
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005 641

GALDS: A Complete Framework for Designing
Multiclock ASICs and SoCs

Atanu Chattopadhyay and Zeljko Zilic, Member, IEEE

Abstract—A Globally Asynchronous, Locally Synchronous
(GALS) system with dynamic voltage and frequency scaling can
use the slowest frequency possible to accomplish a task with min-
imal power consumption. With the mechanism for implementing
dynamic voltage scaling at each synchronous domain left up
to the designer, our Globally Asynchronous, Locally Dynamic
System (GALDS) provides a top-down, system-level means to
maximize power reduction in an integrated circuit and facili-
tate system-on-a-chip (SoC) design. Our solution includes three
distinct components: a novel bidirectional asynchronous FIFO
to communicate between independently clocked synchronous
blocks [5], an all-digital dynamic clock generator to quickly and
glitchlessly switch between frequencies and a digitally controlled
oscillator to generate the global fixed frequency clocks required
by the all-digital dynamic clock generator. In addition to being
capable of reducing power consumption when combined with
dynamic voltage scaling, a GALDS design benefits from numerous
other advantages such as simplified clock distribution, high
performance operation and faster time-to-market through the
modular nature of the architecture.

Index Terms—Application-specific integrated circuits (ASICs),
asynchronous logic circuits, circuit topology, clocks, synchroniza-
tion, tunable oscillators.

I. INTRODUCTION

I N THE PAST, high-speed operation and minimum silicon
area were the two most important criteria in creating an in-

tegrated circuit (IC) [6]–[8]. Today, power consumption of an
IC has reached the point where it is becoming increasingly dif-
ficult for a package to dissipate enough heat to ensure proper
operation [1], [9], [10]. Intel currently ships Pentium 4 proces-
sors designed to throttle back execution when power dissipation
crosses a pre-defined threshold in an effort to protect the device
from over-heating [10], [11]. Clock generation and distribution
components are among the costliest in terms of power consump-
tion [12].

Depending on the specific application involved and the de-
sign style, clock distributions can consume anywhere from 15%
to over 45% of the total system power [6], [13]. Generating and
distributing multigigahertz clock signals has become a difficult
problem [14], [15] mainly because multiple clock cycles are re-
quired by clock signals to cross a chip [16], [17]. This task is
even more difficult with the increasing popularity of multiclock
architectures [18]–[20] since each clock generally requires a

Manuscript received September 10, 2003; revised June 8, 2004. This work
was supported in part through a grant from Altera Corporation.

The authors are with the Department of Electrical and Computer Engineering,
McGill University, Montreal, QC H3A 2A7, Canada (e-mail: atanu.chattopad-
hyay@mail.mcgill.ca; zeljko@macs.ece.mcgill.ca).

Digital Object Identifier 10.1109/TVLSI.2005.848825

Fig. 1. A globally asynchronous, locally dynamic system.

dedicated distribution network. The power requirement of these
circuits is given by the dynamic power consumption equation

(1)

where represents the loading capacitance and is the
switching activity factor. For CMOS circuits, the switching
activity factor is generally much lower than 1 [21]. However,
for clock distribution networks, switching activity occurs twice
per clock cycle, resulting in a equal to 2.

Clock gating [22] is one technique that can reduce power
consumption by shutting down the clock distribution network
for inactive areas of VLSI circuits. This method works by run-
ning blocks at full speed when work is required and having
them turned off otherwise. The theoretical power consumption
of this technique is roughly the same as using dynamic fre-
quency scaling of the local clock, reducing the idle time of the
unit. One key benefit of frequency scaling with respect to clock
gating is the reduced electromagnetic interference for the device
[23], due to using a lower clock rate.

Using a Globally Asynchronous, Locally Dynamic System
(GALDS), we provide a collection of hardware blocks to in-
corporate dynamically clocked synchronous local blocks into a
Globally Asynchronous, Locally Synchronous (GALS) system
[1], [2], [24]–[26] system. The architecture, shown in Fig. 1, al-
lows global clocks to be distributed with less concern for clock
skew and facilitates communication between the multiple inde-
pendently clocked domains. Clock skew between local blocks is
a desirable trait since it reduces the number of simultaneously
switching transistors and thus minimizes the instantaneous cur-
rent consumption. This skew has the added benefit of reducing
electromagnetic interference (EMI) [12]. With GALDS, the dis-
tance between local blocks will affect the rate and the latency

1063-8210/$20.00 © 2005 IEEE

642 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

of interclock domain communication, but not the correctness of
data transfers.

Dynamically clocked and multiclock domain processors and
ASICs [11], [14], [19], [27]–[33] are becoming more and more
popular due to the increased demands placed on today’s inte-
grated circuits. GALDS is designed to be suitable for a number
of different clocking architectures, ranging from a single clock
integrated circuit, eliminating problems with skew, to a mul-
tiple clock domain ASIC, incorporating dynamic clocking into
each of its local clock domains. In an ASIC design like [31],
dynamic frequency clocking allows each individual functional
block to operate at power-of-2 division of a global base clock.
Our solution extends this principle by performing the clock di-
vision at each functional block (instead of using a single global
divider), allowing multiple clock frequencies to be active at any
given time in the IC, making pipelining easier in each indepen-
dent clock domain. Using frequency scaling in each locally syn-
chronous block allows designers to incorporate dynamic voltage
scaling with the addition of a frequency and voltage sched-
uler. Strategies for dynamic voltage scaling have already been
the subject of many studies [34]–[37] and these techniques can
be extended to the scheduling problem for each dynamically
clocked local domain. For dynamic voltage scaling to be ef-
fective, its associated dynamic frequency scaling solution must
be capable of high-speed frequency changes that are possible
with GALDS. Otherwise, changing the frequency/voltage set-
tings could make the system slow to respond, hurting perfor-
mance and eliminating the potential power savings benefit of
this architecture. The power savings achieved by such systems
can be quite significant. Single clock, globally distributed so-
lutions with dynamic voltage and frequency scaling are able to
achieve an average energy savings of 53.5% in [32] and 32%
in [33] with roughly a 50% relaxation in the required clock
frequency.

Early work concerning the proposed GALDS architecture
was previously reported in [3] and [5], but significant detail
has been added here. GALDS contains a number of novel
subsystems that are discussed in this manuscript. All the cir-
cuits discussed here have been designed for TSMC’s 0.18- m
P-well process using the Cadence Virtuoso design environment
and simulated with SpectreS using the associated Analog
Artist simulation tool. First, the bidirectional synchronizer in
Section II uses asynchronous-to-synchronous converters at
ends of a novel bidirectional asynchronous first-in–first-out
(FIFO) to pass data and control information between domains.
The FIFO permits bidirectional data to be multiplexed over a
common datapath, allowing simultaneous communication both
directions. The FIFO can ease the interconnect burden of an
IC by making unidirectional communication paths obsolete,
thereby providing a significant resource-sharing advantage by
halving the number of data lines required for bidirectional data
flow. The asynchronous architecture also mitigates the effect
of clock skew between independent dynamically varying clock
domains on an IC.

Next, an all-digital clock generator was developed to generate
each dynamic local clock, as described in Section III. In con-
trast to traditional methods of clock generation using PLLs and
DLLs that are expensive in area and design effort, as well as re-

quire long lock times to execute a frequency change [6], [38],
[39], our GALDS solution uses components small enough to be
replicated for each locally synchronous block and fast enough
to dynamically change frequency with low latency.

Finally, a novel DCO discussed in Section IV incorporates
an asymmetric delay control structure to minimize the layout
area required for the delay cell. These clock generation circuits
are used by the all-digital clock generator, but can also be used
autonomously in systems requiring dynamic frequency scaling.
Since each block is modular, the overall design is highly scal-
able and can be used for a wide range of applications, regard-
less of die size. The ability to incorporate blocks into the overall
system regardless of interconnect delays allows ICs to be de-
signed rapidly and robustly by using these pre-existing blocks.

II. INTER-CLOCK DOMAIN COMMUNICATION

A. Overview

To provide robust communication between independently
clocked blocks, data is transferred through an intermediate
asynchronous FIFO stage. Synchronous-to-asynchronous
conversions are trivial since asynchronous blocks do not dif-
ferentiate between the two. The only difference is that an
asynchronous signal can be de-asserted as soon as it has been
processed, whereas a synchronous signal needs to wait for
the next active clock edge. Asynchronous-to-synchronous
conversions are performed by restricting the time during which
control signals are allowed to propagate to the synchronous
output buffers, thereby drastically reducing the possibility of
metastability at a clock edge [5].

