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GALE: Geometric Active Learning for
Search-Based Software Engineering
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Abstract—Multi-objective evolutionary algorithms (MOEAs) help software engineers find novel solutions to complex problems. When

automatic tools explore too many options, they are slow to use and hard to comprehend. GALE is a near-linear time MOEA that builds a

piecewise approximation to the surface of best solutions along the Pareto frontier. For each piece, GALE mutates solutions towards the

better end. In numerous case studies, GALE finds comparable solutions to standard methods (NSGA-II, SPEA2) using far fewer

evaluations (e.g. 20 evaluations, not 1,000). GALE is recommended when a model is expensive to evaluate, or when some audience

needs to browse and understand how an MOEA has made its conclusions.

Index Terms—Multi-objective optimization, search based software engineering, active learning

Ç

1 INTRODUCTION

IN traditional manual software engineering, engineers
laboriously convert (by hand) non-executable paper mod-

els into executable code. That traditional process has been
the focus of much research. This paper is about a new kind
of SE which relies, at least in part, on executable models. In
this approach, engineers codify the current understanding
of the domain into a model, and then study those models.

Many of these models are delivered as part of working
systems. So much so that these models now mediate nearly
all aspects of our lives:

� If you live in London or New York and need to call
an ambulance, that ambulance is waiting for your
call at a location pre-determined by a model [1].

� If you cross from Mexico to Arizona, a biometrics
model decides if you need secondary screening [2].

� The power to make your toast comes from a genera-
tor that was spun-up in response to some model pre-
dicting your future electrical demands [3].

� If you fly a plane, extensive model-based software
controls many aspects of flight, including what to do
in emergency situations [4].

� If you have a heart attack, the models in the defibril-
lator will decide how to shock your heart and lungs
so that you might live a little longer [5].

Given recent advances in computing hardware, software
analysts either validate these models or find optimal solu-
tions by using automatic tools to explore thousands to mil-
lions of inputs for their systems. Valerdi notes that, without

automated tools, it can take days for human experts to
review just a few dozen examples [6]. In that same time, an
automatic tool can explore thousands to millions to billions
more solutions. People find it an overwhelming task just to
certify the correctness of conclusions generated from so
many results. Verrappa and Letier warn that

“..for industrial problems, these algorithms generate
(many) solutions, which makes the tasks of under-
standing them and selecting one among them
difficult and time consuming” [1].

One way to simplify the task of understanding the space
of possible solutions is to focus on the Pareto frontier; i.e. the
subset of solutions that are not worse than any other (across
all goals) but better on at least one goal. The problem here is
that even the Pareto frontier can be too large to understand.
Harman cautions that many frontiers are very crowded; i.e.
contain thousands (or more) candidate solutions [7]. Hence,
researchers like Verrappa and Letier add post-processors
that (a) cluster the Pareto frontier and then (b) show users a
small number of examples per cluster.

That approach has the drawback that before the users can
get their explanation, some other process must generate the
Pareto frontier—which can be a very slow computation.
Zuluaga et al. comment on the cost of such an analysis for
software/hardware co-design: “synthesis of only one
design can take hours or even days.” [8]. Harman [7] com-
ments on the problems of evolving a test suite for software
if every candidate solution requires a time-consuming
execution of the entire system: such test suite generation
can take weeks of execution time.

For such slow computational problems, it would be
useful to reason about a problem using a very small num-
ber of most informative examples. This paper introduces
GALE, an optimizer that identifies and evaluates just
those most informative examples. Note that GALE’s
approach is different from that of Verrappa & Letier:
GALE does not use clustering as a post-process to some
other optimizer. Rather, GALE replaces the need for a
post-processor with its tool called WHERE, which
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explores only two evaluations per recursive split of the
data. Hence, this algorithm performs at most 2 log 2ðNÞ
evaluations per generation, and often less.

This paper introduces GALE and its algorithms and
answers two key research questions for the SE-based
problems explored in this paper.

RQ1 (speed): Does GALE terminate faster than
other multi-goal optimization tools?

This is a concern since GALE must repeatedly sort and
divide the examples—which might make GALE slower
than other multi-goal optimizers.

A second concern is the quality of GALE’s results:

RQ2 (quality): Does GALE return similar or better
solutions than other optimization tools?

This is a concern since GALE only examines 2 log 2ðNÞ of
the solutions—which might mean that GALE misses useful
optimizations found by other tools.

This paper is structured as follows. After notes on related
work (in Section 2) we present the details of GALE (in Sec-
tion 3). The algorithm is tested on a range of SE models of
varying sizes, as described in Section 4. Section 5 offers
some details on those tests.

Section 6 shows the test results. In summary, regarding
RQ1 (speed), GALE ran much faster than other tools for our
SE models, especially for those that were very large. For
example, in our largest model, GALE terminated in four
minutes while other tools needed seven hours. As to RQ2
(quality), we find that (as might be expected) GALE’s trun-
cated search sometimes explores a smaller hypervolume of
solutions than other optimizers. Yet within that smaller vol-
ume, GALE’s careful directed search is more spread out.
More importantly, on inspection of the raw objective scores,
we often find better results with GALE than with other opti-
mizers for our SE models of interest.

1.1 Availability

GALE is released under the GNU Lesser GPL and is available
as part of the JMOO package (Joe’s multi-objective optimiza-
tion), which incorporates Distributed Evolutionary Algo-
rithms in Python (DEAP [9]). GALE and most of the models
used here are available from github.com/tanzairatier/jmoo
(and for the XOMO software process model, see github.com/
nave91/modeller/tree/master/xomo).

2 RELATED WORK

2.1 Optimization

This paper is a comparative assessment of GALE with some
other optimizers. We will argue that GALE is the preferred
choice for functional optimization when the evaluation cost is
very large.

This section explains all the technical terms in the last par-
agraph. To start with, we say that optimizers seek
“candidate”(s) x such that it is unlikely that there exists
“better” candidate(s) y. Each candidate ci is a set of decisions
and their associated objective scores; i.e. ci ¼ ðd; oÞ. The opti-
mizers in this article assume the existence of some fitness
function f that converts decisions to output objectives; i.e.

o ¼ fðdÞ:

Note that this paper uses the term “model” as a synonym
for the fitness function f . Also, the terms single- and multi-
objective optimization apply when joj ¼ 1 and joj > 1,
respectively.

Given two candidates x; y:

� Each with objectives x:oi; y:oi for 1 � i � joj
� Then x:oi � y:oi and x:oi � y:oi is true if objective x:oi

is (worse,better) than y:oi, respectively.
For single goal-optimization, the predicates (�;�) suffice

to test is one candidate is “better” than another For multi-
objective optimization, determining “better” is somewhat
more complicated Traditionally, the space of candidates
with multiple objectives was explored by assigning magic
weights to the objectives, then using an aggregation function
to accumulate the results. Such solutions may be brittle; i.e.
they change dramatically if we alter the magic weights of
the objectives.

To avoid the problem of magic weights, a multi-objective
optimizer tries to produce the space of candidates that
would be generated across all possible values of the magic
weights. Multi-objective evolutionary algorithms (MOEAs)
such as GALE, NSGA-II, SPEA2, IBEA, PSO, DE, MOEA/D,
etc. [10], [11], [12], [13], [14], [15], try to push a cloud of solu-
tions towards an outer envelope of “better” candidates.
These algorithms eschew the idea of single solutions, prefer-
ring instead to use the domination function (discussed below)
to map out the terrain of all useful candidates.

