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GalaxyRefineComplex: Refinement 
of protein-protein complex model 
structures driven by interface 
repacking
Lim Heo, Hasup Lee† & Chaok Seok

Protein-protein docking methods have been widely used to gain an atomic-level understanding of 
protein interactions. However, docking methods that employ low-resolution energy functions are 
popular because of computational efficiency. Low-resolution docking tends to generate protein 
complex structures that are not fully optimized. GalaxyRefineComplex takes such low-resolution 
docking structures and refines them to improve model accuracy in terms of both interface contact 
and inter-protein orientation. This refinement method allows flexibility at the protein interface and in 
the overall docking structure to capture conformational changes that occur upon binding. Symmetric 
refinement is also provided for symmetric homo-complexes. This method was validated by refining 
models produced by available docking programs, including ZDOCK and M-ZDOCK, and was successfully 
applied to CAPRI targets in a blind fashion. An example of using the refinement method with an existing 
docking method for ligand binding mode prediction of a drug target is also presented. A web server that 
implements the method is freely available at http://galaxy.seoklab.org/refinecomplex.

Protein-protein interactions play critical roles in various biological processes, including enzyme catalysis1, cel-
lular signal transduction2, and macromolecular assembly3. �ree-dimensional protein-protein complex struc-
tures can provide atomic-level insights that can improve our understanding of protein-protein interactions and 
facilitate the engineering of proteins or small molecules with desired binding properties4. However, the number 
of co-crystalized protein-protein complex structures is still limited due to di�culties posed by experimental 
approaches. For example, experimentally determined three-dimensional protein-protein complex structures in 
the human proteome cover less than 10% of known interactions5,6. �erefore, accurate prediction of protein com-
plex structures via in silico methods can be an e�ective alternative approach.

In silico prediction of protein-protein interactions was initially approached using rigid-body docking methods 
in which only the relative orientation between two proteins, represented by six translational and rotational degrees 
of freedom, is treated explicitly. �e rigid-body docking problem can be solved e�ciently using fast-Fourier 
transformation (FFT)7 or geometric hashing8 techniques. �e internal �exibility of each protein structure is con-
sidered only implicitly, and low-resolution energy functions that allow some atomic overlaps are used, assuming 
that atomic overlaps or locally unfavorable interactions can be relaxed by local side-chain or backbone movement. 
�erefore, complex model structures generated by rigid-body docking may have some atomic clashes and may 
not have precise interface contacts9. Rigid-body docking methods are still e�ective for the generation of globally 
correct complex structures when conformational changes induced by binding are limited to local regions. Further 
re�nement of the models generated by rigid-body docking using more computationally extensive �exible docking 
methods can therefore produce useful predictions for practical applications9–17.

Several methods for re�nement of rigid-body docking model structures have been developed with some 
success by applying energy minimization or molecular dynamics simulations. RDOCK9 performs local energy 
minimizations on the protein-protein complex model structures generated by ZDOCK7, a rigid-body docking 
program. RDOCK was also extended by combining with ZRANK18. RosettaDock12 can re�ne protein-protein 
complex structures by the optimization technique of Monte Carlo with minimization. RosettaDock can optimize 
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inter-protein orientation, side-chain conformation, and backbone conformation, such as loops15. Zhang et al.16 
achieved e�ective conformational sampling with RosettaDock by applying an advanced sampling technique 
called well-tempered ensemble two dimensional Hamiltonian Replica Exchange Monte Carlo (WTE-H-REMC). 
HADDOCK19 performs energy optimization of interface side chains and backbone in torsion angle space �rst 
and then runs simulated annealing molecular dynamics (MD) simulations in Cartesian space with explicit waters. 
Król et al. applied nanosecond MD simulations11 to the re�nement problem. �e method iATTRACT10 per-
forms energy minimization of the protein-protein complex structures generated by ATTRACT20 considering 
interface side-chain degrees of freedom for selected residues and rigid-body degrees of freedom. FiberDock13 
and SymmRef14 employ normal modes to describe global backbone structure changes induced by binding for 
hetero-complexes and homo-complexes, respectively. Overall, the methods developed so far have been more 
successful in re�ning relatively high-accuracy models, and re�nement of less accurate complex models or those 
involving inaccurate monomer structures, such as predicted structures, has yet to be achieved.