The problem of communication between clock domains is not
new. Several groups have investigated hardware similar to the
work discussed here, notably [40]–[43]. Chelcea and Nowick
[42], [43] achieve low latency in their FIFO by placing data
in static memory cells. Instead of moving data items through
the FIFO, tokens are moved in their place. Separate read and
write tokens exist within a circular queue with synchronization
only required when accessing the FIFO empty or the FIFO full
status registers. While this approach is useful between adjacent
clock domains, the technique will suffer a performance penalty
when synchronization is required over long distances. Then,
either the destination’s and/or the source’s synchronous control
signals need to be brought into proximity of the data depending
on the physical location of the FIFO with respect to the source
and destination domains. In addition, moving one data item
from the source domain to the memory block to the destination
domain may require long delays, since this transportation will
likely occur in more than one step. Our FIFO structure takes
intro account the transport nature of the application to break
down the transport delay, dividing it amongst the different FIFO
stages, allowing for higher throughput. While Chakraborty and
Greenstreet’s source-synchronous interface design [40], [41]
also requires that information be gathered from both the source
and destination domains’ clocks, they do account for the finite
clock skew resulting from such a scenario. Their technique re-
stricts the required number of synchronizations to a very small
number of “high-risk” transfers, as opposed to our design that
requires synchronization for every data item. However, their

CHATTOPADHYAY AND ZILIC: GALDS: A COMPLETE FRAMEWORK FOR DESIGNING MULTICLOCK ASICs AND SoCs 643

Fig. 2. Two-cell unidirectional synchronizer for transferring data between independent clock domains. The control lines Ack (acknowledge) and Req (valid or
request) occur in between each FIFO cell and at both ends of the FIFO. Only the control signals leaving the asynchronous domain and entering a synchronous one
need to be synchronized through a SYNC element (see Fig. 7).

design also requires identical frequencies (or stable frequencies
with predictable drift) for the clock domains to function cor-
rectly. Since our interdomain solution is used with dynamically
varying frequencies, including frequency changes that occur
midway through a burst data transfer, the assumptions in [40]
and [41] are too restrictive to be compatible with GALDS.

B. New FIFO Structure

Using the clock domain synchronizer (see Fig. 7) and the
asynchronous control cell (see Fig. 5), it is possible to construct
the unidirectional interclock domain FIFO shown in Fig. 2.
For this FIFO, the optimal conditions (in terms of maximum
throughput) occur when the FIFO is exactly half full with
data present in every alternate cell. In this way, every alternate
control cell has synchronized control signals, allowing every
element in the FIFO to be in movement during every asyn-
chronous handshake. Once data is present in adjacent cells, it
must be removed from the target cell before new data can enter
from the source cell and thus there is a decrease in throughput.
Thus in the optimal case, the design works in two distinct steps.
The first step has all the odd cells receiving data and all the even
cells sending data. In the second step, this pattern is reversed.
Data is presented to the “Data In” port of the unidirectional
synchronizer along with a request at “Req In.” The data gets
read into the memory cell using the same acknowledge signal
leaving the unidirectional control block to feed the memory
cell’s “En” (along with an inverted version of “Ack Out” for
“EnN”). Due to the clock domain synchronizer (SYNC) in
the “Ack Out” path, the data is guaranteed to be read into the
asynchronous domain before the synchronized “Ack Out” is
available to clock domain 1. Once the data has been read into
the first memory cell, it can pass between any number of other
memory cells (and associated unidirectional control blocks) as
deemed necessary. If no buffering is required, the total number
of unidirectional control blocks (and associated memory cells)
can be as little as 1. If there is a significant distance to travel,
the asynchronous FIFO stages can act as repeaters [44] or
as an interlocking asynchronous pipeline [28] throughout the
propagation path to improve throughout. Fig. 2 is shown with
two FIFO stages for convenience.

Fig. 3. Operating phases of a bidirectional FIFO.

Using the FIFO at its maximum operating throughput leads
to a situation where every alternate data line (bus) between
FIFO cells is unused at any given time. To make better use
of this leftover bandwidth, it is possible to interleave data
flowing in the opposite direction. This will reduce the required
wiring costs while increasing throughput for a single data-
path by using our bidirectional asynchronous FIFO. With this
architecture, the two-phase pattern gets modified slightly, so
that every cell either performs two simultaneous reads or two
simultaneous writes to its adjacent neighbors. Fig. 3 shows a
generic example of how a bidirectional FIFO operates under
maximum throughput conditions. Each FIFO cell contains a
bidirectional control block and a memory cell. The memory
cell can either be a “terminal” memory cell for an end-node or
an “intermediate” memory cell otherwise. Both memory cells
contain dedicated memory elements for each direction to per-
form two simultaneous reads or two simultaneous writes. The
only difference is that the intermediate memory cell contains a
single access port on either side, whereas a terminal memory
cell contains dedicated read and write ports at the end-point
side of the memory cell. The lines between the FIFO cells in
Fig. 3 represent the bidirectional data lines whose values are
held using the state conductors used in Fig. 4. The dotted arrows
represent data traveling in the left-to-right direction, while the
solid arrows show data traveling in the right-to-left direction.
During Phase 1 of the transfer, cells 1 and 3 are performing
two reads simultaneously and cells 2 and 4 are performing two
writes. During Phase 2, the direction of data is reversed for
each cell. While it is possible to create a bidirectional FIFO
with a single controller, this would require that data be present
in both directions at every handshake for any data to flow. This

644 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

Fig. 4. Two-cell bidirectional synchronizer for transferring data between independent clock domains. The control lines Ack (acknowledge), Req (valid or request)
and G (grant) occur twice between every FIFO cell (numbered with 1’s for the left to right direction, and numbered with 2’s for the right to left direction).

Fig. 5. Four-phase asynchronous control cell and associated state transition
graph (STG).

constraint is incompatible with common systems where data is
bursty and not entirely predictable. Instead, two independent
controllers are used for each FIFO cell, with each one control-
ling data flowing in a given direction. This technique allows
data to stall in one direction while continuing to flow unaffected
in the other.

The bidirectional control block in the two-cell bidirectional
FIFO in Fig. 4 uses a pair of interlinked four-phase asyn-
chronous control cells (Fig. 5) to control the two memory bits
(or registers if used in a bundled data system) required for
that particular FIFO cell. The interlinking is performed by the
mutual exclusion element in Fig. 8 to prevent adjacent nodes
from simultaneously writing to the common data line. The
synchronizer (SYNC) blocks in Fig. 7 are used to perform an
asynchronous-synchronous domain conversion for the control
lines. The termination memory cells used are modified versions
of the 12-transistor data latch (see Fig. 9), with the data line
split into separate input and output ports on the terminal side
of the memory cell. A two-inverter feedback loop is used to
construct the state conductors. The asynchronous intermediate
step between clock domains renders any clock skew between
the blocks harmless and is an inherently low-power approach
due to the nature of asynchronous circuits [45]. This solution

is thus suitable for dynamic clock management in a multiclock
system. Similar to the unidirectional FIFO, any number of
bidirectional FIFO cells (consisting of a bidirectional control
block and associated intermediate memory cell) can be added
to the structure as needed. Again, each buffer cell also acts as
a repeater, lowering latency by distributing the line impedance
[44]. These buffers can also increase throughput by having
multiple data items in transit simultaneously.

C. Four-Phase Asynchronous Handshake Cell

The four-phase asynchronous handshake cell developed for
this application is shown in Fig. 5. We selected a four-phase
scheme for the controller to ensure that the control lines are en-
coded as return-to-zero (RTZ). Many high-speed designs [46],
[47] use two-phase nonreturn-to-zero (NRZ) control to mini-
mize the number of transitions required per data item. How-
ever, this scheme is not appropriate for a bidirectional FIFO:
the end of a transaction must be known precisely to allow data
in one direction to be removed in favor of data traveling in the
opposite direction. A transition on the VALID (request) input
causes the data to be latched into the current cell and generates
an output request when the data is ready to be transferred to a
subsequent cell. The states of adjacent FIFO cells are used to
determine when to allow traffic to freely commute through the
bidirectional FIFO. Alternative solutions that incorporate bidi-
rectional data flow such as the one-two-one six-phase FIFO [48]
require that data movement occurs in strictly alternating direc-
tions. The solution described here imposes no such restriction,
making it suitable for on-chip communication where the exact
direction and throughput requirements cannot be determined in
advance.

To increase the speed of the control cell, critical control sig-
nals are allowed to trigger events early, bypassing their normal
signal path. For example, the ACK_IN signal (Fig. 5) begins to
reset the VALID_OUT signal immediately after it is asserted.
Normally, the signal path for this ACK_IN signal would pass
through the generalized-C element (gC) in Fig. 5 before af-
fecting VALID_OUT. This results in a “signal fight” where two

CHATTOPADHYAY AND ZILIC: GALDS: A COMPLETE FRAMEWORK FOR DESIGNING MULTICLOCK ASICs AND SoCs 645

transistors try to temporarily drive the same output node with
different values. This phenomenon is only temporary since the
initiating control signal will ultimately propagate through the
slower path, terminating the fight condition by eliminating the
signal conflict. “Signal fights” are a commonly used practice
in asynchronous circuits like GasP [49] to increase overall [50]
speed.