Generating a cloud of candidates may be computation-
ally expensive. Suppose we divide the space of all functions
f into subsets j 2 f , l 2 f . Let the j models be very small
and very fast to execute. The evaluation cost C of j 2 f is
negligible and we do not recommend GALE for these
CðjÞ � 0models.

However for the larger models l, these many be prohibi-
tively expensive to run (particularly when an optimizer
must perform thousands to millions of evaluations). Most
optimizers (but not GALE) evaluate all N candidates and

compare them N2 times. GALE, on the other hand,
only evaluates and compares 2 log2ðNÞ candidates. Hence,
we strongly recommend learners like GALE for these
CðlÞ � 0models.

When choosing an optimiser, it is useful to consider what
information an optimizer can access about the function f .
For example, gradient descent optimizers [16] need to
access the contours around every decision. This limits the
kinds of functions they can process to those with continuous
differential functions (i.e. functions of real-valued variables
whose derivative exists at each point in its domain). Note
that, when optimizing software systems, these internal
details may not accessible. Ever since Parnas’ 1972 paper
“On the Criteria To Be Used in Decomposing Systems into
Modules” [17], software engineers have designed their sys-
tems as “modules” in which software’s internal details are
“hidden” within interface boundaries. This concept of mod-
ularity is one of the cornerstones of modern software engi-
neering since, in such modular systems (1) engineers are
free to fix and enhance the internal details of software just
as long as they maintain the same interface; (2) engineers
can use the services of other systems by connecting to its
interface without needing to understand the internal details.
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We call this class of problems black-box or functional
optimization.

Harman et al. [18] argue that when optimizing software
systems, a functional approach is very useful:

“...the virtual nature of software makes it well suited
for (search-based optimization). The field of SE is
imbuedwith richmetrics that can be useful initial can-
didates for fitness functions...(where) fitness is com-
puted directly in terms of the engineering artifact,
without the need for the simulation and modeling
inherent in all other approaches.”

By “other approaches”, Harman et al. refer to optimizers
that demand detailed knowledge about the internals of a
system such as gradient descent optimizers. Another exam-
ple of this “other approach” was explored by Sayyad,
Menzies et al. [19], [20]. In that work, multi-objective optimi-
zation was applied systems containing hierarchical con-
straints, where the analysis could access all knowledge of
internal structure. That structural knowledge was exploited
via push and pull strategies that use decisions made in one
part of a system to reduce the search space elsewhere in the
system.

In order to distinguish this “other approach” we call
these problems white box or structural optimization. In our
opinion, based on a reading of the current literature, func-
tional optimization is more widely-applicable hence more
widely-used than structural optimization. Hence, this paper
explores functional optimizers like GALE since these will
have more application areas.

2.2 Search-Based SE = MOEA + SE

Evolutionary optimizers explore populations of candidate
solutions. In each generation some mutator makes changes to
the current population. A select operator then picks the best
mutants which are then combined in some manner to become
generation iþ 1. This century, there has been much new
work on multi-objective evolutionary algorithms with two
or three objectives (as well as many-objective optimization,
with many more objectives).

Recently, there has been much interest in applying
MOEAs to many areas of software engineering including
requirements engineering, test case planning, software pro-
cess planning, etc. This search-based software engineering is a
rapidly expanding area of research and a full survey of that
work is beyond the scope of this paper (for extensive notes
on this topic, see [18], [21]).

2.3 MOEA and Domination

To explore the space of promising solutions, MOEA tools
use a domination function to find promising solutions for use
in the next generation. Domination functions have the prop-
erty that, when they compare candidate solutions with
many competing objectives, they accept large sets (and not
just single items) as being better than others. Hence, they
are candidate techniques for generating the space of possi-
ble solutions.

Binary domination says that solution x “dominates” solu-
tion y if solution x’s objectives are never worse than solution
y and at least one objective in solution x is better than its
counterpart in y; i.e. 8o 2 objectives j :ðxo � yoÞf g and

9o 2 objectives j ðxo � yoÞf g where (�;�) tests if xo is
(worse,better) than yo. Recently, Sayyad [19] studied binary
domination for MOEA with two, three, four or five objec-
tives. Binary domination performed as well as anything else
for two-objective problems but very few good solutions
were found for the three, four, five-goal problems. The rea-
son was simple: binary domination only returns {true,false},
no matter the difference between x1; x2. As the objective
space gets more divided at higher dimensionality, a more
nuanced approach is required.

While binary domination just returns (true,false), a contin-
uous domination function sums the total improvement of solu-
tion x over all other solutions [12]. In the IBEA genetic
algorithm [12], continuous domination is defined as the sum
of the differences between objectives (here “o” denotes the
number of objectives), raised to some exponential power.
Continuous domination favors y over x if x “losses” least:

worseðx; yÞ ¼ lossðx; yÞ > lossðy; xÞ;

lossðx; yÞ ¼
X

o

j

�ewjðxj�yjÞ=o=o:
(1)

In the above, wj 2 f�1; 1g, depending on whether we seek
to maximize goal xJ . To prevent issues with exponential
functions, the objectives are normalized.

2.4 MOEA Algorithms

A standard MOEA strategy is to generate new individuals,
and then focus just on those on the Pareto frontier. For
example, NSGA-II [10] uses a non-dominating sort proce-
dure to divide the solutions into bands where bandi domi-
nates all of the solutions in bandj>i (and NSGA-II favors the
least-crowded solutions in the better bands).

There are other kinds of MOEA algorithms including the
following (the following list is not exhaustive since, to say
the least, this is a very active area of research):

� SPEA2: favors solutions that dominate the most
number of other solutions that are not nearby (to
break ties, it uses density sampling) [11];

� IBEA: uses continuous dominance to find the
solutions that dominate all others [12];

� In Particle swarm optimization, a “particle”’s veloc-
ity is “pulled” towards the individual and the
community’s best current solution [13], [22], [23],
[24], [25], [26];

� The many-objective optimizers designed for very high
numbers of objectives [27];

� Multi-objective differential evolution: members of the
frontier compete (and are possibly replaced) by can-
didates generated via extrapolation among any three
other members of the frontier [28], [29], [30], [31];

� The decomposition methods discussed below.

2.5 MOEA and Decomposition

Another way to explore solutions is to apply some heuristic
to decompose the total space into many smaller problems,
and then use a simpler optimizer for each region. For exam-
ple, in E-domination [32], each objective oi is divided into
equal size boxes of size Ei (determined by asking users
“what is their lower threshold on the size of a useful

KRALL ET AL.: GALE: GEOMETRIC ACTIVE LEARNING FOR SEARCH-BASED SOFTWARE ENGINEERING 3
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effect?”). Each box has a set X:lower containing boxes with
worse oi values. Solutions in the same box are assessed and
pruned in the usual way (all-pairs computation of a domi-
nance function). But solutions in different boxes can be
quickly pruned via computing dominance for small samples
from each box. Once a box X is marked “dominated”, then
E-domination uses the boxes like a reverse index to quickly
find all solutions inX:lower, thenmark them as “dominated”.

