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Abstract Low order Galerkin models were originally introduced

as an effective tool for stability analysis of fixed points and, later,

of attractors, in nonlinear distributed systems. An evolving in-

terest in their use as low complexity dynamical models, goes well

beyond that original intent. It exposes often severe weaknesses

of low order Galerkin models as dynamic predictors and has mo-

tivated efforts, spanning nearly three decades, to alleviate these

shortcomings. Transients across natural and enforced variations

in the operating point, unsteady inflow, boundary actuation and

both aeroelastic and actuated boundary motion, are hallmarks of

current and envisioned needs in feedback flow control applications,

bringing these shortcomings to even higher prominence. Building

on the discussion in our previous chapters, we shall now review

changes in the Galerkin paradigm that aim to create a mathemat-

ically and physically consistent modeling framework, that remove

what are otherwise intractable roadblocks. We shall then highlight

some guiding design principles that are especially important in the

context of these models. We shall continue to use the simple exam-

ple of wake flow instabilities to illustrate the various issues, ideas

and methods that will be discussed in this chapter.

1 Introduction

The essence of feedback control is the ability to utilize realtime sensing,
decision making and actuation, to manipulate the unsteady dynamics of
a system subject to disturbances, uncertainties and time variations in the
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operating regime over a wide range of time scales. One of a multitude of
pertinent examples that come to mind is the aerodynamic control of a small
unmanned air vehicle (UAV / MAV): Indeed, the UAV may have to track
far more complex flight trajectories, and face changes in wind speed and
orientation, let alone the impact of irregular gusts on aerodynamic forces,
that are far higher, in relative terms, than in the case of larger aircraft. This
example therefore brings into sharp relief the significance of unsteadiness in
feedback control applications that are the subject matter of the yet nascent
field of feedback flow control.

Models used in feedback design and implementation reflect the need to
reconcile the conflicting demands of precision, time horizon and dynamic
envelope, on the one hand, and complexity restrictions imposed by analytic
design methods and feasible realtime computations, on the other hand. An
ensemble of mathematically rigorous methods to address this balancing act
has been developed within mainstream linear systems theory: With a high
fidelity, high order model as a starting point, operator theoretic model re-
duction procedures are associated with provable error bounds that quan-
tify the tradeoff between simplicity, precision and closed loop performance
(Antoulas, 2005; G. Obinata, 2000; Sánchez-Peña and Sznaier, 1998). The
feasibility of that level of rigor is largely lost in complex, nonlinear systems.
In fact, even the computations required by linear reduced order models, e.g.,
the solution of Lyapunov and Riccati equations, become a formidable task
at very high nominal dimension, requiring an appeal to simulation based
approximations (Rowley, 2005). Adaptation of linear methods to nonlin-
ear systems, analytical methods based on differential-geometric, energy and
stochastic dynamical systems considerations, are often based on asymptotic
convergence arguments, heuristics and, at best, on local error bounds (Ni-
jmeijer and van der Schaft, 1990; Rowley et al., 2003; Mezić, 2005; Homescu
et al., 2005; Gorban et al., 2006; Schilders et al., 2008).

The combined effects of nonlinearity, high dimension and the rich dy-
namic repertoire of fluid mechanical systems, bring the tension between
model precision, dynamic envelope and simplicity demands to an extreme.
This tension has lead to the evolution of low order models, identified di-
rectly from experimental or simulation models, as alternatives to the top-
down, model reduction approach. Notable examples include black box linear
models (Cattafesta et al., 2008), low order Galerkin models (Holmes et al.,
1998), and more sporadically, Lagrangian vortex models (Protas, 2008).
Yet these alternative approaches lack a rigorous supportive theory that ex-
plicitly quantifies the tradeoff between model fidelity and its complexity.
Indeed, despite decades of efforts, low order models of natural and actuated
fluid flow systems often fail to meet the needs of viable engineering design.
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Following on the authors’ previous two chapters, we maintain our focus
on Galerkin models, and direct the reader to those chapters for a discus-
sion motivating this focus. Our purpose here is to further elucidate the
root causes for pronounced shortcomings and failures of prevalent low order
Galerkin modeling methods, and to use these observations as a basis for
the development of an extended framework of Galerkin models on nonlinear
manifolds. Specifically, we shall review inherent conflicts between the tradi-
tional Galerkin paradigm and the requirements of flow control applications,
which give rise to persistent failures, and develop the proposed framework,
expressly, to remove these inconsistencies. Finally, we will highlight essen-
tial guidelines for the utilization of the new paradigm in flow control design.
The discussion will cover aspects of mean field theory, turbulence models,
mode deformation, actuation models and forced and elastic boundary mo-
tion.
Nomenclature and formalism. Unless otherwise stated, the mathemat-
ical formalisms and nomenclature used in this chapter follow those set in
the appendix and used in our previous chapter, by Noack et al. To facilitate
reading we shall nonetheless remind the reader, of some of these conventions
when using them.