In this study, we introduce a new refinement method that improves less accurate protein-protein com-
plex model structures compared to previous methods, for both hetero- and homo-complexes. �is method, 
called GalaxyRefineComplex, was developed by extending the GalaxyRefine method for protein monomer 
structures21,22. GalaxyRefine successfully improved homology model structures in the blind protein struc-
ture prediction experiment Critical Assessment of techniques for protein Structure Prediction (CASP)23,24. 
GalaxyRe�neComplex adapts the e�ective sampling method of GalaxyRe�ne by performing repetitive repacking 
of interface side chains followed by short MD relaxations. �is sampling procedure mimics a protein-protein 
binding process in which side-chain interactions between two approaching proteins drive changes in the 
inter-protein orientation and intra-protein backbone conformation. The method was validated by refining 
models generated by ZDOCK7, M-ZDOCK25, and various methods used in the previous Critical Assessment 
of Prediction of Interactions (CAPRI)26,27 and CASP experiments. GalaxyRe�neComplex was also successfully 
tested in a blind fashion in the CAPRI round 3026 (http://www.ebi.ac.uk/msd-srv/capri/round30/results/), which 
was held jointly with CASP11 (http://www.ebi.ac.uk/msd-srv/capri/round30/CAPRI_R30_v20141224.SW.pdf).

Methods
Overall procedure. A �owchart of the GalaxyRe�neComplex method is provided in Fig. 1. �is method 
is based on the GalaxyRe�ne method21,22 for structure re�nement of single protein chains and was extended 
to protein-protein complexes. �e re�nement calculation starts with a local energy minimization and a 1.2-ps 
MD relaxation with a 4-fs time step, as in GalaxyRe�ne. According to our observation, energy minimization 
tends to generate very compact structures, and a short relaxation of 1.2 ps can create some physical space for 

Figure 1. Flowchart of the GalaxyRe�neComplex method. 
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atomic �uctuations, facilitating further conformational sampling. A major di�erence of GalaxyRe�neComplex 
from GalaxyRe�ne is in the treatment of protein interfacial residues. Interfacial residues are de�ned here as those 
within 8 Å Cα-Cα distance from any residue of the interaction partner. Relaxation of the input complex structure 
is driven by side-chain repacking of interfacial residues as follows. Interfacial residues are �rst repacked by three 
Monte Carlo (MC) steps of replacing the side-chain conformation of a cluster of up to �ve interfacial residues 
with a non-clashing rotamer conformation for three di�erent clusters. Local side-chain conformation could be 
reasonably optimized by this short MC. A short MD relaxation of 0.6 ps is then performed with a 4-fs time 
step to allow overall conformational changes, including changes in the backbone and inter-protein orientation. 
During the Monte Carlo steps, the van der Waals radius is reduced to 70% to allow a small amount of clashes, 
which was proved e�ective in GalaxyRe�ne. �e clashes can be relieved in subsequent relaxation steps. Side-
chain repacking and relaxation is repeated 22 times (13.2-ps) because the relaxation was observed to converge 
a�er 10–15 ps. During the relaxation, the temperature is set to 300 K and is gradually decreased to 50 K for the 
last six steps (3.6 ps) as in simulated annealing to drive convergence to lower energy minimum without being 
trapped to nearby higher energy local minimum. Finally, local energy minimization is performed. For symmetric 
re�nement of homo-complexes, symmetry transformation matrices for input chain structures are used to recover 
the symmetry a�er each MD step. �e energy used for the MD relaxation and the criterion for model selection is 
explained in the following sections.

GALAXY energy for complex refinement. �e energy function used for MD relaxation (Eq. 1) is a linear 
combination of physics-based energy terms, knowledge-based energy terms, and restraint energy terms, with the 
relative weights of GalaxyRe�ne energy21,22, except for the restraint terms, as explained below.
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�e physics-based terms include molecular mechanics bonded energy (Ebanded) and Lennard-Jones (Evdw) and 
Coulomb (ECoulomb) non-bonded interaction energy terms of CHARMM2228 with FACTS solvation free energy 
(EFACTS,pol for the polar term and EFACTS,SA for non-polar surface area term)29. �e knowledge-based terms include 
hydrogen bond energy (EHBond)30, dipolar-DFIRE potential energy (EdDFIRE)31, and side-chain (ERotamer) and back-
bone (ERama) torsion angle energy32. �e restraint energy terms include the following two components:

∑= −

<

E w d d( )
(2)

rsr
dist

ij d
ij
dist

ij ij
, 10Å

0 2

ij

∑= −E w r r( )
(3)

rsr
pos

i
i
pos

i i
0 2

in which the reference distances dij
0 and the reference positions ri

0 are taken from the input structure. �e distance 
restraint of Eq. 2 is applied to all interface Cα -Cα  and N-O atom pairs with distances dij <  10 Å with the same 
weight of = .w 2 5ij

dist  as used in GalaxyRe�ne for non-interface residues and with a much smaller weight of 
= .w 0 1ij

dist  for interfacial residues to allow more structural changes on interface regions. Weak position restraint 
of Eq. 3 with a weight of = .w 0 1i

pos  (compared to = .w 2 5i
pos  in GalaxyRe�ne) is applied to all Cα  atoms to allow 

global changes in inter-protein orientation.

Model generation and selection. Each of the two relaxation protocols, i.e., protocol 1, which applies only 
distance restraints (Eq. 2), and protocol 2, which applies both distance and position restraints (Eqs 2 and 3), is 
used to generate 16 structures by performing the relaxations described above 16 times. �e �ve lowest-energy 
models out of the 16 models for each of protocols 1 and 2 are returned as 10 re�ned models. �e �ve lowest-energy 
models from protocol 1 (and protocol 2) are ranked 1–5 (and 6–10) in the order of energy. �is scheme for deter-
mining ranking among the 10 models, and in particular for selecting model 1, was determined by examination 
of the re�nement results on the training set (constructed as explained in the next subsection) in terms of ligand 
RMSD (L-RMSD), interface RMSD (I-RMSD), fraction of predicted native contacts (Fnat), and the MolProbity 
score (MolP), as summarized in Supplementary Table S1.

Training and test sets. �e re�nement method was extensively tested on model structures of varying accu-
racies. First, models generated by ZDOCK7 for the ZDOCK benchmark 4.0 set complexes33 with unbound mon-
omer structures were used to test the hetero-oligomer re�nement method. �ose generated by M-ZDOCK25 
for the PISA benchmark set complexes34 with bound monomer structures were used to test the symmetric 
homo-oligomer re�nement method. Only those complexes with less than 1,000 residues were considered for 
computational e�ciency. For each complex, up to 1, 3, and 3 structures among models with high, medium, and 
acceptable accuracies, respectively (classi�ed according to the CAPRI criterion)27, and up to three structures with 
the lowest L-RMSD among incorrect models with less than 15 Å L-RMSD were selected randomly. �e number 
of model structures selected for each complex could be less than 10 because the number of models satisfying the 
above accuracy criteria could be less than the maximum number that could be selected.

Each of the ZDOCK and M-ZDOCK models was randomly divided into two subsets, and one subset was 
used as a training set to select model 1, as described in the previous subsection, and the other subset was used 
as a test set. The training set was composed of 643 ZDOCK models for 89 hetero-complex targets and 452 
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M-ZDOCK models for 46 homo-complex targets. �e ZDOCK benchmark test set consisted of 677 models for 90 
hetero-complex targets, and the PISA benchmark test set consisted of 445 models for 46 homo-complex targets.

Two additional test sets were constructed by collecting the model structures submitted during CAPRI 
blind prediction experiments. For each of the hetero-complex targets of CAPRI rounds 22, 24, 26, and 30 and 
the homo-complex targets of CAPRI round 30, up to 10 models showing varying accuracies were selected as 
described above. As a result, 34 models for �ve hetero-complex targets and 60 models for 13 homo-complex 
targets were selected. �e models submitted by our own group (“Seok”) were excluded in these test sets because 
they were already re�ned by GalaxyRe�neComplex. �e blind prediction results of GalaxyRe�neComplex on the 
CAPRI round 30 targets are presented separately.

Comparison with existing methods. For performance comparison, available re�nement docking meth-
ods, including RosettaDock, FiberDock, and SymmRef, were tested on the same sets. RosettaDock and FiberDock 
were used for re�nement of hetero-complex models, and RosettaDock with the symmetry option and SymmRef 
were used for re�nement of homo-complex models. For RosettaDock re�nement12,17, the “docking_local_re�ne” 
protocol was applied to generate 1,000 structures with the extra χ 1 (-ex1) and aromatic χ 2 (-ex2aro) side-chain 
rotamer options for side-chain optimization. Among the 1,000 generated models, 10 models with the best energy 
values were selected. For homo-complex re�nement by RosettaDock, a symmetry de�nition �le generated by the 
“make_symmdef_�le.pl” script for the initial complex structure was used to maintain symmetry. FiberDock and 
SymmRef were run with default parameters13,14. �ese methods generated a single re�ned model for each initial 
complex structure.

