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Summary. Methods based on boundary integral equations are widely used in the numeri-

cal simulation of electromagnetic scattering in the frequency domain. This article examines

a particular class of these methods, namely the Galerkin boundary element approach, from

a theoretical point of view. Emphasis is put on the fundamental differences between acous-

tic and electromagnetic scattering. The derivation of various boundary integral equations is

presented, properties of their discretized counterparts are discussed, and a-priori convergence

estimates for the boundary element solutions are rigorously established.

Key words: Electromagnetic scattering, boundary integral equations, boundary element

methods

1 Introduction

The numerical simulation of electromagnetic scattering aims at computing the inter-

action of electromagnetic waves with a physical body, the so-called scatterer. The

scatterer occupies a bounded domain Ωs in three-dimensional affine space R3. In

general, Ωs will have Lipschitz-continuous boundary Γ := ∂Ωs [41, Section 1.2],

which can be equipped with an exterior unit normal vectorfield n ∈ L∞(Γ ). With
boundary element methods in mind, we do not lose generality by considering only

piecewise smooth Ωs, i.e., curvilinear Lipschitz polyhedra in the parlance of [35].

We only consider linear materials and time-harmonic electromagnetic fields of

angular frequency ω > 0. Excitation is provided by the fields ei,hi of an incident

(plane) wave. Under these circumstances we can derive the following transmission

problem from Maxwell’s equations [31, Ch. 6]:

curvilinear Lipschitz polyhedra in the parlance of [35].
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curl e = −iωµh , curl h = iωεe in Ωs ∪ Ω′ ,

γ+
t e− γ−

t e = −γ+
t ei , γ+

t h− γ−

t h = −γ+
t hi on Γ ,

∫

∂Br

|γth× n + γe|
2

dS → 0 for r → ∞ .
(1)

Here and below, Br denotes a ball of radius r centered in the origin, γtu stands

for the tangential trace u × n, and superscripts − and + tag traces onto Γ from

Ωs and Ω′ := R3 \ Ω, respectively. The vectorfields e = e(x), h = h(x) repre-
sent the unknown complex amplitudes (phasors) of the electric and magnetic field,

respectively. The material parameters µ = µ(x) (permeability tensor), ε = ε(x)

(dielectric tensor), x ∈ R3, are uniformly positive definite and bounded. In fact,

information on the scatterer is completely contained in µ and ε: insideΩs they may

vary, but in the “air region” Ω′ both material parameters agree with the constants

µ0 > 0 and ε0, respectively. At∞ the so-called Silver-Müller radiation conditions

are imposed.

This system of equations can always be reduced to a second order wave equation

in terms either of the electric or the magnetic field, e.g., e satisfies the electric wave

equation

curlµ−1 curl e − ω2εe = 0 in Ωs ∪ Ω′ . (2)

Note that the uniqueness of solutions of the system (1) is a direct consequence of

Rellich’s Lemma [24, 53].

Apart from generic dielectric and even lossy scatterers the following special

situations are of practical interest.

– The scatterer is assumed to be a “perfect conductor” in which no electric field can

exist. This leads to an exterior Dirichlet problem for the electric wave equations

in Ω′, because the transmission conditions in (1) are replaced by the boundary

condition γ+
t e = −γ+

t ei on Γ for the electric field.

– If the scatterer is a thin perfectly conducting sheet, we arrive at a screen problem.

In this caseΩs = ∅ and Γ becomes a compact piecewise smooth two-dimensional

surface with boundary. As before, we demand γte = −γtei on both sides of

Γ . For screen problems Ω′ does not possess a Lipschitz boundary any more.

Moreover, the screen Γ itself might not even be a Lipschitz surface itself, in case

it branches. The resulting mathematical complications are treated in [16].

– If the scatterer is a good conductor with smooth surface, its impact on the fields

can be modelled by impedance boundary conditions (Leontovich boundary con-

ditions) [3, 10, 54]

γ+
t e− η(γ+

t h× n) = η(γ+
t hi × n) − γ+

t ei on Γ .

The surface impedance η is a complex tensor with uniformly positive definite real

part and non-zero imaginary part.
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All these problems have in common that scattered fields on the unbounded domain

Ω′ have to be determined. As the material coefficients are constant in Ω′, bound-

ary integral equation methods are perfectly suited for this job. In addition, they are

posed on the two-dimensional surface Γ , which relieves us from meshing (a part of)

Ω′. In the case of complicated geometries this is a strong point in favour of bound-

ary integral equation methods, compared to volume based schemes with absorbing

boundary conditions (cf. the contribution of T. Hagstrom on absorbing layers and

radiation boundary conditions in this collection) at an artificial cut-off boundary.

Transmission problem for second order PDE, Equ. (1)

Representation formula for solutions involving potentials that take
jumps of Cauchy data as arguments (Sect. 4)

!

"

#

$
+ Trace operators (Sect. 2)

Jump relations for potentials (Sect. 4)

Calderón projector (Sect. 5)

Direct BIE (Sect. 7.1)

Indirect BIE (Sect. 7.2)

(Generalized) Gårding inequality for variational form of BIE
⇒ Existence of continuous solutions by Fredholm argument

!

"

#

$
+ Conforming boundary element (BEM) space

based on a triangulation of the surface (Sect. 8)

Discrete inf-sup-condition
⇒ existence, uniqueness, and asymptotically optimal conver-

gence of the discrete solutions (Sect. 9)

Fig. 1. “Road map” for the derivation and analysis of Galerkin boundary element methods

for electromagnetic scattering (BIE = boundary integral equation)
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In this article we will exclusively deal with the Galerkin method for the dis-

cretization of the boundary integral equations. It is based on variational formula-

tions in suitable trace spaces. This permits us to use powerful tools from functional

analysis. They pave the way for a rigorous and comprehensive convergence theory.

We acknowledge that several other numerical methods based on boundary integral

formulations exist and are widely used alternatives to Galerkin schemes:

– the collocation method, which can be regarded as a special Petrov-Galerkin ap-

proach [42, Sect. 4.4]

– the method of source potentials, which requires a second surface away from Γ ,

on which a source distribution is sought. An example of this method for electro-

magnetic scattering is analysed in [43].

– Nyström methods, which directly tackle the boundary integral equations by

means of a quadrature rule. For an exposition we refer to the contribution of O.

Bruno in this volume and to [49, Ch. 12].

Unfortunately the theoretical understanding of these methods is rudimentary in com-

parison with Galerkin schemes. For this reason we us restrict the presentation to

Galerkin methods.

As far as Galerkin boundary element methods are concerned, there is a fairly

canonical approach to their construction and theoretical examination. This standard

procedure is depicted in the flowchart of Fig. 1. The plan of this paper closely fol-

lows these lines.

We point out that issues of implementation and efficient solution of the resulting

linear systems of equations are not covered by this article. We will also skip quite

a few proofs, which the reader may look up in the research papers that underly

this survey. In particular, we mention [15, 20] as main references for Sect. 2.1, [45,

Ch. 5] for Sect. 3, [31, Ch. 6] and [16, 21] as regards Sects. 4-9, and [44] as source

for Sect. 10.

2 Function Spaces and Traces

In order to write problem (1) or equivalent formulations of it in a mathematically

rigorous way, we need a precise characterization of the function spaces, on which

the equations are posed. This section is devoted to definitions and main properties

of function spaces which are concerned with the rigorous formulation of the prob-

lem (1). The first section concerns spaces on the domain, eitherΩs, Ω
′ = R3\Ωs or

R3, while in the second we define and characterize suitable spaces on the manifold

Γ , which will be of key importance for the definition of integral operators.

2.1 Function spaces in the domain

Let Ω ⊆ R3 be any of the sets Ωs , Ω′ , R3 and define the Fréchet space L2
loc(Ω) of

complex, vector valued, locally square integrable functions u : Ω → C3. We also
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make use of the Sobolev spaces Hs
loc(Ω), s ≥ 0 with the convention H0 ≡ L2

(see, e.g., [1] for definitions). The sub-fix loc is systematically removed when Ω

is bounded: in this case, the Hs(Ω) are Hilbert spaces endowed with the natural
graph-norm ∥u∥

Hs(Ωs) and semi-norm |u|
Hs(Ωs), respectively [1]. Round brackets

will consistently be used to express inner products.

With d a first order differential operator, we define for any s ≥ 0

Hs
loc(d, Ω) := {u ∈ Hs

loc(Ω) : du ∈ Hs
loc(Ω)} , (3)

Hs
loc(d0, Ω) := {u ∈ Hs

loc(Ω) : du = 0} . (4)

When s = 0, we simplify the notation by setting H0 = H . If Ω is bounded,

Hs
loc(d, Ω) is endowedwith the graph norm ∥·∥2

Hs(d,Ω) := ∥·∥2
Hs(Ω)+∥d·∥2

Hs(Ω)

and seminorm | · |2
Hs(d,Ω) := | · |2

Hs(Ω) + |d · |2
Hs(Ω). This defines the spaces

Hs(curl, Ω),Hs(div, Ω) andHs(curl 0, Ω),Hs(div 0, Ω).
¿From Gauß’ theorem we obtain integration by parts formulae for the spaces

H(curl, Ωs), H(div, Ωs). If u , v ∈ C∞(Ωs)
3 and p ∈ C∞(Ωs), then we have

div(up) = div u p +u ·∇p and div(u×v) = curl u ·v− curl v ·u, and, finally,
(u×v) ·n = −(u×n) ·v on the boundary Γ . These imply the following formulae:

∫

Ωs

div(up) =

∫

Ωs

(div u p + u ·∇p) dx =

∫

Γ

pu · ndS , (5)

∫

Ωs

(u · curl v − curl u · v) dx =

∫

Γ

(u× n) · v|Γ dS . (6)

These formulae suggest the definitions of the mappings γt : u -→ u|Γ × n and

γn : u -→ u|Γ · n, u ∈ C∞(Ωs)
3.

The trace theorem for H1(Ω) [40, Theorem 1.5.1.1] shows that the tangential
trace γt : C∞(Ω̄) -→ L∞(Γ ) and the normal trace: γn : C∞(Ω̄) -→ L∞(Γ ) are

continuous as mappings H(curl; Ω) -→ H− 1
2 (Γ ) and H(div;Ω) -→ H− 1

2 (Γ ),

respectively. Here, H− 1
2 (Γ ) and H−

1
2 (Γ ) are the dual space of H

1
2 (Γ ) and

H
1
2 (Γ ) := (H

1
2 (Γ ))3, respectively, with respect to the pivot spaces L2(Γ )/L2(Γ ).

Consequently, the traces can be extended to H(curl; Ω) and H(div;Ω), respec-
tively.

In the sequel we will consider the electric wave equation (2). Now, since the fact

that the field is a locally square-integrable function satisfying curl curl u−u = 0,
we can conclude that curl curl u is locally square-integrable, too. Hence, the space

H loc(curl2, Ω) := {u ∈ H loc(curl; Ω), curl curl u ∈ L2
loc(Ω)}

comes into play as the natural space for the solutions of the electric/magnetic wave

equation with constant coefficients. It will be crucial for meaningful strong formu-

lations of electromagnetic transmission problems.
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2.2 Function spaces on the manifold Γ

Recall that through local charts one defines standard Sobolev spaces on the manifold

Γ = ∂Ωs. We denote them as Hs(Γ ),Hs(Γ ), s ∈ [−1, 1], for scalars and vectors,
respectively. We saw that the tangential trace operator γt possesses an interpretation

as a continuous mapping H(curl; Ω) -→ H−
1
2 (Γ ). This is actually sufficient for

the understanding of homogeneous boundary conditions for fields in the Hilbert

space context. However, in order to imposemeaningful non-homogeneousboundary

conditions or, even more important, to lay the foundations for boundary integral

equations we need to identify a proper trace space “X(Γ )” ofH(curl; Ω),Ω ⊂ R3

a “generic” domain. It has to meet two essential requirements:

1. The inner product onX(Γ ) has an intrinsic definition that does not rely on the
embedding of Γ into R3, i.e,X(Γ ) should have an interpretation as sections of
the tangent bundle to TΓ of Γ .

2. We demand that γt : H(curl; Ω) -→ X(Γ ) is continuous and surjective.

Note that the same issue for the operator γn : H(div;Ω) → H− 1
2 (Γ ) was resolved

a long time ago [39, Sect. I.2.2].

We emphasize that for the discussion of traces it hardly matters, whether Ω

is bounded or not. We assume in this section that Ω is bounded (this allows for

integration on Ω), but with this slight change, the results of this section remain true

also for unbounded domains, in particular, the open complement of Ω.

Smooth boundaries. To illustrate ideas, we first consider a C∞-smooth Γ . Then

the Sobolev spaces Hs(Γ ) of functions and Hs
t(Γ ) of tangential vector-fields,

as well as differential surface operators (we shall use the self evident notation

divΓ , curlΓ , curlΓ , . . . ) can be defined for all s ∈ R using local charts and trans-

formations [24, Sect. 3.1, Appendix] [53, Sect. 2.5.2]. It is a classical result that

smooth functions on Γ are dense in all these spaces. Standard trace and tangential

trace generate continuous and surjective operators γ : Hs+ 1
2 (Ω) -→ Hs(Γ ) and

γt : Hs+ 1
2 (Ω) -→ Hs

t(Γ ) for all s > 0, where

Hs
t(Γ ) ∼= {φ ∈ Hs(Γ ), φ · n = 0} ⊂ L2

t(Γ ) (7)

are Sobolev spaces of tangential vector-fields.We denote byH−s
t (Γ ) the dual space

of Hs
t(Γ ) with L2

t(Γ ) as a pivot space. Angle brackets will designate the duality
pairings. Now, since for any u ∈ H(curl; Ω) we have γtu · n = 0, thus γtu ∈
H

−1/2
t (Γ ). Moreover, using both (5) and (6), we can easily see that

divΓ (γtu) = γn(curl u) ∀u ∈ H(curl; Ω), (8)

which implies divΓ (γtu) ∈ H−1/2(Γ ).
Now, it is natural to define the space

THs(divΓ ; Γ ) := {µ ∈ Hs
t(Γ ) , divΓ µ ∈ Hs(Γ )}. (9)
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The tangential trace γt : H(curl; Ω) -→ TH− 1
2 (divΓ ; Γ ) turns out to be con-

tinuous and surjective [53, Theorem 5.4.2]. For smooth surfaces the issue of tan-

gential traces in H(curl; Ω) was investigated in the papers of L. Paquet [55] and
Alonso/Valli [2]. A survey of the results is also given in the monographs by M.

Cessenat [24, Sect. 2.1] and J.-C. Nédélec [53, Sect. 5.4.1].

Moreover, if we define the anti-symmetric pairing

⟨µ, η⟩τ ,Γ :=

∫

Γ

(µ × n) · η dS , µ, η ∈ L2
t(Γ ) , (10)

then we can rewrite (6) as
∫

Ω

(curl u · v − u · curl v) dx = ⟨γtv, γtu⟩τ ,Γ , (11)

which suggests that the space TH−
1
2 (divΓ ; Γ ) coincides with its dual when using

⟨·, ·⟩τ ,Γ as duality pairing. This statement will be clarified in the case of non-smooth

surfaces at the end of this section.

Piecewise smooth and Lipschitz boundaries. Only recently results have been ob-

tained for non-smooth boundaries. We owe it to the pioneering work of one of the

authors together with P. Ciarlet jr., who first examined piecewise smooth boundaries

in [14, 17, 18]. The issue of traces of H(curl; Ω) for general Lipschitz-domains
was finally settled jointly by one of the authors, M. Costabel and D. Sheen in [20].

These articles and Sect. 2 of [19] supply the main references for the current section.

The challenges faced in the case of piecewise smooth boundaries are highlighted

by simple consideration: even if u ∈ C∞(Ω̄) we do not have γtu ∈ H
1
2 (Γ ),

because the tangential trace is inevitably discontinuous across edges of Γ . The first

consequence of this fact is that γtH
1(Ω)×n ̸⊆ γtH

1(Ω), although the two objects
are both good candidates to be “tangential” vector fields of “regularity” 1

2 . Thus we

have to resort to the following definition:

Definition 1. We introduce the Hilbert space Hs
×(Γ ) := γt(H

s+1/2(Ω)), s ∈
(0, 1), equipped with an inner product that renders γt : Hs+1/2(Ω) -→ Hs

×(Γ )
continuous and surjective. Its dual space with respect to the pairing ⟨·, ·⟩τ ,Γ is de-

noted by H−s
× (Γ ).

