every classification in GZ2.

Task Previous task Vote fraction Vote fraction

Ntask ≥ 10 Ntask ≥ 20

01 – – –

02 01 0.227 0.430

03 01,02 0.519 0.715

04 01,02 0.519 0.715

05 01,02 0.519 0.715

06 – – –

07 01 0.263 0.469

08 06 0.223 0.420

09 01,02 0.326 0.602

10 01,02,04 0.402 0.619

11 01,02,04 0.402 0.619

responses and represent a continuum of relative feature strength,

rather than a binary choice.

The debiasing method relies on the assumption that for a galaxy

of a given physical brightness and size, a sample of other galaxies

with similar brightnesses and sizes will (statistically) share the same

average mix of morphologies. This is quantified using the ratio of

vote fractions (fi/fj) for some pair of responses i and j. We assume

that the true (that is, unbiased) ratio of likelihoods for each task

(pi/pj) is related to the measured ratio via a single multiplicative

constant Kj, i:

pi

pj

=
fi

fj

× Kj,i . (5)

The unbiased likelihood for a single task can trivially be written as

pi =
1

1/pi

, (6)

with the requirement that the sum of all likelihoods for a given task

must be unity:

pi + pj + pk + . . . = 1. (7)

Multiplying (6) by the inverse of (7) yields:

pi =
1

1/pi

×
1

pi + pj + pk + . . .
(8)

pi =
1

pi/pi + pj/pi + pk/pi + . . .
(9)

pi =
1

1 +
∑

j �=i

(pj/pi)
(10)
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pi =
1

1 +
∑

j �=i

Kj,i(fj/fi)
. (11)

The corrections for each pair of tasks can be directly determined

from the data. At the lowest redshift bin, pi

pj
=

fi

fj
and Kj, i = 1.

From equation (5):

(

fi

fj

)

z=0

=

(

fi

fj

)

z=z′

× Kj,i (12)

Kj,i =

(

fi/fj

)

z=0
(

fi/fj

)

z=z′

. (13)

This can be simplified by defining Cj,i ≡ log10(Kj,i) and substitut-

ing into (13):

Cj,i = log10

(

fi

fj

)

z=0

− log10

(

fi

fj

)

z=z′

. (14)

The correction Cj, i for any bin is thus the difference between fi/fj at

the desired redshift and that of a local baseline, if the ratios between

vote fractions are expressed as logarithms.

Local morphology baselines and subsequent corrections for GZ2

are derived from the main sample data. Since determining the base-

line ratio relies on absolute magnitude and physical size, only galax-

ies in the main sample with spectroscopic redshifts (86 per cent) are

used. Corrections also use data only from galaxies with sufficient

numbers of responses to determine their morphology. We apply the

thresholds in Table 3 for Ntask ≥ 20 to identify the well-answered

galaxies for each task.

Bins for Mr range from −24 to −16 in steps of 0.25 mag, for

R50 from 0 to 15 kpc in steps of 0.5 kpc, and for z from 0.01 to

0.26 in steps of 0.01. These bin ranges and step sizes are chosen to

maximize the parameter space covered by the bias correction. Only

bins with at least 20 galaxies are used in deriving a correction.

Since each unique pair of responses to a question will have a

different local baseline, there are
(

n

2

)

correction terms for a task with

n responses. For n = 2, this method is identical to that described in

Bamford et al. (2009).

The baseline morphology ratios for the GZ2 tasks are shown in

Fig. 5 for the first two responses in each task. To derive a correction

for bins not covered at low redshift, we attempted to fit each baseline

ratio with an analytic, smoothly varying function. The baseline ratio

for the responses to Tasks 01 and 07 is functionally very similar to

the Galaxy Zoo relation (fig. A5 in Bamford et al. 2009). This ratio

can be fit with an analytic function:

fj

fi

[R50, Mr ] =
s6

1 + exp [(α − Mr )/β]
+ s7, (15)

where

α = s2 × exp
[

−
(

s1 + s8R50
s9
)]

+ s3, (16)

β = s4 + s5(x0 − s3), (17)

where {s1, s2, s3, s4, s5, s6, s7, s8, s9} are minimized to fit the data.

Figure 5. Local morphology ratios for GZ2 classifications; these are used to derive the corrections that adjust data for classification bias (Section 3.3). The

ratio of the binned vote fractions is for the first two responses in the decision tree (Table 2) for each task; there may be as many as 21 such pairs per task,

depending on the number of unique responses. Dashed horizontal lines give the physical scale corresponding to 1 arcsec, while the curved lines show a constant

apparent surface brightness of μ50, r = 23.0 mag arcsec−2.
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None of the other tasks are well fit by a function of the form in

equation (15). For these, a simpler function is used where both Mr

and R50 vary linearly

fj

fi

[R50, Mr ] = t1(R50 − t2) + t3(Mr − t4) + t5, (18)

where {t1, t2, t3, t4, t5} are the parameters to be minimized. equation

(18) is fit to all other tasks where enough non-zero bins exist to get a

good fit. Finally, for pairs of responses with only a few sampled bins,

we instead directly measured the difference bin-by-bin between the

local ratio and the measured ratio at higher redshift. Galaxies falling

in bins that are not well sampled are assigned a correction of Ci, j = 0

for that term; this is necessary to avoid overfitting based on only a

few noisy bins.

This method succeeds for most GZ2 tasks and responses. Fig. 4

illustrates the comparison between the mean raw and debiased vote

fractions as a function of redshift. The debiased results (thick lines)

are flat over 0.01 < z < 0.085, where L⋆ galaxies (Mr ∼ −20.44;

Blanton et al. 2003) are within the detection limit of the survey

and there are fewer empty bins. The debiased early- and late-type

fractions of 0.45 and 0.55 agree with the Galaxy Zoo type fractions

derived by Bamford et al. (2009) for the same selection criteria. The

bar fraction in disk galaxies is approximately 0.35, slightly higher

than the value found by using thresholded GZ2 data in Masters et al.

(2011).

3.4 Angular separation bias

The vote fractions also suffer from a bias which depends on the

angular separation between galaxies. For some classifications, par-

ticipants perceive a galaxy’s morphology differently when it has a

close apparent companion. Casteels et al. (2013) found that this bias

is particularly strong for Task 08 (‘odd features’) and its ‘merger’

classification. The mean merger vote fractions of both physically

close galaxies with similar redshifts and projected pairs with very

different redshifts increase strongly as a function of decreasing an-

gular separation. This results in projected pairs of non-interacting

galaxies being classified as mergers. To determine an unbiased es-

timate of the mean probability for a given classification, Casteels

et al. (2013) subtracted the mean probabilities of projected pairs

(with very different redshifts) from physically close pairs (with

similar redshifts) for each projected separation bin. This results in a

residual probability which is considered to represent the true change

in morphology due to strong tidal interaction. While such a correc-

tion can be applied in a statistical way to the mean vote fractions for

a given classification, applying such a correction to the individual

vote fractions is not as straightforward.

The vote fractions presented in this data release have not been

corrected for angular separation bias and readers using GZ2 data to

study very close pairs are advised to keep this in mind, particularly

for Task 08. Fortunately, the angular separation bias is minimal

for the rest of the classifications and can usually be ignored. A

detailed discussion of the angular separation bias (and how it affects

individual classifications) is given in Casteels et al. (2013).

4 T H E C ATA L O G U E

The data release for GZ2 includes the vote counts and fractions (raw,

weighted and debiased) for each task in the classification tree for

each galaxy. Data for the five sub-samples described below can be

accessed at http://data.galaxyzoo.org, and are available on CasJobs4

in SDSS DR10 (Ahn et al. 2013). Abridged portions of each data

table are included in this paper (Tables 5–9).

4.1 Main sample

Table 5 contains classification data for the 243 500 galaxies in the

main sample with spectroscopic redshifts. Each galaxy is identified

by its unique SDSS DR7 object ID, as well as its J2000.0 coordinates

and GZ2 sub-sample (either original, extra or Stripe 82 normal-

depth). Nclass is the total number of volunteers who classified the

galaxy, while Nvotes gives the total number of votes summed over all

classifications and all responses. For each of the 37 morphological

classes, six parameters are given: the raw number of votes for that

response (e.g. t01_smooth_or_features_a01_smooth_count),

the number of votes weighted for consistency (⋆_weight), the frac-

tion of votes for the task (⋆_fraction), the vote fraction weighted

for consistency (⋆_weighted_fraction), the debiased likelihood

(⋆_debiased), which is the weighted vote fraction adjusted for

classification bias (see Section 3.3) and a Boolean flag (⋆_flag)

that is set if the galaxy is included in a clean, debiased sample.

Flags for each morphological parameter are determined by ap-

plying three criteria. First, the vote fraction for the preceding task(s)

must exceed some threshold (Table 3) to ensure that the question is

well answered. For example, selecting galaxies from which a clean

barred sample can be identified requires both pfeatures/disk ≥ 0.430

and pnotedge–on ≥ 0.715. Secondly, the task must exceed a minimum

number of votes (10 for Stripe 82, 20 for the main sample) in order

to eliminate variance due to small-number statistics. Finally, the

debiased vote fraction itself must exceed a given threshold of 0.8

for all tasks. We note this is a highly conservative selection – each

of the above parameters may be adjusted to provide different clean

thresholds, depending on the use case for the data.

Table 5 also includes an abbreviated version of the classification

designated as gz2 class. It is intended to serve as a quick reference

for the consensus GZ2 classification; any quantitative analyses,

however, should use the vote fractions instead. A description of

how the string is generated is given in Appendix A.

Table 6 gives the GZ2 classifications for the 42 462 main sam-

ple galaxies without spectroscopic redshifts. To compute the de-

biased likelihoods, we used the morphology corrections obtained

for galaxies in the spectroscopic main sample. SDSS photometric

redshifts (Csabai et al. 2003) are used to derive Mr and R50 for

each galaxy in the photometric sample and select the appropriate

correction bin. The mean error in the redshift of the photometric

sample (from the SDSS photo-z) is �z = 0.021 (a fractional un-

certainty of 27 per cent), compared to the spectroscopic accuracy

of �z = 0.000 16 (0.3 per cent). Since the size of the redshift bins

in Cj, i is 0.01, a shift of several bins can potentially produce a very

large change in the debiased vote fractions.

Since the redshift can have a strong effect on classification bias,

galaxies with spectroscopic and photometric redshifts from the

SDSS are separated; we do not recommend that their debiased data

be combined for analysis. For science cases, where the main driver

is the number of galaxies, however, it may be possible to combine

the raw vote fractions for the two samples.

4 http://skyserver.sdss3.org/casjobs/
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4.2 Stripe 82

Data for Stripe 82 is reduced separately from the GZ2 main sample.

This is due to the deeper magnitude limit of the samples (both

normal and co-added) as well as the improved seeing in the latter.