Results and Discussion
Performance comparison in terms of the CAPRI model accuracy criterion. �e performance of 
GalaxyRe�neComplex was compared with those of RosettaDock and FiberDock on the two hetero-complex 
sets (ZDOCK benchmark set and CAPRI set) and with those of RosettaDock run with a symmetry option and 
SymmRef, a symmetric version of FiberDock, on the two homo-complex sets (PISA benchmark set and CAPRI 
set). �e accuracies of the initial models and re�ned models were classi�ed using the CAPRI model quality 
criterion. �e CAPRI criterion re�ects the biological relevance of the model structures, and model qualities are 
classi�ed as high (***), medium (**), acceptable (*), and incorrect considering L-RMSD and I-RMSD from the 
experimental structure and the Fnat. �e detailed criterion is as follows27: ‘high’ if L-RMSD or I-RMSD is lower 
than 1.0 Å with Fnat higher than 0.5, ‘medium’ if L-RMSD is lower than 5.0 Å or I-RMSD is lower than 2.0 Å with 
Fnat higher than 0.3, ‘acceptable’ if L-RMSD is lower than 10.0 Å or I-RMSD is lower than 4.0 Å with Fnat higher 
than 0.1, and incorrect for all other cases.

As shown in Table 1, GalaxyRe�neComplex improved 114 of 263 incorrect models to acceptable or higher 
quality for the 677 ZDOCK models of the ZDOCK benchmark set by hetero-complex refinement, while 
RosettaDock improved 68 models for the same set when the best of 10 re�ned models was considered. When 
model 1’s were considered, only GalaxyRe�neComplex succeeded in increasing the number of models with 
acceptable or higher quality, while RosettaDock and FiberDock failed. �e numbers of high- and medium-quality 
models were also increased by GalaxyRe�neComplex. RosettaDock and FiberDock were slightly better than 
GalaxyRe�neComplex for re�ning models to high accuracy; both of the former methods improved �ve models to 
high accuracy, while GalaxyRe�neComplex improved three.

When applied to the 34 hetero-complex models submitted during CAPRI experiments, GalaxyRe�neComplex 
and RosettaDock improved eight and seven models, respectively, to acceptable or higher quality out of 15 
incorrect models when the best of 10 re�ned models was considered (see Table 1). GalaxyRe�neComplex also 
improved a larger number of incorrect models to acceptable or higher quality than RosettaDock and FiberDock 
when model 1’s were considered. Overall, GalaxyRefineComplex performed better than RosettaDock and 
FiberDock for improving incorrect or acceptable models to acceptable or medium accuracy and slightly worse for 
improving models to high accuracy when using the two hetero-complex test sets.

Hetero-complex re�nement

ZDOCK benchmark set (677 models) CAPRI set (34 models)

Initial models 414/18***/148** 19/1***/6**

GalaxyRe�neComplex 528/25***/175** (475/21***/148**) 27/1***/8** (23/1***/7**)

RosettaDock 482/36***/171** (296/23***/86**) 26/2***/7** (19/2***/4**)

FiberDock1 –/–/– (390/23***/127**) –/–/– (22/1***/4**)

Homo-complex re�nement

PISA benchmark set (445 models) CAPRI set (60 models)

Initial models 314/45***/134** 58/30**

GalaxyRe�neComplex 389/90***/146** (364/69***/147**) 57/35** (57/35**)

RosettaDock 391/285***/52** (347/252***/39**) 52/29** (48/23**)

SymmRef1 –/–/– (361/283***/14**) –/–/– (57/26**)