Our control cell uses a “push channel” protocol, by which a
control cell initiates a transaction to a subsequent cell to send
data by generating a request signal. Data is placed on the bus
lines at the same time as the Request signal (for the end nodes) or
as the Grant signal (for an intermediate node) and is only guar-
anteed to be present while the request is asserted. Grant signals
are discussed in greater detail in Section II-E. This convention
for the propagation of data is known as an “Early” data scheme.
The control cell behavior is delay insensitive as each transition
can only occur when triggered by a specific transition in a pre-
vious or subsequent cell, regardless of delay. Hence, once a re-
quest (VALID_IN in Fig. 5) passes into the asynchronous con-
trol cell through the NAND gate, no other request will be pro-
cessed until after the current data item has been shipped. A cell
should not be allowed to send and receive data simultaneously
since this would corrupt data in the FIFO cell’s memory. As
long as the synchronous input circuitry cannot respond to the
ACK_OUT signal (by resetting the VALID_IN signal that initi-
ated the transfer) faster than roughly two gate delays (T_1), the
control cell will operate correctly. The two gate delays (T_1)
represents the amount of time required for the output of the
NAND gate to store the request in the memory element on the
right side of Fig. 5 minus the inverter delay in the ACK_OUT
path. The frequency of any synchronous domain used in this
architecture should thus be limited to around 1/T_1, which is
roughly 10 GHz in this technology. The throughput of the FIFO
will be limited by the frequency of the surrounding domains
due to the synchronization requirements of the control signals.
Since the control signals are held for one complete clock cycle in
the source and destination’s synchronous domains, the FIFO’s
throughput is limited by the lower of the source or destina-
tion’s frequencies, or by the maximum inherent throughput of
the asynchronous FIFO: 2.90 giga-items/second (bidirection-
ally), as reported in Section II-F.

D. Control Synchronizer

A synchronizer is required to translate the asynchronous con-
trol signals into synchronous ones for each local clock domain.
C-elements such as the one used in the synchronizer [shown
in Fig. 7(a)], can come in a number of different varieties [51],
[52]. A Muller two-input C element drives the output high when
both inputs are high, drives the output low when both inputs
are low, and holds the previous value otherwise. A two-input
asymmetric-C element has an input removed from either the
pull-up or pull-down stack, with a “ ” on the gate symbol de-
noting an input that is only used in the pull-down stack, and a
“ ” denoting an input that is only used in the pull-up. A gen-
eralized-C element has multiple (possibly independent) pull-up
and pull-down stacks; however for proper operation, no pull-up
stack should be asserted while a pull-down stack is asserted and
vice versa. A weak feedback inverter is usually used to hold the

Fig. 6. (a) Muller C element. (b) Generalized C element. (c) Asymmetric C
element. In the context of this paper, the C elements used have only one pull-up
and one pull-down transistor stack. If an input is being used at a “+” port, it is
used in only the pull-down branch to assert a high output. If an input is being
used at a “�” port, it is used in only the pull-up branch to assert a low output.
Any input not associated with a “+” or a “�” is used by both the pull-up and
pull-down branches.

C-element’s value when no value is asserted through the input
stack. Fig. 6 shows the two-input C-element circuits in more
detail.

The synchronizer operates in three distinct phases using two
skewed clocks. Its structure and operation are shown in Fig. 7(a)
and (b), respectively. In the transparent phase, when both clocks
are high, the data is allowed to pass through the generalized-C el-
ement to the latch. The pull-up branch of the gC will drive a 1 to
node X when CLK_LAG, CLK_LEAD and IN are high, and the

646 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

Fig. 7. (a) ASYNC-SYNC converter (synchronizer). (b) Waveform showing
how converter latches asynchronous control signals into a local clock domain.

pull-down branch will drive a 0 to node X when CLK_LAG and
CLK_LEAD are high and IN is low. While CLK_LEAD is low,
a finite “dead-time” exists to allow transients to settle before the
register latches the data. Finally, at the rising edge of the leading
clock (while the lagging clock is still low), the signal is latched
into the local clock domain. For this system to be successful, tran-
sitions occurring at the input IN must settle at node X before the
beginning of the latch phase. It can only fail when an input change
at the very end of the transparent phase does not have enough time
to settle before the next rising edge of the leading clock. While
this method may increase latency, the probability of a metasta-
bility error is reduced since a transition cannot be initiated at X
during the dead-time phase of operation. If the input (IN) changes
during the dead-time phase, the value at node X will not be af-
fected until after the current dead-time/latch phase combination
by the ASYNC-SYNC converter is complete.

There are two high-risk control signal synchronizations that
need to be discussed in further detail. The first is the Request
(VALID or REQ) that is sent to a synchronous block when it
reads from the FIFO. The second is the Acknowledge (Ack)
that a synchronous block must wait for when it writes to the
FIFO. All other cross-domain synchronizations involve moving
a signal from a synchronous domain to an asynchronous one,
which is a simpler case since the moment a signal arrives does
not affect if an asynchronous circuit will correctly read it. In
the read (read-from-FIFO) path, the data is ready in advance of
the synchronized request (VALID) signal due to nonzero delay
through the synchronizer in Fig. 7(a). Thus if the Request signal
satisfies the setup time requirements for the latch, the data will
satisfy them too. In the write (write-to-FIFO) path, an asserted
signal at IN of the synchronizer (an Ack in this case) will ul-
timately cause the output OUT to become asserted. If it is not
properly detected on the initial clock edge, it will be on a fol-
lowing one. So if a metastability error occurs in either the read
or the write cases, it would cause a stall in the data transfer, but
once the signal is resolved, the circuitry would return to normal
operation without any bit failures. While no simulation could
be generated to cause the circuitry to fail, it is physically impos-
sible to fully eliminate metastability.

The overall performance is limited by the frequency of the
local clock domains. Each local clock domain holds its control

Fig. 8. Mutual exclusion element.

lines (Ack, VALID) for a full clock cycle and the FIFO cannot
proceed until the control lines return to their idle states. While
employing self-resetting control lines could eliminate this lim-
itation, it would hurt the delay insensitivity of the circuit. One
benefit of this design is that there is no possibility of the FIFO
overflowing since the asynchronous handshake will not com-
plete until space is available for new data. The implication here
is that the synchronous domain attached to the asynchronous in-
terconnect blocks must be able to react appropriately to any of
the actions that may occur at the interface. These actions are as
follows.

— Responding to a synchronized Acknowledge by removing
data from the data_in port.

— Responding to a synchronized Request signal by reading
data from the data_out port.

— Making sure that an Acknowledge signal has been re-
ceived (from the asynchronous domain) before signaling
a Request and writing any new data to the asynchronous
FIFO’s entry (data_in) port. Any new Request must be
held until an Acknowledge for it has been received.

— Holding an Acknowledge signal after having read data
from the asynchronous domain until the Request that gen-
erated the Acknowledge has been de-asserted.

This interface method compares well to other synchroniza-
tion methods such as double buffering or pausible clocking [1],
[53], [54]. Double buffering can achieve similar throughput with
simpler circuitry and reduced metastability tolerance [55]. Pau-
sible clocking involves pausing or stretching clock pulses to
ensure that data and control signals have sufficient setup time
at a synchronous/asynchronous boundary. This method is sig-
nificantly more complex than our interface scheme since it is
difficult to detect a potential metastability error quickly and to
subsequently pause the clock robustly. There may also be syn-
chronization issues resulting from the pausible clock that will
have all the characteristics of a jittery clock. Pausible clocking
is also used in [1] to create the synchronizers needed for asyn-
chronous wrapping. Asynchronous wrapping involves making
the external interface of a synchronous block completely asyn-
chronous by surrounding the block with asynchronous circuitry.
By encircling a synchronous block with asynchronous circuitry,
our method can be considered as an asynchronous wrapper, al-
beit using a synchronizing method that alters the moment that
data is handled instead of modifying the clock pulses as in [1].

E. Mutual Exclusion Element

A mutual exclusion element (mutex) using cross-coupled
NAND gates (Fig. 8) is used to ensure that adjacent cells do
not simultaneously write to the same data line. The inclusion

CHATTOPADHYAY AND ZILIC: GALDS: A COMPLETE FRAMEWORK FOR DESIGNING MULTICLOCK ASICs AND SoCs 647

Fig. 9. Twelve-transistor data latch used in the intermediate memory cell. En
signals are controlled by the state of the asynchronous control cell (Fig. 4).

of the mutex element creates a three-track handshake design
with distinct request (VALID or REQ), acknowledge (Ack)
and GRANT signals. The bidirectional data latches shown in
Fig. 9 need to include both read and write enables to ensure
data integrity on the common data lines DATA_LEFT and
DATA_RIGHT. When a GRANT (GRANT1 in Fig. 8) is given
for left-to-right propagation, the memory cell write port on the
left hand side (GRANT1 in Fig. 9) and the read port of the
memory cell on the right hand side (En1 in Fig. 9) must both
be enabled. The receiver’s read enable signal is controlled by
the same grant signal wired to the write enable of the sender’s
latch, albeit delayed by a noninverting buffer to ensure that
the data is stable when latched at the receiving end. When a
right-to-left data transaction is required (GRANT2 in Fig. 8),
the write port of the right hand memory cell needs to be enabled
(GRANT2 in Fig. 9) along with the read port of the memory
cell to the left side of the common data line (En2 in Fig. 9).
Since the data lines are not always driven by the output of a
latch, state conductors are required to hold the bit-values on
the data lines. A state conductor holds a value by feeding the
output of a noninverting buffer back to its input.