2 Benchmark Model Systems

We shall use two model systems to illustrate the discussion in this chapter:
The laminar wake flow behind a two dimensional cylinder at the Reynolds
number Re = 100, will continue to be used as the main running example.
The separated, turbulent flow over a two dimensional airfoil at a high an-
gle of attack, at Re = 106, will be used as a supplementary example, to
illustrate peculiar aspects of high frequency actuation. This section reviews
the geometry, the postulated actuators, and some basic facts regarding the
dynamics of these two examples. It also serves as a reminder of some of our
basic nomenclature.

2.1 The Cylinder Wake

The two dimensional flow in the wake of a circular cylinder is an exten-
sively studied canonical configuration. A systematic analysis of the instabil-
ity of the steady flow and of the nature of a characteristic periodic attractor
were first introduced in the celebrated work of von Kármán (von Kármán
and Rubach, 1912), a century ago, with numerous subsequent studies in
diverse natural and actuated contexts, continuing to the present day. The
general interest and our own selection of this configuration stem from the
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Figure 1. The actuated cylinder wake: The cylinder is represented by
the black disk. The downstream circle and arrows indicate the location
and orientation of a volume-force actuator. The vertical arrows across the
cylinder represent controlled vertical oscillations as an alternative, second
form of actuation. Streamlines represent a snapshot of the natural flow.

fact that it is one of the simplest possible examples of the bifurcations from
potential to vortical flow, at Re ≈ 4, and then, to periodic instability with
the emergence of vortex shedding and the von Kármań vortex street, at
Re ≈ 47 (Noack and Eckelmann, 1994; Williamson, 1996; Barkley, 2006).

2.2 The Actuated Cylinder Wake Configuration

Figure 1 depicts the key elements of this example. As in previous discus-
sions, the incoming flow and the transverse direction are aligned with the
x and y coordinates, respectively. The cylinder is represented by the black
disk, in that figure:

ΩD = {x ∈ R2 : ‖x‖ ≤ 1/2}. (1)

The flow is represented by streamlines over the area of the computational
domain surrounding the cylinder:

Ω = {x = (x, y) ∈ R2 \ ΩD : x ∈ [−5, 15], y ∈ [−5, 5], x 6∈ ΩD}. (2)

As in the previous chapter, the velocity field is u = (u, v). Length and veloc-
ity are normalized with respect to the cylinder diameter and the horizontal
incoming flow velocity U . We consider this configuration at the Reynolds
number of Re = 100, well above the transition to instability and yet well
within the laminar regime.
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Periodic vortex shedding leads to often undesirable mechanical vibra-
tions and a generic control objective is to attenuate this instability. Figure 1
includes two forms of actuation that can be used to that end:

One is a vertical volume-force, defined over a downstream disk Ωvf :

f(x, t) = b(t) g(x) , where

g(x) =






(0, 1) x ∈ Ωvf

(0, 0) otherwise,

Ωvf = {x ∈ R2 : ‖x − (0, 2)‖ ≤ 1} ,

(3)

The volume force may be viewed as mimicking an electro-hydrodynamic
(EHD) actuator (D’Adamo et al., 2009). Volume force representations are
also commonly used as a simple way to include boundary actuation, such as
pulsating jets and zero-net-flux actuators (Glezer and Amitay, 2002) in both
CFD and reduced order models (Ahuja et al., 2007; Joe et al., 2008). We
shall revisit this point in the discussion of outstanding modeling challenges.
The discussion of volume force actuation will refer to a number of studies by
our group, including Gerhard et al. (2003); Noack et al. (2004b); Tadmor
et al. (2004); Noack et al. (2004a); Tadmor and Noack (2004); Lehmann
et al. (2005); Luchtenburg et al. (2006); Tadmor et al. (2010).