Since different image qualities potentially affect the debiasing, all

three Stripe 82 samples are individually adjusted for classification

bias. The method is the same as that used for the spectroscopic

main sample galaxies – the only difference is that the threshold for

classification in the co-added sample is lowered from 20 to 10 votes.

Table 7 gives classifications for the Stripe 82 normal-depth

images with spectroscopic redshifts. Galaxies in this table with

mr < 17.0 also appear in Table 5; however, the corrections for clas-

sification bias here are derived based only on Stripe 82 data, and so

debiased likelihoods and flags are slightly different. Classifications

for galaxies with photometric redshifts only are not included.

Tables 8 and 9 contain classifications for the first and second sets

of co-added Stripe 82 galaxies with spectroscopic redshifts. Since

both the number of galaxies and the average number of classifica-

tions per galaxy are a small fraction of that in the main sample,

though, the corrections encompass a smaller range of tasks and

phase space in (Mr, R50, z). The increased exposure time and im-

proved seeing, however, means that the effect of classification bias

is lessened at lower redshifts; the raw vote fractions may thus be

more suitable for some science cases that require deeper imaging.

Fig. 6 compares the results of the Task 01 classifications for the

GZ2 main and Stripe 82 samples. The distributions of the responses

for both the main sample and Stripe 82 normal-depth show similar

behaviour as a function of redshift. This applies both when using

thresholded vote fractions and the raw likelihoods. The type frac-

tions for the co-added data, however, are significantly different –

there is a significant increase at all redshifts in the fraction of re-

sponses for ‘features or disk’. This increases the fraction of unclas-

sified galaxies (and subsequently decreases the fraction of smooth

galaxies) when using thresholds, and a similar shift of vote fractions

from smooth to feature/disk when using the raw likelihoods.

This difference demonstrates why the main sample corrections

cannot be applied to the co-added images. The likely cause is that the

co-added data allows classifiers to better distinguish faint features

and/or disks, due to both improved seeing (from 1.4 to 1.1 arcsec;

Annis et al. 2011) and higher signal-to-noise ratio.

Classifications for the two sets of co-added Stripe 82 im-

ages show no systematic differences for the majority of the GZ2

tasks. Fig. 7 shows the difference between the two vote fractions

(�coadd = pcoadd1 − pcoadd2) for four examples. A non-zero mean

value of �coaddwould indicate a systematic bias in classification,

possibly due to the differences in image processing. In GZ2, 33/37

tasks have |�coadd| < 0.05 for galaxies with at least 10 responses to

the task.

The biggest systematic difference is for the response to Task 05

(bulge prominence) of the bulge being ‘just noticeable’. The mean

fraction in co-add2 is 35 per cent higher than that in co-add1. This

effect is opposite (but not equal) to that for an ‘obvious’ bulge, for

which co-add1 is 13 per cent higher; this may indicate a general shift

in votes towards a more prominent bulge. A similar but smaller effect

is seen in classification of bulge shapes for edge-on disks (Task 09),

where votes for ‘no bulge’ in co-add1 data go to ‘rounded bulge’

in co-add2. The specific cause for these effects as it relates to the

image quality is not investigated further in this paper.

For most morphological questions, the two versions of co-added

images showed no significant difference. While either set of co-

added data can likely be used for science, we recommend using co-

add2 if choosing between them. The overall consistency indicates

that the votes for both could potentially be combined and treated as

a single data set; this could be useful for increasing the classification

accuracy for deeper responses (such as spiral arm properties) within

the GZ2 tree.

4.3 Using the classifications

Since GZ2 is intended to be a public catalogue for use by the

community, we present two examples of how classifications can be

selected. Actual use will depend on the individual science case, and

additional cuts (e.g. making a mass or volume-limited sample) may

be required to define the parameters more appropriately.

The first use case suggested for the GZ2 data is the selection of

pure samples matching a specific morphology category. This is ap-

propriate for when some finite number of objects with clear morpho-

logical classifications is required (perhaps for individual study or an

observing proposal), but there is no requirement to have a complete

sample. An example would be the selection of three-armed spirals.

Figure 6. GZ2 vote fractions for Task 01 (smooth, features/disk, or star/artifact?) as a function of spectroscopic redshift. Left: fraction of galaxies for which

the GZ2 vote fraction exceeded 0.8. Galaxies with no responses above 0.8 are labelled as ‘unclassified’. Right: mean GZ2 vote fractions weighted by the total

number of responses per galaxy. Data are shown for the GZ2 original + extra (thick solid), Stripe 82 normal-depth (thin dotted) and Stripe 82 co-add depth

(thin solid) samples with a magnitude limit of mr < 17.0.
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Figure 7. Comparison of GZ2 classifications for the co-added images of Stripe 82. Left: Distribution of the difference in vote fractions (�coadd) for galaxies

that appear in both the co-add1 and co-add2 samples. Four example tasks are shown, including only galaxies with at least 10 responses per task. The dashed

line shows the median of each distribution. The response ‘noticeable bulge’ for Task 05 was the only example for which the mean |�coadd| > 0.1. Right: mean

values �coadd for every response in the GZ2 tree.

The simplest way is to search for galaxies in the GZ2 spectroscopic

main sample (Table 5) with t11_arms_number_a33_3_flag= 1,

which returns 308 galaxies. Inspection of the flagged images shows

that they are all in fact disk galaxies with three spiral arms, with no

object that is a clear false positive.

Alternatively, those making use of the catalogue can set their

own thresholds for the debiased likelihoods to change the strength

of the selection criteria. This flag is currently set via the combina-

tion of pfeatures/disk > 0.430, pedge-on,no > 0.715, pspiral,yes > 0.619,

Nspiral,yes > 20 and p3arms > 0.8 (Table 3). These cuts are generally re-

garded as conservative, and more genuine three-armed spirals might

be discovered by, for example, lowering the threshold on p3arms. If

the number of objects returned by such a query is of a manageable

size, we suggest that images be individually examined – this is the

only way to differentiate spirals with true radial symmetry from

two-armed spirals with an additional tidal tail, for example. GZ2

papers that employ similar methods of selecting specific morpholo-

gies include Masters et al. (2011), Kaviraj et al. (2012), Simmons

et al. (2013) and Casteels et al. (2013).

The second common use case for the morphologies is the di-

rect use of the likelihoods. While thresholds on the likelihoods are

appropriate for some studies, many classifications do not exceed

p > 0.8 for any available response, especially when more than

two responses are available. These intermediate classifications are

a combination of genuine physical attributes of the galaxy (vote

fractions of psmooth = 0.5, pfeatures/disk = 0.5 may accurately char-

acterize a galaxy with both strong bulge and disk components) in

addition to limitations in accuracy from the image quality and vari-

ance among individual classifiers. The problem is that thresholding

only samples a small portion of the vote distributions.

In order to use data for the entire sample, the debiased likelihoods

for each response can be treated as probabilistic weights. As an

example, consider the type fractions from Task 01 shown in Fig. 6.

The left-hand side shows the average fraction of morphological

classes at each redshift only defining a ‘class’ as exceeding some

vote fraction threshold; as a result, more than half the galaxies are

left ‘unclassified’, with no strong majority. The panel on the right

in Fig. 6 uses the likelihoods directly. A galaxy with psmooth = 0.6,

pfeatures/disk = 0.3 and pstar/artifact = 0.1 contributes 0.6 of a ‘vote’ to

smooth, 0.3 to features/disk, and 0.1 to star/artifact. This approach

is generally suitable for studying morphology dependence on global

variables, such as environment or colour. Furthermore, examples of

using the likelihoods as weights can be found in Bamford et al.

(2009), Skibba et al. (2012) and Casteels et al. (2013).

5 C O M PA R I S O N O F G Z 2 TO OT H E R
C L A S S I F I C AT I O N M E T H O D S

To assess both the scope and potential accuracy of the GZ2 classifi-

cations, we have compared our results to four morphological galaxy

catalogues (including the previous version of Galaxy Zoo). All four

catalogues contain classifications based on optical SDSS images

and have significant overlaps with the galaxies in GZ2.

(i) Galaxy Zoo (Lintott et al. 2011): citizen science.

(ii) Nair & Abraham (2010) : expert visual classification.

(iii) EFIGI (Baillard et al. 2011) : expert visual classification.

(iv) Huertas-Company et al. (2011) : automatic classification.

A summary of the agreement between GZ2 and other catalogues

is given in Table 4; the remainder of this section discusses the results

in more detail.
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Table 4. Comparison of the agreement in morphology between the GZ2 main sample and other catalogues.

For each category, a galaxy is considered to ‘agree’ if it has a likelihood of at least 0.8 (‘clean’) in GZ2

and at least 0.5 (‘majority’) in the other catalogue (or for NA10, inclusion in the relevant category). This

table gives both the total number of overlapping galaxies and the fraction that agreed in the corresponding

catalogue when matched to GZ2.

GZ2 Galaxy Zoo HC11 NA10 EFIGI

N (per cent) N (per cent) N (per cent) N (per cent)

Early-type 79 214 86.2 26 732 82.1 1995 96.7 214 84.6

Late-type 26 314 97.9 79 277 88.6 5481 94.9 1675 98.2

Bar – – – – 651 94.9 238 98.7

Ring – – – – 438 91.6 110 83.6

Merger 526 63.3 – – 43 100. 6 100.

Table 5. Morphological classifications of GZ2 main sample galaxies with spectra.

t01_smooth_or_features_a01_smooth_ –

Stripe82 objID RA Dec. gz2 class Nclass Nvotes Count wt_count Fraction wt_fraction Debiased Flag

588017703996096547 10:43:57.70 +11:42:13.6 SBc?t 44 349 1 0.1 0.023 0.002 0.002 0

587738569780428805 12:49:38.60 +15:09:51.1 Ser 45 185 5 5.0 0.111 0.115 0.115 0

587735695913320507 14:03:12.53 +54:20:56.2 Sb+t 46 372 0 0.0 0.000 0.000 0.000 0

587742775634624545 12:21:12.82 +18:22:57.7 SBb(r) 45 289 8 8.0 0.178 0.178 0.178 0

587732769983889439 12:29:28.03 +08:44:59.7 Ser 49 210 12 12.0 0.245 0.249 0.454 0

588017725475782665 12:34:05.41 +07:41:35.8 Ec 42 149 27 27.0 0.643 0.686 0.771 0

588017702391578633 11:40:58.75 +11:28:16.1 Sc+t 45 356 0 0.0 0.000 0.000 0.000 0

588297864730181658 11:46:07.80 +47:29:41.1 Sen 45 206 4 4.0 0.089 0.091 0.091 0

588017704545812500 12:43:56.58 +13:07:36.0 Sb?t 43 360 0 0.0 0.000 0.000 0.000 0

588017566564155399 12:25:46.72 +12:39:42.7 Sc?t(u) 43 244 6 6.0 0.140 0.143 0.143 0

Note. The full, machine-readable version of this table is available at http://data.galaxyzoo.org. A portion is shown here for guidance on form and content, which

is described in Section 4 and Appendix A (for gz2 class). The full table contains 252 750 rows (one for every galaxy in the sample), and 226 columns, with

six variables for each of the 37 GZ2 morphology classifications.