Table 1.  Performance comparison of re�nement methods in terms of the CAPRI accuracy criterion. �e 
numbers of targets for which the best of 10 re�ned models were of acceptable or higher accuracy/high accuracy 
(***)/medium accuracy (**) are presented, and those for model 1’s are shown in parentheses. 1Data for 10 
models are not provided for FiberDock and SymmRef because they generate only single models.
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In the homo-complex refinement test on the 445 M-ZDOCK models of the PISA benchmark set, 
GalaxyRe�neComplex showed a re�nement performance that was similar to that of the hetero-complex re�ne-
ment when both the best of 10 models and model 1’s were considered, as shown in Table 1. GalaxyRe�neComplex 
improved a larger number of incorrect models to acceptable or higher quality than RosettaDock and 
SymmRef model 1’s were considered. However, RosettaDock and SymmRef performed much better than 
in the hetero-complex refinement test, improving more than 200 of 400 models to high accuracy, while 
GalaxyRe�neComplex improved only 24 models. �is seemingly di�erent behavior on homo-complex re�ne-
ment may be explained by the fact that the complex models of the PISA benchmark set were generated using 
the “bound” monomer structures because of the unavailability of unbound monomer structures. �erefore, this 
re�nement set does not represent real case problems and can instead be considered an arti�cial set. Such prob-
lems may be relatively easy if shape complementarity is exploited intensively.

Re�ning of the 60 homo-complex models submitted during the CAPRI experiment was used to represent 
real case problems in which the initial models were generated by homology modeling. �is test set, based on 
homology, is easier than the CAPRI hetero-complex set, with 58 of 60 initial models already having acceptable 
or higher quality. None of the tested methods could increase the number of acceptable or higher quality models 
in this case. However, GalaxyRe�neComplex succeeded in re�ning �ve models to medium accuracy, while the 
other two methods failed.

Refinement results in terms of ligand RMSD, interface RMSD, fraction of native contacts, and 
MolProbity score. Re�nement results on the four test sets were analyzed in more detail using the three 
model quality measures of L-RMSD, I-RMSD, and Fnat used in CAPRI and MolP35, which measures physical 
incorrectness, such as the existence of steric clashes, Ramachandran outliers, and side-chain rotamer out-
liers. �e results are summarized in Table 2. More detailed results for GalaxyRe�neComplex are provided in 
Supplementary Tables S2–S4. �e distributions of the values for the accuracy measures are also presented in Fig. 2 
and Supplementary Figure S1.

When applied to the 677 ZDOCK models of the ZDOCK benchmark set, only GalaxyRefineComplex 
could improve model quality in all four measures on average. In contrast, RosettaDock only improved MolP, 
and FiberDock did not improve any models when model 1’s or the mean of �nal 10 models were considered. 
When the best of 10 re�ned models were considered, RosettaDock could improve models on average, but the 
extents of improvement for all measures were smaller than those of GalaxyRe�neComplex. �e statistical signif-
icance of the di�erences in L-RMSD and I-RMSD improvements by the two methods was not substantial, with 
p-values of 0.024 and 0.16, respectively, whereas that in Fnat and MolP was greater, with p-values of 6.5 ×  10−34 
and 1.1 ×  10−253, respectively. GalaxyRe�neComplex could improve initial models in 82%, 85%, 91%, and 100% of 
the cases in terms of L-RMSD, I-RMSD, Fnat, and MolP, respectively, when the best of 10 models were considered.

Hetero-complex re�nement

Test set Method −∆ L-RMSD (Å) −∆ I-RMSD (Å) ∆ Fnat (%) −∆ MolP

ZDOCK benchmark 
set (677 models)

GalaxyRe�neComplex 0.68/82% (0.06/54%)  
< 0.11/56%> 

0.37/85% (0.15/59%)  
< 0.12/64%> 

10.3/91% (7.7/81%) 
< 6.9/87%> 

1.41/100% (1.33/100%) 
< 1.32/100%> 

RosettaDock 0.40/56% (− 3.73/29%) 
< − 3.11/25%> 

0.30/61% (− 1.61/32%) 
< − 1.33/26%> 

2.2/58% (− 8.4/30%) 
< − 7.9/33%> 

0.35/95% (0.33/95%) 
< 0.32/95%> 

FiberDock1 –/– (− 0.59/41%) –/– (− 0.19/44%) –/– (− 2.2/34%) –/– (− 0.02/44%)

CAPRI set (34 models)

GalaxyRe�neComplex 0.48/74% (0.20/65%)  
< 0.15/60%> 

0.47/90% (0.02/68%)  
< 0.12/60%> 

11.0/82% (7.6/61%) 
< 7.8/82%> 

0.95/100% (0.85/98%) 
< 0.84/100%> 

RosettaDock − 2.38/48% (− 3.95/30%) 
< − 3.80/30%> 

− 3.38/45% (− 3.99/22%) 
< − 4.29/20%> 

7.2/63% (2.6/46%) 
< 2.2/52%> 

0.16/92% (0.13/81%) 
< 0.13/84%> 

FiberDock1 –/– (− 0.19/41%) –/– (0.06/40%) –/– (4.8/70%) –/– (0.00/0%)