The dual space is well defined due to the density ofH
1
2

×(Γ ) ⊂ L2
t(Γ ). The case of

smooth and non-smooth surfaces differ considerably, which we aim to highlight by

different notations:Hs
t(Γ ) for smooth Γ andHs

×(Γ ) for non-smooth Γ .

For curvilinear polyhedra this space can be given a more concrete meaning. To

that end, write Γ 1, . . . , Γ P , P ∈ N, for the finitely many curved polygonal faces of

Γ , i.e. Γ :=
⋃P

j=1 Γ̄ j , meeting at non-degenerate edges. For any tangential vector

µ, we denote by µj the restriction of µ to Γ j . Then, according to [17, Proposi-

tion 1.6] an equivalent norm onH
1
2

×(Γ ) can be expressed as
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∥µ∥2

H

1
2
×

(Γ )
:=

P∑

j=1

∥µj∥2

H

1
2
t

(Γ j)
+

P∑

j=1

∑

i∈Ij

∫

Γ j×Γ i

|µi · νij(x) − µj · νji(y)|2

|x− y|3
dS2 .

where Ij is the set of indices of smooth components abutting Γ j , and νij denotes

the tangential outer normal to Γ i restricted to the edge Γ j ∩ Γ i. Loosely speaking,

H
1
2

×(Γ ) contains vector-fields that are in H
1
2

t (Γ j) for each face Γ j and feature a

“weak normal continuity” enforced by the second term in the definition of the norm.

Using (6) and the same reasoning as for regular surfaces, we have that γt :

H(curl; Ω) → H
− 1

2

× (Γ ) is linear and continuous. In view of (8), we also know that
this operator does not admit a right inverse. In order to repeat the argument sketched

above for regular domains, we need a theory of differential operators on non-smooth

manifolds. We do not want to delve into the details of these developments, and we

refer the reader to [14, 16, 20] for a discussion on the subject. We need only the

following definition: for u ∈ C∞(Ω) set

divΓ γtu :=

{
divj(γtu)j on Γ j ,
(
(γtu)j · νij + (γtu)i · νji

)
δij on Γ j ∩ Γ i;

(12)

where δij is the delta distribution (in local coordinates) whose support is the edge

Γ j ∩ Γ i and divj denotes the 2D-divergence computed on the face Γ j . By density,

this differential operator can be extended to less regular distributions and, in partic-

ular, to functionals in H
− 1

2

× (Γ ). Moreover, (8) holds true in the appropriate sense.
Thus, we set

H
−

1
2

× (divΓ , Γ ) := {µ ∈ H
−

1
2

× (Γ ), divΓ µ ∈ H− 1
2 (Γ )} .

Finally, we denote by curlΓ the operator adjoint to divΓ with respect to the scalar

product ⟨·, ·⟩τ ,Γ , i.e.,

⟨curlΓ q,p⟩τ ,Γ = ⟨divΓp, q⟩ 1
2

,Γ , p ∈ H
− 1

2

× (divΓ , Γ ) , q ∈ H
1
2 (Γ ) . (13)

The following theorem proves that the space H
− 1

2

× (divΓ , Γ ) fits the criterion
announced at the beginning of this section:

Theorem 1. The operator γt : H(curl; Ω) -→ H
− 1

2

× (divΓ , Γ ) is continuous, sur-
jective, and possesses a continuous right inverse.

Proof. See Theorem 4.4 in [18] for the case of Lipschitz polyhedra. The more gen-

eral assertion for Lipschitz domains is shown in [20, Sect. 4].

In the case of Maxwell’s equations the role of Cauchy data is played by γte and

γth. By the fundamental symmetry of electric and magnetic field, H
− 1

2

× (divΓ , Γ )
is the right trace space for both fields. Everything is fitting, because this space is its

own dual, as is confirmed by the following theorem [20, Lemma 5.6]
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Theorem 2 (Self-duality ofH
− 1

2

× (divΓ , Γ )). The pairing ⟨·, ·⟩τ ,Γ can be extended

to a continuous bilinear form onH
− 1

2

× (divΓ , Γ ). With respect to ⟨·, ·⟩τ ,Γ the space

H
−

1
2

× (divΓ , Γ ) becomes its own dual.

When we want to examine the convergence of boundary element methods quan-

titatively, extra smoothness of the functions to be approximated is indispensable.

For any s > 1
2 , we define Hs

−(Γ ) := {u ∈ L2
t(Γ ) : u|Γ j ∈ Hs

t(Γ
j)} and

Hs
×(Γ ) := H

1
2

×(Γ ) ∩ Hs
−(Γ ). The corresponding space of scalar functions will

be denoted by Hs
−(Γ ). To characterize the smoothness we resort to the family of

Hilbert spaces

Hs
×(divΓ , Γ ) :=

⎧
⎪⎨
⎪⎩

H
−

1
2

× (divΓ , Γ ) , if s = − 1
2 ,

{µ ∈ Hs
×(Γ ), divΓ µ ∈ Hs(Γ )} , if − 1

2 < s < 1
2 ,

{µ ∈ Hs
×(Γ ), divΓ µ ∈ Hs

−(Γ )} , if s > 1
2 .

As demonstrated in [16, Appendix 2], these spaces can be obtained through complex

interpolation for − 1
2 ≤ s < 1

2 . From this fact we conclude the following trace

theorem (see [16]).

Theorem 3. The tangential trace mapping γt can be extended to a continuous map-

ping γt : Hs(curl, Ω) -→ H
s− 1

2

× (divΓ , Γ ) for all 0 ≤ s < 1.

3 Maxwell versus Helmholtz

There is a striking similarity between the electric wave equation (2) and the scalar

Helmholtz equation

− div(µ−1 grad p) − ω2εp = 0 , in Ωs ∪ Ω′ . (14)

In fact, the relationship between (2) and (14) runs much deeper than mere appear-

ance: both equations emerge from a single equation for differential forms on R3,

where (14) involves 0-forms, whereas (2) is the version for 1-forms [45, Sect. 2].

Hardly surprising, the theories of boundary integral equation methods for the re-

lated boundary value problems largely rely on the same principles. Nevertheless,

the technical difficulties encountered in the treatment of the electric wave equation

and related boundary element methods are significantly bigger than in the case of

(14).

To appreciate what accounts for the fundamental difference between electro-

magnetism and acoustics, let us temporarily consider the variational source problem

in a bounded Lipschitz domainΩ, cf. [45, Sect. 5]. For (2) this reads: for j ∈ L2(Ω)
find e ∈ H(curl; Ω) such that for all v ∈ H(curl; Ω)

aM (e,v) :=
(
µ−1 curl e, curl v

)
0
− ω2 (εe,v)0 = −iω (j,v)0 , (15)



10 A. Buffa and R. Hiptmair

where (u, v)0 :=
∫

Ω
uv dx. The related problem for the Helmholtz equation and

f ∈ L2(Ω) seeks p ∈ H1(Ω) such that

aH(p, q) := (grad p,grad q)0 − ω2 (p, q)0 = (f, q)0 ∀q ∈ H1(Ω) . (16)

Investigations of the convergence of Galerkin schemes for (16) usually centre on the

concept of coercivity of the underlying bilinear form aH(·, ·), that is, the fact that
the zero order term is a compact perturbation of the second order term, the principal

part, and that a Gårding inequality of the form

|aH(p, p) + cH(p, p)| ≥ C ∥p∥2
H1(Ω) ∀p ∈ H1(Ω) (17)

holds with C > 0 and a bilinear form cH(··), which is compact in H1(Ω). As has
been demonstrated by Schatz [58], cf.also [62], this is the key to a priori asymptotic

error estimates for Galerkin finite element methods. Evidently, we cannot expect an

analogue of (17) from aM . The blame lies with the infinite dimensional kernel of the

curl-operator, which foils compactness of the imbeddingH(curl; Ω) →֒ L2(Ω).
The issue of coercivity can also be discussed from the point of view of “en-

ergies”: both acoustic and electromagnetic scattering are marked by an incessant

conversion of energies. In acoustics, potential and kinetic energy of the fluid are

converted into each other, in electromagnetism the same roles are played by the

electric and magnetic energy. In acoustics the potential energy (with respect to the

bounded control volumeΩ) is a compact perturbation of the kinetic energy1. There-

fore we can clearly single out the Laplacian as the principal part of the Helmholtz

operator. Conversely, in electromagnetism the electric and magnetic energies of a

field are perfectly symmetric. Neither is a compact perturbation of the other. This

means that no part of the electric wave equation is “principal”. Formally speaking,

the operator of the electric wave equation lacks the essential property of strong el-

lipticity. A concise summary is given in Table 1.

Table 1. Acoustics vs. electromagnetics in terms of dominant energies

Acoustic wave equation Electric wave equation

−∆p − κ2p = 0 curl curl e − κ2e = 0

Energies entering the Lagrangian:

Kinetic “energy”
R

Ω
|grad p|2 dx Magnetic “energy”

R

Ω
| curl e|2 dx

Potential “energy”
R

Ω
|p|2 dx Electric “energy”

R

Ω
|e|2 dx

Potential energy a is compact

perturbation of kinetic energy

Symmetry between electric

and magnetic quantities

1 Roles might be reversed depending on the formulation of the acoustic equations.
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The lack of a principal part can be overcome by the splitting of the fields into

two components. One set of components, called the electric, will feature dominant

electric energy. With the other set, the magnetic quantities, the situation is reversed.

This will promote either curl curl or Id to the role of a principal part. As a con-
sequence, on each component the electric wave equation should be amenable to

the same treatment as the Helmholtz equation. In the context of electromagnetic

problems the splitting idea has been pioneered by Nédélec and was first applied to

integral operators in [37]. Since then it has emerged as a very powerful theoreti-

cal tool, see [6, 19, 26] and, in particular, the monograph [53]. Three features of a

splitting prove essential:

1. one subspace in the splitting agrees with the kernel of curl,

2. the compact embedding of the other subspace (complement space) into L2(Ω),
3. the extra smoothness of vector-fields in the complement space.

This makes it possible to opt for the Helmholtz-type regular splitting provided by

the next lemma.

Lemma 1 (Regular decomposition lemma). There exists a continuous projector

R : H(curl; Ω) -→ H1(Ω) ∩ H(div 0;Ω) such that Ker(R) = H(curl 0; Ω).

The proof is given in [45, Sect. 2.4] and makes use of the existence of regular vector

potentials, cf. Lemma 3.5 in [7].

Evidently, the three requirements are satisfied by the decomposition

H(curl; Ω) = X (Ω) ⊕ N (Ω) , X (Ω) := R(H(curl; Ω)) ⊂ H1(Ω) , (18)

where we write N (Ω) := H(curl 0; Ω). The continuity of the projectors guaran-
tees the stability of this decomposition. Now, we can consider the variational prob-

lem (15) with respect to (18): thanks to the compact embedding of H1(Ω) into
L2(Ω) we see that the second term of the bilinear form

(e⊥,v⊥) -→
(
µ−1 curl e⊥, curl v⊥

)
0
− ω2 (εe⊥,v⊥)0 , e⊥,v⊥ ∈ X (Ω) ,

is a compact perturbation of the first: aM is coercive onX (Ω). Coercivity onN (Ω)
is trivial. In addition, terms like

(e0,v⊥) -→ (εe0,v⊥)0 , e0 ∈ N (Ω), v⊥ ∈ X (Ω) ,

which effect the coupling of X (Ω) and N (Ω) with respect to aM , can also be

dismissed as compact perturbations. Using the isomorphism XΩ : H(curl; Ω) -→
H(curl; Ω), defined by XΩ := R − Z, where Z := Id−R is the complementary

projector to R, to “flip signs”, we arrive at

|aM (u, XΩu) − cM (u,u)| ≥ C ∥u∥2
H(curl;Ω) ∀u ∈ H(curl; Ω) , (19)

with some C > 0 and a compact bilinear form cM on H(curl; Ω). The general-
ized Gårding inequality (19) is the crucial assumption in the following fundamental

theorem:

| a M ( u , X Ω u ) − c M ( u , u ) | ≥ C ∥ u ∥ 2H ( c u r l ; Ω ) ∀ u ∈ H ( c u r l ; Ω ) , ( 1 9 )

XΩ := R − Z

R : H(curl; Ω) → H1(Ω) ∩ H(div 0; Ω)
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Theorem 4. If a bilinear form a : V × V -→ C on a reflexive Banach space V
satisfies

|a(u, XΩu) − c(u, u)| ≥ C ∥u∥2
V ∀u ∈ V ,

with C > 0, a compact bilinear form c : V × V -→ C, and an isomorphism

XΩ : V -→ V , then the associated operatorA : V -→ V ′ is Fredholm with index 0.

In particular, for a bilinear formmeeting the requirements of the theorem, injectivity

of the associated operator implies its surjectivity by the Fredholm alternative [11].

It is hardly surprising that the splitting idea also plays a pivotal role in the anal-

ysis of boundary integral equations arising from the electric wave equation. Here, it

is applied to the trace spaceH
−

1
2

× (divΓ , Γ ):

Lemma 2. There exists a projection RΓ : H
− 1

2

× (divΓ , Γ ) -→ H
1
2

×(Γ ) such that

Ker(RΓ ) = H
− 1

2

× (divΓ 0, Γ ) and

∥RΓ µ∥
H

1
2
×

(Γ )
≤ C∥divΓ µ∥

H−
1
2 (Γ )

. (20)

Proof. Pick λ ∈ H
− 1

2

× (divΓ , Γ ) and set µ := divΓ λ ∈ H−
1
2 (Γ ). Solve the Neu-

mann problem

w ∈ H1(Ωs)/R : ∆w = 0 in Ωs , γ−
n gradw = µ on Γ .

We find that v := gradw ∈ H(div 0;Ωs). Using Lemma 3.5 in [7], there exists
w ∈ H1(Ωs) such that v = curlw, div w = 0. This defines an operator J :

H− 1
2 (Γ ) -→ H1(Ωs) by Jµ := w. Its continuity is elementary

∥Jµ∥
H1(Ωs) ≤ C ∥v∥

L2(Ωs) ≤ C ∥µ∥
H−

1
2 (Γ )

,

and inherited by the mapping RΓ := γt ◦ J ◦ divΓ : H
−

1
2

× (divΓ , Γ ) -→ H
1
2

×(Γ ).
Moreover, we see that divΓ RΓ λ = γ−

n curl Lv = γ−
n v = divΓ λ . ⊓⊔

As before, the projector complementary to RΓ will be denoted by ZΓ . We arrive at

a stable decomposition of the trace space

H
− 1

2

× (divΓ , Γ ) := X (Γ ) ⊕ N (Γ ) , (21)

where X (Γ ) := RΓ (H
− 1

2

× (divΓ , Γ )) and N (Γ ) = H
− 1

2

× (divΓ 0, Γ ). Both com-

ponents inherit the norm ofH
−

1
2

× (divΓ , Γ ).

Corollary 1. The embeddingX (Γ ) →֒ L2
t(Γ ) is compact.

RΓ : H× 2 (divΓ , Γ ) → H×2 (Γ

The embedding X (Γ ) ֒→ L2t (Γ ) is compact.
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It is illuminating to give a physical interpretation of the decomposition. First, view

H
−

1
2

× (divΓ , Γ ) as a space of tangential components of electric fields. Then, we en-
counter traces of “static” irrotational fields in N (Γ ), whereas traces of “dynamic”
field components, whose curls do not vanish, are associated with X (Γ ). By Fara-
day’s law the latter are linked with magnetic fields. All in all, we can attribute an

“electric nature” to the space N (Γ ), and a “magnetic nature” to X (Γ ). The argu-
ments are simply reversedwhen consideringmagnetic traces γNe, because given the

absence of source currents the magnetic field is irrotational in the stationary case.