Table 6. Morphological classifications of GZ2 main sample galaxies with photo-z.

t01_smooth_or_features_a01_smooth_ –

Stripe82 objID RA Dec. gz2 class Nclass Nvotes Count wt_count Fraction wt_fraction Debiased Flag

587722981736579107 11:27:57.82 −01:12:50.4 Ec 43 181 27 27.0 0.628 0.648 0.648 0

587722981741691055 12:14:60.00 −01:08:39.8 Er 44 133 40 40.0 0.909 0.909 0.909 1

587722981745819655 12:52:22.07 −01:11:58.4 Sc(o) 46 221 17 17.0 0.370 0.378 0.378 0

587722981746082020 12:55:09.43 −01:05:29.6 Sc(o) 44 172 31 31.0 0.705 0.771 0.363 0

587722981746344092 12:57:22.12 −01:03:28.7 SBb2m 43 358 0 0.0 0.000 0.000 0.000 0

587722981747982511 13:12:25.88 −01:06:13.1 Ei(o) 45 156 37 37.0 0.822 0.850 0.547 0

587722981748375814 13:16:06.59 −01:12:39.7 Er 52 198 44 44.0 0.846 0.846 0.626 0

587722981748768914 13:19:22.53 −01:07:45.9 Sb(r) 46 350 3 3.0 0.065 0.065 0.097 0

587722981748768984 13:19:34.20 −01:05:20.0 Ei 42 140 37 36.2 0.881 0.900 0.678 0

587722981749031027 13:21:46.41 −01:09:37.8 Ei 50 158 46 45.8 0.920 0.932 0.682 0

Note. The full, machine-readable version of this table is available at http://data.galaxyzoo.org. A portion is shown here for guidance on form and content, which

are identical to those in Table 5.

5.1 Galaxy Zoo and GZ2

The galaxies in GZ2 are a sub-set of Galaxy Zoo, with 248 883 in

both catalogues. The similarities between Galaxy Zoo and Task 01

in GZ2 allow their results to be compared in detail. We analysed

vote fractions for the Galaxy Zoo ‘elliptical’ category as compared

to GZ2 ‘smooth’ galaxies, and combined responses for all three

Galaxy Zoo spiral categories to the GZ2 ‘features or disk’ response.

The matched Galaxy Zoo-GZ2 catalogue contains 33 833 galax-

ies identified as ellipticals based on their debiased Galaxy Zoo

likelihoods (Lintott et al. 2011). Using the GZ2 debiased likeli-

hoods, 50.4 per cent of galaxies have vote fractions exceeding 0.8

in both samples, while 97.6 per cent have vote fractions exceed-

ing 0.5. There are only ∼1200 ellipticals identified in Galaxy Zoo

that have pfeatures/disk > 0.5 in GZ2. Of these, roughly 40 per cent

are barred galaxies, and almost all show obvious bulges, the likely

cause of their identification as early-type in Galaxy Zoo.

The GZ2 main sample contains 83 956 galaxies identified as

spirals by Galaxy Zoo. The agreement with the ‘features or disk’

response in GZ2 is significantly lower than that of ellipticals. Only

31.6 per cent of the Galaxy Zoo clean spirals had vote fractions

greater than in GZ2, with 59.2 per cent having a vote fraction

greater than 0.5. The GZ2 debiased likelihoods for the same galax-

ies agree at 38.1 per cent (for 0.8) and 78.2 per cent (for 0.5). Of

the ∼1600 spirals in Galaxy Zoo with pfeatures/disk < 0.4, visual in-

spection shows these to be almost entirely inclined disks or lentic-

ular galaxies without spiral arms. These galaxies are slightly bluer

than the other early-types in Galaxy Zoo; however, we emphasize
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Table 7. GZ2 morphological classifications of normal-depth images of Stripe 82 galaxies.

t01_smooth_or_features_a01_smooth_ –

Stripe82 objID RA Dec. gz2 class Nclass Nvotes Count wt_count Fraction wt_fraction Debiased flag

587730845812064684 20:37:42.95 −01:10:10.7 Ei 46 135 38 38.0 0.826 0.851 0.842 1

587730845812065247 20:37:35.59 −01:05:15.4 Ei 49 230 26 26.0 0.531 0.551 0.551 0

587730845812196092 20:38:42.14 −01:13:05.5 Sb2m 48 368 2 2.0 0.042 0.042 0.042 0

587730845812196825 20:39:10.35 −01:10:49.5 Ei 42 177 26 26.0 0.619 0.633 0.633 0

587730845812524122 20:42:07.88 −01:07:06.4 Er 51 149 48 48.0 0.941 0.961 0.961 1

587730845812654984 20:42:57.20 −01:05:11.9 Ei 49 201 33 33.0 0.673 0.673 0.638 0

587730845812655541 20:43:15.93 −01:09:24.6 Ei(i) 46 193 25 25.0 0.543 0.543 0.543 0

587730845812720365 20:43:25.63 −01:05:13.8 Ei 43 152 34 33.8 0.791 0.790 0.721 0

587730845812720699 20:43:46.54 −01:12:32.1 Ei 46 233 24 22.5 0.522 0.506 0.506 0

587730845812851385 20:44:45.87 −01:04:58.8 Er 45 147 39 39.0 0.867 0.884 0.837 1

Note. The full, machine-readable version of this table is available at http://data.galaxyzoo.org. A portion is shown here for guidance on form and content, which

are identical to those in Table 5. Classifications here are for normal-depth images from Stripe 82, which goes to a deeper magnitude limit (mr > 17.7) galaxies

in the main sample.

Table 8. GZ2 morphological classifications of co-added images (set 1) of Stripe 82 galaxies.

t01_smooth_or_features_a01_smooth_ –

Stripe82 objID RA Dec. gz2 class Nclass Nvotes Count wt_count Fraction wt_fraction Debiased Flag

8647474690312307154 20:37:16.90 −01:08:54.1 Ei(m) 20 74 15 14.4 0.750 0.742 0.749 0

8647474690312307877 20:37:35.59 −01:05:15.4 Ei 17 54 13 13.0 0.765 0.765 0.765 0

8647474690312308880 20:37:27.68 −01:12:39.9 Ei 12 32 10 10.0 0.833 0.833 0.833 1

8647474690312373464 20:37:52.27 −01:08:17.8 Er 22 75 18 18.0 0.818 0.829 0.829 1

8647474690312438284 20:38:42.14 −01:13:05.5 Sc2m 23 149 3 3.0 0.130 0.136 0.136 0

8647474690312505086 20:39:10.33 −01:10:49.5 Ec 15 58 11 11.0 0.733 0.748 0.748 0

8647474690312832559 20:42:07.88 −01:07:06.3 Er 20 77 14 14.0 0.700 0.700 0.781 0

8647474690312898532 20:42:57.20 −01:05:11.8 Ei 14 68 9 9.0 0.643 0.643 0.643 0

8647474690312962734 20:43:25.63 −01:05:13.8 Ei 21 77 15 15.0 0.714 0.714 0.679 0

8647474690312963665 20:43:15.93 −01:09:24.7 Ei 12 43 11 11.0 0.917 0.917 0.917 1

Note. The full, machine-readable version of this table is available at http://data.galaxyzoo.org. A portion is shown here for guidance on form and content, which

are identical to those in Table 5. Classifications here are for the co-added images (set 1; see Section 2.2) from Stripe 82, which goes to a deeper magnitude

limit and has a better angular resolution than galaxies in the main sample. There is no colour desaturation for background sky pixels in this set of images.

Table 9. GZ2 morphological classifications of co-added images (set 2) of Stripe 82 galaxies.

t01_smooth_or_features_a01_smooth_ –

Stripe82 objID RA Dec. gz2 class Nclass Nvotes Count wt_count Fraction wt_fraction Debiased Flag

8647474690312307154 20:37:16.90 −01:08:54.1 Ei(o) 16 72 10 10.0 0.625 0.625 0.629 0

8647474690312307877 20:37:35.59 −01:05:15.4 Ei 21 84 17 17.0 0.810 0.810 0.810 1

8647474690312308318 20:37:42.94 −01:10:10.7 Ei(m) 23 88 18 18.0 0.783 0.783 0.722 0

8647474690312308880 20:37:27.68 −01:12:39.9 Er 16 48 16 16.0 1.000 1.000 1.000 1

8647474690312373464 20:37:52.27 −01:08:17.8 Er 23 89 17 17.0 0.739 0.739 0.739 0

8647474690312438284 20:38:42.14 −01:13:05.5 Sb2m 11 91 0 0.0 0.000 0.000 0.000 0

8647474690312505086 20:39:10.33 −01:10:49.5 Sb?m 12 65 4 3.4 0.333 0.295 0.295 0

8647474690312832559 20:42:07.88 −01:07:06.3 Er 23 75 14 14.0 0.609 0.629 0.666 0

8647474690312898532 20:42:57.20 −01:05:11.8 Ei 26 129 12 12.0 0.462 0.462 0.492 0

8647474690312962734 20:43:25.63 −01:05:13.8 Ei 20 69 18 17.0 0.900 0.895 0.840 1

Note. The full, machine-readable version of this table is available at http://data.galaxyzoo.org. A portion is shown here for guidance on form and content, which

are identical to those in Table 5. Classifications here are for the co-added images (set 2; see Section 2.2) from Stripe 82, which goes to a deeper magnitude

limit and has a better angular resolution than galaxies in the main sample. Pixels in the sky background are colour desaturated in this set of images.

that most elliptical galaxies with this colour (Schawinski et al. 2009)

were correctly classified in the initial Galaxy Zoo project.

Fig. 8 shows the difference between the vote fractions for the spi-

ral classifications in Galaxy Zoo and features/disk classifications in

GZ2 for all galaxies that appear in both catalogues. The vote frac-

tions show a tight correlation at both very low and very high values

of the Galaxy Zoo vote fraction for combined spiral (fsp), indicating

that both projects agree on the strongest spirals (and corresponding

ellipticals). At intermediate (0.2−0.8) values of fsp, however, the

Galaxy Zoo vote fractions are consistently higher than those in GZ2,

differing by up to 0.25. When using debiased likelihoods in place of

the vote fractions, this effect decreases dramatically; however, the

tightness of the correlation correspondingly drops at low and high

psp.