No mutual exclusion can entirely eliminate the possibility of
a metastability error; however, good mutual exclusion elements
will reduce the probability of a metastable instance from oc-
curring [56], [57]. The design discussed here is similar in be-
havior to the interlock element proposed in [56] with the ex-
ception that NAND gates are used in place of the NOR gates and
pass transistors disable the unselected output branch in [56].
One key similarity is that both designs have the possibility of
going metastable, with simultaneous input assertions resulting
in an infinitely long delay before the output settles at a stable
value. However, in practice, only finite delays until the output
reaches a fully resolved state can be observed due to variances
present in the competing portions of the mutual exclusion ele-
ment. Although arbitrarily long resolution times will affect per-
formance, the possibility of simultaneous requests is very low
and the resolution time will most likely be very short. Since the
mutex output is used in an entirely asynchronous domain, the
surrounding circuitry will not fail or create errors while waiting
for the mutex to resolve any simultaneous requests.

TABLE I
COMPARISON WITH OTHER ASYNCHRONOUS FIFOS

F. Simulation Results

The bidirectional interclock domain communication structure
is capable of operating with a maximum throughput of 1.69
giga-items/s when communicating in a single direction and 1.45
giga-items/s in each direction when communicating bidirection-
ally, yielding an effective throughput of 2.90 giga-items/s. All
tests were performed at standard operating conditions and all
signals were generated using 50-ps rise and fall times. The re-
source sharing notes in Table I refer to the ability of our FIFO
to multiplex traffic onto a single set of data lines. Our solution
compares favorably to other asynchronous FIFO designs such as
MOUSETRAP [46] and interlocking pipelines [43], as shown in
Table I.

Two unidirectional FIFOs (see Fig. 2) can be used to provide
the same functionality as the bidirectional one with higher
overall throughput (roughly 4.75 giga-items/s). However, the
bidirectional solution is ideal for bundled data systems since the
additional area cost of the more complex control cell (versus a
unidirectional FIFO) becomes less significant when one con-
siders that two unidirectional FIFOs require two independent
datapaths and thus twice the wiring cost of our bidirectional
design. In our comparison, only the one-two-one track asyn-
chronous FIFO [48] can make the same claim. Built in an
older generation process (0.8 m), their bidirectional FIFO
is slower than our design, as expected. However, our design
allows for fully independent data flow in both directions, where
[48] requires the direction of data transfers to strictly alternate
(right-to-left and then left-to-right). The other unidirectional
FIFOs [46], [47], [50] can be replicated to provide bidirectional
functionality, but cannot utilize a common, shared datapath.
The Chelcea/Nowick designs [42], [43] are not efficient for
transporting data from one part of a chip to another and hence
would not be a good fit with GALDS. The results obtained rep-
resent schematic-level simulations of circuits constructed using
TSMC’s 0.18- m P-well process. Fig. 10 shows the Request

648 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

Fig. 10. Simulated operation of the bidirectional FIFO.

Fig. 11. Block diagram of the all-digital clock generator.

(V1_12 and V2_12), Acknowledge (A1_12 and A2_12) and
Grant (G1_12, G2_12) control signals at a FIFO cell during
bidirectional communication.

III. ALL-DIGITAL CLOCK GENERATOR

A. Overview

For a dynamically clocked system to generate significant
power savings without sacrificing performance, it is essen-
tial that a clock generation system adapts quickly to the
ever-changing needs of the system. The all-digital clock gen-
erator used here consists of a set of clock dividers to switch
glitchlessly between divisions of a high-speed base clock. A
clock selector is used to switch between these dividers. Since
this architecture switches between frequencies much quicker
than a traditional PLL or DLL, it is much better suited to clock
management applications. To demonstrate the effectiveness
of such a system, the clock generator shown in Fig. 11 was
designed with three independent clock dividers capable of
generating integer divisions between 1 and 8. The frequency
settings can be changed at any point using either a hardware or a
software based frequency selection unit to overwrite the current
value in the frequency control register. The Control Block of
the clock generator traps this frequency change request and
waits until the next rising edge of the current clock cycle (at the
old frequency) to initiate the frequency change. The frequency
control consists of two parts: the first is a division setting; the
second is a path code. There are three different global input
frequencies being used by the set of dividers (Base_CLKA,
Base_CLKB and Base_CLKC). Each divider is pausible to

minimize energy consumption and speed up frequency change
requests (since they are paused at the optimal switch points).
All three dividers are controlled by the same division code, with
only the active divider operating in an unpaused state. When
the frequency changes to a different division of the same base
clock, it can occur at the clock divider itself without involving
the clock selector. If the frequency change involves changing
the required base clock, the current clock path (CLKA, CLKB,
or CLKC) is first masked out at the Clock Selector and then at
the current path’s Clock Divider. The masking only occurs at
the end of the low time of the current clock to ensure sufficient
low time between clock pulses. Meanwhile, once the path is
masked out at the Clock Selector, the new path’s clock divider
is restarted at the required division setting while the Clock
Selector unmasks the new clock’s output path.

B. Clock Divider

The clock divider contains a series of high-speed double-
edged latches with taps between each latch. Each tap can be
selected, inverted and used as the feedback signal. Each latch
in the signal path generates a half base clock period delay, pro-
viding an integer increment in the division factor by 1. In de-
signing a data latch for this clock management application, sev-
eral important criteria had to be met. The latch needs to be
double-edged, accepting data twice per clock cycle to simplify
odd-numbered clock divisions. For example, a divide-by-5 re-
quires counting 2.5 clock cycles twice, once for each low and
high voltage level, to generate a complete clock period at the
output. The next requirement is that the transition times of the
latch must be matched to maintain 50% duty cycle clocks. Thus
the latch is designed with nearly identical clock-to-output de-
lays regardless of whether the transition is occurring on the
rising or the falling edges of the latch clock for both low-to-high
and high-to-low output transitions. A third important require-
ment is that the latch creates consistent and comparable rise
and fall times between all possible divisions. The final con-
sideration concerns the transparent time , or the time
that the latch is capable of updating its internal memory. This
time must ensure that a latch cannot sequentially read both the
current input and the intended input for the next clock cycle
during the same transparency time, producing a race condition.
Thus, must satisfy the setup and hold time requirements,
without exceeding the clock-to-output time of a previous latch
plus the setup time of the current latch. Transparency is created
using a set of four related clocks. The first clock is a reference
clock. The second is a skewed version of the first clock with
a phase shift of . The final two clocks are inverted ver-
sions of the first two clocks. The result is a transparent period
of preceding each clock edge of the reference clock. A
simple, specially sized inverter chain can be used to create the
four clock signals from a single input clock. While the delay
through the inverter chain will generate clock skew with respect
to the input clock, this is not harmful in a GALDS system due to
the skew tolerance afforded by the asynchronous interconnect
fabric. Analysis using the above criteria for has shown
that a value of 125 ps is appropriate for this technology because
it allows sufficient time for data to be latched without generating
race conditions through adjacent latches.

CHATTOPADHYAY AND ZILIC: GALDS: A COMPLETE FRAMEWORK FOR DESIGNING MULTICLOCK ASICs AND SoCs 649

Fig. 12. Structure of the 1-to-8 clock divider.

Fig. 13. Sample control block for the div/3 through div/8 enable lines.

The simulated clock divider is capable of operating at base
clock rates of up to 2 GHz. At this frequency, two clock cycles
are required to multiplex the six taps of the clock divider, cre-
ating the need for the separate divide-by-1 and -2 blocks shown
in Fig. 12. The unequal time spent within each division is a result
of waiting for the output of the divider to reach an appropriate
state before switching, thereby maintaining predictable duty cy-
cles for the output clocks. The low-time delay is bounded to

(2)
where represents a clock period and represents the low
time between clock pulses during a frequency division change.
These simulations were performed without regard for the even-
tual parasitic resistances and capacitances associated with a
layout of the circuitry. Typical of other designs manufactured in
this technology, we expect a 40%–50% performance penalty if
tests were to be performed using fabricated devices [50], [58].

The clock divider should only be allowed to switch between
divisions when this path does not instantaneously affect the
logic level of the output. The clock divider performs most
of the division changes using the 6:1 tap multiplexer in the
feedback path of the oscillator. The multiplexer control lines
are fed from the control block to each of the Clock Dividers
in Fig. 11, but are not explicitly shown in Fig. 12 as the inputs
to the three 2:1 and single 3:1 multiplexers used to create
the 6:1 multiplexer in the feedback path of the clock divider.
Changes in the multiplexer settings are only allowed when the
circuitry is on the verge of a 1-0 transition to ensure that an
active pulse terminates at a proper end of half-period and not
due to a change in the divider setting. These conditions are
necessary to maintain the desired clock pulse width. The 1-0
transition is detected by a NAND gate in the sample control

Fig. 14. Simulated operation of the clock divider.

Fig. 15. Simplified structure of three-input clock selector.

block (Fig. 13) monitoring the “Before” and “After” lines in
the clock divider in Fig. 12. Once this transition is detected,
the En and EnN (Fig. 13) signals tell the multiplexer setting
registers of the clock divider to update their values, initiating
the division change. The circuitry designed to switch into and
out of the divide-by-1 and 2 states also needs to monitor the
logic level of the dedicated oscillators for the output to remain
glitchless. Fig. 14 shows the clock divider output resulting from
a frequency ramp down.