Later research generalized this approach. MOEA/D
(multiobjective evolutionary algorithm based on decompo-
sition [15]) is a generic framework that decomposes a multi-
objective optimization problem into many smaller single
problems, then applies a second optimizer to each smaller
subproblem, simultaneously.

GALE uses MOEA decomposition but avoids certain
open issues with E-domination and MOEA/D. GALE does
not need some outside oracle to specify E. Rather, the size of
the subproblems is determined via a recursive median split
on dimensions synthesized using a PCA-approximation
algorithm—see the fast spectral learning described in the next
section. Also, GALE does not need MOEA/D’s secondary
optimizer to handle the smaller subproblems. Rather, our
approach uses the synthesized dimensions to define the
geometry-based mutator discussed below that “nudges” all
candidates in a subproblem towards the better half of that
subproblem.

When domination is applied to a population it can be
used to generate the Pareto frontier, i.e. the space of non-
dominated and, hence, most-preferred solutions. However,
if applied without care, the number of evaluations of candi-
date solutions can accumulate. The goal of GALE is to mini-
mize this number of evaluations, via applying the fast
spectral learning and active learning techniques discussed in
the next two sections.

2.6 Fast Spectral Learning

This section describes how GALE decomposes a large space
of candidate solutions into many smaller regions.

WHERE is a spectral learner [33]; i.e. given solutions with
d possible decisions, it re-expresses those d decision varia-
bles in terms of the e eigenvectors of that data. This speeds
up the reasoning since we then only need to explore the
e 	 d eigenvectors.

A widely-used spectral learner is a principal components
analysis (PCA). For example, Principal Direction Divisive Par-
titioning (PDDP) [34] recursively partitions data according
to the median point of data projected onto the first PCA
component of the current partition.

WHERE [35] is a linear time variant of PDDP that uses
FastMap [36] to quickly find the first component. Platt [37]
shows that FastMap is a Nystr€om algorithm that finds
approximations to eigenvectors. As shown in Fig. 1 on
lines 3,4,5, FastMap projects all data onto a line connect-
ing two distant points.1 FastMap finds these two distant

points in near-linear time. The search for the poles needs
only OðNÞ distance comparisons (lines 19 to 24). The
slowest part of this search is the sort used to find the
median x value (line 10) but even that can be reduced to
asymptotically optimal linear-time via the standard
median-selection algorithm [39].

FastMap returns the data split into two equal halves.
WHERE recurses on the two halves, terminating when
some split has less than

ffiffiffiffiffi

N
p

items.

2.7 Active Learning

One innovation in GALE is its use of active learning during
WHERE’s decomposition of larger problems into sub-prob-
lems. Active learners make conclusions by asking for more
information on the least number of items. For optimization,
such active learners reflect over a population of decisions and
only compute the objective scores for a small,most informative
subset of that population [8]. GALE’s active learner finds its
most information subset via the WHERE clustering procedure
described above. Recall that WHERE recursively divides the
candidates into many small clusters, and then looks for two
most different (i.e. most distant) points in each cluster. For
each cluster, GALE then evaluates only these two points.

In other work, Zuluaga et al. [8] use a response surface
method for their MOEA active learner. Using some quickly-
gathered information, they build an approximation to the
local Pareto frontier using a set of Gaussian surface models.
These models allow for an extrapolation from known mem-
bers of the population to new and novel members. Using
these models, they can then generate approximations to the
objective scores of mutants. Note that this approach means
that (say) after 100 evaluations, it becomes possible to
quickly approximate the results of (say) 1000 more.

Unlike Zuluaga et al., GALE makes no Gaussian
parametric assumption about regions on the Pareto
frontier. Rather, it uses a non-parametric approach
(see below). That said, GALE and Zuluaga et al. do share
one assumption; i.e that the Pareto frontier can be
approximated by many tiny models.

Fig. 1. Splitting data with FastMap.

1. To define distance, WHERE uses the standard euclidean distance
method proposed by Aha et al. [38]; that is: distðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2dðxi � yiÞ2
q

=
ffiffiffiffiffiffi

dj j
p

where distance is computed on the independent

decisions d of each candidate solution; all di values are normalized
min..max, 0..1; and the calculated distance normalized by dividing by
the maximum distance across the d decisions.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. X, XXXXX 2015



IE
E
E

P
ro

o
f

2.8 Preference-Based MOEA

GALE’s active learner can be viewed as a tool that biases a
search towards “interesting” regions in the search space.
The results shown below indicate that this kind of biasing
can find solutions much faster than, say, the standard ran-
dom employed by genetic algorithms.

The potential weakness of random mutation has been rec-
ognised by the evolutionary computing community for a long
time. Various improvements on random search have been
proposed. For example, Peng et al. [40] have augmented
MOEAs with local search (i.e. applying a problem-specific
repair/improvement heuristic on some current solution).
Also, Igel et al.’s [41] multi-objective covariance matrix adap-
tation evolution strategy can run themutations along “ridges”
in the search space. However, prior to this paper, no such
work has appeared in SE . Also, to the best of our knowledge,
GALE’s cost reduction of MOEA to Oð2 log2NÞ evaluations
has not been previously reported in the SBSE literature.

3 INSIDE GALE

As a summary, the geometric, active learner called GALE
works as follows:

1) Sort solutions (along the direction of most change);
2) Find the poles; i.e. the two most distance candidates;
3) Split that sort into equal halves;
4) Evaluate only the poles of each split;
5) Ignore any half containing a dominated pole;
6) Recurse on the remaining halves until the splits get

too small (less than
ffiffiffiffiffi

N
p

);
7) For all the final (smallest) splits, mutate the candi-

dates towards the better pole of that split.
8) Go to step #1

Because, at each point, GALE makes a linear approximation,

a naive assumption might be that GALE can only solve linear

problems. This is untrue. GALE recursively bisects the solu-

tions into progressively smaller regions using the spectral

learning methods discussed in Section 2.6. Spectral learners

reflect over the eigenvectors of the data. These vectors are a

model of the overall direction of the data. Hence, GALE’s

splits are not some naive division based on the raw dimensions.

Rather, GALE’s splits are very informed about the overall

shape of the data. GALE’s recursive splitting generates a set

of tiny clusters. Each cluster represents a small space on the

Pareto frontier. That is, GALE does not assume that the whole

Pareto frontier can be modeled as one straight line. Rather, it

assumes that the Pareto frontier can be approximated by a set

of very small locally linearmodels.

GALE interfaces to models using the following functions:

� Models create candidates, each with d decisions.
� loðiÞ; hiðiÞ report the minimum and maximum legal

values for decision i 2 d.
� validðcandidateÞ checks if the decisions do not violate

any domain-specific constraints.
� From the decisions, a model can compute o objective

scores (used in Equation (1)).
� minimizingðjÞ returns true,false if the goal is to mini-

mize,maximize (respectively) objective j 2 o.
We discuss these functions further in the following

sections.

3.1 Active Learning and GALE

GALE’s active learner, shown in Fig. 2, is a variant to the
WHERE spectral learner discussed above. To understand
this procedure, recall that WHERE splits the data into
smaller clusters, each of which is characterized by two dis-
tant points called west,east. In that space, left and right are 50
percent of the data, projected onto a line running west to
east, split at the median. When exploring m candidates,
recursion halts at splits smaller than v ¼ ffiffiffiffi

m
p

.