Galaxies are slightly more likely to be identified as a spiral in GZ2

than in Galaxy Zoo. Fig. 9 shows the distribution of the difference

between spiral classifications, using the debiased likelihoods for

combined spirals for Galaxy Zoo and ‘features or disk’ galaxies in
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Figure 8. Comparison of spiral galaxies using classifications for ‘combined

spiral’ (Galaxy Zoo) and ‘features or disk’ (GZ2). Top: raw vote fractions.

At intermediate values (fsp ∼ 0.5), Galaxy Zoo classifiers are more likely to

identify galaxies as spiral compared to GZ2. Bottom: debiased vote fractions.

At intermediate values, Galaxy Zoo and GZ2 classifications are consistent

with each other; however, there is an increased scatter in the vote fractions

near psp ≃ 0 and psp ≃ 1.

GZ2. The slight leftward skew indicates that a galaxy is more likely

to be identified as a spiral in GZ2 compared to Galaxy Zoo. When

restricted only to galaxies in the joint clean samples (p > 0.8),

the spread is greatly reduced and the distribution is centred around

a difference of zero, indicating that the two agree very well for

classifications with high levels of confidence.

Based on classifications from galaxies in both projects, GZ2 is

more conservative than Galaxy Zoo at identifying spiral structure.

A possible explanation is that this is a bias from classifiers who are

anticipating subsequent questions about the details of any visible

structures. An experienced classifier, for example, would know that

selecting ‘features or disk’ is followed by additional questions, none

of which offer options for an uncertain classification. If the classifier

is less confident in identifying a feature, it is possible they would

avoid this by clicking ‘smooth’ instead.

The Galaxy Zoo interface had one option to classify merging

galaxies. This was a rare response, comprising less than 1 per cent

of the total type fraction at all redshifts in Galaxy Zoo (Bamford

et al. 2009). Darg et al. (2010) found that a vote fraction of fmg > 0.6

Figure 9. Comparison of the spiral feature vote fractions for objects in

Galaxy Zoo (Galaxy Zoo) and GZ2 (GZ2). The dashed line shows the

difference between pcombinedspiral for Galaxy Zoo and pfeatures or disk for GZ2

for the 240, 140 galaxies in both samples. The filled histogram shows the

same metric for the 57 994 galaxies classified as ‘clean’ spirals in both

Galaxy Zoo and GZ2.

robustly identified merging systems in Galaxy Zoo. Of the 1632 such

systems classified in GZ2, more than 99 per cent were identified

as ‘odd’ galaxies and 77.7 per cent had pmg > 0.5 in GZ2. This

is partly due to early-stage merging spirals avoiding the ‘merger’

classification, with only late-state mergers with extremely disturbed

morphologies recording high vote fractions for the merger question.

In addition to the angular separation bias discussed in Section 3.4,

GZ2 responses to Task 08 (‘odd feature’) also suffer from cross-talk.

This is the result of more than one response being applicable for

some galaxies, which forces the participant to choose the one they

consider most relevant. For example, a merging galaxy may display

a strong dust lane, be highly irregular in shape, and have a disturbed

appearance. While ‘merger’, ‘dust lane’, ‘irregular’ and ‘disturbed’

are all possible classifications, the participant will usually choose

the ‘merger’ classification and information about the other morpho-

logical features is lost. For close pairs, this cross-talk is a function

of angular separation – the fraction of galaxies classified as mergers

increases with decreasing separation, while the other ‘odd feature’

classifications lose votes correspondingly (Casteels et al. 2013). We

note that in later incarnations of Galaxy Zoo5 it is possible to select

multiple classifications from the ‘odd feature’ task.

To summarize, Galaxy Zoo and GZ2 share nearly 250 000 galax-

ies that have been classified in both samples. The separation of early

and late-type galaxies from the two projects is mostly consistent, es-

pecially for high-confidence (p > 0.8) galaxies. GZ2 classifications

are more conservative than Galaxy Zoo at identifying spiral struc-

ture for intermediate vote fractions. Mergers identified in Galaxy

Zoo appear at a very high rate in GZ2 as ‘odd’ galaxies, although

classification as a merger is complicated by cross-talk between other

GZ2 responses to Task 08.

5.2 Expert visual classifications

The standard for detailed morphological classifications for many

years has come from visual identifications by individual expert

5 www.galaxyzoo.org
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astronomers. We compare the GZ2 classifications to two SDSS

morphological catalogues generated by small groups of professional

astronomers: Nair & Abraham (2010, hereafter NA10) and EFIGI

(Baillard et al. 2011). The fact that GZ2 and both expert catalogues

used data from the same survey allows for direct comparison of the

results.

The catalogue of NA10 is based on images of 14 034 galaxies

from SDSS DR4. Galaxies were selected from a redshift range of

0.01 < z < 0.1, with an extinction-corrected apparent magnitude

limit of g < 16. In comparison, the GZ2 sample is deeper, spans a

larger redshift range and contains a more recent data release. 12 480

galaxies were classified in both GZ2 and NA10 – this comprises

nearly all (89.9 per cent) of the NA10 catalogue, but only 4.5 per cent

of GZ2.

NA10 is based on visual classifications of monochrome g-band

images by a single astronomer (P. Nair). The data include RC3

T-types (a numerical index of a galaxy’s stage along the Hubble

sequence; de Vaucouleurs et al. 1991) as well as measurements of

bars, rings, lenses, pairs, interactions and tails. The NA10 data does

not contain information on the likelihood or uncertainty associated

with morphological features, although it does measure some fea-

tures by their relative strengths (dividing barred galaxies into strong,

medium and weak classes, for example).

EFIGI consists of classifications of 4 458 galaxies, which are

a sub-set of the RC3 catalogue with five-colour imaging in SDSS

DR4. Almost all galaxies in EFIGI are at 0.0001 < z < 0.08. Classi-

fications on composite gri images were performed by a group of 11

professional astronomers, each of whom classified a sub-set of 445

galaxies. A training set of 100 galaxies was also completed by all 11

astronomers to adjust for biases among individual classifiers. 3411

galaxies are in both EFIGI and GZ2. This constitutes 77 per cent of

EFIGI and 1.2 per cent of the GZ2 sample.

T-types in EFIGI were assigned using a slightly modified version

of the RC3 Hubble classifications. Peculiar galaxies were not con-

sidered a separate type, and ellipticals were sub-divided into various

types: compact, elongated (standard elliptical), cD (giant elliptical)

and dwarf spheroidals. The remaining morphological information,

dubbed ‘attributes’, is divided between six groups:

(i) appearance: inclination/elongation,

(ii) environment: multiplicity and contamination,

(iii) bulge: B/T ratio,

(iv) spiral arms: arm strength, arm curvature and rotation,

(v) texture: visible dust, dust dispersion, flocculence and

hotspots,

(vi) dynamics: bar length, inner ring, outer ring, pseudo-ring and

perturbation.

EFIGI attributes were measured on a five-step scale from 0 to 1

(0, 0.25, 0.50, 0.75, 1). For some attributes (e.g. arm strength, rings),

the scale is set by the fraction of the flux contribution of the feature

relative to that of the entire galaxy. For others (e.g. inclination or

multiplicity), it ranges between the extrema of possible values.

The EFIGI and NA10 catalogues were compared in detail by

Baillard et al. (2011). T-type classifications for the two catalogues

strongly agree; EFIGI lenticular and early spirals have slightly later

average classifications in NA10, while later EFIGI galaxies have

slightly earlier NA10 T-types. EFIGI has a major fraction of galaxies

with slight-to-moderate perturbations with no interaction flags set in

the NA10 catalogue, indicating that NA10 is less sensitive towards

more benign features (e.g. spiral arm asymmetry). The bar length

scale is consistent between the two samples; good agreement is also

found for ring classifications.

5.2.1 Bars

To analyse the overlap between bars detected in expert classifica-

tions and GZ2, we restrict comparisons to galaxies identified as

possessing disks and being ‘not edge-on’. For the rest of this pa-

per, we refer to such ‘not edge-on’ disks as oblique disks (since

many of them have inclination angles high enough that ‘face-on’ is

not an accurate description). Oblique galaxies are selected from the

GZ2 data as having pfeatures/disk > 0.430, pnotedgeon >= 0.715 and

Nnotedgeon ≥ 20 (Table 3). This restricts overlap of GZ2 oblique

galaxies in NA10 to 5526 objects. The ‘not edge-on’ cut is similar

to a restriction on inclination angle of �70◦, based on the average

axial ratio from the SDSS exponential profile fits.

NA10 detected 2537 barred galaxies, 18 per cent of their total.

For objects with T-types later than E/S0, this rises to 25 per cent of

the sample. This is consistent with the bar fraction from Masters

et al. (2011) for oblique disk galaxies (29 per cent). Of the objects

NA10 identify as barred galaxies, 2348 (93 per cent) are objects in

GZ2. Masters et al. (2011) analysed bar classifications in NA10 and

the RC3 and the GZ2 bar classifications (albeit before the classifi-

cation bias was applied). They found good agreement, particularly

finding that values of fbar > 0.5 identified almost all strongly barred

NA10 and RC3 galaxies, and that fbar < 0.2 correlated strongly with

galaxies identified as unbarred by NA10 and RC3.

Bars in NA10 are classified according to either bar strength (weak,

intermediate, strong) or by other morphological features (ansae,

peanuts or nuclear bar). A galaxy may in rare cases have both a disk-

scale (strong, intermediate or weak) and a nuclear bar. Fig. 10 (top

left) shows that the GZ2 average vote fraction for bars closely agrees

with the NA10 fraction of barred galaxies for each GZ2 bin. The two

quantities are not identical; the x-axis plots individual classifications

of galaxies with varying vote fractions for the presence of a bar. The

y-axis shows the ratio of barred to unbarred galaxies in NA10. The

Figure 10. Classifications for galactic bars in GZ2 and NA10. Data are for

the 5526 galaxies in both samples classified by GZ2 as not-edge-on disks

and with ≥20 bar classifications. Top left: mean bar vote fraction per galaxy

in GZ2 versus the ratio of barred to all galaxies in NA10. Dashed line shows

the one-to-one relationship. Top right: distribution of the GZ2 debiased bar

vote fraction, separated by NA10 classifications. Bottom left: distribution

of GZ2 bar vote fraction for the three disk-scale bar categories of NA10.

Bottom right: distribution of GZ2 bar vote fraction for peanut and nuclear

bars from NA10.
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data have a correlation coefficient of ρ = 0.984, and lie slightly

above a linear relationship for pbar > 0.4. For bar identification, the

aggregate votes of volunteers closely reproduce overall trends in

expert classification.

The top-right panel of Fig. 10 shows the distribution of GZ2 bar

votes by simply splitting the NA10 sample in two: galaxies without

a bar and galaxies with a bar (of any kind). Both samples show

a strong trend towards extrema, with the peak near zero for non-

barred galaxies indicating that GZ2 classifiers are very consistent

at identifying unbarred disk galaxies. Possession of a bar is less

straightforward; while the frequency of NA10 bars does increase

with GZ2 fraction, 39 per cent of barred galaxies from NA10 have

a GZ2 pbar < 0.5. Conversely, only 6 per cent of non-barred NA10

galaxies have GZ2 bar vote fractions above 0.5.