Homo-complex re�nement

 PISA benchmark set 
(445 models)

GalaxyRe�neComplex 1.30/89% (0.78/73%)  
< 0.63/76%> 

0.63/86% (0.37/72%)  
< 0.32/73%> 

8.5/73% (6.1/64%) 
< 4.5/64%> 

1.36/100% (1.25/100%) 
< 1.25/100%> 

RosettaDock 3.49/84% (0.82/73%)  
< 0.38/69%> 

1.74/86% (0.17/73%) 
< − 0.08/67%> 

17.1/74% (6.6/61%) 
< 1.9/55%> 

0.66/99% (0.57/99%) 
< 0.56/99%> 

SymmRef1 –/– (2.90/80%) –/– (1.14/79%) –/– (14.6/64%) –/– (− 2.55/0%)

 CAPRI set (60 models)

GalaxyRe�neComplex 0.08/65% (− 0.05/60%) 
< − 0.04/60%> 

0.07/74% (0.02/71%)  
< 0.01/65%> 

2.6/70% (0.8/57%) 
< 0.9/57%> 

0.78/89% (0.73/83%) 
< 0.72/83%> 

RosettaDock − 1.22/38% (− 3.31/22%) 
< − 3.97/20%> 

− 0.86/52%  
(− 1.71/30%)  
< − 2.19/25%> 

− 5.9/28%  
(− 9.2/18%)  
< − 11.6/15%> 

0.06/74% (0.03/70%) 
< 0.03/73%> 

SymmRef1 –/– (− 0.43/38%) –/– (− 0.20/37%) –/– (− 4.3/39%) –/– (0.00/0%)

Table 2.  Performance comparison of di�erent re�nement methods in terms of mean improvement/
percentage of improved cases in ligand RMSD (L-RMSD), interface RMSD (I-RMSD), fraction of native 
contact (Fnat), and MolProbity score (MolP). Results for the best of 10 re�ned models are presented, and those 
for model 1’s and the mean of the 10 models are shown in parentheses and pointy brackets, respectively. 1Data 
for the 10 models and the mean of the 10 models are not provided for FiberDock and SymmRef because they 
generate only single models.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:32153 | DOI: 10.1038/srep32153

In the re�nement test on the 34 hetero-complex CAPRI models, GalaxyRe�neComplex showed consistent 
improvement in all four quality measures on average, while RosettaDock and FiberDock did not, as shown in 
Table 2. �e success of GalaxyRe�neComplex for improving CAPRI models is more notable, considering that the 
CAPRI models may have already been re�ned by CAPRI predictors. Based on the data presented in the table, we 
concluded that complex models generated by the current docking methods could be easily improved at least in 
interfacial contacts and physical correctness. L-RMSD and I-RMSD may also be improved, but to a lesser extent.

For the 445 M-ZDOCK models of the PISA benchmark set that were generated with “bound” monomer 
structures, GalaxyRe�neComplex could improve models in all measures, while RosettaDock could not improve 

Figure 2. Quality comparison of the best out of 10 re�ned models generated by GalaxyRe�neComplex (red) 
and RosettaDock (green) and the single re�ned models generated by FiberDock (blue in (a,b)) and SymmRef 
(blue in (c,d)) when the initial models were (a) ZDOCK models and (b) CAPRI models for hetero-complexes 
and (c) M-ZDOCK models and (d) CAPRI models for homo-complexes. �e re�nement results for di�erent 
target complexes are depicted in boxplots, which present �rst and third quartiles as boxes and the median as the 
band inside the boxes. �e minimum and maximum data within 1.5 interquartile range of the lower and upper 
quartile are represented as the bottom and top ends of whiskers, respectively, and data points outside of this 
range are shown with black dots as outliers. Note that only single models, not top ten models, were evaluated for 
FiberDock and SymmRef because these programs generate only single models.
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in I-RMSD and SymmRef could not improve in MolP when the mean of the 10 models were considered (see 
Table 2). However, SymmRef showed the best performance in terms of the other three measures. The per-
formance of RosettaDock was similar to that of GalaxyRe�neComplex when model 1’s were considered, but 
signi�cantly better when the best of 10 models were considered. �is implied that RosettaDock scoring may 
need to be improved. �e relatively poor performance of the GalaxyRe�neComplex compared with that of the 
other two methods on model complex structures of “bound” monomer structures could be ascribed to the fact 
that only inter-protein orientations between receptor and ligand proteins needed to be adjusted in this case. 
GalaxyRe�neComplex samples only interfacial residue conformations explicitly and allowed inter-protein orien-
tations follow the conformational change of interfacial residues by short MD relaxation.