GALE’s active learner assumes that it only needs to eval-
uate the most informative subset consisting of the poles used to
recursively divide the data. Using Equation (1), GALE
checks for domination between the poles and only recurses
into any non-dominated halves. This process, shown in
Fig. 2, uses FastMap to split the data. In Fig. 2, lines 12 and
14 show the domination pruning that disables recursion
into any dominated half.

Given GALE’s recursive binary division of m solu-
tions, and that this domination tests only two solutions
in each division, then GALE performs a maximum of
2 log2ðmÞ evaluations. Note that when GALE prunes sub-
trees, the actual number of evaluations is less than this
maximum.

3.2 Geometry-Based Mutation

Most MOEAs build their next generation of solutions by a
random mutation of members of the last generation. GALE’s
mutation policy is somewhat different in that it is a directed
mutation. Specifically, GALE reflects on the geometry of the
solution space, and mutates instances along gradients
within that geometry.

To inspect that geometry, GALE reflects over the poles in
each leaf cluster. When one pole is better than another, it
makes sense to nudge all solutions in that cluster away
from the worse pole and towards the better pole. By nudg-
ing solutions along a line running from west to east, we are
exploiting spectral learning to implement a spectral mutator;
i.e. one that works across a dimension of greatest variance
that is synthesized from the raw dimensions. That is, GALE

Fig. 2. Active learning in GALE: recursive division of the data; only evalu-
ate two distant points in each cluster; only recurse into non-dominated
halves. In this code, m is the size of the original data set.

KRALL ET AL.: GALE: GEOMETRIC ACTIVE LEARNING FOR SEARCH-BASED SOFTWARE ENGINEERING 5
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models the local Pareto frontier as many linear models
drawn from the local eigenvectors of different regions of the
solution space.

GALE’s mutator is shown in Fig. 3. The D parameter is
the “accelerator” that increases mutation size (in line 20)
while the g parameter is the “brake” that blocks excessive
mutation (in line 24).

3.3 Top-Level Control

Fig. 4 shows GALE’s top-level controller. As seen in that
figure, the algorithm is an evolutionary learner which itera-
tively builds, mutates, and prunes a population of size m

using the active learning version of WHERE. The candidates
function (at line 3 and 18) adds random items to the popula-
tion. The first call to this function (at line 3) adds m new
items. The subsequent call (at line 18) rebuilds the popula-
tion back up to m after WHERE has pruned solutions in
dominated clusters.

Also shown in that figure is GALE’s termination proce-
dure: GALE exits after � generations with no improvement
in any goal. Note that, on termination, GALE calls WHERE
one last time at line 15 to find enough examples to show the
user. In this call, domination pruning is disabled, so this call
returns the poles of the leaf clusters.

4 MODELS USED IN THIS STUDY

Having described general details on MOEA, and the partic-
ular details of our approach, we turn now to the models
used to evaluate GALE. With one exception, all these are
available to other researchers via the websites mentioned in
Section 1.1.

The exception is the CDA model since that requires
extensive connection to proprietary NASA hardware and
software. One important feature of CDA is that it takes
hours to complete a single evaluation. Hence, it is an good
example for exploring the advantages of GALE’s active
learning.

4.1 XOMO: Software Process Models

The XOMO model [42], [43], [44] combines four software
process models from Boehm’s group at the University of
Southern California. It reports four objective scores (which
we will try to minimize): project risk; development effort and
defects; and total months of development.

In this study, optimizers tune the XOMO decision
variables of Fig. 5 to improve the following objectives:

� Reduce risk;
� Reduce effort;
� Reduce defects;
� Reduce months.
Full details of XOMO have been offered in prior papers

[42], [43], [44]. A summary is offered below.
XOMO uses the variables of Fig. 5 in a variety of models.

The XOMO effortmodel predicts for “development months”
where one month is 152 work hours by one developer (and
includes development and management hours):

effort ¼ a
Y

i

EMi 
KLOC
bþ0:01

P

j
SFj : (2)

Here, EM,SF denote the effort multipliers and scale factors
and a; b are the local calibration parameters which in
COCOMO-II have default values of 2.94 and 0.91.

The variables of Fig. 5 are also used in the COQUALMO
defect prediction model [45]. COQUALMO assumes that
certain variable settings add defects while others may sub-
tract (and the final defect count is the number of additions,
less the number of subtractions).

Two other models that use the variables of Fig. 5 are the
COCOMO months and risk model. The months model pre-
dicts for total development time and can be used to deter-
mine staffing levels for a software project. For example, if
effort=200 and months=10, then this project needs 200

10
¼ 20

developers.
As to the risk model, certain management decisions

decrease the odds of successfully completing a project. For

Fig. 3. Mutation with GALE. By line 7, GALE has determined that the
east pole is preferred to west. At line 23,24, the project function of
Fig. 1 is used to check we are not rashly mutating a candidate too far
away from the region that originally contained it.

Fig. 4. GALE’s top-level driver.
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while decreasing analyst capability (acap). Such a project is
“risky” since it means the manager is demanding more reli-
ability from less skilled analysts. The COCOMO risk model
contains dozens of rules that trigger on each such “risky”
combinations of decisions.

XOMO is a challenging optimization problem. It is diffi-
cult to reduce all of months, effort, defects and risk because
they are conflicting objectives: some decisions that reduce
one objective can increase another. For example, XOMO
contains many such scenarios where the objectives conflict;
some examples are as follows:

� Increasing software reliability reduces the number of
added defects while increasing the software develop-
ment effort;

� Better documentation can improve team communi-
cation and decrease the number of introduced defects.
However, such increased documentation increases
the development effort.

Prior work with XOMO [43] found that different optimi-
zations are found if we explore (1) the entire XOMO input
space or (2) just the inputs relevant to a particular project.
Put another way: what works best for one case may not
work best for another case. Hence, we run XOMO for the
three different specific cases shown in Fig. 6.

Each of these cases are software projects that were speci-
fied by domain experts from the NASA Jet Propulsion Labo-
ratory (JPL). In Fig. 6, “fl” is a general description of all JPL
flight software while “o2” describes version two of the flight
guidance system of the Orbital Space Plane.

Note that some of the COCOMO variables range from
some low to high value while others have a fixed setting. For

Fig. 5. The COCOMO-II ontology.

Fig. 6. Three case studies used in XOMO.
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example, for “o2”, reliability is fixed to rely=5, which is its
highest possible value.

4.2 POM3: A Model of Agile Development

According to Turner and Boehm, the agile management
challenge is to strike a balance between idle rates, completion
rates and overall cost.

� In the agile world, projects terminate after achieving
a completion rate of ðX < 100Þ percent of its required
tasks.

� Teammembers become idle if forced to wait for a yet-
to-be-finished task from other teams.

� To lower idle rate and increase completion rate, man-
agement can hire staff–but this increases overall cost.

The POM3 model [46], [47] is a tool for exploring that
management challenge. POM3 implements the Boehm and
Turner model of agile programming [48] where teams select
tasks as they appear in the scrum backlog. POM3 can studu
the implications of different ways to adjust task lists in the
face of shifting priorities.