C. Clock Selector

The clock selector shown in Fig. 15 can quickly and glitch-
lessly select between three independent clocks (provided that
the range of frequencies does not exceed half of the highest
frequency input clock. Clock gating circuitry exists along each
input clock’s path, with at least two of these clock gating
circuits active at any given time. The clock selector combines
the three independent clock paths using a three-input NOR gate
designed to provide equal rise and fall times, regardless of
which input is selected. The control block monitors the state of
the inputs to control the clock gating circuitry (MASK CTRL),
providing a glitchless output. The system uses an asynchronous
control block to detect a change in the desired clock path using
the two-bit path_sel code (path code) that comes from the Con-
trol Block in Fig. 11. When a new path code is read from the
path code registers, the Clock Selector must switch from one of
the three clock dividers to another. To perform this path change
robustly without creating glitches or frequency transients, the

650 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

Fig. 16. Simulated operation of the clock selector.

new path code is first read (and synchronized) into each of
the three independent base clock domains and held for at least
one clock cycle in the new domain. Once the new path code is
visible in each of the three BASE_CLK domains, the selector
masks the output of the currently active clock path: CLKA,
CLKB or CLKC in Fig. 15, which are the divided versions of
BASE_CLKA, BASE_CLKB and BASE_CLKC, respectively.
Only one CLK path is active at any given moment, so two out
of the three CLK Filters are always in a “clock-masked” state
whenever any new clock path code is detected. This ensures that
the time to reach an “all clocks masked” state is short, thereby
speeding up the path change operation. Once all the masking
signals have propagated and all the clocks are idle (verified
using the six-input AND gate in Fig. 15), the six-AND output is
synchronized into each of the three clock domains using the
SYNC block in Fig. 15, which uses three independent instances
of the synchronizer in Fig. 7. The only difference is that only
one reset (restart) output of the SYNC block (RSTA, RSTB,
or RSTC) is asserted reflecting the new path code setting. As
such, the nonasserted paths remain masked. The Mask CTRL
block (Fig. 15) only allows the appropriate masking signal
(MASKA, MASKB, or MASKC) to be re-enabled when the
appropriate clock input (CLKA, CLKB, or CLKC) is low to
prevent incomplete clock pulses (pulses shorter than half of the
desired clock period) from appearing at the output. This tech-
nique leads to a variable delay between adjacent clock pulses,
based on the difference in base clock phase and frequency. The
delay is bounded to

(3)

where represents the low time between clock pulses and
and respectively represent the period of the output

clock in the pre-change state and the period of the output clock
in the post-change state. BaseA, BaseB, and BaseC represent the
base clocks of the clock selector input sources. Not all of is
undesirable since there needs to be some low time between clock
pulses, equivalent to the lower bound of the inequality. Fig. 16
shows the clock selector switching between three arbitrary clock
patterns in simulation. As shown in Fig. 17, a wide frequency
range can be produced with good resolution using the three input
paths and the divide-by-8 capability of the clock dividers.

Fig. 17. Possible frequency spread achievable by the all-digital clock
generator.

D. Simulation Results

Simulations show that the all-digital clock generator designed
here consumes 167 mW when producing a 1 GHz local clock
(using a 1-GHz base clock). A test circuit operating at 1 GHz
with three possible voltage source levels consumes 230 mW at
1.2 V, 362 mW at 1.5 V, and 537 mW at 1.8 V. The combina-
tional logic block tested contains 50K transistors operating with
a switching activity of 50% in TSMC’s 0.18- m technology.

IV. DIGITALLY CONTROLLED OSCILLATOR

A. Overview

The digitally controlled oscillator (DCO) is the third com-
ponent in the proposed ASIC/SoC architecture. The oscillator
is versatile enough to be used in an all-digital PLL (ADPLL),
replacing the voltage-controlled oscillator (VCO) of a conven-
tional phase-locked loop (PLL). Should the frequency spread
of the DCO be sufficient, it can be used as the dynamic local
clock generator with the inclusion of additional control circuitry.
DCOs and ADPLLs are convenient for digital systems because
of their short lock-in times and the convenience of having the
output frequency controlled by a digital word [59].

There are four general categories of DCOs currently avail-
able to designers. The first is a path delay oscillator that uses a
chain of logical elements to form a circular ring oscillator. The
number of logical elements can be changed to generate different
delays through the ring and subsequently, different output fre-
quencies. This kind of device suffers from low precision and
is not appropriate for high frequency operation. The second
DCO design is the Schmidt-trigger-based current-driven oscil-
lator. This design requires a Schmidt-trigger inverter and a large
capacitance whose area overhead makes it difficult to imple-
ment on integrated circuits. The third type is the direct digital
synthesis (DDS) DCO that is constructed from a phase accu-
mulator, lookup table, and a digital-to-analog (D/A) converter.
This method places digital samples of a sinusoid in the lookup
table and reads them off periodically to generate an output clock
through the D/A. This type of oscillator is also known as a nu-
merically controlled oscillator (NCO) and is useful due to the
signal quality and stability of its output [60]. However, it re-
quires a stable reference clock to operate correctly and can only
output a signal at half the frequency of the reference clock (due
to Nyquist rate considerations) [61]. The fourth DCO design is
a current-starved ring oscillator where the output frequency can

CHATTOPADHYAY AND ZILIC: GALDS: A COMPLETE FRAMEWORK FOR DESIGNING MULTICLOCK ASICs AND SoCs 651

Fig. 18. Architecture of digitally controlled oscillator (DCO).

Fig. 19. 2:1 Logical multiplexer used in DCO.

by modified by controlling MOS switches that alter the delay
through the oscillator. This last design is generally known to
have good frequency linearity, which is an important character-
istic of any DCO [62], [63].

B. Our DCO Design

The DCO designed here is a current-starved design with one
major modification: the control transistors are placed asymmet-
rically in only the NMOS group, thereby minimizing the area
required to implement the device. Traditionally, silicon area is
a major drawback of this form of the DCO [64]. The variable
delay cell of the DCO shown in Fig. 20 uses only a third to
a quarter of the area of a conventional current-starved variable
delay cell requiring both PMOS and NMOS delay control tran-
sistors. The DCO shown in Fig. 18 has a complementary clock
datapath and uses the variable delay cell (VDC) of Fig. 20 and
two instances of the 2:1 multiplexer (mux) shown in Fig. 19.
The muxes are used to pause the clock by selecting between the
current feedback and a fixed voltage reference. The fixed VSS
signal (Fig. 18) is tied to In0 of one Fig. 19 multiplexer and the
fixed VDD signal (Fig. 18) is tied to In1 of the other Fig. 19
multiplexer. The clock feedbacks are tied to the unused input of
each multiplexer (In1 and In0, respectively). The “Out” signal
of each 2:1 mux is then used to drive the VDC of the DCO in
Fig. 18. The mux is slightly more complex than a traditional
mux to slow down the pull-down time of the multiplexer, cre-
ating a slower feedback path for a low signal travelling to the
input of the VDC with respect to a high feedback signal to en-
sure that the VDC does not deadlock (which is a situation that
could occur if both the Out0 and Out1 signals in Fig. 20 are
allowed to simulatenously be low). As such, the complemen-
tary clock signals within the feedback loop of the oscillator are

Fig. 20. Digitally controlled variable delay cell (VDC).

designed to always be overlapping. The overlap of these sig-
nals is the reason that the re-aligning buffer shown in Fig. 21
can be used to re-shape the resulting asymmetric duty cycles of
the complementary clocks. Since the DCO is designed to start
from a reset state (with the fixed voltage references chosen and
the “Off” transistor in the VDC (Fig. 20) asserted), it can be
guaranteed that the deadlock condition will not be present at
startup. During normal operation, the shorter delay for the high
feedback signal will ensure that the deadlock condition cannot
occur. Due to the timing critical nature of this component, it is
important that appropriate layout techniques (common centroid
transistors, matched wire lengths) are used to minimize any un-
expected differences in timing that may exist between the two
paths. While process variations may still have an effect on the
output, as long as the two output signals remain overlapped, the
deadlock condition cannot occur. The shorter the delay through
the VDC, the faster a low output (Out0 and Out1 in Fig. 20)
travels through the VDC and the closer the DCO is to reaching
a deadlock condition. Considering that the feedback paths have
been carefully designed to have nontrivially different high and
low signal delays and that local process variations are normally
quite small, there is low probability of the circuit reaching dead-
lock. Deadlock could be avoided by ignoring the highest fre-
quency settings of the device, although this is not an ideal so-
lution. If a deadlock state were to occur with the device, it is
possible to simply take the NOR of Out0 and Out1 (Fig. 20) to
toggle a momentary reset through the oscillator (by switching
the feedback muxes in Fig. 19 to their fixed supply settings and
asserting the “off” signal in the VDC), restoring the device to a
legal operating state.

C. Variable Delay Cell

The key novelty of this DCO is that the control transistors
used to vary the delay through the cell are placed asymmetri-
cally in the NMOS group of the VDC as shown in Fig. 20. The
four NMOS transistors in the CTRL (control) set are sized as
binary weighted powers of 2 (2, 4, 8, and 16) to give the tran-
sistor group an effective size range of even numbered multiples
between 2 and 30 (inclusive) of the base transistor size (2 m for
this application). By selecting a smaller setting for these CTRL
transistors, the delay through the cell is increased, resulting in
longer delays for the falling edge of both of the intermediate

652 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

Fig. 21. Re-aligning complementary clock buffer.

complementary clocks at the output of the first inverting ele-
ments of Fig. 20. However, the rising edge of this inverting el-
ement is still strong due to the lack of controlling transistors in
the PMOS group. Similar to the approach used in [57], this tech-
nique achieves propagation delays inversely proportional to the
equivalent MOS width.