This means that components of γNe that belong toN (Γ ) are “magnetic”, whereas
components in X (Γ ) are “electric”, cf. Table 2.

Table 2. Physical nature of components occurring in the splitting of fields and traces

Field Space
Magnetic

components

Electric

components

e H(curl; Ω) X (Ω) N (Ω)

γte H
−

1
2

×
(divΓ , Γ ) X (Γ ) N (Γ )

γNe H
−

1
2

×
(divΓ , Γ ) N (Γ ) X (Γ )

4 Representation Formulas

In this section we start from the electric wave equation (2) in the air regionΩ′, where

µ and ε can be regarded as scalar constants µ0 and ε0. Then, the partial differential

equation (2) can be recast as

curl curl e− κ2e = 0 . (22)

The constant κ := ω
√

ε0µ0 > 0 is called the wave number, because κ/2π tells

us the number of wavelengths per unit length. Henceforth, κ will stand for a fixed

positive wave number2.

Definition 2. A distribution e ∈ H loc(curl2, Ω) is called a Maxwell solution on
some generic domain Ω, if it satisfies (22) in Ω, and the Silver–Müller radiation

conditions at∞, if Ω is not bounded.

It is our objective to derive a boundary integral representation formula for Maxwell

solutions. In order to handle transmission conditions in the calculus of distributions,

we introduce currents, that is, distributions supported on Γ . For a function ϕ ∈
H− 1

2 (Γ ), a tangential vector-field ξ ∈ H−1
× (Γ ), and test functions Φ ∈ D(R3),

Φ ∈ D(R3) := (D(R3))3, we define

2 We point out that all considerations remain true if Imκ > 0 (lossy media)
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(ϕδΓ )(Φ) := ⟨ϕ, γΦ⟩ 1
2
,Γ , (ξδΓ )(Φ) := ⟨ξ, γtΦ⟩τ ,Γ = ⟨ξ, γΦ⟩

−1,Γ .

Recall the notation used in the introduction: the superscripts− and+ tag traces onto

Γ from Ωs and Ω′ respectively. Now, in the sense of distributions, integration by

parts yields, cf. [16, Section 2.3],

for u ∈ H loc(div;Ωs ∪ Ω′) : div u = div u|Ωs∪Ω′ + [γn]Γ (u) δΓ ,
for u ∈ H loc(curl; Ωs ∪ Ω′) : curl u = curl u|Ωs∪Ω′ − [γt]Γ (u) δΓ ,

for ξ ∈ H
− 1

2

× (divΓ , Γ ) : div(ξ δΓ ) = (divΓ ξ) δΓ .

For the sake of brevity, we have used the jump operator [·]Γ defined by [γ]Γ :=
γ+ −γ− for some trace γ onto Γ . For notational simplicity it is also useful to resort

to the average {γ}Γ = 1
2 (γ++γ−). Both operators can only be applied to functions

defined in Ωs ∪ Ω′. Moreover, we set γ±
N := κ−1γ±

t ◦ curl.

Now, let u be a Maxwell solution in Ωs ∪ Ω′, which, of course, satisfies

div u = 0 in Ωs ∪ Ω′. Then the following identity holds in the sense of distribu-

tions,

− ∆u − κ2u = curl curl u− grad div u− κ2u

= curl
(
curl u|Ωs∪Ω′ − [γt]Γ (u) δΓ

)
− grad ([γn]Γ (u) δΓ ) − κ2u

= curl curl u|Ωs∪Ω′ − κ [γN ]Γ (u) δΓ − curl([γt]Γ (u) δΓ )−
− grad([γn]Γ (u) δΓ ) − κ2u

= −κ [γN ]Γ (u) δΓ − curl([γt]Γ (u) δΓ ) − grad([γn]Γ (u) δΓ ) .

As far as the differential operator curl curl−κ2 Id is concerned, the integration by
parts formula (11) suggests the distinction betweenDirichlet trace γt and Neumann

trace γN . The trace γN can be labelled “magnetic”, because it actually retrieves

the tangential trace of the magnetic field solution. It has much in common with the

Neumann trace operator γn ◦ grad for the Helmholtz equation: for instance, it fails

to be defined onH loc(curl; Ωs ∪ Ω′), but the weak definition

− 1

κ

∫

Ω

curl u · curl v − curl curl u · v dx = ⟨γNu, γtv⟩τ ,Γ , (23)

v ∈ D(R3), renders it meaningful onH loc(curl2, Ωs ∪ Ω′) [46, Lemma 3.3]:

Lemma 3. The trace γN furnishes a continuous and surjective mapping γN :

H loc(curl2, Ω′ ∪ Ωs) -→ H
−

1
2

× (divΓ , Γ ).

Definition 3. Pairs (ζ, µ) ∈ H
− 1

2

× (divΓ , Γ ) × H
− 1

2

× (divΓ , Γ ) are called inte-
rior/exterior Maxwell Cauchy data, if there is a Maxwell solution u in Ωs and Ω′,

respectively, such that ζ = γ±
t u, µ = γ±

Nu.

We know from [31, Theorem 6.7] that the Cartesian components of Maxwell

solutions will satisfy the Sommerfeld radiation condition and the scalar Helmholtz
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equation in Ωs ∪ Ω′. Using the results from [52, Ch. 9], we can apply component-

wise convolution with the outgoing fundamental solution of the Helmholtz equation

Eκ(x) := exp(iκ|x|)/4π|x|, x ̸= 0, and we find that almost everywhere in R
3 the

components of u = (u1, u2, u3)
T satisfy

uj(x) = − κ([γN ]Γ (u) δΓ )(Eκ(x − ·)ej) − ([γt]Γ (u) δΓ )(curl(Eκ(x − ·)ej))+

+ ([γn]Γ (u) δΓ )(div(Eκ(x − ·)ej)) , j = 1, 2, 3 .

Using gradx Eκ(x−y) = − grady Eκ(x−y), we arrive at the famous Stratton–
Chu representation formula for the electric field in Ωs ∪ Ω′ [60], cf.[31, Sect. 6.2],

[53, Sect. 5.5], [24, Ch. 3, Sect. 1.3.2],

u = −κΨκ
V([γN ]Γ (u)) − curlΨκ

V([γt]Γ (u)) − gradΨκ
V ([γn]Γ (u)) . (24)

Here, Ψκ
V(·) and Ψκ

V (·) are potentials, that is, mappings of boundary data to ana-
lytic functions defined everywhere off the boundary. In detail, Ψκ

V and Ψκ
V are the

scalar and vectorial single layer potential, whose integral representation is given by

(x ̸∈ Γ )

Ψκ
V (φ)(x) :=

∫

Γ

φ(y)Eκ(x − y) dS(y), Ψ κ
V(µ)(x) :=

∫

Γ

µ(y)Eκ(x − y) dS(y).

A simplification of (24) is possible by observing that, by (8)

divΓ (γ±
Nu) = κ−1γ±

n (curl curl u) = κ(γ±
n u) in H− 1

2 (Γ ) . (25)

This enables us to get rid of the normal components trace in (24). We end up with

the pointwise identity

u(x) = −Ψκ
DL([γt]Γ (u))(x) − Ψκ

SL([γN ]Γ (u))(x) , x ∈ Ωs ∪ Ω′ , (26)

where we have introduced the (electric)Maxwell single layer potential according to

Ψκ
SL(µ)(x) := κΨκ

V(µ)(x) +
1

κ
gradx Ψκ

V (divΓ µ)(x) , x ̸∈ Γ , (27)

and the (electric)Maxwell double layer potential

Ψκ
DL(µ)(x) := curlx Ψκ

V(µ)(x) , x ̸∈ Γ . (28)

We have chosen these names in order to underscore the similarity of (26) with the

representation formula for solutions of the Helmholtz equation [31, Sect. 3.1], [52,

Ch. 9].

Next, we aim to fit the potentials into the functional framework devised in

Sect. 2. To this end we have to show that the potentials Ψκ
DL and Ψκ

SL are continu-

ous operators between the canonical function spaces for traces and the appropriate

function spaces for Maxwell solutions. An important result from [19] and [33] will

be useful

u=−κΨκV([γN]Γ(u))−curlΨκV([γt]Γ(u))−gradΨVκ([γn]Γ(u)).



16 A. Buffa and R. Hiptmair

Lemma 4. The single layer potentialsΨκ
V andΨκ

V give rise to continuousmappings

Ψκ
V : H− 1

2
+s(Γ ) -→ H1+s

loc (R3) , Ψκ
V : H

−
1
2
+s

× (Γ ) -→ H1+s
loc (R3) ,

for any s, − 1
2 < s ≤ 1

2 .

¿From this lemma we conclude that both Ψκ
SL and Ψκ

DL are well defined for

arguments in the trace space H
− 1

2

× (divΓ , Γ ). To gain deeper insights into the con-
tinuity property of the Maxwell single layer and double layer potentials, we have to

make some preparations, cf. Lemma 2.3 in [51].

Lemma 5. Forµ ∈ H
− 1

2

× (divΓ , Γ )we have div Ψκ
V(µ) = Ψκ

V (divΓ µ) inL2(R3).

By definition and curl ◦ grad = 0, it is immediate that curl ◦Ψκ
SL = κΨκ

DL

on H
−

1
2

× (divΓ , Γ ). On the other hand, using the previous lemma, we get for µ ∈
H

− 1
2

× (divΓ , Γ ),

curlΨκ
DL(µ) = curl curlΨκ

V(µ) = (−∆ + grad div)Ψκ
V(µ)

= κ2Ψκ
V(µ) + gradΨκ

V (divΓ µ) = κΨκ
SL(µ) .

Here, we have used −∆Ψκ
V(µ) = κ2Ψκ

V(µ). Altogether, both potentials are

Maxwell solutions, that is, for µ ∈ H
− 1

2

× (divΓ , Γ ) they fulfil

(curl curl−κ2 Id)Ψκ
SL(µ) = 0 , (curl curl−κ2 Id)Ψκ

DL(µ) = 0 , (29)

off the boundary Γ in a pointwise sense, and, globally, in L2
loc(R

3). In addition,
they comply with the Silver–Müller radiation conditions. From these relationships

and Lemma 4 we infer the desired continuity properties.

Theorem 5. The following mappings are continuous

Ψκ
SL : H

− 1
2

× (divΓ , Γ ) -→ H loc(curl
2, Ωs ∪ Ω′) ∩ H loc(div 0;Ωs ∪ Ω′) ,

Ψκ
DL : H

− 1
2

× (divΓ , Γ ) -→ H loc(curl2, Ωs ∪ Ω′) ∩ H loc(div 0;Ωs ∪ Ω′) .

Now, we are in a position to extract the desired identities from (26).

Theorem 6 (Stratton-Chu representation formula). Any Maxwell solution u in

Ωs possesses the representation

u = Ψκ
DL(γ−

t u) + Ψκ
SL(γ−

Nu) in H(curl2, Ωs) .

If u is a Maxwell solution inΩ′ that satisfies the Silver–Müller radiation conditions,

it can be written as

u = −Ψκ
DL(γ+

t u) − Ψκ
SL(γ+

Nu) in H loc(curl2, Ω′) .
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5 Boundary Integral Operators

By Lemma 3, Theorem 5 provides the foundation for applying both the Dirichlet

trace γt and the Neumann trace γN to the potentials Ψκ
SL and Ψκ

DL. This is the

canonical way of constructing boundary integral operators [52, Chapter 7]. In the

case of second order elliptic problems, four different boundary integral operators

arise. Yet, due to the fact that curl ◦Ψκ
SL = κ Ψκ

DL , curl ◦Ψκ
DL = κ Ψκ

SL implies

γ±
NΨκ

SL = γ±
t Ψκ

DL , γ±
NΨκ

DL = γ±
t Ψκ

SL , (30)

two different boundary integral operators are sufficient for electromagnetic scatter-

ing: we obtain the boundary integral operators

Sκ := {γt}Γ ◦ Ψκ
SL = {γN}Γ ◦ Ψκ

DL , Cκ := {γt}Γ ◦ Ψκ
DL = {γN}Γ ◦ Ψκ

SL .

The continuity of Sκ and Cκ is immediate from Theorem 5, in conjunction with

Lemma 3 and Theorem 1.

Corollary 2. The operators Sκ,Cκ : H
− 1

2

× (divΓ , Γ ) -→ H
− 1

2

× (divΓ , Γ ) are con-
tinuous.

As auxiliary boundary integral operators, which supply building blocks for Sκ and

Cκ, we introduce the two single layer boundary integral operators

Vκ := {γ}Γ ◦ Ψκ
V , Vκ := {γt}Γ ◦ Ψκ

V .

By combining Lemma 4 with continuity properties of the traces, we obtain the fol-

lowing result

Corollary 3. The boundary integral operators Vκ : H−
1
2 (Γ ) -→ H

1
2 (Γ ) and Vκ :

H
− 1

2

× (Γ ) -→ H
1
2

×(Γ ) are continuous.

By inspecting the potential Ψκ
SL, and recalling γt ◦ grad = curlΓ ◦ γ, it is clear

that we can write

Sκ = κVκ + κ−1curlΓ ◦ Vκ ◦ divΓ . (31)

For the sake of implementation, more concrete boundary integral representations of

the boundary integral operators are indispensable. It takes subtle theory to establish

them, but here we only cite the result. A comprehensive treatment for second-order

elliptic operators is given in [52, Section 7.2]. As variational formulations are our

primary concern, expressions for the bilinear forms associated with Sκ andCκ will

be given: for tangential vectorfields µ, ξ ∈ L∞(Γ ) we obtain

⟨Sκµ, ξ⟩τ ,Γ = − κ

∫

Γ

∫

Γ

Eκ(x − y)µ(y) · ξ(x) dS(y,x)+ (32)

+
1

κ

∫

Γ

∫

Γ

Eκ(x − y) divΓ µ(y) divΓ ξ(x) dS(y,x) ,

⟨Cκµ, ξ⟩τ ,Γ = −
∫

Γ

∫

Γ

gradx Eκ(x − y) · (µ(y) × ξ(x)) dS(y,x) (33)

Sκ :={γt}Γ ◦ΨκSL ={γN}Γ ◦ΨκDL

Cκ :={γt}Γ ◦ΨκDL ={γN}Γ ◦ΨκSL

Vκ:={γ}Γ◦ΨVκ

Vκ:={γt}Γ◦ΨκV.

Sκ =κVκ +κ−1curlΓ ◦Vκ ◦divΓ .

⟨Sκμ,ξ⟩τ,Γ =−κ Eκ(x−y)μ(y)·ξ(x)dS(y,x)+ (32) ΓΓ +1 Eκ(x−y)divΓμ(y)divΓξ(x)dS(y,x), κ ΓΓ ⟨Cκμ,ξ⟩τ,Γ =− gradx Eκ(x−y)·(μ(y)×ξ(x))dS(y,x) (33) ΓΓ
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The first integral arises from (31) through integration by parts. Its kernelEκ(x−y)
is weakly singular, because Eκ(x − y) = O(|x − x|−1) for y → x. Thus, the

integral makes sense as an improper integral. The second integral has a strongly

singular kernel behaving like O(|x − y|−2) for y → x, and has to be read as a

Cauchy principal value.

A fundamental tool for deriving boundary integral equations are jump relations

describing the behavior of the potentials when crossing Γ . For the Maxwell sin-

gle and double layer potential they closely resemble those for conventional single

and double layer potentials for second order elliptic operators [52, Chapter 6]. For

smooth domains these results are contained in [31, Thm. 6.11], [53, Thm. 5.5.1],

and [57].

Theorem 7 (Jump relations). The interior and exterior Dirichlet- and Neumann-

traces of the potentials Ψκ
SL and Ψκ

DL are well defined and, on H
− 1

2

× (divΓ , Γ ),
satisfy

[γt]Γ ◦ Ψκ
SL = [γN ]Γ ◦ Ψκ

DL = 0 , [γN ]Γ ◦ Ψκ
SL = [γt]Γ ◦ Ψκ

DL = − Id .