In this study, our optimizers tune the POM3 decisions of
Fig. 7 in order to

� Increase completion rates;
� Reduce idle rates;
� Reduce overall cost.
For further details on this model see [46], [47], [48]. A

summary of that model is shown below.
POM3 represents requirements as a set of trees. Each tree

of the requirements heap represents a group of require-
ments wherein a single node of the tree represents a single
requirement. A single requirement consists of a prioritiza-
tion value and a cost, along with a list of child-requirements
and dependencies. Before any requirement can be satisfied,
its children and dependencies must first be satisfied.

POM3 builds a requirements heap with prioritization
values, containing 30 to 500 requirements, with costs from 1
to 100 (values chosen in consultation with Richard Turner).
Initially, some percent of the requirements are marked as
visible, leaving the rest to be revealed as teams work on the
project.

The task of completing a project’s requirements is
divided amongst teams relative to the size of the team (by
“size” of team, we refer to the number of personnel in the
team). In POM3, team size is a decision input and is kept
constant throughout the simulation. As a further point of
detail, the personnel within a team fall into one of three cat-
egories of programmers: Alpha, Beta and Gamma. Alpha

programmers are generally the best, most-paid type of pro-
grammers while Gamma Programmers are the least experi-
enced, least-paid. The ratio of personnel type follows the
Personnel decision as set out by Boehm and Turner [47] in
the following table:

project size

0 1 2 3 4

Alpha 45% 50% 55% 60% 65%
Beta 40% 30% 20% 10% 0%
Gamma 15% 20% 25% 30% 35%

After teams are generated and assigned to requirements,
costs are further updated according to decision for the
Criticality and Criticality Modifier. Criticality affects the
cost-affecting nature of the project being safety-critical,
while the criticality modifier indicates a percentage of teams
affected by safety-critical requirements. In the formula, CM

is the criticality modifier:

cost ¼ cost 
 CM
criticality: (3)

After generating the Requirements & Teams, POM3 runs
through the follow five-part shuffling process (repeated
1 � N � 6 times, selected at random).

1) Collect available requirements. Each team searches
through their assigned requirements to find the
available, visible requirements (i.e. those without
any unsatisfied dependencies or unsatisfied child
requirements). At this time, the team budget is
updated, by calculating the total cost of tasks
remaining for the team and dividing by the number
of shuffling iterations:

team:budget ¼ team:budget þ totalCost=numShuffles:

2) Apply a requirements prioritization strategy. After the
available requirements are collected, they are then
sorted per some sorting strategy. In this manner,
requirements with higher priority are to be satisfied
first. To implement this, the requirement’s cost
and value are considered along with a strategy,
determined by the plan decision.

3) Execute available requirements. The team executes the
available requirements in order of step2’s prioritiza-
tion. Note that some requirements may not get exe-
cuted due to budget allocations.

Fig. 7. List of Decisions used in POM3. The optimization task is to find settings for the controllables in the last column.
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4) Discover new requirements. As projects mature, some-
times new requirements are discovered. To model
the probability of new requirement arrivals, the
input decision called Dynamism is used in a Poisson
distribution. The following formula is used to add to
the percentage of known requirements in the heap:

new ¼ Poisson dynamism=10ð Þ: (4)

5) Adjust priorities. In this step, teams adjust their priori-
ties by making use of the Culture C and Dynamism
D decisions. Requirement values are adjusted per
the formula along a normal distribution, and scaled
by a projects culture:

value ¼ value þmaxRequirementValue


Normalð0; DÞ 
 C: (5)

When we ran POM3 through various MOEAs, we
noticed a strange pattern in the results (discussed below).
To check if that pattern was a function of the model or the
MOEAs, we ran POM3 for the three different kinds of proj-
ects shown in Fig. 8. We make no claim that these three clas-
ses represent the space of all possible projects. Rather, we
just say that for several kinds of agile projects, GALE
appears to out-perform NSGA-II and SPEA2.

4.3 CDA: An Aviation Safety Model

The CDA model [4], [49], [50], [51], [52], [53] lets an engineer
explore the implications of how software presents an air-
plane’s status to a pilot in safety critical situations. CDAmod-
els howpilots interact with cockpit avionics software during a
continuous descent approach. Internally, CDA models the
physical aerodynamics of an aircraft’s flight, the surrounding
environment (e.g. winds), and the cognitive models and
workload of the pilots, controllers and computers.

For this study, our optimizers tune the following deci-
sion variables:

� HTM: maximum human task load. This value
describes how many tasks (where a task is an atomic
action) can be maintained in a mental to-do list by a
person. When the number of necessary tasks exceeds
the number of tasks that the person can maintain,
there can be incurred delays, errors, or the possibility
of the task being forgotten and lost.

� FA: function allocation. This variable refers mainly
to the relative authority between the human pilot
and the avionics.

� CCM: contextual control mode of pilots. These
describe the pilots’ ability to apply patterns of activ-
ity in response to the demands and resources in the
environment.

� SC: The air environment scenario. WMCs CDA
model includes four different arrival and approach
scenarios.

These decisions were tuned in order to reduce all the fol-
lowing objectives:

1) NumForgottenActions: tasks forgotten by the pilot;
2) NumDelayedActions: number of delayed actions;
3) NumInterruptedActions: interrupted actions;
4) DelayedTime: total time of all of the delays;
5) InterruptedTime: time for dealing with interruptions.
This paper uses CDA as a large and complex model to

comparatively evaluate GALE versus NSGA-II versus
SPEA2. Elsewhere [53], we offer an extensive discussion of
the theory behind the CDA model and the cognitive impli-
cations of the decisions made by GALE.

4.4 Benchmark Models

Apart from the above three models, we also explore numer-
ous small benchmark models that are often used to assess
MOEA problems These models are called BNH, Golinski,
Srinivas, Two-bar Truss, Viennet2, Water, ZDT(1, 2, 3, 4 and
6), and DTLZ(1, 2, 3, 4, 5 and 6). The DTLZ suite of models
is particularly useful for evaluation of MOEAs since, by
adjusting certain model parameters, it is possible to gener-
ate problems with a wide range of decisions and objectives
[54], [55].

For full details on the benchmark models, including their
decisions and objectives, see the the appendix (available in
the online supplemental material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2015.2432024).

5 EXPERIMENTAL METHODS

This section describes how we applied and compared vari-
ous optimization algorithms using the models described
above

5.1 Comparison Optimization Algorithms

To assess a new MOEA algorithm, the performance of the
new algorithm needs to be compared to existing
approaches. One important criteria for selecting those exist-
ing approaches is repeatability. Many of the algorithms
described above such as MOEA/D and PSO are really
frameworks within which an engineer has free reign to make

Fig. 8. Three classes of projects studied using POM3.
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numerous decisions (hence, review papers list dozens of
variants on PSO and MOEA/D [13], [29]). Hence, in terms
of repeatability, it can be better to use precisely defined algo-
rithms like NSGA-II and SPEA2 rather than framework
algorithms such as PSO and MOEA/D.

New MOEA algorithms are being invented all the time.
Late in the development of this project, the authors became
aware of a new version of NSGA-II which, according to its
authors [56], performed better for large number of objec-
tives. The merits of this new approach are still be assessed
and some results suggest that, in terms of improving objec-
tives, it is not necessary a superior approach [57]. That said,
we know of no similar work in the SBSE literature that
claims anything like GALE’s large-scale reductions in the
number of evaluations.