Clock synchronization occurs in the next stage of the vari-
able delay cell. Inverters with NMOS enable transistors ensure
that the falling edge of one output branch is dependent on the
rising edge of the complementary output branch. While this
technique does synchronize the two clock signals, it suffers from
two drawbacks. First, it generates nonzero delay between the
falling edge of one clock and the rising edge of its comple-
ment. Next, the circuit can deadlock with both outputs driven
low when the output of one branch of the delay cell falls be-
fore the output of its complementary branch has been driven
high. This scenario is avoided by ensuring that the complemen-
tary input of the variable delay cell has nonoverlapping zeroes
through different high and low delay data paths through the 2:1
mux (Fig. 19). To ensure that this overlap is maintained through
the VDC, careful transistor sizing and proper layout techniques
are necessary in the VDC. The final inverter in the variable delay
cell is used to buffer the output for the feedback and output paths
of the DCO.

D. Re-Aligning Buffer

The re-aligning clock buffer, shown in Fig. 21, shapes the
complementary output signals produced by the VDC/clock mux
pair, specifically the Out0 and Out1 of the VDC in Fig. 20. The
ratios shown represent the multipliers applied to the base tran-
sistor width of 2 m (PMOS multiplier over NMOS multiplier).
The PMOS transistors are multiplied by an additional factor to
account for the electron mobility differences between these de-
vices. A traditional buffer cannot be used because the amount of
overlap will vary depending on the delay setting selected due to
the asymmetrical delay control transistors. The longer the delay
setting, the more overlap there will be. The technique used here
exploits the overlapping nature of the VDC outputs required
for the device not to deadlock. A pair of cross-coupled NAND

gates is used in the re-aligning buffer to transform the two out-
puts of the VDC with varying overlap into a pair of clocks with
a fixed amount of nonoverlap. Once the signals with constant
nonoverlap are created, a specially sized inverter chain is used
to re-align the signals to obtain complementary outputs.

E. Simulation Results

The DCO created here is capable of operating in a frequency
range between 2.065 and 2.502 GHz when simulated using

Fig. 22. Simulated DCO operation.

TABLE II
FREQUENCY SPREAD ACHIEVABLE BY THE DCO

TSMC’s 0.18- m process. This represents more than 20% flex-
ibility in the frequencies that can be created using the digital
control of the variable delay cell. Should a different frequency
range be required, it is possible to configure the device with
any even number of additional inverters in the feedback path
to create a roughly 120-ps extension of the final output clock
period per pair of inverters added. Regardless of the configu-
ration (number of inverters added) or the speed setting (delay
code sent to the VDC), fully complementary outputs and fast
transition times (around 35 ps) are maintained. The duty cycle
of the output does not differ from ideal by more than 1% of the
clock period, regardless of the settings used. Fig. 22 shows the
output of the DCO through the various stages of the re-aligning
buffer, with Out0 and Out0B representing the final output
clocks. Table II and Fig. 23 show the frequencies and clock
periods achievable by the DCO using 0 (Configuration 1), 2
(Configuration 2), and 4 (Configuration 3) feedback inverters.
Controller setting is the total multiplier used in the variable
delay cell.

CHATTOPADHYAY AND ZILIC: GALDS: A COMPLETE FRAMEWORK FOR DESIGNING MULTICLOCK ASICs AND SoCs 653

Fig. 23. Graph of DCO’s frequency spread.

V. CONCLUSION

Two primary requirements of GALDS are the ability to con-
trol the frequency of the local blocks independently and the
ability to robustly communicate between the local blocks run-
ning at a wide range of varying frequencies. By combining an
interclock domain communication structure, a local clock gen-
erator and a global clock generator, we have created the com-
plete framework for GALDS. This system provides high-per-
formance operation while reducing problems with clock skew
and excessive heat dissipation. When combined with dynamic
voltage scaling, GALDS can also produce very low power cir-
cuits while maintaining excellent performance due to the fast
frequency changes produced by our all-digital dynamic clock
generator. This solution shows that a high-performance GALDS
solution can be practically implemented in today’s technology
without prohibitive design effort and silicon area. While these
distinct circuits are here used together as a system, they are ver-
satile enough not to be limited to this architectural scheme. To-
gether, our GALDS solution allows designers to robustly design
faster and more power efficient integrated circuits where tradi-
tional techniques may fall short.

REFERENCES

[1] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Fichtner,
“Globally-asynchronous locally-synchronous architectures to simplify
the design of on-chip systems,” in Proc. 12th Annu. IEEE ASIC/SOC
Conf., 1999, pp. 317–321.

[2] D. Chapiro, “Globally-asynchronous locally-synchronous systems,”
Ph.D. dissertation, Stanford Univ., Stanford, CA, Oct. 1996.

[3] A. Chattopadhyay and Z. Zilic, “A globally asynchronous locally
dynamic system for ASICs and SoCs,” in Proc. GLSVLSI, 2003, pp.
176–181.

[4] A. Chattopadhyay, “High-speed structures for dynamically clocked and
multi-clock systems,” Master’s thesis, McGill Univ., Montreal, QC,
Canada, Jun. 2003.

[5] A. Chattopadhyay and Z. Zilic, “High speed asynchronous structures
for inter-clock domain communication,” in Proc. ICECS, 2002, pp.
517–520.

[6] I. Brynjolfson, “Dynamic clock management circuits for low power ap-
plications,” Master’s thesis, McGill Univ., Montreal, QC, Canada, Apr.
2001.

[7] A. Das, “On the transistor sizing problem,” in Proc. 13th Int. Conf. VLSI
Design, 2000, pp. 258–261.

[8] R. Singh Bajwa, R. M. Owens, and M. J. Irwin, “Area time trade-offs
in micro-grain VLSI array architectures,” IEEE Trans. Comput., vol. 43,
no. 10, pp. 1121–1128, Oct. 1994.

[9] W. R. Daasch, C. H. Lim, and G. Cai, “Design of VLSI CMOS circuits
under thermal constraint,” IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 49, no. 8, pp. 589–593, Aug. 2002.

[10] Intel Corp. (2004) Datasheet: Intel Pentium 4 Processor With 512-KB L2
Cache on 0.13 Micron Process and Intel Pentium 4 Processor Extreme
Edition Supporting Hyper-Threading Technology. [Online]. Available:
http://www.intel.com/design/pentium4/datashts/29864312.pdf

[11] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dropsho,
“Profile-based dynamic voltage and frequency scaling for a multiple
clock domain microprocessor,” in Proc. 30th Annu. Int. Symp. Computer
Architecture, 2003, pp. 14–25.

[12] R. Y. Chen, N. Vijaykrishnan, and M. J. Irwin, “Clock power issues in
system-on-a-chip designs,” in Proc. IEEE Workshop on VLSI, 1999, pp.
48–53.

[13] W. Qing, M. Pedram, and X. Wu, “Clock-gating and its application to
low power design of sequential circuits,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Applicat., vol. 47, no. 3, pp. 414–420, Mar. 2000.

[14] D. Peiliang, Y. Rilong, X. Hongbo, and Y. Chengfang, “Multi-clock
driven system: a novel VLSI architecture,” in Proc. 4th Int. Conf. ASIC,
2001, pp. 555–558.

[15] A. E. Sjogren and C. J. Myers, “Interfacing synchronous and asyn-
chronous modules within a high-speed pipeline,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 8, no. 5, pp. 573–583, Oct. 2000.

[16] S. Hassoun, C. J. Alpert, and M. Thiagarajan, “Optimal buffered routing
path constructions for single and multiple clock domain systems,” in
Proc. ICCAD, 2002, pp. 247–253.

[17] S. Hassoun and C. J. Alpert, “Optimal path routing in single- and mul-
tiple-clock domain systems,” IEEE Trans. Computer-Aided Design In-
tegr. Circuits Syst., vol. 22, no. 11, pp. 1580–1588, Nov. 2003.

[18] J. Schmid and J. Knablein, “Advanced synchronous scan test method-
ology for multi clock domain ASICs,” in Proc. 17th IEEE VLSI Test
Symp., 1999, pp. 106–113.

[19] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S.
Dwarkadas, and M. L. Scott, “Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling,”
in Proc. 8th Int. Symp. High-Performance Computer Architecture, 2002,
pp. 29–40.

[20] Y. Semiat and R. Ginosar, “Timing measurements of synchronization
circuits,” in Proc. 9th Int. Symp. Asynchronous Circuits and Systems,
2003, pp. 68–77.

[21] N. Chabini, E. M. Aboulhamid, and Y. Savaria, “Determining sched-
ules for reducing power consumption using multiple supply voltages,”
in Proc. ICCD, 2001, pp. 546–552.

[22] Q. Wang and S. Roy, “Power minimization by clock root gating,” in
Proc. ASP-DAC, 2003, pp. 249–254.