Proof. The jump condition for the Dirichlet trace of the single layer potential is

immediate from its regularity asserted in Lemma 4. By (30) we get the continuity

of the Neumann trace Ψκ
DL. Then, the jump of the Neumann trace of Ψκ

SL can

be determined from (26). Finally, by (30), this also settles the contention for the

Dirichlet trace of the double layer potential. ⊓⊔
Now, with the jump relations in mind, let us apply the exterior and interior trace

operators to the representation formulae of Theorem 6:

γ−

t u = 1
2γ−

t u+Cκ(γ−

t u)+Sκ(γ−

Nu) , γ+
t u = 1

2γ+
t u−Cκ(γ+

t u)−Sκ(γ+
Nu) ,

γ−

Nu = Sκ(γ−

t u)+ 1
2γ−

Nu+Cκ(γ−

Nu), γ+
Nu=−Sκ(γ+

t u)+ 1
2γ+

Nu−Cκ(γ+
Nu).

A concise way to write these formulae relies on the Calderon projectors, cf. [21,

Section 3.3], [37, Formula (29)], and [53, Sect. 5.5],

P
−
κ :=

(
1
2 Id +Cκ Sκ

Sκ
1
2 Id +Cκ

)
, P

+
κ :=

(
1
2 Id−Cκ −Sκ

−Sκ
1
2 Id−Cκ

)
. (34)

By Theorem 6 the operators P−
κ , P+

κ : H
− 1

2

× (divΓ , Γ )2 -→ H
− 1

2

× (divΓ , Γ )2 are
projectors, that is,

P
−
κ ◦ P

−
κ = P

−
κ , P

+
κ ◦ P

+
κ = P

+
κ . (35)

Also note that P−
κ + P+

κ = Id and that the range of P+
κ coincides with the kernel of

P−
κ and vice versa. The next result promotes Calderon projectors to a pivotal role in

the derivation of boundary integral equations, cf. [61, Thm. 3.7].

Theorem 8. The pair of functions (ζ, µ) ∈ H
− 1

2

× (divΓ , Γ ) × H
− 1

2

× (divΓ , Γ ) are
suitable interior or exterior Maxwell Cauchy data, if and only if they lie in the kernel

of P+
κ or P−

κ , respectively.
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For the subsequent analysis it is convenient to examine the operator

Aκ :=

(
Cκ Sκ

Sκ Cκ

)
: H

− 1
2

× (divΓ , Γ )2 -→ H
− 1

2

× (divΓ , Γ )2 .

It is linked with the Calderon projectors by P−
κ = 1

2 Id +Aκ, P
+
κ = 1

2 Id−Aκ.

The operators Cκ enjoy a hidden symmetry, made precise in the next lemma,

see [21, Thm. 3.9].

Lemma 6. We have ⟨Cκζ, µ⟩τ ,Γ = ⟨Cκµ, ζ⟩τ ,Γ for all ζ, µ ∈ H
− 1

2

× (divΓ , Γ ).

6 Compactness and Coercivity

The ultimate goal is to establish the coercivity of bilinear forms occuring in weak

formulations of boundary integral equations. To achieve this we need to identify

compact perturbations, cf. Lemma 3.2 of [47] and the proof of Thm. 3.12 in [21].

Lemma 7. The integral operators δVκ := Vκ − V0 : H−
1
2 (Γ ) -→ H

1
2 (Γ ) and

δVκ := Vκ − V0 : H
− 1

2

× (Γ ) -→ H
1
2

×(Γ ) are compact.

Slightly abusing notation, we define

S0 := κV0 + κ−1curlΓ ◦ V0 ◦ divΓ . (36)

¿From Lemma 7 and (31) we find that switching from Sκ to S0 amounts to a com-

pact perturbation.

Corollary 4. The operator Sκ − S0 : H
−

1
2

× (divΓ , Γ ) -→ H
−

1
2

× (divΓ , Γ ) is com-
pact.

The significance of this can be appreciated in light of the following result, cf. Thm. 3

in [36, Vol. IV, Ch. XI, § 2], and Thm. 6.2 in [46].

Lemma 8 (Ellipticity of single layer potentials). The operators V0 and V0 are

continuous, selfadjoint with respect to the bilinear pairings ⟨·, ·⟩ 1
2
,Γ and ⟨·, ·⟩τ ,Γ ,

respectively, and satisfy

⟨µ, V0µ⟩ 1
2
,Γ ≥ C ∥µ∥2

H−
1
2 (Γ )

∀µ ∈ H− 1
2 (Γ ) ,

⟨µ,V0µ⟩τ ,Γ ≥ C ∥µ∥2

H
−

1
2

×
(Γ )

∀µ ∈ H
− 1

2

× (divΓ 0, Γ ) .

with constants C > 0 only depending on Γ .

Again, it proves highly instructive to remember facts about boundary integral

operators related to the Helmholtz equation: Table 3 lists similarities and differ-

ences of the situations faced in the case of the Helmholtz equation and Maxwell’s

equations, respectively. The lack of ellipticity of the off-diagonal operators in Aκ

⟨Cκζ,μ⟩τ,Γ =⟨Cκμ,ζ⟩τ,Γ

CS −1 −1 Aκ := κ κ :H×2(divΓ,Γ)2 →H×2(divΓ,Γ)2 . Sκ Cκ
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Table 3. Comparison of analytical aspects of the acoustic and electromagnetic boundary inte-

gral operators, supplementing Table 1. The symbolsKκ andDκ denote the double layer inte-

gral operator, and the hypersingular integral operator for the Helmholtz operator−∆−κ2 Id,
respectively. Details can be found in [52, Ch. 9].

Helmholtz equation Maxwell equations

−∆p − κ2p = 0 curl curl e − κ2e = 0

Boundary integral operators:

Dirichlet trace γp ∈ H
1
2 (Γ ) Dirichlet trace γte ∈ H

−
1
2

×
(divΓ , Γ )

Neumann trace 1
κ
γn(grad p) ∈ H−

1
2 (Γ ) Neumann trace 1

κ
γt(curl e) ∈ H

−
1
2

×
(divΓ , Γ )

Aκ =

„

Kκ Vκ

Dκ K̃κ

«

Aκ =

„

Cκ Sκ

Sκ Cκ

«

The issue of coercivity

Aκ =

„

Kκ V0

D0 K∗

κ

«

+ compact pert. Aκ =

„

Cκ S0

S0 Cκ

«

+ compact pert.

Ellipticity on trace spaces:

⟨ϕ, V0ϕ⟩ 1
2

,Γ ≥ C ∥ϕ∥2

H
−

1
2 (Γ )

,

⟨D0ϕ, ϕ⟩ 1
2

,Γ ≥ C ∥ϕ∥2

H
1
2 (Γ )/C

.

No ellipticity, because S0 indefinite:

S0 = V0 + 1
κ
curlΓ ◦ V0 ◦ divΓ .

Yet, individual terms are (semi)-definite.

has the same roots as the absence of a direct compact embedding in the case of the

Maxwell source problem, cf. Section 3.

The roots of the difficulties being the same as for the Maxwell source problem,

the same ideas should provide remedies: we have to employ stable splittings that

target the trace spaceH
− 1

2

× (divΓ , Γ ) and decompose it into the kernel of divΓ and

a suitable more regular complement. The decomposition (21) introduced in Sect. 3

meets all the requirements and will be used below.

Please recall the discussion in Sect. 3 of the coercivity of the bilinear form as-

sociated with the Maxwell source problem. The same considerations will now be

applied to the bilinear form spawned by the boundary integral operator Sκ through

(ξ, µ) -→ ⟨Sκµ, ξ⟩τ ,Γ . To begin with, the “lower order” term Vκ in the operator

Sκ, cf. Formula (31), becomes compact on the “regular component” X (Γ ) of the
decomposition (21).
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Lemma 9. The bilinear forms ⟨Vκ·, ·⟩τ ,Γ : X (Γ )×H
− 1

2

× (Γ ) -→ C and ⟨Vκ·, ·⟩τ ,Γ :

H
− 1

2

× (Γ ) × X (Γ ) -→ C are compact.

Proof. SinceVκ : H
−

1
2

× (Γ ) -→ H
1
2

×(Γ ) is continuous according to Theorem 3, the

compact embeddingX (Γ ) →֒ H
− 1

2

× (Γ ) (Corollary 1) gives the result. ⊓⊔

We can even establish a generalized Gårding inequality for S0 on Lipschitz bound-

aries: looking at the formula (31) and, in particular, the bilinear form

⟨S0µ, ξ⟩τ ,Γ =
1

κ
⟨divΓ µ, V0divΓ µ⟩ 1

2
,Γ − κ ⟨µ,V0ξ⟩τ ,Γ , (37)

we realize a striking similarity to the bilinear form of the Maxwell source problem

(15). Thus, it is natural to employ the splitting idea of Sect. 3 based on (21) and the

isomorphism

XΓ = RΓ − ZΓ : H
− 1

2

× (divΓ , Γ ) -→ H
− 1

2

× (divΓ , Γ ) . (38)

Lemma 10 (Generalized Gårding inequality for Sκ). There is a compact bilinear

form cΓ : H
− 1

2

× (divΓ , Γ )×H
− 1

2

× (divΓ , Γ ) -→ C and a constantCG > 0 such that

| (Sκµ, XΓ µ)τ + cΓ (µ, µ)| ≥ CG ∥µ∥2

H
−

1
2

×
(divΓ ,Γ )

∀µ ∈ H
−

1
2

× (divΓ , Γ ) .

Proof. We set

cΓ (µ, ξ) := −
〈
VκRΓ µ, RΓ ξ

〉
τ ,Γ

+
〈
VκRΓ µ, ZΓ ξ

〉
τ ,Γ

−
〈
VκZΓ µ, RΓ ξ

〉
τ ,Γ

,

which is compact by Lemma 9. Noting that

〈
S0µ, XΓ ξ

〉
τ ,Γ

=
1

κ

〈
V0divΓ RΓ µ, divΓ RΓ ξ

〉
0;Γ

+κ
〈
ZΓ µ,V0Z

Γ ξ
〉

τ ,Γ
−cΓ (µ, ξ),

we invoke Lemma 8 and the stability of the decomposition to finish the proof. ⊓⊔

In the case of smooth domains this result is sufficient to obtain coercivity of Aκ,

because for smooth boundaries the singularity of the kernel of Cκ partly cancels.

This is a well-known effect in the case of double layer potentials for second order

elliptic operators. ForCκ the observation was made by Nédélec [53, Section 5.5].

Lemma 11. If Γ is smooth, that is, of classC∞, thenCκ is continuous as an opera-

tor Cκ : Hs
t(Γ ) -→ Hs+1

t (Γ ) and Cκ : THs− 1
2 (divΓ ; Γ ) -→ THs+ 1

2 (divΓ ; Γ )
for all s ∈ R.

Proof. The first part of the proof boils down to manipulations of (33) using the

product rule for curlx and the identity (b × c) × a = c(a · b) − b(a · c). For
µ, ξ ∈ L∞(Γ ) ∩ TH (divΓ ; Γ ) we end up with

⟨S0μ,ξ⟩τ,Γ = 1 ⟨divΓμ,V0divΓμ⟩1,Γ −κ⟨μ,V0ξ⟩τ,Γ ,
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⟨Cκµ, ξ⟩τ ,Γ =

= −
∫

Γ

∫

Γ

((µ(y) × gradx Eκ(x − y)) × n(x)) · (ξ(x) × n(x)) dS(y,x)

=−
∫

Γ

∫

Γ

µ(y)(gradx Eκ(x − y) · n(x))· (ξ(x)×n(x)) dS(y,x)+

+

∫

Γ

∫

Γ

gradx Eκ(x − y) (µ(y) · (n(x)−n(y)))·(ξ(x)×n(x)) dS(y,x) .

According to [25, Section 6.4] we have |n(x) − n(y)| = O(|x − y|) for smooth
surfaces. Thus, a closer scrutiny of the formulae shows that

gradx Eκ(x − y) · n(x) ≃ gradx Eκ(x − y)(n(x) − n(y))T ≃ O(|x − y|−1) ,

for x → y. Both kernels are weakly singular, as is the kernel of Sκ. So the theory

of pseudo-differential operators [25, Ch. 4.4] shows that Cκ is continuous as an

operator from Hs
t(Γ ) -→ Hs+1

t (Γ ), s ∈ R (Note that on a smooth boundary the

infinite scale of Sobolev spaces is available).

Next, pick a smooth tangential vector-field µ, use Lemma 5 and apply simple

manipulations based on vector identities

divΓ Cκ(µ)(x) =
1

κ
curl curl

∫

Γ

Eκ(x − y)µ(y) dS · n(x)

=
1

κ

∫

Γ

∂

∂n(x)
Eκ(x − y)divΓ µ(y) dS + κ

∫

Γ

Eκ(x − y)µ(y) dS · n(x) .

By density, we conclude that divΓ ◦ Cκ : THs− 1
2 (divΓ ; Γ ) -→ Hs+ 1

2 (Γ ) is con-
tinuous. This can be combined with the previous results and confirms the second

assertion of the theorem. ⊓⊔

The crucial message sent by this lemma and Lemma 7 is that on smooth bound-

aries the operator Aκ : H
−

1
2

× (divΓ , Γ )2 -→ H
−

1
2

× (divΓ , Γ )2 can be converted into

Aκ ≃
(

0 S0

S0 0

)
.

by dropping “compact perturbations”3. In other words, Dirichlet and Neumann

traces are coupled by compact terms only. On smooth boundaries we merely have

to examine Sκ, if we are interested in coercivity.

Unfortunately, the coupling terms Cκ in Aκ cannot be discarded in the case of

non-smooth boundaries for want of a result like Lemma 11: in general, we have to

3 Here and below we use the symbol ≃ to express equality of operators and bilinear forms

up to addition of compact terms
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deal with the two different traces γte and γNe together. This is a completely new

aspect of boundary integral operators that we have not encountered in the case of

the Maxwell source problem. Thus, splitting alone is not enough, but has to be ac-

companied by an appropriate grouping of the components. This is where the “phys-

ical meaning” of the splitting (21) that we discussed in Table 2 offers an important

hint: it suggests that we distinguish between trace components of electric and mag-

netic nature. The ultimate justification for this idea is the profound result that it is

merely compact terms, by which electric and magnetic components are coupled in

the boundary integral operator Aκ. The next lemma rigorously expresses this in-

sight, cf. Prop. 3.13 in [21].

Lemma 12. The bilinear form ⟨Cκ·, ·⟩τ ,Γ is compact both on N (Γ ) × N (Γ ) and
X (Γ ) × X (Γ ).

Proof. We restrict ourselves to the proof of the second assertion. We choose some

ζ, µ ∈ X (Γ ) and recall the definition of Cκ along with the jump relations. It is

important to note that, by virtue of the definition of X (Γ ), µ can be extended by

v := J(divΓ µ) ∈ H1(Ωs), J defined in the proof of Lemma 2, such that γtv = µ

and ∥v∥
H1(Ωs) ≤ C ∥µ∥

H
−

1
2

×
(divΓ ,Γ )

. Also, exploiting div v = 0, we get

⟨Cκζ, µ⟩τ ,Γ =
〈
γ−

NΨκ
V(ζ), µ

〉
τ ,Γ

− 1
2 ⟨ζ, µ⟩τ ,Γ .

Using the identity curl curlΨκ
V(ζ) = gradΨκ

V (divΓ ζ) + κ2Ψκ
V(ζ) and the inte-

gration by parts (5), we obtain:

〈
γ−

NΨκ
V(ζ), µ

〉
τ ,Γ

= −
∫

Ωs

curl Ψκ
V · curl v + κ2Ψκ

V(ζ) · v dx+

+
〈
γ−Ψκ

V (divΓ µ), γ−
n v

〉
1
2

,Γ
.