Comparison algorithms should also be appropriate to task.
For example, Sayyad, Menzies et al.’s push,pull IBEA exten-
sions [19], [20] were designed for a very specialized prob-
lem (systems of hierarchical constraints in which the
optimizer has total knowledge of all constraints within a
model). GALE, on the other hand, was designed for the
more general “black-box” SBSE problems described in Sec-
tion 2.2 (no access to internal structure; controllables are just
a flat vector of model inputs; a need to find solutions after a
minimal number of evaluations).

Yet another criteria is accepted practice. We reached out to
our SBSE colleagues to find which algorithms are accepted
as “best”. However, no consensus was found.

Finally, we sought what algorithms are commonly used. In
2013, Sayyad and Ammar [58] surveyed 36 SBSE papers
where 21

36
used NSGA-II or SPEA2 (of the others, four used

some home-brew genetic algorithm and the remainder each
used some MOEA not used by any other paper). Since
NSGA-II and SPEA2 also score well on repeatability, they are
used in the following evaluation.

5.2 Implementations and Parameter Settings

To provide a reusable experimental framework, we imple-
mented GALE as part of a Python software package called
Joe’s Multi-Objective Optimization (JMOO). JMOO allows
for testing experiments with different MOEAs and different
multi-objective problems (MOPs), and provides an easy
environment for the addition of other MOEAs. JMOO uses
the DEAP toolkit [9] for its implementations of NSGA-II and
SPEA2. NSGA-II and SPEA2 require certain parameters for
crossover andmutation.We used the defaults fromDEAP:

� A crossover frequency of cx ¼ 0:9;
� The mutation rate is mx ¼ 0:1, and eta ¼ 1:0 deter-

mines how often mutation occurs and how similar
mutants are to their parents (higher eta means more
similar to the parent).

To provide a valid base of comparison, with the excep-
tion of the DTLZ models, we applied nearly the same
parameter choices across all experiments:

� MOEAs use the same population0 of size m ¼ 100.
� All MOEAs had the same early stop criteria (see the

� ¼ 3 test of Fig. 4). Without early stop, number of
generations is set at max ¼ 20.

� Fig. 3’s mutators used D ¼ 1, g ¼ 1:5.

There was one case where we adjusted these defaults.
DTLZ are artificial models designed to test certain hard
optimization problems. The shape of the DTLZ Pareto fron-
tiers are somewhat unusual: their objective scores change
slowly across a smooth surface (whereas the frontier of
many other models we have examined have more jagged
hills and valleys in any local region). Accordingly, for
DTLZ, we increased the D “accelerator” parameter on
GALE’s mutator (discussed in Section 3.2) from D ¼ 1 to
D ¼ 3 so that GALE’s search for better solutions “jumped”
further across the DTLZ frontiers.

One final detail: to ensure an “apples versus apples”
comparison, each of our optimizers was run on the same
randomly generated initial population for each problem.
That is, all optimizers had the same starting point.

5.3 Evaluation Criteria

An ideal optimizer explores a large hypervolume of solutions;
offers many “best” solutions that are very spread out on the
outer frontier of that volume; offers most improvement to
objective scores; and does all this using fewest evaluations
(the last item is important when the model is slow to evalu-
ate, or when humans have to audit the conclusions by
reviewing the optimizer’s decisions).

For these evaluation criteria:

� Larger values are better for hypervolume;
� Smaller values are better for number of evaluations

and spread and improvement to objective scores.
To explain why smaller values for spread and improvement

are better, we offer the following notes:

� Deb’s spread calculator [10] includes the term
PN�1

i ðdi � dÞ where di is the distance between adja-

cent solutions and d is the mean of all such values. A

“good” spread makes all the distances equal (di � d),
in which case Deb’s spread measure would reduce
to some minimum value.

� As to improvement, we measure this quality using the
loss calculation of Equation (1) by comparing mean
values of objective scores from instances in (1) a
baseline population prior to optimization to (2) the
population of the final frontier after optimization ter-
minates. Here, less loss is better so smaller values for
improvement are desirable.

Finally, for some models, we offer visualizations of the
raw objective scores, and how they change as the number
of evaluations change. As seen below, sometimes these
“raw” visualizations offer insights that can be missed by
summary statistics such as hypervolume, spread, and
improvement.

6 RESULTS

The results address our two research questions:

� RQ1 (speed). Does GALE terminate faster than other
MOEA tools?

� RQ2 (quality). Does GALE return similar or better
solutions than other MOEA tools?

To answer these questions, we ran GALE, NSGA-II, and
SPEA2 20 times. Exception: for CDA, we did not collect
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data for 20 runs of NSGA-II & SPEA2 (since that model ran
so slow). So, for CDA, the results are averages for 20 runs of
GALE and one run of NSGA-II, SPEA2.

For CDA, runtimes were collected on a NASA Linux
server with a 2.4 GHz Intel Core i7 and 8 GB of memory.
For other models, runtimes were measured with Python
running on a 2 GHz Intel Core i7 MacBook Air, with 8 GB of
1,600 MHz DDR3 memory.

6.1 Exploring RQ1 (Speed)

Fig. 9 shows GALE’s runtimes. Recall that our models
form two groups: the larger models include XOMO,POM,
CDA and the smaller benchmark models include ZDT,
Golinski, Water, Viennet2,Two-Bar Truss, Srivinas. As
seen in that figure, most of the smaller models took two
seconds, or less, to optimize. On the other hand, the
larger models took longer (e.g. CDA needed four
minutes).

Fig. 10 compares GALE’s runtimes to those of NSGA-II
and SPEA2. In that figure, anything with a relative runtime
over 1.0 ran slower than GALE. Note that GALE was faster
than SPEA2 for all models.

For NSGA-II, GALE was a little slower for the smaller
models. However, when for more complex reasoning,
GALE ran much faster. For the POM3 models, GALE ran up
to an order of magnitude faster than both NSGA-II and
SPEA2. As to CDA, GALE ran two orders of magnitude
faster (4 minutes versus 7 hours).

Fig. 11 shows why GALE runs so much faster than
NSGA-II and SPEA2: NSGA-II and SPEA2 needed between
1,000 and 4,000 evaluations for each model while GALE ter-
minated after roughly 30 to 50 evaluations. Across every
model, SPEA2 and NSGA-II needed between 25 to 100 times
more evaluations to optimize (mean value: 55 times more
evaluations).

6.2 Exploring RQ2 (Quality)

6.2.1 CDA

The above results show GALE running faster than other
MOEAs. While this seems a useful result, it would be irrele-
vant if the quality of the solutions found by GALE were
much worse than other MOEAs.

One issue with exploring solution quality with the very
slow models like the CDA model was that NSGA-II and
SPEA2 ran so slow that 20 runs would require nearly an
entire week of CPU. Hence, in this study NSGA-II and
SPEA2 were only run once on CDA. Fig. 12 shows quality
results for the CDA objectives. Note that GALE achieved

Fig. 9. GALE, mean runtime in seconds.

Fig. 10. NSGA-II, SPEA2, runtimes, relative to GALE (mean values over
all runs) e.g., with SPEA2, ZDT1 ran 1.5 times slower than GALE.
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tions, than NSGA-II or SPEA2.

6.2.2 BNH, Golinski, POM3, Srinivas, Two-Bar Truss,

Viennet2, XOMO, and ZDT

Our other models were (much) faster to run. Hence, for the
other models, we can offer a more detailed analysis of the

quality of their solutions including hypervolumes and
spreads seen in 20 repeated runs.