To attenuate vortex shedding, actuation policies will be designed to dis-
sipate the kinetic energy of the oscillatory flow field as an opposing force.
Actuation will therefore be periodically modulated, taking the form

b(t) = B cos (ψ(t)) . (4)

Under such a policy, the oscillations phase ψ is assigned by a feedback
controller to apply a decelerating force on the oscillatory vertical component
of the flow field u over Ωvf . The actuation frequency ψ̇ must therefore match
the shedding frequency.

The second form of forcing shown in Figure 1 is the vertical oscillation
of the cylinder. Once again, this is a simple example of a broad array
of dynamic fluid body interactions that range from controlled boundary
motion to elastic deformations and disturbance driven boundaries, under
diverse scenarios of engineered and natural systems. The particular example
of the oscillatory-actuated cylinder has been studied by our team, in Noack
et al. (2004b); Tadmor et al. (2004); Noack et al. (2004a); Tadmor and
Noack (2004), and by this volume’s co-author, S. Siegel and collaborators,
as described in Siegel et al. (2008).

A postulated sensor is also shown in Figure 1. The sensor measures
one or two components of the velocity field, and represents one of several
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Figure 2. Least order local representations of the unsteady cylinder wake
flow at Re = 100, from a small perturbation the unstable, steady solution
us (top row), through a mid-transient period (mid-row), to the natural
attractor (bottom row). From left to right: The mean flow and a mode-pair
resolving flow unsteadiness at the dominant, vortex shedding frequency.

standard physical implementations, including hot wire sensors and, as in an
increasing number of studies, a real time digital particle image velocimetry
(Yu et al., 2006) or laser Doppler anemometry. Sensor readings will provide
a representation of a realistic feedback flow control implementation.

2.3 Dominant Coherent Structures of the Natural Flow

The transition to instability at Rec ≈ 47 is a supercritical Hopf bifurca-
tion: Considering small fluctuations from the steady solution, us, the real
part of a complex conjugate pair of eigenvalues of the linearized NSE be-
comes positive once Re > Rec, giving rise to an oscillatory instability and
the inception of periodic vortex shedding. The exponential growth of these
oscillatory fluctuations saturates as the flow settles at a periodic attrac-
tor. As will be further elaborated in § 6, at least 94% of the TKE1 can be
resolved by an operating-point-dependent mode-pair, throughout the natu-
ral transient from the steady solution to the attractor (Noack et al., 2003;
Lehmann et al., 2005; Morzyński et al., 2007). These local modes and the
local mean flow can be computed as slowly varying, distributed Fourier coef-
ficients of the flow field, a perspective we shall also elucidate in short order.
In this particular case, the same modes can be computed by application
of the proper orthogonal decomposition (POD) procedure, reviewed in the

1As defined in the previous chapter, the TKE is the period-averaged turbulent kinetic

energy of the unsteady flow.
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Figure 3. Dynamic characteristics of the cylinder wake flow at Re = 100,
as they vary along the natural transient from the steady solution to the at-
tractor: The instantaneous shedding frequency (top, left), the instantaneous
exponential growth rate of the fluctuation amplitude (top, right), and the
feasible TKE resolution with an expansion by a single mode pair (bottom,
left). Attractor TKE levels of the first 4 mode-pairs (8 modes), resolving
the first 4 harmonics of the shedding frequency, normalized by the TKE at
the leading harmonic, are also shown (bottom, right).

previous chapter, to a single vortex shedding period2.
Figure 2 depicts3 the mean fields and the dominant mode-pair at the

beginning of the natural transient, at a mid-point, and following the conver-
gence to the natural attractor. Figure 3 shows the feasible TKE resolution
by a single mode-pair and the gradually changing shedding frequency, along
the natural transient. It also provides the distinct TKE levels of each of the
first four harmonics of the shedding frequency over the attractor. Figures 2
and 3 highlight two complementary properties of the flow: On the one hand,
key quantitative properties of the flow change substantially along the tran-
sient: The mean flow’s near wake recirculation bubble is drastically reduced
as the flow approaches the attractor, the vortical structures of the leading
two modes move closer to the cylinder, the characteristic wave-length of
these vortices reduces and the shedding frequency grows by nearly 25%.
A single mode-pair would therefore provide a far poorer resolution of the
entire transient, when compared with what is feasible with operating-point-

2The property that POD modes are each associated with distinct frequencies is generic

only when the flow is dominated by a single frequency and its harmonics.
3Here and throughout, velocity fields are represented by streamlines.