For galaxies where our identification of a bar (pbar ≥ 0.5) dis-

agrees with NA10, inspection shows that almost all are in fact true

bars, with some overlap from galaxies with outer rings. Galaxies

with GZ2 vote fractions between 0.3 and 0.5 show more of a mix,

with some likely bars and some spurious identifications from GZ2.

Interestingly, there is also no difference in the average colour, size

or apparent magnitude for galaxies in which the NA10 and GZ2

classifications disagree when compared to those in which they do

agree.

The bottom-left panel of Fig. 10 shows the distribution of GZ2

vote fraction split by bar strength from NA10. The distribution for

all bars is the same as shown in the top right, increasing with GZ2

vote fraction. There is a clear difference in the GZ2 classifications

as a function of NA10 bar strength; all three are statistically highly

distinct from each other and from the overall barred sample, ac-

cording to a two-sided K-S test. The majority of both the strong and

intermediate barred population have high GZ2 vote fractions, with

78 per cent of strong bars and 40 per cent of intermediate bars at

pbar > 0.8. This increases to 94 and 80 per cent, respectively, if the

majority criterion of 0.5 (Masters et al. 2011) for the GZ2 vote frac-

tion is used instead. Only 9 per cent of weakly barred galaxies have

GZ2 vote fractions above 0.8, and 32 per cent have vote fractions

above 0.5.

The lack of sensitivity to weak bars from NA10 may also be

related to the design of the GZ2 interface. When asked if a bar

is present, the image shown in the web interface is an icon with

two examples of a barred galaxy (Fig. 1). The example image has

the bar extending across the disk’s full diameter, fitting the typical

definition of a strong bar. With this as the only example (and no

continuum of options between the two choices), GZ2 participants

may not have looked for bars shorter than the disk diameter, or have

been less confident in voting for ‘yes’ if they were identified. Results

from Hoyle et al. (2011) show that classifiers are fully capable of

identifying weak bars in other contexts.

Ansae, peanuts and nuclear bars as identified by NA10 do not

correlate strongly with the GZ2 bar parameter. In fact, the median

bar vote fraction for peanuts and nuclear bars (no ansae appear in

the oblique sample) is only pbar = 0.29. Nuclear bars are the only

feature that overlaps with the NA10 bar strength classifications;

out of 283 nuclear bars, 3 galaxies also have strong bars, 44 have

intermediate bars and 166 have weak bars.

The EFIGI bar length attribute is measured with respect to D25,

the decimal logarithm of the mean isophote diameter at a surface

brightness of μB = 25 mag arcsec−2. A value of 1.0 (the strongest

bar) extends more than half the length of D25, while the median

value of 0.5 would be about one-third the length of D25. The overall

fraction of barred galaxies in EFIGI is 42 per cent (1439/3354); this

is essentially unchanged if only oblique galaxies are considered

Figure 11. EFIGI bar length classifications compared to their GZ2 vote

fractions for the presence of a bar. Data are for the 2232 oblique disk

galaxies in both EFIGI and GZ2 with at least 10 bar classifications.

(915/2099 = 44 per cent). This is significantly higher than the mean

bar fraction of Masters et al. (2011), at 29.5 per cent, but consistent

with results using automated ellipse-fitting techniques (Barazza,

Jogee & Marinova 2008; Aguerri, Méndez-Abreu & Corsini 2009).

The higher fraction in EFIGI is due to the contributions of galax-

ies with bar length attributes of 0.25, the majority of which have

GZ2 vote fractions below 0.5. If only EFIGI galaxies at 0.5 and

above are considered to be barred, then the bar fraction falls to

17 per cent. Only some of the galaxies in the 0.25 EFIGI bin are

being classified by GZ2 as barred, however, Baillard et al. (2011)

defines these as ‘barely visible’ bars.

There is a strong correlation between the GZ2 bar vote frac-

tions and the attribute strength from EFIGI (Fig. 11). 65 per cent of

galaxies in both EFIGI and GZ2 sample have no strong evidence

for a bar (pbar < 0.3); of those, 77 per cent had EFIGI bar attributes

of zero and 94 per cent had 0.25 or less. For galaxies where GZ2

pbar > 0.8, the EFIGI attribute lies almost entirely at either 0.75

or 1.0. The correlation coefficient between the EFIGI and GZ2 bar

measurements is ρ = 0.75.

Using the criteria for oblique galaxies from Table 3, there are

1543 galaxies with an EFIGI bar classification. Barred galaxies as

identified by GZ2 (pbar ≥ 0.3) agree very well with EFIGI; less

than 5 per cent of GZ2 barred galaxies have EFIGI attributes of 0,

with a mean value of 0.56. This could indicate a selection preference

towards medium-length bars (one-third to one-half of D25), or could

genuinely reflect the fact that medium bars are the most common

length in disk galaxies.

Data from both NA10 and EFIGI can be used to quantify a

threshold to identify barred galaxies in GZ2 data. The fraction of

non-barred oblique galaxies as identified by both expert catalogues

drops to less than 5 per cent at a GZ2 vote fraction pbar = 0.3.

This threshold may be changed depending on the specific science

needs, but offers a useful trade-off between inclusion of nearly all

(97 per cent from NA10) strong and intermediate bars and most

(75 per cent) of the weak bars. This is a slightly more inclusive

threshold than the f ≥ 0.5 used by Masters et al. (2011). We also

note that the strong correlation between pbar and EFIGI bar strength

suggests that pbar may be used directly (with caution) as a measure

of bar strength in GZ2 galaxies.
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5.2.2 Rings

NA10 classify three types of ringed galaxies based on criteria from

Buta & Combes (1996): inner rings (between the bulge and disk),

outer rings (external to the spiral arms) and nuclear rings (lying in

the bulge region). In GZ2, rings can be identified only if the user

selects ‘yes’ for the question ‘Anything odd?’ Since the ‘odd feature’

task has seven responses, of which only one can be selected, any

galaxies with multiple ‘odd’ features will have votes split among the

features, with only one option achieving a plurality (see Section 5.1).

While this means that some galaxies with rings may have low vote

fractions in the GZ2 classifications, those with high vote fractions

are typically strong and distinct.

In the NA10 catalogue, 18.2 per cent of all galaxies (30 per cent of

disks) have a ring. Of those, 10 per cent are nuclear rings, 74 per cent

are inner rings and 32 per cent are outer rings (the sum is more

than 100 per cent since one-third of ringed galaxies have multiple

rings flagged). NA10 and GZ2 ring classifications are compared

for the oblique galaxies in both samples. No cut is applied to the

vote fraction for the ‘anything odd’ question; even a comparatively

low cut of podd > 0.2 eliminates roughly 40 per cent of the ringed

galaxies identified in NA10.

Fig. 12 shows the distribution of the GZ2 ring vote fraction (pring)

in the oblique sample, split by the identification of a ring in NA10.

While there is a marked increase in the fraction of ringed galaxies

at pring > 0.5, more than a third of these galaxies are identified by

NA10 as ringless. The agreement is significantly better if a limit

is placed on the number of votes. Setting Nring > 5, for example,

increases the agreement to ∼75 per cent.

The distribution of pring is strongly affected by the ring type.

Among galaxies that NA10 identifies as rings for which GZ2

strongly disagrees (pring < 0.5), the majority are classified as in-

ner rings. There are 308 ringed galaxies from NA10 that have no

ring votes at all in GZ2; 84 per cent of these are inner rings. For

galaxies on which the NA10 and GZ2 ring classifications agree,

the percentage of outer ringed galaxies is much higher. In the ab-

sence of specific instructions on different types of ring (the icon

in Fig. 1 does not indicate the size of the disk relative to the ring),

GZ2 classifiers are much more likely to identify outer rings. The flat

distribution of pring for nuclear rings indicates that there is also no

strong correlation between GZ2 classifications and ring structures

in the bulge.

Most galaxies with pring > 0.5 are classified as outer rings in

NA10, especially if constraints on Nodd and/or podd are added. Part

of the reason for the remaining disagreements may relate to the

placement of the ring classification in GZ2 at the end of the tree,

and only as a result of the user identifying something ‘odd’. With-

out having seen examples of ringed galaxies (especially as their

structures connect to spiral arms), users may have been less likely

to characterize the galaxy as odd and thus will not address the ring

question.

In EFIGI, rings are classified as inner, outer and pseudo-types.

Both outer and pseudo-ringed galaxies show reasonably strong cor-

relations with GZ2 ring classifications, with a mean ring vote frac-

tion of 0.69 for outer ringed galaxies and 0.71 for pseudo-ringed

galaxies. The mean GZ2 ring vote fraction for inner rings is only

0.41. For galaxies in both EFIGI and GZ2, a high GZ2 ring vote

fraction agrees significantly with the expert classification of a ring.

89 per cent of galaxies with pring > 0.5 and having at least 10 votes

for ‘Anything odd?’ were classified as rings in EFIGI.

Fig. 13 shows a moderate correlation between the EFIGI ring

attributes and the GZ2 ring vote fractions. The relationship is

NA10 ring

NA10 no ring

Figure 12. Ring classifications in GZ2 and NA10. Data are for the

7245 oblique galaxies in both samples. Top: GZ2 vote fraction for rings

(Nring/Nodd) for all galaxies, split by their NA10 ring identifications. Bot-

tom: GZ2 ring vote fraction for all rings identified by NA10, separated by

ring type.

Figure 13. EFIGI ring classifications compared to their GZ2 ring vote

fractions. The EFIGI data is the strongest attribute among the combined

inner, outer and pseudo-ring categories. Data are for the 1080 galaxies in

both EFIGI and GZ2 with at least 10 responses to Task 08 (odd feature).
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dominated by galaxies for which the methods agree strongly on

either no ring or a ring with high contributions to the total galaxy

flux. For intermediate (between 0.25 and 0.75) values of the EFIGI

ring attribute, the GZ2 vote fraction has relatively little predictive

power.

5.2.3 Mergers and interacting galaxies

Galaxies in GZ2 are classified as mergers in Task 08 ‘anything odd?’

NA10 classify possible mergers in two ways: both as pairs of ob-

jects and as galaxies with visible interaction signatures. The paired

objects are sorted by relative separation (close, projected, appar-

ent or overlapping pairs), and interacting galaxies by morphology

(disturbed, warp, shells, tails or bridges).

In NA10, 22.3 per cent of galaxies are paired with another object;

of these, 72 per cent are close pairs. Interacting galaxies are a much

smaller sub-set, comprising only 7 per cent of the NA10 sample. In

GZ2, only 252 galaxies have podd > 0.8 and pmerger > 0.8. 3 per cent

of the NA10 paired galaxies have at least 10 GZ2 votes for a merger.