This means that

| (Cκ(ζ), µ)τ | ≤ |Ψκ
V(ζ)|

H1(Ωs) ∥curl v∥
L2(Ωs) + κ2 ∥Ψκ

V(ζ)∥
L2(Ωs) ∥v∥L2(Ωs)

+ ∥Vκ(divΓ ζ)∥L2(Γ )

∥∥γ−
n v

∥∥
L2(Γ )

+ ∥ζ∥L
2
t
(Γ )∥γ−

t v∥L
2
t
(Γ )

≤ C(∥ζ∥
H

−
1
2

×
(Γ )

+ ∥Vκ(divΓ ζ)∥L2(Γ ) + ∥ζ∥L
2
t
(Γ )) ∥v∥

H1(Ωs) ,

with some C = C(Ωs) > 0. It goes without saying that the operator Vκ :

H−
1
2 (Γ ) -→ L2(Γ ) is compact. Then, the compact embedding of X (Γ ) in L2

t(Γ )
according to Corollary 1 finishes the proof. ⊓⊔

To understand the meaning of these results, we consider the combined boundary

integral operator Aκ : H
− 1

2

× (divΓ , Γ )2 -→ H
− 1

2

× (divΓ , Γ )2 with respect to the
splitting (21). As usual, we adopt a variational perspective and study the bilinear

form asscociated with Aκ. It will be based on the following anti-symmetric pairing

on the product spaceH
− 1

2

× (divΓ , Γ ) × H
− 1

2

× (divΓ , Γ ),

Thebilinearform⟨Cκ·,·⟩τ,Γ iscompactbothonN(Γ)×N(Γ)and X(Γ) × X(Γ).
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〈(
ζ

µ

)
,

(
ξ

λ

)〉

τ×τ

:= ⟨ζ, λ⟩τ ,Γ + ⟨µ, ξ⟩τ ,Γ .

Now, pick ζ, µ, ξ, λ ∈ H
− 1

2

× (divΓ , Γ ) and use superscripts ⊥ and 0 to tag their
components in X (Γ ) andN (Γ ), respectively.

〈
Aκ

(
ζ

µ

)
,

(
ξ

λ

)〉

τ×τ

=

〈
Aκ

(
ζ⊥

µ0

)
,

(
ξ⊥

λ0

)〉

τ×τ

+

〈
Aκ

(
ζ0

µ⊥

)
,

(
ξ0

λ⊥

)〉

τ×τ

+

+

〈
Aκ

(
ζ⊥

µ0

)
,

(
ξ0

λ⊥

)〉

τ×τ

+

〈
Aκ

(
ζ0

µ⊥

)
,

(
ξ⊥

λ0

)〉

τ×τ

.

(39)

Let us take a look at the bilinear forms in the second line:

〈
Aκ

(
ζ⊥

µ0

)
,

(
ξ0

λ⊥

)〉

τ×τ

=

⎧
⎨
⎩

〈
Cκζ⊥, λ⊥

〉
τ ,Γ

+ κ
〈
Vκµ0, λ⊥

〉
τ ,Γ

+

+κ
〈
Vκζ⊥, ξ0

〉
τ ,Γ

+
〈
Cκµ0, ξ0

〉
τ ,Γ

.

Lemmas 9 and 12 show that this is a compact bilinear form! The same applies to

the other term in the second line of (39). Harking back to the discussion in Sect. 3,

we emphasize that both Dirichlet and Neumann trace involve electric and magnetic

components, which are isolated by the splitting:

Electric components: ζ0, µ⊥ ←→ Magnetic components: ζ⊥, µ0 .

The bottom line is that up to compact terms electric and magnetic components of

the traces are decoupled in Aκ. It has turned out that the decoupling observed in the

case of smooth boundaries does not reflect the “physics of the fields”.

Using the appropriate splitting and decoupling, we can proceed as in the case of

S0: we introduce the isomorphism XΓ : H
− 1

2

× (divΓ , Γ )2 -→ H
− 1

2

× (divΓ , Γ )2 by

XΓ

(
ζ

µ

)
:=

(
XΓ ζ

XΓ µ

)
, ζ, µ ∈ H

− 1
2

× (divΓ , Γ ) . (40)

Then we get the following generalization of Lemma 10.

Theorem 9 (GeneralizedGårding inequality forAκ). There is a constantCG > 0

and a compact bilinear form cΓ on H
−

1
2

× (divΓ , Γ ) × H
−

1
2

× (divΓ , Γ ) such that

∣∣∣∣∣

〈
Aκ

(
ζ

µ

)
, XΓ

(
ζ

µ

)〉

τ×τ

− cΓ (

(
ζ

µ

)
,

(
ζ

µ

)
)

∣∣∣∣∣ ≥ CG

∥∥∥∥
(

ζ

µ

)∥∥∥∥
2

H
−

1
2

×
(divΓ ,Γ )

for all ζ, µ ∈ H
−

1
2

× (divΓ , Γ ).

ζ XΓζ −1

Theorem 9 (Generalized Ga ̍ rding inequality for Aκ ). There is a constant CG > 0−1 −1 andacompactbilinearformcΓ onH×2 (divΓ,Γ)×H×2 (divΓ,Γ)suchthat ζ ζ ζ ζ ζ 2Aκ ,XΓ −cΓ(,)≥CG1 μμτ×τ μμμH−2(divΓ,Γ)× −1for all ζ, μ ∈ H× 2 (divΓ , Γ ).
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Proof. We have already found that up to compact perturbations

〈
Aκ

(
ζ

µ

)
,

(
ξ

λ

)〉

τ ,Γ

≃
〈

Aκ

(
ζ⊥

µ0

)
,

(
ξ⊥

λ0

)〉

τ ,Γ

+

〈
Aκ

(
ζ0

µ⊥

)
,

(
ξ0

λ⊥

)〉

τ ,Γ

.

What comes next amounts to reusing arguments from the proof of Lemma 10. We

inspect the first summand and find, using Lemmas 6 and 9,

〈
Aκ

(
ζ⊥

µ0

)
,

(
ζ
⊥

−µ0

)〉

τ×τ

= −
〈
Cκζ⊥, µ0

〉
τ ,Γ

− κ
〈
Vκµ0, µ0

〉
τ ,Γ

+

+
〈
Sκζ⊥, ζ

⊥
〉

τ ,Γ
+

〈
Cκµ0, ζ

⊥
〉

τ ,Γ

≃ −2i Im

{〈
Cκζ⊥, µ0

〉
τ ,Γ

}
−κ

〈
V0µ

0, µ0
〉

τ ,Γ
+

1

κ

〈
V0(divΓ ζ, divΓ ζ

〉
τ ,Γ

.

Appealing to Lemmas 2 and 8, we conclude that
∣∣∣∣∣

〈
Aκ

(
ζ⊥

µ0

)
,

(
ζ
⊥

−µ0

)〉

τ×τ

+ comp.

∣∣∣∣∣≥C

(∥∥µ0
∥∥2

H
−

1
2

×
(Γ )

+
∥∥∥ζ⊥

∥∥∥
2

H
−

1
2

×
(divΓ ,Γ )

)
.

The same manipulations can be carried out for the second summand. Together with

the stability of (21) this gives the assertion. ⊓⊔

7 Boundary Integral Equations

Boundary integral equations (BIE) can be obtained in two ways, either by the di-

rect method or the indirect method. The distinct feature of the direct method is that

traces of the solution of the transmission problem/boundary value problem occur

as unknowns in the formulation. Its integral equations immediately arise from the

Calderon projectors P−
κ and P+

κ via Theorem 8. Conversely, the unknowns of the in-

direct methods are jumps of traces across Γ . It can be motivated by the fact that the

potentials Ψκ
SL and Ψκ

DL already provide solutions to the homogeneous equations,

cf. (29). An excellent presentation of the main ideas of indirect methods is given in

[36, Vol. IV, Ch. XI].

7.1 The direct method

We start with the discussion of direct methods for scattering at a perfect conductor,

that is, the exterior Dirichlet problem for the homogeneous electric wave equation

curl curl e− κ2e = 0 in Ω′ , γ+
t e = γ+

t ei , (41)

plus Silver–Müller radiation conditions. We know that we can always find a unique

solution of (41) [31, Thm. 6.10]. However, it is a bewildering feature of many

boundary integral equations connected with (41) that they fail to have unique so-

lutions, if κ coincides with “forbidden wave numbers” [26, 38]. Those are related to

interior eigenvalues of the operator of (41).
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Definition 4. λ ∈ R is called an interior electric/magnetic Maxwell eigenvalue, if

there is a non-zero e ∈ H0(curl; Ωs) or e ∈ H(curl; Ωs), respectively, such that

(curl e, curl v)0;Ωs
= λ (e,v)0;Ωs

∀v ∈ H0(curl; Ωs) or v ∈ H(curl; Ωs) .

Note that these eigenvalues form a discrete sequence accumulating at∞.
The first direct method relies on Theorem 8, which tells us that (γ+

t ei, λ)
are exterior Cauchy data according to Definition 3, if P

−
κ (γ+

t ei, λ) = 0. From
the first row of this equation we obtain the integral equation of the first kind

Sκλ = −(1
2 Id +Cκ)(γ+

t ei) for the unknown Neumann data λ := γ+
Ne of a solu-

tion e of (41). In weak form it reads: seek λ ∈ H
− 1

2

× (divΓ , Γ ) such that

⟨Sκλ, µ⟩τ ,Γ = −
〈
(1
2 Id+Cκ)(γ+

t ei), µ
〉

τ ,Γ
∀µ ∈ H

− 1
2

× (divΓ , Γ ) . (42)

Conversely, if (γ+
t ei, λ) satisfies (42), we find

P
−
κ

(
γ+
t ei

λ

)
=

(
0

ξ

)
for some ξ ∈ H

− 1
2

× (divΓ , Γ ) .

Hence, by Theorem 8, ξ is the Neumann trace of an electric eigenmode ofΩs. If κ
2

does not coincide with an interior electric eigenvalue, this eigenmode can only be

trivial, which means ξ = 0. The next lemma summarizes our findings.

Lemma 13. Assume that κ2 is not an interior electric eigenvalue. Then λ ∈
H

− 1
2

× (divΓ , Γ ) is a solution of (42) if and only if (γ+
t ei, λ) are Cauchy data for

(41).

Remark 1. If κ2 is an interior electric eigenvalue, then λ is unique up to Neumann

traces ξ of the corresponding eigenmodes. Thanks to the representation formula

(26), we find that Ψκ
SL(ξ) vanishes in Ω′. In other words, the representation

e = −Ψκ
DL(γ+

t ei) − Ψκ
SL(λ) (43)

will produce the unique field solution in Ω′.

Now, a standard Fredholm alternative argument can be applied:

Theorem 10. Provided that κ satisfies the assumptions of Lemma 13, there exists a

unique solution of (42) for any ei.

Using the second row of P−
κ we obtain the B.I.E. (

1
2 Id +Cκ)λ = −Sκ(γ+

t ei),

whose associated variational problem can be stated as: seek λ ∈ H
−

1
2

× (divΓ , Γ )
such that

〈
(1
2 Id +Cκ)λ, µ

〉
τ ,Γ

= −
〈
Sκ(γ+

t ei), µ
〉

τ ,Γ
∀µ ∈ H

−
1
2

× (divΓ , Γ ) . (44)

In contrast to (42), in order to show unique solvability of (44) we need not only

avoid “forbidden wave numbers”, but have to assume smooth boundaries, too.

1

−1=− (1 Id+Cκ)(γt+ei),μ ∀μ∈H×2(divΓ,Γ).⟨Sκλ,μ⟩τ,Γ 2 τ,Γ
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Theorem 11. Let κ2 be different from a interior magnetic eigenvalue. If Γ is C∞-

smooth, then (44) has a unique solution λ ∈ TH−
1
2 (divΓ ; Γ ) and the pair

(γ+
t ei, λ) supplies Cauchy data for the electric wave equation in Ω′.

Proof. As in the justification of Lemma 13 it turns out that

P
−
κ

(
γ+
t ei

λ

)
=

(
ξ

0

)
for some ξ ∈ TH−

1
2 (divΓ ; Γ ) ,

if λ satisfies (44). By the assumption on κ we have ξ = 0 and, by Theorem 8,

(γ+
t ei, λ) is identified as valid Maxwell Cauchy data for the exterior problem. Re-

calling the uniqueness result for (41), this means that solutions of (44) are unique.

Next, use Lemma 11, which asserts the compactness of Cκ : TH−
1
2 (divΓ ; Γ ) →

TH− 1
2 (divΓ ; Γ ). This confirms that the operator in (44) is Fredholm of index zero.

⊓⊔

If Γ ∈ C∞ and γ+
t ei ∈ H1

t(Γ ) (which, e.g., is fulfilled for exciting plane
waves), the lifting properties of the operators Cκ according to Lemma 11 and the

fact that divΓ ◦ Sκ = κ divΓ ◦ Vκ bear out that the solution of (44) will be-

long to TH(divΓ , Γ ). Hence, a completely equivalent variational formulation in
TH(divΓ , Γ ) is possible: find λ ∈ TH(divΓ , Γ ) such that ∀µ ∈ TH(divΓ , Γ )

(
(1
2 Id +Cκ)λ, µ

)
T H(divΓ ,Γ )

= −
(
Sκ(γ+

t ei), µ
)
T H(divΓ ,Γ )

. (45)

Given a sufficiently smooth γ+
t ei, the right hand side is a continuous functional

on TH(divΓ , Γ ). In addition, Lemma 11 shows that Cκ : TH(divΓ , Γ ) -→
TH1(divΓ , Γ ) and, hence, the sesqui-linear form in (45) turns out to beTH(divΓ , Γ )-
coercive. Thus, Thm. 11 will remain valid for (45). The real rational behind the

lifting of (44) into TH(divΓ , Γ ) will be elaborated in Sect. 9.
smallskip

Next, we tackle scattering at an isotropic, homogeneous dielectric object occu-

pying Ωs. Inside Ωs material parameters ε− > 0 and µ− > 0 prevail, leading to
a wave number κ− := ω

√
ε−µ−. Outside we face ε0, µ0 and wave number κ+.

These wave numbers underlie the definition of γ−

N and γ+
N . The transmission condi-

tions from (1) become

γ−

t e = γ+
t e , κ−

µ− γ−

Ne = κ+

µ0
γ+

Ne .

Taking our cue from the approach to acoustic scattering in [61], we introduce scaled

boundary integral operators

Âκ− =

(
Id 0

0 κ−

µ−

)
Aκ−

(
Id 0

0 µ−

κ−

)
, Âκ+ =

(
Id 0

0 κ+

µ0

)
Aκ+

(
Id 0
0 µ0

κ+

)
.

The following scaled traces match the scaled operators
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(ζ+, λ+) = (γ+
t e, κ+

µ0
γ+

Ne) , (ζ−, λ−) = (γ−

t e, κ−

µ− γ−

Ne) .

For them the transmission condition takes the simple form

(
ζ−

λ−

)
−

(
ζ+

λ+

)
=

(
γ+
t ei

γ+
t hi

)
. (46)

A scaled version of Theorem 8 bears out that (ζ−, λ−) and (ζ+, λ+) are inte-
rior/exterior Cauchy data for the electric wave equation with wave numbers κ− and

κ+, respectively, if and only if

(1
2 Id−Âκ−)

(
ζ−

λ−

)
= 0 , (1

2 Id +Âκ+)

(
ζ+

λ+

)
= 0 . (47)

Using (46), this immediately implies that

(
Âκ− + Âκ+

)(
ζ+

λ+

)
= (1

2 Id−Âκ−)

(
γ+
t ei

γ+
t hi

)
. (48)

These are the boundary integral equations of the direct method for the transmission

problem. Conversely, if (ζ+, λ+) is a solution of (48), set
(

ζ−

λ−

)
=

(
ζ+

λ+

)
+

(γ
+

t
ei

γ
+

t
hi

)
,

and consider

(
ζ̃
−

λ̃
−

)
:= (1

2 Id−Âκ−)

(
ζ−

λ−

)
,

(
ζ̃

+

λ̃
+

)
:= (1

2 Id +Âκ+)

(
ζ+

λ+

)
.