7



Figure 4. A sketch of the three element high-lift configuration and the
observation region for the model. Periodic excitation (↔) is implemented
at the upper part of the trailing edge flap.

dependent expansions. For example, the attractor POD modes resolve less
than 50% of the early transient’s TKE (Noack et al., 2003). The flip side of
this observation is that the overall qualitative nature of the flow, including
the topology of the mean flow and the leading modes, the dominance of a
single frequency, etc., are preserved, and their quantitative manifestations
change gradually. Both these observations are generic and characterize nat-
ural and actuated non-bifurcating transients in fluid flow systems.

2.4 A High Lift Configuration

Figure 4 shows a simplified, two dimensional representation of generic
wing extensions, used by transport airplanes to increase lift during takeoff
and landing. it includes the main wing section, a leading edge slat and a
trailing edge flap. The incompressible flow is considered at Re = 106, where
velocity and length are scaled with respect to the incoming flow velocity U
and the wing chord length c, measured when the high lift mechanism is
retracted. The chord lengths of the slat and flap are csl = 0.158 c and
cfl = 0.254 c, and their deployed deflection angles are 26.5◦ and 37◦, re-
spectively. The angle of attack of the main wing section is 6◦. At these
conditions the flow separates only from the trailing edge flap. The two-way
arrow in Figure 4 represents on oscillating jet that is used as the control ac-
tuator, with the purpose to reattach the flow to the flap and thus, increase
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the lift gain. The actuated jet is simulated by imposing a flow velocity,
orthogonal to the airfoil, and is located at 0.04 c from the flap’s leading
edge. Some additional technical details will be provided during discussion
and the complete description can be found in (Luchtenburg et al., 2009).

This configuration has been the subject of several experimental and
numerical flow control studies the Berlin Institute of Technology and our
group, including (Günther et al., 2007; Schatz et al., 2007; Kaepernick et al.,
2005; Luchtenburg et al., 2009). We shall use this example only in an open
loop mode. The imposed periodic velocity will be the open loop counterpart
of (4):

b(t) = B cos (ωat) , (5)

where ωa is the actuation frequency and B the amplitude of actuation.

2.5 The Natural and the Actuated Flows

The natural, massively separated flow around and behind the flap is
characterized by alternating shedding of the leading and trailing edge vor-
tices. The average shedding frequency is ωn = 1.875 (equiv. Stn = 0.32)
and the fluctuation peak TKE area is in the wake.

The open loop actuated jet, in this example oscillates at the frequency
ωn = 3.75 (equiv. Sta = 0.6), with the maximal momentum coefficient
Cµ = 4 × 10−3. Actuation leads to a substantial reattachment of the flow,
a near complete attenuation of shedding at ωn, the emergence of a new
periodic attractor, locked-in to the actuation frequency ωa, and, indeed, a
19% increase of the average lift coefficient. The actuated fluctuations are
concentrated above and near the trailing edge flap.

Kinematically, once again, both the natural and the actuated attractors
are well resolved, each, each by a single POD mode pair. Figure 5, taken
from (Luchtenburg et al., 2009), shows the mean flow, the first POD mode
and a generic snapshot of the respective natural and the actuated attractors.

3 Low Order Galerkin Models: Some Added

Concepts

This section sets the ground for the main developments, including the exten-
sion of the Galerkin framework, in § 4, § 5, § 6 and § 7, and the discussion of
actuation and control design, in § 8. This review begins with a reminder of
the basic ingredients of the Galerkin model. It continues with a discussion
of the triple Reynolds decomposition (TRD) in relation to Galerkin mod-
els, and of an interpretation of that decomposition in terms of harmonic
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Figure 5. Comparison of a natural (left) and the actuated (right) attractors
of the separated flow over the deployed rear flap of the high lift configura-
tion example. Visualized flow fields include characteristic snapshots (top),
the mean flows (center) and instantaneous fluctuation (bottom) of the two
respective attractors, as detailed in Luchtenburg et al. (2009).