Fig. 14 shows the distributions of NA10 paired and interacting

galaxies with at least 10 votes for ‘yes’ (something odd) for Task

06. Most galaxies have no votes for a merger, with only 6 per cent

of galaxies having Nmerger ≥ 5. The numbers of both paired and

interacting galaxies identified by NA10 begin to exceed the non-

interacting population at a merger fraction above pmerger > 0.25.

There is a significant population of non-interacting galaxies up to

very high GZ2 vote fractions, however, which means that a simple

cutoff is insufficient to produce a pure merger population by this

criterion.

We visually examined galaxies that have high GZ2 merger frac-

tions (pmerger > 0.5) but are classified by NA10 as non-interacting.

The majority of these galaxies show obvious nearby companions,

many of which appear to be tidally stripped or otherwise deformed.

Some of these galaxies are likely the result of projection effects

and are not truly interacting pairs – however, a significant fraction

may be true interactions not identified in NA10. The contrary case

Figure 14. Merger classifications in GZ2 and NA10. Data are for the 3878

galaxies in both samples with podd > 0.223, showing the distribution of the

vote fraction for the ‘merger’ response to Task 08 in GZ2. The majority of

galaxies have pmerger < 0.1. Galaxies classified by NA10 both as disturbed

and in pairs dominate at pmerger > 0.5, but there remains a significant

population of undisturbed galaxies even at the highest GZ2 vote fractions.

Figure 15. EFIGI perturbation classifications compared to GZ2 merger

vote fractions. Data are for the 1080 galaxies in both EFIGI and GZ2 with

at least 10 responses to Task 08 (odd feature).

(galaxies identified as interacting by NA10, but pmerger < 0.1 in

GZ2), generally show faint extended features – mostly shells and

tidal tails – that are clear signs of interacting. Most of these galaxies

have no apparent companion visible in the image, however.

EFIGI has no dedicated category for mergers; galaxies are classi-

fied on whether they have any close companions (‘contamination’)

or distortions in the galaxy profile (‘perturbation’), which may or

may not be merger related. Galaxies cleanly classified by GZ2 as

mergers are only weakly correlated with both attributes; the mean

EFIGI value in GZ2 mergers is 0.31 for the perturbation attribute

and 0.48 for contamination. Fig. 15 shows only a very weak corre-

lation (ρ = 0.14) between EFIGI perturbation and GZ2 merger vote

fraction. Highly perturbed galaxies with low GZ2 pmerger are mostly

dwarf peculiar and irregular galaxies with no sign of tidal features

or an interacting companion.

Results from both expert catalogues are consistent with Casteels

et al. (2013), who found that the mean vote fraction for mergers

increases with decreasing projected separations (rp), but then drops

off significantly for the closest pairs at rp < 10 kpc. At these sepa-

rations, the GZ2 votes for Task 08 go instead to the ‘irregular’ and

‘disturbed’ responses.

5.2.4 T-types

One of the primary challenges for morphological classification in

GZ2 is matching the classification tree to T-types, which are not a

category in the decision tree. The classifications from expert cata-

logues are thus extremely valuable as a calibration sample.

Fig. 16 shows the percentage of galaxies identified as having

either a disk or features from the first question in the GZ2 tree,

colour-coded by their NA10 T-types. There is a clear separation

in the GZ2 fractions for galaxies classified as E versus Sa–Sd.

Disk galaxies, including S0, have a median fraction for the GZ2

‘features or disk’ question of 0.80, with a standard deviation of 0.29.

Disks with few GZ2 votes for ‘feature’ are found to be primarily

lenticular (S0) galaxies. If only galaxies with T-types Sa or later are

considered, the peak at lower GZ2 vote fractions disappears. The
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Figure 16. T-type classifications for NA10 and GZ2. Data are for the 12 480

galaxies found in both samples. The distribution of GZ2 vote fractions is

separated by their T-type classification from NA10. Both elliptical and late-

type spirals are strongly correlated with their GZ2 vote fraction. S0 galaxies

are more commonly classified as ellipticals, but have a significant tail of

high GZ2 features/disk vote fractions.

median GZ2 vote fraction for these galaxies is 0.88, with a standard

deviation of 0.23. The highest GZ2 vote fraction for an elliptical

galaxy in NA10 is 0.741; therefore, any cut above this includes

galaxies exclusively identified by NA10 as late-type.

Since few objects are identified as stars or artifacts in GZ2 Task

01, the vote fraction for smooth galaxies is approximately psmooth =

(1 − pfeatures/disk). Elliptical galaxies have a median vote fraction for

the GZ2 ‘smooth’ question of 0.86 ± 0.07. The GZ2 votes for the

NA10 ellipticals are more sharply peaked than NA10 late-types,

lacking the long tail seen even for the very late types. A cut on

GZ2 votes for smooth galaxies at 0.8, for example, includes only

4 per cent late-type galaxies (20 per cent if S0 galaxies are defined

as ‘late-type’).

For galaxies identified as oblique disks, GZ2 users vote if the

galaxy has visible spiral structure (Task 04). For the few NA10 el-

liptical galaxies that have votes for this question, 85 per cent have

GZ2 vote fractions of zero, with the remainder weakly clustered

around pspiral ∼ 0.3. For NA10 late-type galaxies, the majority of

disk/feature objects have high GZ2 spiral structure vote fractions.

For galaxies with at least 10 votes on Task 04, 70 per cent of Sa or

later types have pspiral > 0.8 from GZ2. This drops to 60 per cent

if S0 galaxies are included as late-type. The missing population is

thus made up of galaxies that NA10 classify as having significant

spiral structure, but for which GZ2 does not distinguish the arms.

One might expect these galaxies to have lower magnitudes or sur-

face brightnesses compared to the rest of the sample, thus lowering

the confidence of GZ2 votes (there is no analogue parameter as-

sociated with NA10 classifications). However, the apparent g and

r magnitudes, as well as the absolute g-band magnitude, show no

difference between galaxies above and below the 80 per cent cutoff.

Changing the value for the GZ2 vote fraction does not affect the re-

sults, so it appears that lower GZ2 vote fractions for spirals indicate

intrinsically weaker (or less clearly defined) spiral arms.

For disk galaxies with spiral structure, Task 10 in GZ2 asked users

to classify the ‘tightness’ of the arms. This had three options: tight,

medium or loose, accompanied with icons illustrating example pitch

angles (Fig. 1). This allows investigation of the parameters which

contribute to the Hubble classification of late-type galaxies which

depends on both spiral arm and bulge morphology; tight spirals

are presumed to be Sa/Sb, medium spirals Sb/Sc and loose spirals

Sc/Sd.

The left-hand side of Fig. 17 shows the distribution of NA10

T-types for galaxies based on their GZ2 vote fractions for winding

arms. Vote fractions for both tight and medium winding arms are

relatively normally distributed, with the mean ptight = 0.46 and

pmedium = 0.37. Strongly classified loose spirals are much rarer,

with 75 per cent of galaxies having ploose < 0.2. Almost no elliptical

galaxies from the NA10 catalogue are included in the oblique disk

sample, although there are significant numbers of S0 galaxies.

For tight spirals, the category of galaxies with the highest vote

fractions has more earlier-type spirals than galaxies with a low vote

for tight spiral winding arms. For a tight spiral vote fraction above

0.9, 85 per cent of galaxies are Sb or earlier. Medium-wound spirals

with high vote fractions tend to be Sb and Sc – the proportion

of both types increases as a function of pmedium, and constitute

84 per cent of galaxies when pmedium > 0.6. Galaxies classified as

strongly medium-wound are rare, however, with only 23 galaxies

having pmedium > 0.8. Loose spirals are dominated by Sc and Sd

galaxies at high vote fractions, comprising more than 50 per cent of

galaxies with ploose > 0.7. Casteels et al. (2013) found that galaxies

with high ploose often show tidal features and host a significant

proportion of interacting galaxies. This distribution may reflect the

experimental design of GZ2, with volunteers preferring extreme

ends of a distribution rather than an indistinct ‘central’ option.

There are less than 30 galaxies classified by GZ2 as smooth and

as Sa or later type by NA10. Individual inspection reveals that these

galaxies show no evidence of a disk, and so their NA10 classification

is purely bulge related. There also exist ∼700 galaxies classified by

GZ2 as smooth but as S0 or S0/a by NA10; these are mostly smooth,

face-on galaxies with prominent bulges.

EFIGI T-types (Fig. 17) show similar trends with respect to GZ2

spiral arm classifications. Late-type spirals (Sc–Sd) constitute about

half of disk galaxies with ploose > 0.5, with early-type spirals (Sa–

Sb) occupying a similar distribution at ptight > 0.5. S0 galaxies show

nearly a flat distribution of GZ2 spiral tightness vote fractions; this

is unsurprising, since by definition there is no pitch angle without

the presence of spiral arms.

Overall, a clear trend is demonstrated for looser GZ2 spiral arms

to correspond with later spiral T-types from expert classifications.

High vote fractions are mostly Sa/Sb galaxies for tight winding,

Sb/Sc galaxies for medium winding, and Sc/Sd galaxies for loose

winding. Individual galaxies, however, can show significant scatter

in their GZ2 vote fractions and do not always separate the mor-

phologies on the level of the Hubble T-types. Classifications of

spiral galaxies into sub-categories (Sa, Sb and Sc) by experts have

been shown to be dominated by bulge classification, and to pay little

attention to the arm pitch angle, despite the original definition of

the late-type categories.

Having considered the effect of spiral arm tightness, we examine

the relationship between bulge morphology and T-type. Disk galax-

ies in GZ2 are also classified by the visible level of bulge dominance

(Task 05), irrespective of whether spiral structure is also identified.

This task has four options: ‘no bulge’, ‘just noticeable’, ‘obvious’

and ‘dominant’ (Fig. 1).

The left-hand side of Fig. 18 shows the distribution of NA10

T-types for galaxies based on their GZ2 vote fractions for bulge

prominence, including only galaxies with at least 10 votes for Task

05. Vote fractions for both the ‘no bulge’ and ‘dominant’ responses

peak strongly near zero and tail off as the vote fraction increases. The
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Figure 17. T-type classifications compared to the GZ2 vote fractions for spiral tightness (Task 10). Left-hand side is separated by NA10 T-types; right-hand

side is EFIGI T-types. Data are for the 5 515 (NA10) and 1 907 (EFIGI) galaxies, respectively, with at least 10 GZ2 votes for Task 10. The number of galaxies

per vote fraction bin is given along the top of each panel.

responses to the middle options (‘just noticeable’ and ‘obvious’) are

both symmetrically distributed around a peak near 0.5.

‘No bulge’ galaxies in GZ2 are dominated by Sc and Sd spirals.