Owing to Thm. 8, the pairs (ζ̃
−

, λ̃
−

) and (ζ̃
+
, λ̃

+
) areMaxwell Cauchy data forΩ′

and Ωs (and κ−, κ+), respectively. From equation (48) we infer that (ζ̃
−

, λ̃
−

) =

(ζ̃
+
, λ̃

+
). Thus, the interior and exterior Dirichlet and Neumann traces of the re-

lated Maxwell solutions agree. A combination of these Maxwell solutions solves

the homogeneous electric wave equation (with κ+ inside Ωs and κ− outside) in R3

and satisfies the Silver–Müller radiation conditions. Thanks to the uniqueness of so-

lutions of the exteriorMaxwell problem, it has to vanish. This implies (ζ̃
−

, λ̃
−

) = 0

and (ζ̃
+
, λ̃

+
) = 0, so that we recover (48). This confirms the following result.

Lemma 14. Any solution (ζ+, λ+) of (48) provides (scaled) exterior Cauchy data
for the transmission problem with excitation by an incident wave (ei,hi).

Using the pairing ⟨·, ·⟩τ×τ , the variational formulation of (48) inH
−

1
2

× (divΓ , Γ )×
H

− 1
2

× (divΓ , Γ ) is straightforward. So is the next theorem that arises from Thm. 9,
the previous Lemma, and a Fredholm argument.

Theorem 12. The boundary integral equation (48) has a unique solution for any

excitation.
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7.2 The indirect method

We will only discuss the exterior Dirichlet problem for the electric wave equation.

Let e+ denote the unique solution of the exterior Dirichlet boundary value problem,

satisfying γ+
t e+ = γ+

t ei and the Silver–Müller radiation conditions at ∞. Write
e− for the solution of an interior Dirichlet problem for the electric wave equation,

such that γ−

t e− = γ+
t e+. Again it is crucial to stay away from “forbidden wave

numbers”: let us assume that κ2 does not coincide with an interior electric eigen-

value. Therefore, such an e− exists and is unique. Call e the Maxwell solution in

Ωs∪Ω′ that emerges by combining e+ and e−. As [γt]Γ (e) = 0, the representation
formula (26) becomes

e = −Ψκ
SL([γN ]Γ (e)) inH loc(curl

2, Ωs ∪ Ω′) .

Applying the exterior Dirichlet trace γ+
t gives us the final integral equation in weak

form: seek the unknown jump λ := [γN ]Γ (e) ∈ H
− 1

2

× (divΓ , Γ ), which satisfies

⟨Sκλ, µ⟩τ ,Γ = −
〈
γ+
t ei, µ

〉
τ ,Γ

∀µ ∈ H
−

1
2

× (divΓ , Γ ) . (49)

This integral equation is also known as electric field integral equation (EFIE) or

Rumsey’s principle. Theorem 10 applies, because (42) and (49) feature the same

bilinear form.

Parallel to the case of direct methods for the exterior Dirichlet problem, we

have a second option also in the case of the indirect approach. We assume that κ2

does not agree with an interior magnetic eigenvalue. Then, we may choose e− as

a Neumann extension of e+, that is, e− is the solution of the interior Neumann

problem for the electric wave equation with Neumann data γ−

Ne− = γ+
Ne+. Com-

bining e+ and e− to form e, we conclude from (26) that e = −Ψκ
DL([γt]Γ (e))

inH loc(curl2, Ωs ∪ Ω′). Applying the exterior Dirichlet trace to this equation, we
get the so-called magnetic field integral equation (MFIE), an integral equation of

the second kind: find ζ ∈ H
−

1
2

× (divΓ , Γ ) with

〈
(1
2 Id−Cκ)ζ, µ

〉
τ ,Γ

=
〈
γ+
t ei, µ

〉
τ ,Γ

∀µ ∈ H
− 1

2

× (divΓ , Γ ) . (50)

Its theoretical analysis on smooth surfaces is already covered by Thm. 11.

A serious drawback of the integral equations stated so far is their vulnerability to

the presence of forbiddenwave numbers, though the related boundary value problem

always possesses a unique solution. Only one class of indirect BIE, the so-called

combined field integral equations (CFIE), enjoys immunity. They owe their name

to the fact that both Ψκ
DL and Ψκ

SL enter the trial expression for e. A crucial prere-

quisite is a compact “smoothing operator”M : H
− 1

2

× (divΓ , Γ ) -→ H
− 1

2

× (divΓ , Γ )
that satisfies

µ ∈ H
−

1
2

× (divΓ , Γ ) : ⟨Mµ, µ⟩τ ,Γ > 0 ⇔ µ ̸= 0 .

electric field integral equation (EFIE)
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It is an important building block of the trial representation formula

e = −iηΨκ
SL(ζ) − Ψκ

DL(Mζ) , (51)

where ζ ∈ H
− 1

2

× (divΓ , Γ ), η > 0. By (29), this field is a Maxwell solution in
Ωs ∪ Ω′. The exterior Dirichlet trace applied to (51) results in the combined field

integral equation: find ζ ∈ H
− 1

2

× (divΓ , Γ ) such that ∀µ ∈ H
− 1

2

× (divΓ , Γ )

−i ⟨ηSκ(ζ), µ⟩τ ,Γ +
〈
(1
2 Id−Cκ)(Mζ), µ

〉
τ ,Γ

=
〈
γ+
t ei, µ

〉
τ ,Γ

. (52)

The idea to use a regularizing operator to state a combined field integral equation is

due to Kress [48].

Theorem 13. The boundary integral equation (52) has a unique solution ζ ∈
H

− 1
2

× (divΓ , Γ ) for all η > 0, κ > 0.

Proof. To demonstrate uniqueness, we assume that ζ ∈ H
− 1

2

× (divΓ , Γ ) solves

−iηSκ(ζ) + (1
2 Id−Cκ)(Mζ) = 0 . (53)

It is immediate from the jump relations that e given by (51) is an exterior Maxwell

solution with γ+
t e = 0. By uniqueness we infer that e = 0 in Ω′. Appealing to the

jump relations from Theorem 7 once more, we find

γ−

t e = −Mζ , γ−

Ne = −iηζ .

Next, we use (11) and see that

iη
〈
ζ, Mζ

〉
τ ,Γ

=
〈
γ−

Ne, γ−

t e
〉

τ ,Γ
=

∫

Ωs

1

κ
| curl e|2 dx− κ|e|2 dx ∈ R .

Necessarily,
(
ζ, Mζ

)
τ

= 0, so that the requirements onM imply ζ = 0.
Knowing thatM is compact, we conclude from Lemma 10 that the bilinear form

of (52) satisfies a generalized Gårding inequality. Thus, Thm. 4 gives existence from

uniqueness. ⊓⊔
A possible candidate for M can be introduced through a variational definition:

for ζ ∈ H
−

1
2

× (divΓ , Γ ) and all q ∈ H×(divΓ , Γ ), Mζ ∈ H×(divΓ , Γ ) is to
satisfy

⟨Mζ,q⟩0;Γ + ⟨divΓ Mζ, divΓq⟩0;Γ = ⟨q, ζ⟩τ ,Γ . (54)

Obviously, M : H
− 1

2

× (divΓ , Γ ) -→ H×(divΓ , Γ ) is a continuous linear operator.

By density of H×(divΓ , Γ ) in H
− 1

2

× (divΓ , Γ ), M must be injective, which also

means
〈
Mζ, ζ

〉
τ ,Γ

= ∥Mζ∥2
H×(divΓ ,Γ ) > 0 ⇔ ζ ̸= 0 .

It is easy to see thatM inherits compactness from the embeddingH×(divΓ , Γ ) →֒
H

− 1
2

× (divΓ , Γ ).
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8 Boundary Element Spaces

We equip the piecewise smooth compact two-dimensional surface Γ with an ori-

ented triangulation Γh. This means that all its edges are endowed with a direc-

tion. We assume a perfect resolution of Γ , that is Γ = K̄1 ∪ . . . ∪ K̄N , where

Kh := {K1, . . . , KN} is the set of mutually disjoint open cells of Γh. Moreover,

no cell may straddle boundaries of the smooth faces Γ j of Γ . We will admit tri-

angular and quadrilateral cells only: for each K ∈ Kh there is a diffeomorphism

ΦK : K̂ -→ K̄, where K̂ is the “unit triangle” or unit square in R2, depending on

the shape ofK [27, Sect. 5].

This paves the way for a parametric construction of boundary elements: to begin

with, choose finite-dimensional local spaces W(K̂) ⊂ (C∞(K̂))2 of polynomial
vectorfields together with a dual basis of so-called local degrees of freedom (d.o.f.).

Possible choices for W(K̂) and related d.o.f. abound: we may use the classical
triangular Raviart-Thomas (RTp) elements of polynomial order p ∈ N0 [56],

W(K̂) := {x -→ p1(x) + p2(x) · x, x ∈ K̂, p1 ∈ (Pp(K̂))2, p2 ∈ Pp(K̂)} ,

where Pp(K̂) is the space of two-variable polynomials of total degree ≤ p. An al-
ternative are the triangular BDMp elements of degree p [12], p ∈ N0, which rely on

W(K̂) := (Pp+1(K̂))2. In both cases, the usual d.o.f. involve certain polynomial
moments of normal components on edges, together with interior vectorial moments

for p > 0. For instance, in the case of RT0, edge fluxes are the appropriate degrees

of freedom:

µh ∈ W(K̂) -→
∫

be

µh · n̂ dS , ê edge of K̂ .

Similar local spaces and degrees of freedom are available for the unit square.

Using the pull-back of 1-forms the local spaces can be lifted to the cells of Γh.

In terms of vectorfields this is equivalent to the Piola transformation

(FKµ)(x) :=
√

det(G)G−1 DΦT
K(x̂)µ(x̂) , (55)

where G := DΦ(x̂)T DΦ(x̂), x = ΦK(x̂), x̂ ∈ K̂ . Thus, we can introduce the
global boundary element space

Wh := {µ ∈ H×(divΓ , Γ ) : µ|K ∈ FK(W(K̂))∀K ∈ Kh} . (56)

In practice,Wh ⊂ H×(divΓ , Γ ) is ensured by a suitable choice of d.o.f. Remem-

ber that d.o.f. have to be associated with individual edges of K̂ or the interior of K̂.
It is crucial that the normal component of any µ̂h ∈ W(K̂) on any edge ê of K̂
vanishes if and only if µ̂h belongs to the kernel of all local d.o.f. associated with ê.
In light of (12), this ensuresW ⊂ H×(divΓ , Γ ). In the sequelWh will designate

a genericH×(divΓ , Γ )-conforming boundary element space. It may arise from the
RTp family of elements, p ∈ N0, the BDMp family, or a combination of both.
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Based on the degrees of freedomwe can introduce local interpolation operators

Πh : Dom(Πh) -→ Wh. It is a projector onto Wh and enjoys the fundamental

commuting diagram property

divΓ ◦ Πh = Qh ◦ divΓ onH×(divΓ , Γ ) ∩ Dom(Πh) . (57)

Here, Qh is the L2(Γ )-orthogonal projection onto a suitable space Qh of Γh-

piecewise polynomial discontinuous functions. It must be emphasized that the inter-

polation operatorsΠh fail to be bounded onH×(divΓ , Γ ); slightly more regularity
of tangential vectorfields in Dom(Πh) is required [7, Lemma 4.7].

Next, we turn our attention to asymptotic properties of the boundary element

spaces, in particular to estimates of interpolation errors and best approximation er-

rors. We restrict ourselves to the h-version of boundary elements, which relies on
shape-regular families {Γh}h∈H of triangulations of Γ [30, Ch. 3,§ 3.1]. Here, H

stands for a decreasing sequence of meshwidths, and H is assumed to converge to

zero.

By means of transformation to reference elements, the commuting diagram

property, and Bramble-Hilbert arguments, interpolation error estimates can easily

be obtained [13, III.3.3].

Lemma 15 (Interpolation error estimate). For 0 < s ≤ p + 1 we find constants
C > 0, depending only on the shape regularity of the meshes and s, such that for
all µ ∈ Hs

×(Γ ) ∩ H×(divΓ , Γ ), h ∈ H,

∥µ − Πhµ∥
L2(Γ ) ≤ Chs

(
∥µ∥H

s
×

(Γ ) + ∥divΓ µ∥L2(Γ )

)
,

and such that for all µ ∈ H×(divΓ , Γ ), divΓ µ ∈ Hs
−(Γ )

∥divΓ (µ − Πhµ)∥L2(Γ ) ≤ Chs∥divΓ µ∥Hs
−

(Γ ) .

Corollary 5. The union of all boundary element spaces Wh, h ∈ H, is dense in

H
−

1
2

× (divΓ , Γ ).

A particular variant of the above interpolation error estimate addresses vector fields

with discrete surface divergence:

Lemma 16. If µ ∈ Hs
×(Γ ), 0 < s ≤ 1, and divΓ µ ∈ Qh, then there is a constant

C > 0, depending on the shape-regularity of the meshes only, such that

∥µ− Πhµ∥L
2
t
(Γ ) ≤ Chs∥µ∥H

s
×

(Γ ) .

¿From the interpolation error estimates we instantly get best approximation es-

timates in terms of the H×(divΓ , Γ )-norm. Yet, what we actually need is a result
about approximation in the “energy norm” ∥·∥

H
−

1
2

×
(divΓ ,Γ )

of the form

inf
ξh

∥µh − ξh∥
H

−
1
2

×
(divΓ ,Γ )

≤ Chs+ 1
2 ∥µ∥

H
s
×

(divΓ ,Γ ) . (58)

L e m m a 1 6 . I f μ ∈ H s× ( Γ ) , 0 < s ≤ 1 , a n d d i v Γ μ ∈ Q h , t h e n t h e r e i s a c o n s t a n tC > 0, depending on the shape-regularity of the meshes only, such that ∥μ−Πhμ∥L2t(Γ) ≤Chs∥μ∥Hs×(Γ) .

ocal interpolation operators

Πh : Dom(Πh ) → W h .
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The estimate in H×(divΓ , Γ ) does not directly provide (58). Even worse, stan-
dard duality arguments cannot be applied. Recall their main idea: we set out from

a Hilbertian triple V ⊂ H ⊂ V ′, have a finite dimensional subspace of H , say
Vh, and we want to estimate the best approximation error in V ′. Then it is crucial

that we know how to use the difference in regularity between H and V through an

estimate of the type ∃ vh ∈ Vh : ∥u − vh∥H ≤ C(h)∥u∥V , with C(h) optimal in
a suitable sense.

Here, we have an estimate between H×(divΓ , Γ ) and Hs
×(divΓ , Γ ), s > 0.

Thus, we should use H×(divΓ , Γ ) as self dual space, i.e., the standard inner
product in H×(divΓ , Γ ). But, in order to conclude, we should be able to prove
that H−s

× (divΓ , Γ ) is dual of Hs
×(divΓ , Γ ) for 0 < s ≤ 1

2 with respect to the

H×(divΓ , Γ ) inner product. Unfortunately this is the case for regular surfaces but
not for non-regular ones [29].

The question of obtaining (58) has been addressed in [16] and the idea is to

use the duality argument face by face (which are seen as regular open manifolds),

exploiting continuity of the normal components of vector-fields in H×(divΓ , Γ ).
At the end of a technical procedure we obtain the following result:

Theorem 14. Let Ph : H
−

1
2

× (divΓ , Γ ) → Wh be the orthogonal projection with

respect to the H
− 1

2

× (divΓ , Γ ) inner product. Then, for any − 1
2 ≤ s ≤ p + 1 we

have

∥µ − Phµ∥
H

−
1
2

×
(divΓ ,Γ )

≤ Chs+ 1
2 ∥µ∥

H
s
×

(divΓ ,Γ ) ∀µ ∈ Hs
×(divΓ , Γ ) .

(59)

This theorem tells us that we can expect good approximation properties, but these

cannot be obtained using local interpolation operators.

9 Galerkin Discretization

TheGalerkin approach simply consists of replacing the Hilbert spacesH
− 1

2

× (divΓ , Γ )
and H×(divΓ , Γ ) in the variational formulations by finite dimensional subspaces
Wh.