[23] L. Bluno, F. Gregoretti, C. Passerone, D. Peretto, and L. M. Reyneri,
“Designing low electro magnetic emissions circuits through clock skew
optimization,” in Proc. ICECS, 2002, pp. 417–420.

[24] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, J.
Oberg, P. Ellervee, and D. Lundqvist, “Lowering power consumption in
clock by using globally asynchronous locally synchronous design style,”
in Proc. Design Automation Conf., 1999, pp. 873–878.

[25] S. Moore, G. Taylor, R. Mullins, and P. Robinson, “Point to point GALS
interconnect,” in Proc. 8th Int. Symp. Asynchronous Circuits and Sys-
tems, 2002, pp. 69–75.

[26] J. N. Seizovic, “Pipeline synchronization,” in Proc. Int. Symp. Advanced
Research in Asynchronous Circuits and Systems, 1994, pp. 87–96.

[27] B. Brock and K. Rajamani, “Dynamic power management for embedded
systems,” in Proc. IEEE Int. SOC Conf., 2003, pp. 416–419.

[28] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic
voltage scaling and adaptive body biasing for lower power microproces-
sors under dynamic workloads,” in Proc. ICCAD, 2002, pp. 721–725.

[29] K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C.
Brock, K. I. Ishii, T. Y. Nguyen, and J. L. Burns, “A 32-bit PowerPC
system-on-a-chip with support for dynamic voltage scaling and dynamic
frequency scaling,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp.
1441–1447, Nov. 2002.

[30] S. P. Mohanty, N. Ranganathan, and K. Balakrishnan, “Design of a low
power image watermarking encoder using dual voltage and frequency,”
in Proc. 18th Int. Conf. VLSI Design, 2005, pp. 153–158.

[31] N. Ranganathan, N. Vijaykrishnan, and N. Bhavanishankar, “A linear
array processor with dynamic frequency clocking for image processing
applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 4,
pp. 535–445, Aug. 1998.

[32] V. Krishna, N. Ranganathan, and N. Vijaykrishnan, “Energy efficient
datapath synthesis using dynamic frequency clocking and multiple volt-
ages,” in Proc. 12th Int. Conf. VLSI Design, 1999, pp. 440–445.

654 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 6, JUNE 2005

[33] C. Lichtenau, M. I. Ringler, T. Pfluger, S. Geissler, R. Hilgendorf, J.
Heaslip, U. Weiss, P. Sandon, N. Rohrer, E. Cohen, and M. Canada,
“PowerTune: advanced frequency and power scaling on 64b PowerPC
microprocessor,” in IEEE ISSCC Dig. Tech. Papers, vol. 1, 2004, pp.
356–357.

[34] Intel Corp. (2004) Wireless Intel SpeedStep Power Manager White
Paper. [Online]. Available: http://www.intel.com/design/pca/applica-
tionsprocessors/whitepapers/300577.htm

[35] W. Kim, J. Kim, and L. M. Sang, “Dynamic voltage scaling algorithm for
fixed-priority real-time systems using work-demand analysis,” in Proc.
ISLPED, 2003, pp. 396–401.

[36] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of
dynamic voltage scaling algorithms,” in Proc. ISLPED, 1998, pp. 76–81.

[37] A. Qadi, S. Goddard, and S. Farritor, “A dynamic voltage scaling algo-
rithm for sporadic tasks,” in Proc. 24th IEEE RTSS, 2003, pp. 52–62.

[38] R. M. Secareanu, D. Albonesi, and E. G. Friedman, “A dynamic re-
configurable clock generator,” in Proc. 14th Annu. IEEE Int. ASIC/SOC
Conf., 2001, pp. 330–333.

[39] J. Zhou and H. Chen, “A 1 GHz 1.8 V monolithic CMOS PLL with
improved locking,” in Proc. MWSCAS, vol. 1, 2001, pp. 458–461.

[40] A. Chakraborty and M. R. Greenstreet, “A minimal source-synchronous
interface,” in Proc. 15th Annu. IEEE Int. ASIC/SOC Conf., 2002, pp.
443–447.

[41] A. Chakraborty and M. R. Greenstreet, “Efficient self-timed interfaces
for crossing clock domains,” in Proc. 9th Int. Symp. Asynchronous Cir-
cuits and Systems, 2003, pp. 78–88.

[42] T. Chelcea and S. M. Nowick, “A low-latency asynchronous FIFO’s
using token rings,” in Proc. 6th ASYNC, 2000, pp. 210–220.

[43] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-timing sys-
tems with application to latency-insensitive protocols,” in Proc. Design
Automation Conf., 2001, pp. 21–26.

[44] W. J. Bainbridge and S. B. Furber, “Delay insensitive system-on-chip
interconnect using 1-of-4 data encoding,” in Proc. 7th ASYNC, 2001,
pp. 118–126.

[45] N. C. Paver and D. A. Edwards, “Is asynchronous logic good for low-
power?,” in IEE Colloq. Low Power Analogue and Digital VLSI: ASICS,
1995, pp. 4/1–4/5.

[46] M. Singh and S. M. Nowick, “MOUSETRAP: ultra-high-speed transi-
tion-signaling asynchronous pipelines,” in Proc. ICCD, 2001, pp. 9–17.

[47] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K.
Jenkins, “Asynchronous interlocked pipelined CMOS circuits operating
at 3.3–4.5 GHz,” in IEEE ISSCC Dig. Tech. Papers, 2000, pp. 292–293.

[48] V. I. Varshavsky and V. B. Marakhovsky, “One-two-one track asyn-
chronous FIFO,” in Proc. APCCAS, 1998, pp. 743–746.

[49] I. Sutherland and S. Fairbanks, “GasP: a minimal FIFO control,” in Proc.
7th ASYNC, 2001, pp. 46–53.

[50] S. Laberge and R. Negulescu, “An asynchronous FIFO with fights:
case study in speed optimization,” in Proc. 7th ICECS, vol. 2, 2000, pp.
755–758.

[51] M. Shams, J. C. Ebergen, and M. I. Elmasry, “Modeling and comparing
CMOS implementations of the C-element,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 6, no. 4, pp. 563–567, Dec. 1998.

[52] D. L. Oliveira, M. Strum, W. J. Chau, and W. C. Cunha, “Synthesis of
multi bursts-mode controllers using generalized C-elements,” in Proc.
IX Workshop Iberchip, 2003.

[53] K. Y. Yun and R. P. Donohue, “Pausible clocking: a first step toward
heterogeneous systems,” in Proc. ICCD, 1996, pp. 118–123.

[54] K. Y. Yun and A. E. Dooply, “Pausible clocking-based heterogeneous
systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Systems, vol. 7,
no. 4, pp. 482–488, Dec. 1999.

[55] R. Ginosar, “Fourteen ways to fool your synchronizer,” in Proc. 9th
ASYNC, 2003, pp. 89–96.

[56] C. Mead and L. Conway, Introduction to VLSI Systems. Reading, MA:
Addison-Wesley, 1980, pp. 218–262.

[57] R. Watn, T. Njolstad, F. Berntsen, and J. F. Lonnum, “Independent clocks
for peripheral modules in system-on-chip design,” in Proc. IEEE Int.
SOC Conf., 2003, pp. 25–28.

[58] M. De Clercq and R. Negulescu, “1.1-GDI/s transmission between pau-
sible clock domains,” in Proc. ISCAS, vol. 2, 2002, pp. 768–771.

[59] S. Yunhua, S. Shimin, L. Yue, and J. Lijiu, “Implementation of a 6.5
MHz 34-B NCO,” in IEEE ISSCC Dig. Tech. Papers, 1995, pp. 205–207.

[60] I. Janiszewski, B. Hoppe, and H. Meuth, “Numerically controlled oscil-
lators with hybrid function generators,” IEEE Trans. Ultrason., Ferro-
electr., Freq. Contr., vol. 49, no. 7, pp. 995–1004, Jul. 2002.

[61] R. Ertl and J. Baier, “Increasing the frequency resolution of NCO-sys-
tems using a circuit based on a digital adder,” IEEE Trans. Circuits Syst.
II, Analog Digit. Signal Process., vol. 43, no. 3, pp. 266–269, Mar. 1996.

[62] T. M. Almeida and M. S. Piedade, “High performance analog and digital
PLL design,” in Proc. ISCAS, vol. 4, 1999, pp. 394–397.

[63] C.-H. To, C.-F. Chan, and O. C.-S. Choy, “A simple CMOS digital con-
trolled oscillator with high resolution and linearity,” in Proc. ISCAS, vol.
2, 1998, pp. 371–373.

[64] J.-S. Chiang and K.-Y. Chen, “The design of an all-digital phase-locked
loop with small DCO hardware and fast phase lock,” IEEE Trans. Cir-
cuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 7, pp. 945–950,
Jul. 1999.

Atanu Chattopadhyay received the the B.Eng.
degree in computer engineering and the M.Eng.
degree in electrical engineering (microelectronics
and computer systems) from McGill University,
Montreal, QC, Canada, in 2000 and 2003, respec-
tively. He is currently pursuing the Ph.D. degree at
McGill University, researching clock generation and
distribution for ASICs and FPGAs with a doctoral
bursary from the FQRNT. He has also been a
teacher’s assistant and a course instructor for various
classes at McGill University.