For example, Fig. 13 shows the ratio of mean hypervo-
lumes and spreads found in 20 repeated runs of three opti-
mizers. All numbers are ratios of GALE’s results divided by
either NSGS-II or SPEA2.

The Srivinas, POM3c and ZDT2 results were excluded
from Fig. 13 after an A12 effect size test reported a “small
effect” for the performance deltas between GALE and the
other optimizers. All the other results have the property
that A12 � 0:6; i.e. they are not trivially small differences
(this A12 test was recently endorsed by Arcuri and Briand
at ICSE’11 [59] as an appropriate test to check for trivially
small differences when studying stochastic processes).

Fig. 13 shows that for 5
17
of the smaller benchmark models

(XOMO FL, XOMO GR, and ZDT346) GALE’s hypervo-
lumes were much lower than the other optimizers. On the
other hand, GALE’s hypervolumes are comparable, or
better, for most of the small benchmark models:

� GALE does better than NSGA-II in BNH, POM3a,
POM3b and XOMO O2.

� As seen in Fig. 13, the hypervolumes are very similar
for Two-Bar Truss, Viennet2 and ZDT1.

� Also, as mentioned above the Srivinas and POM3c
and ZDT2 results were only trivially different.

Other quality indicators offer other evidence for the
value of GALE’s reasoning. For example, Fig. 13 shows that
GALE consistently achieves lower and better spreads than
the other optimizers.

As to the improvement, Fig. 14 shows the Equation (1) loss
values between members of the first and final population
generated by different optimizers. In that figure, gray cells
are significantly different (statistically) and better (less is
better in that figure) than the other values in that row (for
statistics, we used Mann-Whitney, 95 percent confidence to

Fig. 11. Number of evaluations in units of 250 (means over all runs),
sorted by max. number of evaluations.

Fig. 12. Execution traces of CDA. X-axis shows number of evaluations
(on a logarithmic scale). Solid, colored lines show best reductions seen
at each x point. The y-axis values show percentages of initial values (so
y ¼ 50 would mean halving the original value). For all these objectives,
lower y-axis values are better.

Fig. 13. Quality results from BNH, Golinski, POM3, Two-Bar Truss, Vien-
net2, XOMO, ZDT. All numbers are ratios of mean hypervolumes and
spreads achieved in 20 repeated runs of GALE, NSGA-II and SPEA2. At
100 percent, the mean hypervolumes and spreads achieved by GALE
are the same as the other optimizers. In this figure, better hypervolumes
are larger while better spreads are smaller.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. X, XXXXX 2015



IE
E
E

P
ro

o
f

test significance, then used A12 to mark as non-gray any dif-
ferences that were just small effects). Note that, in the major-
ity case, GALE’s results are amongst the best for all the
optimizers used in this study.

6.2.3 DTLZ

DTLZ can be configured to include a varying number of
decisions and objectives. Our first DTLZ study used two

objectives and changed the number of decisions from 20 to 80.
The other study used 20 decisions and changed the number of
objectives from 2 to 8. We found runtime issues with comput-
ing hypervolume for models with many objectives so the
second study explored one DTLZ model selected at random
(DTLZ1).

The results of both studies are shown in Figs. 15 and 16.
Note that the differences between all treatments were not
considered “small” effects (via A12).

Fig. 15 shows results from changing the number of deci-
sions. GALE’s spreads are never much worse than the other

Fig. 14. Median scores comparing final frontier values to initial popula-
tions. Calculated using Equation (1). Lower scores are better. Gray cells
are significantly different (statistically) and better than the other values in
that row. In the models column, model name shows objectives and deci-
sions; e.g. d27-o4 means the model has 27 decisions and four
objectives.

Fig. 15. Quality results from DTLZ with (20, 40, 60, 80) decisions and two
objectives. See Fig. 13; i.e. better hypervolumes are larger while better
spreads are smaller.

Fig. 16. DTLZ1; d = 20, o = 2,4,6,8. Each column is one objective f1,f2,...f8. Colors indicate results for different optimizers: GALE results are in RED,
NSGA-II results are in BLUE, and the SPEA2 results are shown in GREEN (and the red,blue, or green lines show the best solution found so far for
each objective for GALE, NSGA-II, and SPEA2 respectively). The x-axis of these plots shows the number of evaluations seen during optimization.
All objective scores are expressed as percentages of the mean objective scores seen in the baseline population before any optimization (this base-
line is shown as 100 percent on the y-axis of all these plots). For these objectives, better scores are smaller.
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optimizers, and often they are much better. As to the hyper-
volumes in Fig. 15:

� A rising “staircase” was observed as the number of
objectives was increased. That is, GALE did better as
the problem grew more complex (i.e. as the number
of decisions increased).

� Sometimes, GALE does much better on hypervo-
lumes as seen in the DTLZ6 results.

Fig. 16 shows results from increasing the number of
objectives. In those results, GALE finds minimal values for
all objectives and does so using orders of magnitude
fewer evaluations than other optimizers.

6.2.4 Summary of Results from Benchmark Models

These results from our smaller Benchmark models all
show similar trends. GALE’s truncated search sometimes
explores a smaller set of solutions than other optimizers.
Hence, as one might have expected, GALE’s hypervolumes
can be smaller than other optimizers. On the other hand,
within the volume it does explore, GALE seems to spread
out more than other optimizers. Since GALE takes more
care to explore its volume of solutions, it can find better sol-
utions (with most improvement to the objective scores) than
other optimizers.

6.3 POM3 and XOMO

Fig. 14 showed a statistical comparison of the improve-
ments achieved between the first and final generations of
GALE, NSGA-II and SPEA2 for the POM3 and XOMO
models. Apart from the statistical analysis, it is also
insightful to look at the changes in the raw objective
scores.

Figs. 17 and 18 show how NSGA-II and GALE evolved
candidates with better objective scores for the XOMO and
POM3 models. The format of these figures is the same as
Fig. 16. That is, the y-vertical-axis denotes changes from the
median of the initial population. Hence, Y ¼ 50 would indi-
cate that we have halved the value of some objective; while
Y > 100 would indicate that optimization failed to improve
this objective.

In both Figs. 17 and 18, all the y-axis values are computed
such that lower values are better. For example, the results in
the column labeled Incompletion Rate of Fig. 18 is the ratio
initial/now values. Hence, if we are now completing a larger
percentage of the requirements, then incompletion is better if
it is less than 100 percent; i.e.

Incompletion% ¼ 100� Completion%:

In terms of advocating for GALE, the Fig. 17 results for the
XOMO model are unequivocal: on all dimensions, for all
runs of the model, GALE finds decisions that lead to lower
(i.e. better) objective scores than NSGA-II. Further, as shown
on the x-axis, GALE does so using far fewer evaluations
than NSGA-II.

As to the Fig. 18 results from POM3, these results are—at
first glance—somewhat surprising. These results seem to
say say that GALE performed worse than NSGA-II
since NSGA-II achieved larger Cost reductions. However,
the Idle results show otherwise: NSGA-II rarely reduced the
Idle time of the developers while GALE found ways to
achieve reductions down to near zero percent Idle.