For the 60 homo-complex CAPRI models, all three methods tended to perform worse than for the other 
three test sets, as shown in Table 2. �is set was the most di�cult to re�ne because the monomer structures, 
based on homology, deviated more from the native structures than those of the other sets. Initial models of the 
ZDOCK benchmark set were constructed from unbound monomer structures resolved experimentally, those of 
hetero-complex CAPRI set from either unbound experimental structures or homology models, and those of the 
PISA set from bound structures. �e overall quality of the initial complex models was better than in the other 
sets, as discussed in the previous subsection. �erefore, it may be di�cult to improve the model quality without 
accounting for structural �exibilities of monomers at the interface. Despite this di�culty, GalaxyRe�neComplex 
performed the best in all four measures among the compared methods, implying that the explicit sampling of 
interfacial residues and subsequent structural relaxation was e�ective.

Successful re�nement examples by GalaxyRe�neComplex are illustrated in Fig. 3. A hetero-complex model 
generated by ZDOCK for the target TA12 of the ZDOCK benchmark 4.033 was refined from acceptable to 
medium accuracy with improvement in L-RMSD from 7.24 to 1.87 Å, as shown in Fig. 3A. �e initial model had 
41% of native contacts with some voids at the interface and was re�ned to cover 90% of the native contacts. �e 
hetero-complex model submitted in CAPRI round 26 for target 54 as P38_M07 was re�ned from acceptable to 
medium accuracy, as shown in Fig. 3B. Although improvements in RMSDs were small (< 1 Å), native contacts 
increased by more than 20% through re�nement. A homo-complex model generated by M-ZDOCK for one of 
the PISA benchmark set targets (PDB ID: 1MOQ) was re�ned dramatically from incorrect to medium accuracy, 
as shown in Fig. 3C. In another example, the model for target 87 of CAPRI round 30 submitted by group TS417 
was re�ned from acceptable to medium accuracy, with improvement in L-RMSD from 5.17 to 4.19 Å (Fig. 3D).

Blind prediction results of GalaxyRefineComplex in CAPRI round 30. GalaxyRefineComplex 
was used in CAPRI round 30 in a blind fashion under the group name “Seok”. Initial models generated using 
GalaxyGemini36, GalaxyLoop37, and other methods were subjected to re�nement. Improvement by re�nement 
is summarized in Table 3, and results for individual targets are provided in Supplementary Table S5. As in the 
test results reported in the previous subsection, L-RMSD and I-RMSD were improved by small magnitudes on 
average, whereas Fnat and MolP were improved more substantially.

A practical example: accurate prediction of ligand binding mode of HIV-1 integrase by refinement.  
GalaxyRe�neComplex was applied to the binding mode prediction of an inhibitor to HIV-1 integrase to illustrate 
the impact of complex re�nement on practical applications such as drug discovery. HIV-1 integrase mediates 
integration of viral DNA into human DNA38 by forming a complex with a crucial co-factor, the human protein 
lens epithelium-derived growth factor (LEDGF)/p75. �e co-factor binds at the dimer interface of HIV-1 inte-
grase catalytic core domains, and inhibitors that bind at the same dimer interface can interfere with the co-factor 
binding. We �rst modeled the dimer structure by using M-ZDOCK with the monomer structure of HIV-1 inte-
grase (PDB ID: 4DMN)39. GalaxyRe�neComplex was then applied to generate a re�ned complex model. An 
inhibitor of HIV-1 integrase (PDB ID: 4NYF)40 was then docked by using the GalaxyDock41,42 protein-ligand 
docking program to the dimer model before and a�er re�nement. Although the RMSD improvement of the 
model by re�nement was rather mild (from 3.17 Å/1.40 Å/0.727 to 1.55 Å/1.09 Å/0.841 in L-RMSD/I-RMSD/
fnat), the re�nement lead to more dramatic improvement in the binding mode prediction (from 1.70 Å/36% to 
0.60 Å/92% in ligand RMSD/percentage of protein-ligand contacts < 5.0 Å). Moreover, the key interactions38,40 
including the hydrogen bonds between protein backbone and ligand carboxyl group that were not predicted with 
the initial model could be predicted accurately with the re�ned model, as shown in Fig. 4.