For vote fractions above 0.1, 81 per cent of galaxies are Sc or later;

this rises to 100 per cent for vote fractions higher than 0.6. ‘Just

noticeable’ galaxies show a smooth change in T-type distribution;

galaxies with low pjustnoticeable are mostly S0 and Sa, while high vote

fractions are Sb–Sd. ‘Obvious’ bulge galaxies are almost a mirror

image of the ‘just noticeable’ data; low vote fractions are Sb–Sd

galaxies, and high vote fractions are S0–Sa galaxies. Inspection

of the few Sa galaxies with pobvious < 0.2 reveals that these are

universally very tightly wound spirals with point-source like bulges.

Among galaxies classified as ‘dominant’, less than 10 galaxies have

vote fractions above 0.6 (which are a diverse mix of S0, Sa and

Sd). Most remaining galaxies have dominant vote fractions of less

than 0.1; the T-types of the remaining galaxies between 0.1 and 0.6

mostly contain S0 and Sa spirals. There are also no Sc galaxies with

a dominant bulge marked in GZ2.

The link to T-type is more sharply defined for GZ2 bulge promi-

nence than for spiral tightness, according to expert classifications.

Very clean samples of late-type (Sb–Sd) spirals can be selected using

only the ‘no bulge’ parameter; additional samples with ∼10 per cent

contamination can be selected with the ‘just noticeable’ and ‘ob-

vious’ distributions. Elliptical galaxies that have bulge prominence

classified in GZ2 are most often ‘dominant’, but there is no obvious

separation of ellipticals from disk galaxies based on this task alone.

EFIGI T-types also correlate strongly with GZ2 bulge dominance.

More than 90 per cent of galaxies with pnobulge > 0.5 are late-type

spirals, with the bulk of these Sd galaxies. Both pjustnoticeable and

pobvious show a continuum of T-types as the vote fractions increase,

with Sc and Sd galaxies having high vote fractions for the former

and S0, Sa and Sb galaxies in the latter. Galaxies with high vote

fractions for pdominant are primarily S0s, along with a few elliptical

galaxies that had enough votes as disk galaxies in GZ2 to answer

the bulge classification question.

Since Hubble types are based on both the relative size of the

bulge and the extent to which arms are unwound (Hubble 1936),

we explored whether the combination of Tasks 05 and 10 from

GZ2 can be mapped directly to T-types. The numerical T-types

from NA10 were fit with a linear combination of the GZ2 vote

fractions for the bulge dominance and arms winding tasks. The best-

fitting result using symbolic regression (Schmidt & Lipson 2009),

however, depends only on parameters relating to bulge dominance:

T − type = 4.63 + 4.17 × pnobulge − 2.27 × pobvious

−8.38 × pdominant. (19)

Note that the pjustnoticeable is implicitly included in this equation since

the vote fractions for Task 05 must sum to 1. Inclusion of any vote

fractions for arms winding responses made no significant difference

in the r2 goodness-of-fit metric.
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Figure 18. T-type classifications compared to the GZ2 vote fractions for bulge prominence (Task 05). Left-hand side is separated by NA10 T-types; right-hand

side is EFIGI T-types. Data are for the 7 120 (NA10) and 2 321 (EFIGI) galaxies, respectively, with at least 10 GZ2 votes for Task 05. The number of galaxies

per vote fraction bin is given along the top of each panel.

This technique assumes that the difference in morphology is

well defined by mapping T-types to a linear scale, which is far

from being justified. Fig. 19 shows the distribution of the GZ2-

derived T-type from equation (19) compared to the NA10 values.

The large amounts of overlap between adjoining T-types show that

this clearly does not serve as a clean discriminator. One could

make a cut between the earliest (Sa) and latest (Sd) spiral types

based only on the vote fractions. Alternatively, the relative num-

bers of galaxies could be used as the weights to construct the

probability of a given T-type. This has yet to be conclusively

tested.

The distributions in Fig. 19 also show that S0 galaxies in particu-

lar would typically be mistakenly judged as later types (overlapping

strongly with Sa) on average using only this metric. This is con-

sistent with the ‘parallel-sequence’ model of van den Bergh (1976)

and later revised by several groups (including Cappellari et al. 2011;

Laurikainen et al. 2011; Kormendy & Bender 2012).

Finally, we note that Simmons et al. (2013) identified a sig-

nificant effect in which nuclear point sources, such as AGN, can

mimic bulges in the GZ2 classifications. This has not been ac-

counted for in this analysis, but could potentially be addressed by

separating the sample into AGN and quiescent galaxies (via BPT

line ratios) and looking for systematic differences between the two

samples.

5.2.5 Bulge prominence

EFIGI measures the bulge/total light ratio (B/T) in each galaxy, with

the attribute strength corresponding to the relative contribution of

the bulge. Elliptical galaxies have B/T = 1 and irregular galaxies

B/T = 0. Baillard et al. (2011) show that B/T is correlated with

arm curvature and anticorrelated with the presence of flocculent

structure and hotspots, consistent with movement along the Hubble

sequence.

Fig. 20 (left-hand panels) show the relationship between B/T and

the GZ2 bulge dominance vote fractions for oblique disk galaxies.

pobvious is strongly correlated (ρ = 0.65) with B/T, while pjustnoticeable

has a nearly equal and opposite anticorrelation. Very few galaxies

in the sample have either pnobulge > 0 or pdominant > 0, but those that

do show corresponding changes in the EFIGI B/T. In particular, the

number of galaxies with B/T = 0 and pjustnoticeable > 0 reinforces

the results of Simmons et al. (2013), who showed that GZ2 bulge

prominences increase with the presence of central point sources in

the image (such as AGN).

5.2.6 Arm curvature

EFIGI also measures the arm curvature of each galaxy, with classi-

fications very similar to the ‘tightness of spiral arms’ question (Task
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Figure 19. Predicted T-type classifications as fit by symbolic regression to

the GZ2 data. Galaxies are colour coded by their morphologies as identified

by NA10. The top panel shows the histogram of predicted T-type based

on equation (19). The bottom shows the predicted T-types plotted against

their NA10 values. Galaxies shown are only those with sufficient answers to

characterize the arms winding and arms number GZ2 tasks, which selects

heavily for late-type galaxies. This explains the lack of ellipticals in the

plot, but highlights the fact that S0 galaxies do not agree well with the linear

sequence.

10) in GZ2. If both expert and citizen science classifiers agree, one

would expect galaxies with high GZ2 vote fractions for tight spirals

to have EFIGI classifications at 0.75–1.0; GZ2 galaxies classified

as medium spirals to be centred around 0.5; and loose spirals to

have arm curvatures of 0.0–0.25.

The EFIGI arm curvature classifications broadly follow the trends

expected from matching targets with GZ2. ptight is the most strongly

correlated with the EFIGI arm curvature parameter (Fig. 20, right-

hand panels). The Spearman’s correlation coefficient for tight spirals

is ρ = 0.62. The medium spiral vote fraction is clustered in the

middle of the EFIGI values, where galaxies with the highest GZ2

vote fraction have EFIGI values of 0.25–0.50, with ρ = −0.26.

Loose spirals shows an anti-correlation (ρ = −0.54); very few

galaxies have GZ2 vote fractions above 0.5, but those which do

have low EFIGI arm curvature values at 0.25 or below.

Figure 20. Left: EFIGI bulge/total ratio attributes compared to GZ2 vote

fractions for ‘bulge prominence’. Right: EFIGI arm curvature attributes

compared to GZ2 vote fractions for ‘arms winding’. Data are for the 1 544

oblique disk galaxies in both samples.

5.3 Automated classifications

Huertas-Company et al. (2011, HC11) have generated a large set of

morphological classifications for the SDSS spectroscopic sample

using an automated Bayesian approach. The broad nature of their

probabilities (four broad morphological categories), do not directly

relate to the majority of the GZ2 fine structure questions, such as

bar or spiral arm structure. Comparison between the two samples,

however, is useful to demonstrate the effect that smaller scale fea-

tures (as classified by GZ2) may have on automatically assigned

morphologies.

 at U
n
iv

ersity
 o

f P
o
rtsm

o
u
th

 L
ib

rary
 o

n
 F

eb
ru

ary
 1

9
, 2

0
1
4

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


Galaxy Zoo 2 data release 2857

The sample classified by HC11 is limited to galaxies with z< 0.25

that have both good photometric data and clean spectra. Their total

of 698 420 galaxies is approximately twice the size of GZ2. The

HC11 sample goes to fainter magnitudes, with more than 400 000

galaxies below the GZ2 limit of mr > 17. Their morphological

classification algorithm is implemented with support vector ma-

chine (SVM) software that tries to find boundaries between regions

in N-dimensional space, where N is determined by criteria includ-

ing morphology, luminosity, colour and redshift (Huertas-Company

et al. 2008). The training set is the 2 253 galaxies in Fukugita et al.

(2007), which are already classified by T-type. Each galaxy is as-

signed a probability of being in one of four sub-classes: E, S0,

Sab and Scd (the latter two combining their respective late-type

categories).

We note that the inclusion of colour means that HC11 classifica-

tions are not purely morphological, but include information about

present-day star formation as well as the dynamical history which

determines morphology. Studies of red spiral (Masters et al. 2010)

and blue elliptical galaxies (Schawinski et al. 2009), for example,

demonstrate the advantages of keeping these criteria separate.

Huertas-Company et al. (2011) directly compared their results to

the Galaxy Zoo sample from Lintott et al. (2011). They found that

robust classifications in Galaxy Zoo (flagged as either confirmed

ellipticals or spirals) have median probabilities of 0.92 according

to their algorithm, indicating that sure Galaxy Zoo classifications

are also sure in their catalogue. They also showed a near-linear re-

lationship between the Galaxy Zoo debiased vote fraction and the

HC11 probabilities. This is one of the first independent confirma-

tions that the vote fractions may be related to the actual probability

of a galaxy displaying a morphological feature.

Fig. 21 shows the distributions of the HC11 early- and late-type

probabilities for GZ2 galaxies robustly identified (p > 0.8) as ei-

ther smooth or having features/disks. The median HC11 early-type

probability for GZ2 ellipticals is 0.85, and the late-type probability

for GZ2 spirals is 0.95. This confirms the result that robust clas-

sifications in Galaxy Zoo agree with the automated algorithm for

broad morphological categories.