9.1 Integral equations of the first kind

First, we study the simplest BIE of the first kind, namely the electric field integral

equations (42) and (49), that is, we examine variational problems like: seek λ ∈
H

− 1
2

× (divΓ , Γ ) such that

a(λ, µ) := ⟨Sκλ, µ⟩τ ,Γ = r.h.s.(µ) ∀µ ∈ H
− 1

2

× (divΓ , Γ ) , (60)

for a suitable continuous functional on the right hand side. If κ stays away from inte-

rior electric Maxwell eigenvalues, we saw that the operator Sκ : H
− 1

2

× (divΓ , Γ ) -→

9.1 Integral equations of the first kind
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H
− 1

2

× (divΓ , Γ ) defines an isomorphism. This is equivalent to the existence of a
constant CS > 0 such that the following continuous inf-sup condition holds true:

sup

η∈H
−

1
2

×
(divΓ ,Γ )

|a(µ, η)|

∥η∥
H

−
1
2

×
(divΓ ,Γ )

≥ CS ∥µ∥
H

−
1
2

×
(divΓ ,Γ )

∀µ ∈ H
− 1

2

× (divΓ , Γ ) .

(61)

We aim at establishing a uniform discrete inf-sup-condition of the form: there exists

CD > 0 such that ∀µh ∈ Wh,

sup
ηh∈Wh

|a(µh, ηh)|

∥ηh∥
H

−
1
2

×
(divΓ ,Γ )

≥ CD ∥µh∥
H

−
1
2

×
(divΓ ,Γ )

, h ∈ H . (62)

According to Babuška’s theory [8] refined in [63] this guarantees existence of dis-

crete solutions λh ∈ Wh and translates into their quasi-optimal behaviour:

∥λ − λh∥
H

−
1
2

×
(divΓ ,Γ )

≤ C−1
D CA inf

ηh∈W
∥λ − ηh∥

H
−

1
2

×
(divΓ ,Γ )

∀h ∈ H ,

(63)

where CA > 0 is the operator norm of a(·, ·). As a first step towards a discrete
inf-sup condition, we have to find a suitable candidate for η in (61). To that end,

introduce the operator T : H
− 1

2

× (divΓ , Γ ) -→ H
− 1

2

× (divΓ , Γ ) through

a(η, Tµ) = cΓ (µ, η) ∀η ∈ H
− 1

2

× (divΓ , Γ ), µ ∈ H
− 1

2

× (divΓ , Γ ) ,

where cΓ is the compact bilinear form of Lemma 10. Owing to (61) this is a valid

definition of a compact operator T. It is immediate from (61) and Lemma 10 that

|a(µ, (XΓ + T)µ)| = |a(µ, XΓ µ) + cΓ (µ, µ)| ≥ CG ∥µ∥2

H
−

1
2

×
(divΓ ,Γ )

(64)

for all µ ∈ H
−

1
2

× (divΓ , Γ ). The choice η := (XΓ + T)µ will make (61) hold

with CS = CG. The challenge is that (XΓ + T)µh will not be a boundary element

function even for µh ∈ Wh. This is clear because neither XΓ nor T may leave

the boundary element spaces invariant. It will be necessary to project XΓ µh and

Tµh back toWh. This can be achieved by applying suitable continuous projection

operators PX
h : XΓ (Wh) -→ Wh, PT

h : H
− 1

2

× (divΓ , Γ ) -→ Wh. Then, for an

arbitraryµh ∈ Wh we can hope that ηh := (PX
h ◦XΓ +PT

h ◦T)µh is an appropriate

choice for ηh in (62). Making use of (64) we see that

|a(µh, ηh)|= |a(µh, (XΓ +T)µh)−a(µh, ((Id−PX
h )XΓ +(Id−PT

h )T)µh)|. (65)

We know that |a(µh, (XΓ + T)µh)| ≥ CG ∥µh∥2
H(curl;Ω) and we need to estimate

the second term in the left hand side by the triangle inequality. Obviously, the pro-

jectors PX
h , PT

h have to guarantee uniform convergence (Id−PT
h ) ◦ T|Wh

→ 0 and

:H×2(divΓ,Γ)→ H×2(divΓ,Γ)

μ)|=|a(μ,X μ)+c (μ,μ)|≥C ∥μ∥2 1 a(μ, (X + T) Γ Γ Γ G H− 2 (divΓ ,Γ)

η := (XΓ + T)μ

|a(μh,ηh)|=|a(μh,(XΓ +T)μh)−a(μh,((Id−PXh )XΓ +(Id−PTh)T)μh)|
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(Id−PX
h ) ◦ XΓ |Wh

→ 0 in H
− 1

2

× (divΓ , Γ ) as h → 0. For PT
h this is easy: we

choose PT
h as theH

− 1
2

× (divΓ , Γ )-orthogonal projection. Due to the compactness of
T, we know [49, Corollary 10.4] that there exists a decreasing function ε = ε(h)

such that limh→0 ε(h) = 0 and, for all µh ∈ H
− 1

2

× (divΓ , Γ ),

∥∥(Id−PT
h ) ◦ Tµh

∥∥
H

−
1
2

×
(divΓ ,Γ )

< ε(h) ∥µh∥
H

−
1
2

×
(divΓ ,Γ )

. (66)

As regards PX
h , a crucial hint lies in the observation that P

X
h acts on functions in

XΓ (Wh). From divΓ RΓ µ = divΓ µ we conclude that divΓ (XΓ (Wh)) ⊂ Qh. We

see that PX
h has to be applied to functions with discrete divΓ only. We remind of

Lemma 16, which bears out that XΓ (Wh) is contained in the domain of the local
interpolation operators Πh. We discover that a perfectly valid candidate for PX

h is

the local interpolation operator: PX
h := Πh. Then, Lemma 16 is the key to uniform

convergence (Id−PX
h )XΓ |Wh

→ 0.

Lemma 17. There is a C∗ = C∗(Ω, p, shape regularity) > 0 such that for all µh ∈
Wh

∥∥(Id−P
X
h )XΓ µh

∥∥
H×(divΓ ,Γ )

≤ C∗h
1/2 ∥divΓ µh∥H−

1
2 (Γ )

. (67)

Proof. Note that (Id−Πh)XΓ µh = (Id−Πh)(2RΓ − Id)µh = 2(Id−Πh)RΓ µh ,
and that divΓ RΓ µh = divΓ µh. Thus, for the estimate of the L2

t norm, we need

only combine Lemma 16 (applied to RΓ µh) with (20). The observation, based on

the commuting diagram property (57), that

divΓ ((Id−Πh)XΓ µh) = (Id−Qh)divΓ (XΓ µh) = (Id−Qh)divΓ µh = 0

finishes the proof. ⊓⊔

Using (66) and (67) in (65), we obtain:

|a(µh, ηh)| ≥ (CG − CA(ε(h) + C∗h
1
2 )) ∥µh∥2

H
−

1
2

×
(divΓ ,Γ )

.

This means that for h small enough to ensure 1 − CA(ε(h) + C∗h
1
2 )/CG > 1

2 we

have the discrete inf-sup condition (62). This yields the main result:

Theorem 15. Provided that κ2 is not an interior electric eigenvalue, there is a

h∗ > 0, depending on the parameters of the continuous problem and the shape-

regularity of the triangulation, such that a unique solution λh ∈ Wh of the dis-

cretized problem (60) exists, provided that h < h∗. It supplies an asymptotically

optimal approximation to the continuous solution λ of (60) in the sense of (63).

Exactly the same arguments apply to (48) and give us an analogue of Thm. 15 for

the Galerkin BEM discretization in the case of the transmission problem.

PXh := Πh

convergence (Id −PXh )XΓ |W h → 0. Lemma 17. There is a C∗ = C∗(Ω, p, shape regularity) > 0 such that for all μh ∈Wh (Id−PXh )XΓμh ≤C∗h1/2∥divΓμh∥ −1 . (67)H×(divΓ,Γ) H 2(Γ)
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Remark 2. Asymptotic quasi-optimality alone does not provide information about

the actual speed of convergence as h → 0, unless we have information about the
smoothness of λ. To assess the regularity of λ it is necessary to recall its meaning

as a boundary value or the jump of a trace of Maxwell solutions. Then the results

on the regularity of Maxwell solutions given in [34] can be used. Ultimately we will

always have λ ∈ Hs
×(divΓ , Γ ) for some s > 0 depending on the excitation and

the geometry of Γ . In combination with Thm. 14 we can predict asymptotic rates of

convergence for the h-version of the Galerkin boundary element schemes.

Remark 3. A striking difference between (42) and (49) is the choice of unknowns.

In the indirect method λ is a jump. Hence, when solving the boundary integral

equations on a polyhedron, the unknown of the indirect method will be affected by

the corner and edge singularities of both interior and exterior Maxwell solutions

[34]. As any edge is re-entrant when seen from either Ωs or Ω
′, the jump [γN ]Γ (e)

will invariably possess a very low regularity. As a consequence, it might be much

harder to approximate by boundary elements than the unknown of the direct method.

In terms of Galerkin discretization the CFIE from Sect. 7.2 poses an extra dif-

fculty, because of the composition of the integral operator Cκ and the smooth-

ing operator M. The usual trick to avoid such operator products is to switch to a

mixed formulation introducing the new unknown p := Mζ. If we use the particular

smoothing operator from (54), we get p ∈ H×(divΓ , Γ ) and may simply incor-

porate (54) into the eventual mixed variational problem: find ζ ∈ H
− 1

2

× (divΓ , Γ ),

p ∈ H×(divΓ , Γ ) such that for all µ ∈ H
− 1

2

× (divΓ , Γ ), q ∈ H×(divΓ , Γ ),

−iη ⟨Sκζ, µ⟩τ ,Γ +
〈
(1
2 Id−Cκ)p, µ

〉
τ ,Γ

=
〈
γ+
t ei, µ

〉
τ ,Γ

,

⟨q, ζ⟩τ ,Γ − ⟨p,q⟩0;Γ − ⟨divΓp, divΓ q⟩0;Γ = 0 .
(68)

Thanks to the compact embedding H×(divΓ , Γ ) →֒ H
−

1
2

× (divΓ , Γ ) the off-
diagonal terms in (68) are compact. Thus, a generalized Gårding inequality is im-

mediate from Lemma 10. As far as the analysis of the Galerkin discretization in

Wh×Wh is concerned, we only need to deal with the diagonal terms in (68): using

exactly the same arguments as above we conclude the quasi-optimality of Galerkin

solutions on sufficiently fine meshes. Please note that the estimates now employ the

norm of the product spaceH
−

1
2

× (divΓ , Γ )×H×(divΓ , Γ ). Thus, asymptotic rates
of convergence will depend on the smoothness of both ζ and p.

9.2 Integral equations of the second kind

Pitfalls have to be avoided when performing a Galerkin boundary element dis-

cretization of the Fredholm integral equation of the second kind (44). A straight-

forward Galerkin discretization would lead to: seek λh ∈ Wh such that

〈
(1
2 Id +Cκ)λh, µh

〉
τ ,Γ

= r.h.s.(µh) ∀µh ∈ Wh . (69)
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If Γ ∈ C∞ , then existence and uniqueness of solutions of the continuous variational

problem are clear from Theorem 11. However, this does not necessarily remain true

for (69). The cause of the difficulties is the failure of Theorem 2 to hold in the

discrete setting. In other words, Wh may not be dual to itself with respect to the

pairing ⟨·, ·⟩τ ,Γ . More precisely, in [29, Section 3.1] it has been shown by means of

Hodge decompositions that for RT0 boundary elements and quasiuniform families

of surface meshes Γh there is α > 0 and spacesKh ⊂ Wh such that, for all h ∈ H,

dimKh ≥ α dimWh and

∀µh ∈ Kh sup
ξh∈Wh

| ⟨µh, ξh⟩τ ,Γ |

∥ξh∥
H

−
1
2

×
(divΓ ,Γ )

≤ Ch
1
2 ∥µh∥

H
−

1
2

×
(divΓ ,Γ )

.

The discretization of ⟨·, ·⟩τ ,Γ onWh is not stable! This bars us from deriving a dis-

crete inf-sup condition, though the continuous bilinear form satisfies a generalized

Gårding inequality.

Remark 4. The instability of ⟨·, ·⟩τ ,Γ inW also thwarts the straightforward applica-

tion of an otherwise effective preconditioning strategy for boundary integral equa-

tions of the first kind, which is based on Calderón projectors [59]. The gist of the

remedy, devised in [28], is to express ⟨·, ·⟩τ ,Γ via an approximate discrete Hodge

decomposition ofW .

This instability forces us to switch from (44) to (45), before a Galerkin dis-

cretization by means ofWh becomes feasible: the stability of the TH(divΓ , Γ ) in-
ner product in the discrete setting is a moot point. Hence, provided that the assump-

tions of Theorem 11 hold, the Galerkin discretization inWh will produce asymptot-

ically optimally convergent solutions on sufficiently fine meshes. The proof follows

the standard approach to coercive variational problems [62]. However, note that all

estimates will be based on theH×(divΓ , Γ )-norm, that is

∥λ − λh∥H×(divΓ ,Γ ) ≤ C inf
η∈Wh

∥λ − ηh∥H×(divΓ ,Γ ) .

We point out that the bilinear expressions (λh, µh) -→ ⟨divΓCκλh, divΓ µh⟩0;Γ
that have to be evaluated for basis functions ofWh in order to get the system matrix

can be converted into sums of two integrals over Γ × Γ featuring weakly singular

kernels. Details can be found in the proof of Lemma 11.

10 Coupling of Finite Elements and Boundary Elements

The solution of the transmission problem of electromagnetic scattering by means of

direct boundary integral equations is confined to the case of homogeneous scatter-

ers, because the simple representation formula (26) for Maxwell solutions cannot

accommodate variable material coefficients ε = ε(x), µ = µ(x), x ∈ Ωs. This sit-

uation poses no problems for a Galerkin finite element discretization of the spatial
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variational problem insideΩs. On the other hand, the field problem in the air region

Ω′ is not amenable to a treatment by classical finite elements, but offers a perfect

setting for the boundary element methods discussed in the previous sections. Thus,

it is natural to tackle scattering at an inhomogeneous body by a combined Galerkin

discretization involving both finite elements and boundary elements. In this section

the focus will be on a method based on the Calderon projector P+
κ from (34).

Using aM (·, ·) defined in (15), the electric field in Ωs satisfies

aM (e,v) −
〈
µ−1γ−

t curl e, γ−

t v
〉

τ ,Γ
= 0 (70)

for all v ∈ H(curl; Ωs). The gist of coupling is to employ an operator representa-

tion of the Dirichlet-to-Neumannmap DtN
+
κ : H

−
1
2

× (divΓ , Γ ) -→ H
−

1
2

× (divΓ , Γ ),
which is a linear operator returning γ+

Ne for a Maxwell solution e in Ω′ if γ+
t e is

prescribed. If this was available, we could use the transmission conditions

γ−

t e = γ+
t e + γ+

t ei , µ−1γ−

t curl e = κ
µ0

γ+
Ne + γ+

t hi , (71)

to cast the scattering problem in the variational form: seek e ∈ H(curl; Ωs) such
that for all v ∈ H(curl; Ωs)

aM (e,v) − κµ−1
0

〈
DtN

+
κ γ−

t e, γ−

t v
〉

τ ,Γ
= r.h.s(v) .

By Thm. 8 either row of the interior Calderon projector P−
κ immediately supplies a

realization of DtN
+
κ :

DtN
+
κ = −(1

2 Id +Cκ)−1Sκ , DtN
+
κ = −S−1

κ (1
2 Id +Cκ) . (72)

Both formulae describe the same operator, but appear vastly different. The reason is

that they both break the inherent symmetry of magnetic and electric fields. Symme-

try can be preserved by combining both rows of P+
κ in a clever manner:

DtN
+
κ = −Sκ − (1

2 Id−Cκ)S−1
κ (1

2 Id +Cκ) . (73)

This discovery was first presented in [32] and is the foundation for the so-called

symmetric approach to marrying finite elements and boundary elements. It has been

applied to a wide range of transmission problems, see, for instance [22, 23, 50]. In

the case of electromagnetism the idea was examined theoretically in [4–6], and in

[9] for a related problem involving impedance boundary conditions.