This observation begs the question: in Fig. 18, how could
NSGA-II reduce cost while keeping developers working at
the same rate (i.e. not decrease developer Idle time)? We
checked the model outputs and realized that NSGA-II’s

Fig. 17. XOMO results: 20 repeats of each MOEA (one row per scenario) from GALE (red) and NSGA-II (blue). Each y-axis represents the percent
objective value relative to that in the initial baseline population, and lower is better. The lines trend across the best (lowest) seen objective thus far.
Each x-axis shows number of evaluations (log scale).
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advice to developers was to complete fewer requirements.
This is an interesting quirk of pricing models in the agile
community—if developers are rewarded for quickly com-
pleting tasks, they will favor the easier ones, leaving the
slower and harder tasks to other developers (who will get
rewarded less). Note that this is not necessarily an error in
the POM3 costing routines—providing that an optimizer
also avoids leaving programmers idle. In this regard,
NSGA-II is far worse than GALE since the latter success-
fully reduces cost as well as the Idle Rate.

6.4 Answers to Research Questions

RQ1 (speed). Does GALE terminate faster than other MOEA
tools?:

Note that for smaller models, GALE was slightly slower
than NSGA-II (but much faster than SPEA2). Also, for large
models like CDA, GALE was much faster. These two effects
result from the relative complexity of (a) model evaluation
versus (b) GALE’s internal clustering of the data. When
model evaluation is very fast, the extra time needed for clus-
tering dominates the runtimes of GALE. However, when
the model evaluation is very long, the time needed for
GALE’s clustering is dwarfed by the evaluation costs.
Hence, GALE is strongly recommended for models that
require long execution times. Also, even though GALE is
slower for smaller models, we would still recommend
GALE for those small models. The delta between absolute
runtimes of GALE and the other optimizers is negligible
(� 3 seconds). Further, GALE requires fewer evaluations
thus reducing the complexity for anyone working to under-
stand the reasoning (e.g. a programmer conducting system
tests on a new model).

RQ2 (quality). Does GALE return similar or better solutions
than other MOEA tools?:

GALE’s solutions are rarely worse than other optimizers,
and sometimes, they are better (and note that the generality
of this claim is explored further in Section 7.1.).

7 THREATS TO VALIDITY

7.1 Optimizer Bias

Our reading of the literature is that the experimentation in
this paper is far larger than what is typically used to certify
new optimizers. Also, we know of no other search-based
SE paper that can achieve GALE’s results using so few
evaluations.

That said, the applicability of GALE to new models is an
open question. We have shown that GALE does better than
NSGA-II and SPEA2, for the models explored above. This is
not to say that we we have not shown that it works better
than all optimizers over all data sets.

There are theoretical reasons to conclude that it is impos-
sible to show that any one optimizer always performs best.
Wolpert and Macready [60] showed in 1997 that no optimiz-
ers necessarily work better than any other for all possible
optimization problems.2

In the end, it is honest to just say that our conclusions are
based on the study that applies a few optimizers to the
22 models explored by GALE in Krall’s Ph.D. thesis [61]
and the 43 models explored later in this paper. For the
record these are:

� Small benchmark problems such as those offered in
the appendix (available in the online supplemental
material, available online);

� Larger software process models (XOMO and POM);

Fig. 18. POM results: 20 repeats of each MOEA (one row per scenario). Same format as Fig. 17’ i.e. GALE results are in red and NSGA-II results are
in blue. Each x-axis shows number of evaluations (log scale). On the y-axis, results are expressed as percentages of the median value seen in the
initial baseline population. For all objectives, lower is better and the solid line shows the best results seen so far on any objective.

2. “The computational cost of finding a solution, averaged over all
problems in the class, is the same for any solution method. No solution
therefore offers a short cut.” [60]
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� Very large physics and cognitive models which sim-
ulate pilot-automation interaction (CDA).

At least for these kinds of models, we would recommend
GALE. Also, harking back to Section 2.1, we would also
strongly endorse GALE for models where:

� The cost of evaluating thousands (or more) candi-
dates is prohibitively high;

� And the task at hand is functional optimization,
which Section 2.1 defined as the optimization of
models without knowledge of their internal structure.

7.2 Sampling Bias

This bias threatens any conclusion based on the analysis of a
finite number of optimization problems. Hence, even
though GALE runs well on the models studied here, there
may well be other models that could defeat GALE.

It is very hard to find a representative sample of models
that covers all kinds of models. Over the last few decades,
there have been many serious attempts to partition models
into different classes, then comment on how those classes
change the complexity of reasoning about those models
[62], [63]. To that end, many repositories now offer instance
generators that re-express their model contents in some
canonical form, them offer a service where they can gener-
ate large numbers of mutations of that form. For example,
the SPLOT web site that stores product line models in con-
junctive normal form (see goo.gl/n9yZTJ). From that site,
researchers can download a tool that auto-generates a large
number of models with different branching factors, number
of leave features, etc. In this way, it is possible to generate
many similar examples of a particular kind of model.
Unfortunately, even when models are as precisely defined
as at SPLOT, the variance in the effort required for their
optimization is very large [64].

For this issue of sampling bias, the best we can do is define
our methods and publicize our tools so that other researchers
can try to repeat our results and, perhaps, point out a previ-
ously unknown bias in our analysis. Hence, all the experi-
ments (except for CDA) in this paper are made available
online (see Section 1.1). Hopefully, other researchers will
emulate ourmethods to repeat, refute, or improve our results.

7.3 Parameter Bias

For this study, we did not do extensive parameter tuning:
NSGA-II and SPEA2 were run using their default settings
while GALE was run using the settings that worked well
on the first model we studied, which were then frozen for
the rest of this study. As documented above, those
parameters were:

� m = 100: population size;
� v =

ffiffiffiffi

m
p

: minimum size leaf clusters;
� � ¼ 3: premature stopping criteria (sets the maxi-

mum allowed generations without any improvement
on any objective).

� D ¼ 1: the “accelerator” that encourages larger
mutations;

� g ¼ 1:5: the “brake” that blocks excessive mutation.
(Note that these were constant across all our studies

except for the DTLZ models which used D ¼ 4).

If this paper was arguing that these parameters were
somehow optimal, then it would be required to present
experiments defending the above settings. However, our
claim is less than that—we only aim to show that with these
settings, GALE does as well than standard MOEA tools. In
future work, we will explore other settings.

8 CONCLUSIONS

This paper has introduced GALE, an evolutionary algo-
rithm that combines active learning with continuous domi-
nation functions and fast spectral learning to find a
response surface model; i.e. a set of approximations to the
Pareto frontier.

We showed for a range of scenarios andmodels that GALE
found solutions equivalent or better than standard methods
(NSGA-II and SPEA2). Also, those solutionswere foundusing
one to two orders ofmagnitude fewer evaluations.

As mentioned above, one repeated result was that
GALE’s truncated search sometimes explores a smaller set
of solutions than other optimizers: hence, it can sometimes
generate lower hypervolumes. However, for the space it
does explore, GALE seems to do a better job than other opti-
mizers. A repeated result in the above is that GALE’s solu-
tions are more spread out than other optimizers so it
can find better solutions (with most improvement to the
objective scores).

We claim that GALE’s superior performance is due to its
better understanding of the shape of the Pareto frontier.
Standard MOEA tools generate too many solutions since
they explore uninformative parts of the solution space.
GALE, on the other hand, can faster find best solutions
across that space since it understands and exploits the shape
of the Pareto frontier.
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