An exception to this is a population of galaxies classified as

‘smooth’ by GZ2, but which have very low early-type probabilities

Figure 21. Distribution of HC11 early-type probabilities for galaxies split

by their GZ2 classification. Data for smooth and features/disk are for galax-

ies with ‘clean’ flags in Table 5; the uncertain classifications comprise

galaxies with no flags set for Task 01.

from HC11 (Fig. 21). The mean GZ2 vote fraction for these galaxies

is consistent with those with high early-type probabilities – these

galaxies are not marginally classified as ellipticals in GZ2. The

roundness of the galaxy (Task 07 in GZ2) seems to play some

role, as the low-HC11 smooth galaxies have fewer round galaxies

and many more ‘cigar-shaped’ galaxies in this sample. A high axial

ratio might train the HC11 algorithm to infer the existence of a disk;

the absence of any obvious spiral features or bulge/disk separation

(verified by eye in a small sub-sample of the images) lead GZ2

to categorize these as ‘smooth’. There is a clear dependence on

apparent magnitude; the lower peak disappears if only galaxies

with r < 16 are included. Early-type galaxies that disagree with

the HC11 classification are also significantly bluer, with respective

colours of (g − r) = 0.67 and (g − r) = 0.97. Since the SVM method

does include SDSS colours as a parameter, we conjecture that the

low HC11 early-type probability is in part due to the fact that they

are blue, in addition to morphological features such as shape and

concentration.

Fig. 21 also shows the distribution of ‘uncertain’ galaxies, for

which none of the responses for Task 01 had a vote fraction >0.8.

The HC11 probability for these galaxies is bimodal, with the larger

fraction classified as HC11 late-type and a smaller fraction as HC11

early-type.

Similar to the results from expert visual classifications, morphol-

ogy in HC11 has a strong dependence on bulge dominance (as mea-

sured from GZ2). Fig. 22 shows the HC11 late-type spiral probabil-

ity for disk galaxies as a function of the GZ2 vote fraction for bulge

dominance. Since the majority of galaxies have both low pnobulge

and pdominant, the automated probabilities are primarily flat. There

is a slight correlation between no bulge and later type galaxies –

even at pnobulge ≃ 0.8, though, the HC11 algorithm gives galaxies

roughly equivalent probabilities between 0.2 and 0.8.

The relationship between bulge dominance and late-type proba-

bility is much stronger for the two intermediate responses for GZ2.

Galaxies for which pjustnoticeable > 0.6 have a rapid increase in their

late-type probabilities, with a sharp transition from the constant

Figure 22. Huertas-Company et al. (2011) late-type spiral probability as a

function of the GZ2 vote fraction for bulge dominance. The colour of the

contours is log (Ngal + 1), where Ngal ranges from 0 to 1.5 × 103. Data are

the 54 987 oblique disk galaxies appearing in both GZ2 and HC11.
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Figure 23. HC11 probabilities as a function of GZ2 bar vote fraction for

54 987 oblique disk galaxies. Points give the mean probability in each bin

of 0.1 width; shaded areas give the measured 1σ standard deviation.

late-type probability between 0.25 and 0.6. As expected, the oppo-

site effect occurs for obvious bulges; a vote fraction of pobvious < 0.2

gives a very strong probability of being an Scd galaxy, while galax-

ies with pobvious > 0.5 are favoured to be classified as Sb or earlier.

Finally, we examined the potential effect of bars on the auto-

mated classifications. Fig. 23 shows the average HC11 probability

as a function of GZ2 pbar for oblique disk galaxies. The relative

proportions of galaxies as classified by HC11 is flat as a function

of GZ2 pbar, with 31 per cent for early-type and 69 per cent late-

type. The presence of a bar thus does not strongly affect automated

classifications, at least as far as distinguishing early- from late-type

galaxies.

6 C O N C L U S I O N S

We present the data release for the GZ2 project, which used crowd-

sourced votes from citizen scientist classifiers to characterize mor-

phology of more than 300 000 galaxies from the SDSS DR7. GZ2

classified gri colour composite images selected on the basis of

magnitude (mr < 17), angular size (r90 > 3 arcsec), and redshift

(0.0005 < z < 0.25) criteria. Deeper images from Stripe 82 are also

included at both normal and co-added image depths.

GZ2 expands on the original Galaxy Zoo results by classify-

ing a large array of fine morphological structures. In addition to

previous distinctions between elliptical and spiral galaxies, GZ2

identifies the presence of bars, spiral structure, dust lanes, mergers,

disturbed/interacting morphologies and gravitational lenses. It also

quantifies the relative strengths of galactic bulges (both edge-on

and face-on), the tightness and multiplicity of spiral arms and the

relative roundness of elliptical galaxies. Classification was done via

a multistep decision tree presented to users in a web-based inter-

face. The final catalogue is the result of nearly 60 million individual

classifications of images.

Data reduction for the catalogue begins by weighting individual

classifiers. Repeat classifications of objects by the same user are

omitted from the catalogue, and then an iterative weighting scheme

is applied to users for each task based on their overall consistency.

Votes for each galaxy are combined to generate the overall clas-

sification; the strength of a particular feature is measured by the

fraction of votes for a particular response (among all possible re-

sponses). The nature of the GZ2 classification scheme means that

these vote fractions are akin to conditional probabilities, however –

for example, a galaxy must first be identified both as possessing a

disk and as being ‘not edge-on’ to measure pbar.

Vote fractions for each response are also adjusted for classifi-

cation bias, the effect of fine morphological features being more

difficult to detect in smaller and fainter galaxies. Corrections to

determine the debiased vote fractions are derived directly from the

GZ2 data itself.

The final catalogue consists of five tables, comprising morpholog-

ical classifications for the GZ2 main sample (separated into galax-

ies with spectroscopic and photometric redshifts) and galaxies from

Stripe 82 (for normal-depth and two sets of co-added images with

spectroscopic redshifts). Data for each galaxy includes (for each re-

sponse) the raw and weighted number of votes, the raw and weighted

vote fractions, the debiased vote fraction and an optional flag which

indicates if a feature has been robustly identified. Portions of the

data are presented in Tables 5–9; full machine-readable tables are

available at http://data.galaxyzoo.org and in SDSS Data Release 10.

We have compared the GZ2 classifications in detail to several

other morphological catalogues. Early and late-type classifications

are consistent with results from the original Galaxy Zoo, especially

for galaxies in the clean samples. Expert catalogues (NA10; Bail-

lard et al. 2011) show good agreement for galaxies with medium

to strong bars; GZ2 is less confident in identifying expert-classified

weak and/or nuclear bars. In ringed galaxies, GZ2 recovers the ma-

jority of outer rings, but relatively few inner or nuclear rings due to

the design of the GZ2 question. Pairs and interacting galaxies are

more difficult to reliably cross-match in a clean sample, although

Casteels et al. (2013) have already shown that the GZ2 ‘loose wind-

ing arms’ parameter is a reliable proxy for interaction. The GZ2

bulge dominance parameter strongly correlates with the Hubble T-

type from both expert catalogues. Adding GZ2 measurements of the

spiral arm tightness, though, does not increase the T-type classifi-

cation accuracy. Automated classifications from Huertas-Company

et al. (2011) agree well with GZ2 in separating elliptical and late-

type spirals, although identification of S0 galaxies still represents a

challenge.

GZ2 contains more than an order of magnitude more galaxies than

the largest comparable expert-classified catalogues (NA10, EFIGI)

while still classifying detailed morphological features not replicable

by automated classifications. GZ2 data have already been used to

demonstrate a relationship between bar fraction and the colour, gas

fractions and bulge size of disk galaxies (Masters et al. 2011, 2012),

as well as studies of the bar colour and length itself (Hoyle et al.

2011). The size of the catalogues has allowed for the discovery and

study of comparatively rare objects, such as early-type dust lane

galaxies (Kaviraj et al. 2012) and bulgeless AGN hosts (Simmons

et al. 2013). Direct use of the GZ2 likelihoods has also been used to

quantify the environmental dependence on morphology, showing a

correlation for barred and bulge-dominated galaxies (Skibba et al.

2012) and identifying reliable signatures of interaction from GZ2

data (Casteels et al. 2013).

The scientific productivity of the Galaxy Zoo projects has already

shown that the use of multiple independent volunteer classifications

is a robust method for the analysis of large data sets of galaxy

images. This public release of the GZ2 catalogue intends to build

on this success, by demonstrating the reliability and benefit of these

classifications over both expert and automated classifications. We

publicly release these GZ2 classifications both as a rich data set

that can be used to study galaxy evolution, and as training sets for

refining future automated classification techniques.
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Figure A1. Example images with their GZ2 classifications (see Appendix A). Galaxies are randomly selected from the GZ2 catalogue; all galaxies lie in the

redshift range 0.050 < z < 0.055. Categories shown represent the twelve most common classifications in the GZ2 spectroscopic sample.

A P P E N D I X A : G E N E R AT I N G T H E
A B B R E V I AT I O N F O R A G Z 2
M O R P H O L O G I C A L C L A S S I F I C AT I O N

As part of the GZ2 data release (Tables 5–9), we provide a short

abbreviation (gz2 class) that indicates the most common con-

sensus classification for the galaxy. We emphasize that the in-

tent is not to create a new classification system; rather, this is

only a convenient shorthand for interpreting portions of the GZ2

results.

The gz2 class string is generated for each galaxy by taking the

largest debiased vote fraction (beginning with Task 01) and selecting

the most common response for each subsequent task in the decision

tree.

Galaxies that are smooth (from Task 01) have gz2 class strings

beginning with ‘E’. Their degree of roundness (completely round,

in-between and cigar-shaped) is represented by ‘r’,‘i’ and ‘c’, re-

spectively.

Galaxies with features/disks have gz2 class strings beginning

with ‘S’. Edge-on disks follow this with ‘er’, ‘eb’ or ‘en’ (with the

second letter classifying the bulge shape as round, boxy or none).

For oblique disks, the letter following ‘S’ is an upper-case ‘B’ if the

galaxies have a bar. The bulge prominence (‘d’ = none, ‘c’ = just

noticeable, ‘b’ = obvious, ‘a’ = dominant). Both bars and bulges

follow the same general trends as the Hubble sequence, although the

correspondence is not exact. If spiral structure was identified, then

the string includes two characters indicating the number (1, 2, 3, 4,

+, ?) and relative winding (‘t’=tight, ‘m’=medium, ‘l’=loose) of

the spiral arms.

Finally, any feature in the galaxy the users identified as ‘odd’

appears at the end of the string in parentheses: ‘(r)’=

ring, ‘(l)’=lens/arc, ‘(d)’=disturbed, ‘(i)’=irregular, ‘(o)’=other,

‘(m)’=merger, ‘(u)’=dust lane.

Objects that are stars or artifacts have the gz2 class string ‘A’.

For example,

(i) Er = smooth galaxy, completely round.

(ii) SBc2m = barred disk galaxy with a just noticeable bulge and

two medium-wound spiral arm.

(iii) Seb = edge-on disk galaxy with a boxy bulge.

(iv) Sc(I) = disk galaxy with a just noticeable bulge, no spiral

structure, and irregular morphology.

(v) A = star.

Sample images of the twelve most common gz2 class strings

are shown in Fig. A1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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