Origin of the effective refinement by GalaxyRefineComplex. GalaxyRe�neComplex e�ectively 
re�ned hetero- and homo-complex model structures on the test sets, showing better results than the other re�ne-
ment docking methods. Moreover, GalaxyRe�neComplex consistently improved models constructed from mon-
omer structures derived from either unbound experimental structures or homology models, unlike the compared 
methods. �is requires additional computational cost, and the computer time as a function of protein size is 
provided in Supplementary Figure S2. GalaxyRe�neComplex can improve docking models despite errors in the 
input monomer or interface structures due to the following two features. First, it uses a hybrid energy that con-
sists of both physics-based and knowledge-based energy components. �e physics-based energy terms contrib-
ute to improving the physical correctness of models, such as that measured by MolP. Knowledge-based energy, 
terms such as dipolar-DFIRE, makes the energy landscape smoother, allowing e�ective conformational sam-
pling under an erroneous structural environment37. Knowledge-based energy also tends to better discriminate 
“native-like” conformations from decoys than physics-based energy31. �erefore, we believe that including those 
knowledge-based energy terms contributes to e�ective model selection. Second, intensive interface side-chain 
sampling before overall structure relaxation contributes to e�ective �exible re�nement of docking models. 
According to our analysis, a re�nement protocol without such intensive interface residue sampling performs 
much worse than the current protocol (see Supplementary Table S6 for detailed results). GalaxyRe�neComplex 
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Figure 3. Successful re�nement examples for hetero-complexes, i.e., (a) a model for TA12 of the ZDOCK 
benchmark 4.0 and (b) the model for CAPRI round 26 T54 submitted as P38_M07, and for homo-complexes, 
i.e., (c) a model for 1MOQ of the PISA benchmark set and (d) a model for CAPRI round 30 T87 submitted 
as TS417_2. In each panel, experimentally resolved structures are shown on the le�, and model structures 
before and a�er re�nement are shown in the middle and on the right, respectively. Receptor protein structures 
are depicted in green, ligand protein structures in experimental structures and in models before and a�er 
re�nement are shown in yellow, pink, and violet, respectively. Red arrows indicate directions of changes in 
relative orientation made by re�nement (from the pink to violet structures).

CAPRI criterion

Initial models 13/7**

GalaxyRe�neComplex 13/7**

Detailed measures (mean improvement/percentage of improved cases)

−∆ L-RMSD (Å) −∆ I-RMSD (Å) ∆ Fnat (%) −∆ MolP

0.12/62% 0.09/85% 0.075/85% 0.83/100%

Table 3.  Blind re�nement results of GalaxyRe�neComplex on the 13 initial models generated by GALAXY 
methods in CAPRI round 30 for the best of 10 submitted models.
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mimics an actual process of conformational change induced by binding in which repacking of interfacial side 
chains drives further change to the conformation of the backbone.

Conclusions
In this work, we presented a method for re�ning protein-protein complex structures generated by other docking  
programs. This method, called GalaxyRefineComplex, was compared with FiberDock, SymmRef, and 
RosettaDock on several sets of docking models with a range of initial model qualities. GalaxyRe�neComplex 
showed consistent improvement, particularly for models of acceptable quality and for incorrect models. �e 
method was able to improve model quality not only for unbound/bound structures but also for homology model 
structures, while the other methods were not. High-accuracy models could be improved mainly in contacts, 
whereas lower accuracy models could be re�ned both in contacts and relative inter-protein orientation. Repetitive 
side-chain repacking at the interface allows prediction of side-chain conformational change upon binding, con-
tributing to improving contacts between interacting proteins. �e knowledge-based energy terms of the GALAXY 
energy makes the method less sensitive to the accuracy of initial model qualities. �e current method may be 
applied to various applications in which low- to medium-accuracy models are available but high-quality models 
are not. �e program is freely available on the GalaxyWEB server at http://galaxy.seoklab.org/re�necomplex.
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