Zeljko Zilic (M’97) received the Dipl. Ing. degree in
computer engineering from the University of Zagreb,
Zagreb, Croatia, in 1989, the M.Sc. degree in com-
puter and electrical engineering from the University
of Toronto, Toronto, ON, Canada, in 1993, and the
Ph.D. degree from the University of Toronto in 1997.

From 1990 to 1992, he was a Faculty Lecturer
at the University of Zagreb and Research Engineer
at the Electrical and Computer Engineering and
Computer Science Departments of the University
of Toronto as well as for the Computer Systems

Research Institute in Toronto. From 1997 to 1998, he was a Member of the
Technical Staff at the FPGA Division of the Microelectronics Group of Lucent
Technologies. Currently, he is an Associate Professor at McGill University,
Montreal, QC, Canada, and the Director of McGill’s Microelectronics and
Computer Systems Laboratory. He holds four patents in the area of clock
and power management and has co-authored the book Verification by Error
Modeling (New York: Springer, 2003).

Prof. Zilic is a recipient of a Chercheur Strategique research chair from
province of Quebec. He has received the Myril B. Reed Best Paper Award at
the IEEE International Midwest Symposium on Circuits and Systems in 2001
and received the 2005 Design and Verification Conference (DVCon05) Best
Paper Award. He has served as a member of the Technical Program Committees
of the ACM International Symposium on FPGAs, the IEEE International Test
Conference, the Midwest Circuits and Systems Symposium and the Electronic
Circuits and Systems Conference. He is also on the editorial boards of the
Journal of Multiple-Valued Logic and Soft Computing and the International
Journal of Software and Information Technologies.

	toc
	GALDS: A Complete Framework for Designing Multiclock ASICs and S
	Atanu Chattopadhyay and Zeljko Zilic, Member, IEEE
	I. I NTRODUCTION

	Fig.€1. A globally asynchronous, locally dynamic system.
	II. I NTER -C LOCK D OMAIN C OMMUNICATION
	A. Overview

	Fig.€2. Two-cell unidirectional synchronizer for transferring da
	B. New FIFO Structure

	Fig.€3. Operating phases of a bidirectional FIFO.
	Fig.€4. Two-cell bidirectional synchronizer for transferring dat
	Fig.€5. Four-phase asynchronous control cell and associated stat
	C. Four-Phase Asynchronous Handshake Cell
	D. Control Synchronizer

	Fig.€6. (a) Muller C element. (b) Generalized C element. (c) Asy
	Fig.€7. (a) ASYNC-SYNC converter (synchronizer). (b) Waveform sh
	Fig.€8. Mutual exclusion element.
	E. Mutual Exclusion Element

	Fig.€9. Twelve-transistor data latch used in the intermediate me
	TABLE€I C OMPARISON W ITH O THER A SYNCHRONOUS FIFO S
	F. Simulation Results

	Fig.€10. Simulated operation of the bidirectional FIFO.
	Fig.€11. Block diagram of the all-digital clock generator.
	III. A LL -D IGITAL C LOCK G ENERATOR
	A. Overview
	B. Clock Divider

	Fig.€12. Structure of the 1-to-8 clock divider.
	Fig.€13. Sample control block for the div/3 through div/8 enable
	Fig.€14. Simulated operation of the clock divider.
	Fig.€15. Simplified structure of three-input clock selector.
	C. Clock Selector

	Fig.€16. Simulated operation of the clock selector.
	Fig.€17. Possible frequency spread achievable by the all-digital
	D. Simulation Results
	IV. D IGITALLY C ONTROLLED O SCILLATOR
	A. Overview

	Fig.€18. Architecture of digitally controlled oscillator (DCO).
	Fig.€19. 2:1 Logical multiplexer used in DCO.
	B. Our DCO Design

	Fig.€20. Digitally controlled variable delay cell (VDC).
	C. Variable Delay Cell

	Fig.€21. Re-aligning complementary clock buffer.
	D. Re-Aligning Buffer
	E. Simulation Results

	Fig.€22. Simulated DCO operation.
	TABLE€II F REQUENCY S PREAD A CHIEVABLE BY THE DCO
	Fig.€23. Graph of DCO's frequency spread.
	V. C ONCLUSION
	J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Ficht
	D. Chapiro, Globally-asynchronous locally-synchronous systems, P
	A. Chattopadhyay and Z. Zilic, A globally asynchronous locally d
	A. Chattopadhyay, High-speed structures for dynamically clocked
	A. Chattopadhyay and Z. Zilic, High speed asynchronous structure
	I. Brynjolfson, Dynamic clock management circuits for low power
	A. Das, On the transistor sizing problem, in Proc. 13th Int. Con
	R. Singh Bajwa, R. M. Owens, and M. J. Irwin, Area time trade-of
	W. R. Daasch, C. H. Lim, and G. Cai, Design of VLSI CMOS circuit
	Intel Corp . (2004) Datasheet: Intel Pentium 4 Processor With 51
	G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dro
	R. Y. Chen, N. Vijaykrishnan, and M. J. Irwin, Clock power issue
	W. Qing, M. Pedram, and X. Wu, Clock-gating and its application
	D. Peiliang, Y. Rilong, X. Hongbo, and Y. Chengfang, Multi-clock
	A. E. Sjogren and C. J. Myers, Interfacing synchronous and async
	S. Hassoun, C. J. Alpert, and M. Thiagarajan, Optimal buffered r
	S. Hassoun and C. J. Alpert, Optimal path routing in single- and
	J. Schmid and J. Knablein, Advanced synchronous scan test method
	G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S.
	Y. Semiat and R. Ginosar, Timing measurements of synchronization
	N. Chabini, E. M. Aboulhamid, and Y. Savaria, Determining schedu
	Q. Wang and S. Roy, Power minimization by clock root gating, in
	L. Bluno, F. Gregoretti, C. Passerone, D. Peretto, and L. M. Rey
	A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilss
	S. Moore, G. Taylor, R. Mullins, and P. Robinson, Point to point
	J. N. Seizovic, Pipeline synchronization, in Proc. Int. Symp. Ad
	B. Brock and K. Rajamani, Dynamic power management for embedded
	S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, Combined dyn
	K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C.
	S. P. Mohanty, N. Ranganathan, and K. Balakrishnan, Design of a
	N. Ranganathan, N. Vijaykrishnan, and N. Bhavanishankar, A linea
	V. Krishna, N. Ranganathan, and N. Vijaykrishnan, Energy efficie
	C. Lichtenau, M. I. Ringler, T. Pfluger, S. Geissler, R. Hilgend
	Intel Corp . (2004) Wireless Intel SpeedStep Power Manager White
	W. Kim, J. Kim, and L. M. Sang, Dynamic voltage scaling algorith
	T. Pering, T. Burd, and R. Brodersen, The simulation and evaluat
	A. Qadi, S. Goddard, and S. Farritor, A dynamic voltage scaling
	R. M. Secareanu, D. Albonesi, and E. G. Friedman, A dynamic reco
	J. Zhou and H. Chen, A 1 GHz 1.8 V monolithic CMOS PLL with impr
	A. Chakraborty and M. R. Greenstreet, A minimal source-synchrono
	A. Chakraborty and M. R. Greenstreet, Efficient self-timed inter
	T. Chelcea and S. M. Nowick, A low-latency asynchronous FIFO's u
	T. Chelcea and S. M. Nowick, Robust interfaces for mixed-timing
	W. J. Bainbridge and S. B. Furber, Delay insensitive system-on-c
	N. C. Paver and D. A. Edwards, Is asynchronous logic good for lo
	M. Singh and S. M. Nowick, MOUSETRAP: ultra-high-speed transitio
	S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K.
	V. I. Varshavsky and V. B. Marakhovsky, One-two-one track asynch
	I. Sutherland and S. Fairbanks, GasP: a minimal FIFO control, in
	S. Laberge and R. Negulescu, An asynchronous FIFO with fights: c
	M. Shams, J. C. Ebergen, and M. I. Elmasry, Modeling and compari
	D. L. Oliveira, M. Strum, W. J. Chau, and W. C. Cunha, Synthesis
	K. Y. Yun and R. P. Donohue, Pausible clocking: a first step tow
	K. Y. Yun and A. E. Dooply, Pausible clocking-based heterogeneou
	R. Ginosar, Fourteen ways to fool your synchronizer, in Proc. 9t
	C. Mead and L. Conway, Introduction to VLSI Systems . Reading, M
	R. Watn, T. Njolstad, F. Berntsen, and J. F. Lonnum, Independent
	M. De Clercq and R. Negulescu, 1.1-GDI/s transmission between pa
	S. Yunhua, S. Shimin, L. Yue, and J. Lijiu, Implementation of a
	I. Janiszewski, B. Hoppe, and H. Meuth, Numerically controlled o
	R. Ertl and J. Baier, Increasing the frequency resolution of NCO
	T. M. Almeida and M. S. Piedade, High performance analog and dig
	C.-H. To, C.-F. Chan, and O. C.-S. Choy, A simple CMOS digital c
	J.-S. Chiang and K.-Y. Chen, The design of an all-digital phase-