Of course, a variational formulation suited for Galerkin discretization has to

dispense with the explicit inverse S−1
κ . Instead another equation is added, which

leads to: seek e ∈ H(curl; Ωs), λ ∈ H
− 1

2

× (divΓ , Γ ) with

aM (e, e′) +
〈

κ
µ0

Sκγ−

t e, γ−

t e′
〉

τ ,Γ
−

〈
κ
µ0

(1
2 Id−Cκ)λ, γ−

t e′
〉

τ ,Γ
= . . . ,

〈
(1
2 Id +Cκ)γ−

t e, λ′
〉

τ ,Γ
+

〈
Sκλ, λ′

〉
τ ,Γ

= . . . ,
(74)
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for all e′ ∈ H(curl; Ωs), λ
′ ∈ H

− 1
2

× (divΓ , Γ ). The new unknown λ will provide

the exterior Neumann trace γ+
Ne.

Note that the symmetric version of DtN
+
κ involves the inverse of Sκ. This sug-

gests that “forbidden wave numbers” will also haunt the coupled formulations, cf.

Sect. 7. Similar to Lemma 14 one proves the following theorem, see [44].

Theorem 16. If κ2 is not an interior electric eigenvalue, a solution (e, λ) of

(74) provides a solution of the transmission problem (1) by retaining e in Ωs

and using the exterior Stratton-Chu representation formula (26) with the data

(γ−

t e− γ+
t ei, λ).

Corollary 6. If κ2 is not an interior electric eigenvalue, the solution (e, λ) of (74)
is unique.

We point out that even if κ violates the assumption of the theorem, the solution for

e will remain unique. This will no longer be true for λ, which is unique only up

to Neumann traces of interior electric eigenmodes. This can be seen by refining the

arguments in the proof of Theorem 16.

We denote by dκ the bilinear form on H(curl; Ωs) × H
−

1
2

× (divΓ , Γ ) that is
associated with the the variational problem (74). Pursuing the same policy as in

Sect. 3 and 7, we aim to establish a generalized Gå rding inequality for dκ. Of

course, the splitting idea will pave the way. More precisely, the crucial “sign flipping

isomorphism” XV will involve both splittings (18) and (21) employed in Sects. 3

and 7. Writing, V := H(curl; Ωs) × H
− 1

2

× (divΓ , Γ ), it reads

XV

(
u

ξ

)
:=

(
(R − Z)u

(RΓ − ZΓ )ξ

)
: V -→ V .

We make the important observation that the trace γ−

t maps curl-free vectorfields

into N (Γ ). In addition we can use the symmetry of Cκ stated in lemma 6 and

proceed as in the proof of Thm. 9. This will give us the desired strengthened Gå

rding inequality:

Theorem 17. There exists a compact bilinear form c : V × V -→ C and a constant

CG > 0 such that

∣∣∣∣dκ

((
u

µ

)
, XV

(
u

µ

))
− c

((
u

µ

)
,

(
u

µ

))∣∣∣∣ ≥

≥ CG

(
∥u∥2

H(curl;Ωs) + ∥µ∥2

H
−

1
2

×
(divΓ ,Γ )

)

holds for all u ∈ H(curl; Ωs), µ ∈ H
− 1

2

× (divΓ , Γ ).

Hence, in conjuction with Cor. 6, a Fredholm alternative argument confirms the

existence of solutions of the variational problem (74).
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Besides Γh the Galerkin discretization of (74) requires a triangulationΩh ofΩs.

In principle, both can be independent of each other, but implementation is greatly fa-

cilitated if Γh = Ωh|Γ . Then, we can rely on theH×(divΓ , Γ )-conforming bound-
ary element spaces Wh to approximate λ, and special H(curl; Ωs)-conforming
finite elements for e. The latter are thoroughly discussed in [45, Ch. 3]. They enjoy

all the properties that permit us to prove a discrete inf-sup-condition as in Sect. 9.1.

Thus we can get asymptotic quasi-optimality of discrete solutions obtained by the

symmetric coupling of finite elements and boundary elements for the electromag-

netic scattering problem.
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A Scattering from coated dielectric objects

Now, we consider a partition of Γ := ∂Ωs into a part ΓPEC covered by a perfectly

conducting coating, and a part Γo that can be penetrated by electromagnetic fields.

Further, we assume that Ωs is filled with an isotropic, homogeneous dielectric ma-

terial with material parameters ε− and µ−. Hence we end up with a wave number

κ− := ω
√

ε−µ− inside Ωs, whereas κ+ := ω
√

ε0µ0 has to be used in Ω′. On Γ

we find the following boundary and transmission conditions:

γ−

t e = γ+
t e = 0 on ΓPEC , γ−

t e = γ+
t e on Γo ,

κ−

µ− γ−

Ne = κ+

µ0
γ+

Ne on Γo .

We aim to establish a variational direct boundary integral equation formulation for

this transmission problem. We closely follow the approach in Sect. 7.1, p. 28, and

will reuse the notations introduced there.

First, we recall some results about traces of functions inH(curl; Ω) onto parts
of the boundary, cf. [18]. To this end, letΩ ⊂ R3 be a generic domain and Γo ⊂ ∂Ω

an open subset of its piecewise smooth Lipschitz boundary Γ . We take for granted

that Γo is a union of faces of Γ . We introduce the space

HΓ\Γo
(curl; Ω) := {u ∈ H(curl; Ω), γtu = 0 on Γ \ Γo} ,

and the two trace spaces

H
− 1

2

× (divΓ , Γo) :={µ ∈ H
− 1

2

× (Γo), divΓ µ ∈ H− 1
2 (Γo)} ,

H
− 1

2

×,00(divΓ , Γo) :={µ ∈ H
− 1

2

×,00(Γo), divΓ µ ∈ H
− 1

2

00 (Γo)} .

From [18, Thm. 5.3] we get the following fundamental trace theorem. Its statement

makes use of the restriction operator roµ := µ|Γo
in the sense of distributions.
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Theorem 18. The restricted trace mapping ro◦γt : H(curl; Ω) -→ H
− 1

2

×,00(divΓ , Γo)
is continuous and surjective.

The trace mapping γt : HΓ\Γo
(curl; Ω) -→ H

− 1
2

× (divΓ , Γo) is continuous and
surjective.

We immediately infer thatH
−

1
2

× (divΓ , Γo) is the space of tangential vectorfields

on Γo that yield a function inH
− 1

2

× (divΓ , Γ ) when extended by zero to Γ .

The duality for the partial trace spaces is explained in [18, Sect. 5].

Theorem 19. The spaces H
−

1
2

× (divΓ , Γo) and H
−

1
2

×,00(divΓ , Γo) are dual to each
other with respect to the pairing ⟨·, ·⟩τ ,Γ .

As in Sect. 7.1 we introduce the scaled traces

(ζ+, λ+) = (γ+
t e, κ+

µ0
γ+

Ne) , (ζ−, λ−) = (γ−

t e, κ−

µ− γ−

Ne) .

With this notation the transmission conditions on Γo read

ζ− − ζ+ = γ+
t ei inH

−
1
2

× (divΓ , Γo) , (75)

λ− − λ+ = γ+
t hi inH

− 1
2

×,00(divΓ , Γo) . (76)

These transmission conditions are due to the fact that e denotes the total field in

Ωs, whereas in Ω′ it refers only to the scattered field that satisfies the Silver-Müller

radiation condition at∞.
For the sake of completeness we note that

ζ− = 0 , ζ+ = −γ+
t ei on ΓPEC .

Let us rewrite (47) as

(
− 1

2 Id +Cκ−

µ−

κ− Sκ−

κ−

µ− Sκ− − 1
2 Id +Cκ−

) (
ζ−

λ−

)
= 0 , (77)

(
− 1

2 Id−Cκ+ − µ0

κ+ Sκ+

−κ+

µ0
Sκ+ − 1

2 Id−Cκ+

)(
ζ+

λ+

)
= 0 . (78)

From these equations we aim to derive the crucial electric to magnetic maps, which

provide the Poincaré-Stekhlov operators for electromagnetic scattering. First, we

use the second equations in (77) and (78) and get

λ− = (κ−

µ− Sκ−)ζ− + (1
2 Id +Cκ−)λ− , (79)

λ+ = (−κ+

µ0
Sκ+)ζ+ + (1

2 Id−Cκ+)λ+ . (80)

Then, we rely on the first equations to eliminate the magnetic traces remaining on

the right hand side:
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λ− =
(

κ−

µ− Sκ− − (1
2 Id +Cκ−)(µ−

κ− Sκ−)−1(− 1
2 Id+Cκ−)

)
ζ− , (81)

λ+ =
(
−κ+

µ0
Sκ+ + (1

2 Id−Cκ+)( µ0

κ+ Sκ+)−1(− 1
2 Id−Cκ+)

)
ζ+ . (82)

Strictly speaking, this formal manipulation is only valid, if there are no interior

resonances, because invertibility of both Sκ− and Sκ+ has to be guaranteed, see

Sect. 7.1. For the sake of brevity let us introduce the operators

P
− := κ−

µ− Sκ− − (1
2 Id +Cκ−)(µ−

κ− Sκ−)−1(− 1
2 Id +Cκ−) ,

P+ := −κ+

µ0
Sκ+ + (1

2 Id−Cκ+)( µ0

κ+ Sκ+)−1(− 1
2 Id−Cκ+) .

By Cor. 2 they map continuously

P
−, P+ : H

− 1
2

× (divΓ , Γ ) -→ H
− 1

2

× (divΓ , Γ ) .

Moreover, the derivation of P− and P+ confirms that barring interior resonances,

(ζ−, P−ζ−) and (ζ+, P+ζ+)will be interior/exterior electromagnetic Cauchy data.
Using these operators, the transmission condition (76) can be stated as

P−ζ− − P+ζ+ = γ+
t hi inH

−
1
2

×,00(divΓ , Γo) .

Plugging in (75) and retaining ζ := ζ− as unknown, this can be cast into the equiv-

alent variational form
〈
(P−ζ − P+(ζ − γ+

t ei), µ
〉

τ ,Γ
=

〈
γ+
t hi, µ

〉
τ ,Γ

∀µ ∈ H
− 1

2

× (divΓ , Γo) .

(83)

The presence of inverse operators in the definitions ofP− and P+ makes (83) unsuit-

able for a direct Galerkin discretization. The usual trick to avoid these undesirable

inverses is to use (79) and (80) and switch to a mixed formulation:

P−ζ = (κ−

µ− Sκ−)ζ + (1
2 Id+Cκ−)λ−, λ− := −(µ−

κ− Sκ−)−1(− 1
2 Id +Cκ−)ζ ,

P+ζ+ = (−κ+

µ0
Sκ+)ζ+ + (1

2 Id−Cκ+)λ+, λ+ := ( µ0

κ+ Sκ+)−1(− 1
2 Id−Cκ+)ζ+ ,

where λ−, λ+ ∈ H
− 1

2

× (divΓ , Γ ) can be regarded as auxiliary unknowns de-

fined on all of Γ . Hence, (83) is equivalent to: seek ζ ∈ H
−

1
2

×,00(divΓ , Γo),

λ− ∈ H
− 1

2

× (divΓ , Γ ), λ+ ∈ H
− 1

2

× (divΓ , Γ ) such that
〈
(κ−

µ− Sκ−)ζ + (κ+

µ0
Sκ+)(ζ − γ+

t ei), µ
〉

τ ,Γ
+

+
〈
(1
2 Id+Cκ−)λ−, µ

〉
τ ,Γ

+

−
〈
(1
2 Id−Cκ+)λ+, µ

〉
τ ,Γ

=
〈
γ+
t hi, µ

〉
τ ,Γ

,
〈
(− 1

2 Id +Cκ−)ζ, τ
〉

τ ,Γ
+

〈
(µ−

κ− Sκ−)λ−, τ
〉

τ ,Γ
= 0 ,

〈
(1
2 Id +Cκ+)(ζ − γ+

t ei), θ
〉

τ ,Γ
+

〈
( µ0

κ+ Sκ+)λ+, θ
〉

τ ,Γ
= 0 .

(84)

for all µ ∈ H
− 1

2

× (divΓ , Γo), τ ∈ H
− 1

2

× (divΓ , Γ ), θ ∈ H
− 1

2

× (divΓ , Γ ).



46 A. Buffa and R. Hiptmair

Lemma 18. The variational problem (84) has a unique solution (ζ−, λ+, λ−) ∈
H

− 1
2

× (divΓ , Γo) × H
− 1

2

× (divΓ , Γ ) × H
− 1

2

× (divΓ , Γ ), provided that κ+ does not

coincide with an interior electric Maxwell eigenvalue of Ωs.

Proof. We study a solution (ζ, λ+, λ−) of the homogeneous system with γ+
t ei =

and γ+
t hi = 0. Then set

(
ζ̃

+

λ̃
+

)
:=

(
1
2 Id−Cκ− −µ−

κ− Sκ−

−κ−

µ− Ŝκ−

1
2 Id−Cκ−

)(
ζ

λ−

)
, (85)

(
ζ̃
−

λ̃
−

)
:=

(
1
2 Id +Cκ+

µ0

κ+ Sκ+

κ−

µ0
Ŝκ+

1
2 Id +Cκ+

) (
ζ

λ+

)
, (86)

Please note that the operators in (85) and (86) are the (scaled) exterior Calderón

projector for the interior wave number κ− and the interior Calderón projector for

the exterior wave number κ+. This means that
(eζ

+

eλ
+

)
are exterior Maxwell Cauchy

data, whereas
(eζ

−

eλ
−

)
turn out to be interior Maxwell Cauchy data.

From the second and third equation of (84) with zero r.h.s. it is immediate that

ζ̃
−

= ζ̃+ = 0 .

Thus, the unique solvability of the exterior scattering problem yields λ̃
+

= 0. If κ+

is different from an interior electric Maxwell eigenvalue, then we can also conclude

λ− = 0.
Hence, we have shown

(
1
2 Id +Cκ−

µ−

κ− Sκ−

κ−

µ− Ŝκ−

1
2 Id +Cκ−

)(
ζ

λ−

)
=

(
ζ

λ−

)
,

(
1
2 Id−Cκ+ − µ0

κ+ Sκ+

−κ−

µ0
Ŝκ+

1
2 Id−Cκ+

) (
ζ

λ+

)
=

(
ζ

λ+

)
.

This means that
(

ζ

λ−

)
are Cauchy data for the the interior scattering problem with

wave number κ− and
(

ζ

λ+

)
play the same role for an exterior scattering problem

with wave number κ+.

Moreover, from the first equation of (84) we can infer that

λ− − λ+ = (κ−

µ− Ŝκ− + κ−

µ0
Ŝκ+)ζ+

+ (1
2 Id +Cκ−)λ− − (1

2 Id−Cκ+)λ+ = 0 on Γo .

Summing up, the boundary data (ζ, λ−, λ+) are the traces of the electric field and
the magnetic field, respectively, that solve the scattering problem for the coated

dielectric object Ω. Since we considered the case of zero excitation, the unique

solvability of the scattering problem enforces ζ = λ− = λ+ = 0.
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The bilinear form a associated with the variational problem (84) reads

a

⎛
⎝

⎛
⎝

ζ

λ−

λ+

⎞
⎠ ,

⎛
⎝

µ

τ

θ

⎞
⎠

⎞
⎠ :=

〈
(κ−

µ− Sκ− + κ+

µ0
Sκ+)ζ, µ

〉
τ ,Γ

−

−
〈
(1
2 Id +Cκ−)λ−, µ

〉
τ ,Γ

+

+
〈
(1
2 Id−Cκ+)λ+, µ

〉
τ ,Γ

+

+
〈
(− 1

2 Id +Cκ−)ζ, τ
〉

τ ,Γ
+

+
〈
(1
2 Id +Cκ+)ζ, θ

〉
τ ,Γ

+

+
〈
(µ−

κ− Sκ−)λ−, τ
〉

τ ,Γ
+

+
〈
( µ0

κ+ Sκ+)λ+, θ
〉

τ ,Γ
,

Lemma 19. The bilinear form a is satisfies a generalized Gårding inequality on

(H
−

1
2

× (divΓ , Γ ))3.

Wrong sign somewhere

Proof.