Galerkin expansions. A review of basic concepts of power and energy dy-
namics completes this set of preliminaries. To motivate the rather lengthy
but essential preparatory work, we interrupt the presentation, early on, with
a simple illustrative example of the gamut of failures one may encounter
when applying the existing Galerkin paradigm to transient modeling.

3.1 The Constitutive First Principles Model

For ease of reference we display again the incompressible Navier-Stokes
equations (NSE), the constitutive model underlying the entire discussion:

∂tu = N (u) + f = −∇ · (u ⊗ u) −∇p+ ν∆u + f ,

∇ · u = 0.
(6)

Low order Galerkin models were developed as efficient computational tools
to analyze fixed points and, later on, attractors of partial differential equa-
tions (PDEs), such as the NSE. The Galerkin framework was therefore
traditionally designed for handling steady domain geometry and boundary
conditions. In fluid dynamics contexts, an increasing interest in cases where
both these restrictions fail is an outgrowth of generic flow control applica-
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tions, e.g., boundary actuators by jets, suction and membranes, active and
elastic walls, flapping flight and wind gusts. being able to incorporate these
challenges in a systematic modeling framework is a central component of
the discussion of this chapter.

The distributed force field, f , may represent an actuation, such as the
volume force f = bg in (3), where the signal b(t) represents the control com-
mand. Boundary forcing is not represented by terms in (6), but rather, they
are formulated as time varying inputs into the domain of the infinitesimal
generated of the semi-flow, associated with a controlled PDE (Lasiecka and
Triggiani, 2000).

3.2 The Galerkin Modeling Framework

The Galerkin model is determined by a choice of a base flow, uB , defin-
ing the origin of a state space hyperplane, and of an expansion mode set
{ui}i≥1 ⊂ L2(Ω). The Galerkin approximations of the velocity and the
force fields in a fluid dynamic system are then

u(x, t) = uB(x) +
∑

i≥1 ai(t)ui(x),

f(x, t) = fB(x) +
∑

i≥1 fi(t)ui(x),
(7a)

where the generic case of zero-mean steady state forcing means that fB = 0.
The time coefficients ai(t) and fi(t) are defined by the projection of the
flow field, u(x, t), and the force field, f(x, t), on the expansion hyperplane.
When the expansion set is orthonormal (e.g., when ui are POD modes), the
projection formulae reduce to the inner products

ai = (u, ui)Ω, fi = (f , ui)Ω.

When f is a modulated volume force such as (3) we have fi(t) = gi b(t) where
gi are defined by the time invariant projections of g(x) and the modulation
signal b(t) represents the control command. (Notice that this formulation
includes multivariable control, where both g(x), hence gi, and b(t) are vector
valued, and “gi b(t)” stands for the Euclidean inner product.)

The Galerkin dynamical system is the compression of the constitutive
NSE to the approximation hyperplane. It comprises of ordinary differential
equations, governing the time evolution of the coefficients ai, and is obtained
by the projection of the NSE (6) on the approximation hyperplane. Thus,
with an orthonormal expansion, we have

ȧi = (∂tu, ui)Ω

= (N (u), ui)Ω + (f , ui)Ω

= ci +
∑

j≥1 lijaj +
∑

j,l≥1 qijkajak + fi, i ≥ 1.

(7b)
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An, ideal, infinite set of incompressible modes that forms a complete or-
thonormal sequence in L2(Ω) leads to an exact model, which is equivalent
to the NSE. In the context of feedback flow control, however, one’s interest
is rather in the other extreme, i.e., in the lowest possible model order: The
term least order will thus be understood in reference to designated quan-
titative and qualitative system properties that the model needs to resolve.
For example, in the context of the cylinder wake stabilization problem,
these properties will include the instability of the steady solution, existence
of a periodic attractor, the TKE growth rate along natural and actuated
transients between us and the attractor, and the vortex shedding frequency
along such transients and over the attractor. Additionally, the model should
be able to correctly represent the actuation force and the sensor signal.

We recall the following fundamental Galerkin model requirements, made
to ensure that any flow field generated by (7) satisfies both the incompress-
ibility and boundary conditions:

• Both the base flow and the modes are divergence-free:

∇ · uB = 0, ∇ · ui = 0, i ≥ 1.

• The base flow uB absorbs the boundary conditions (in particular, only
steady boundary conditions are allowed).

• The modes ui satisfy homogeneous boundary conditions.

Our discussion will highlight the way these requirements conflict with key
modeling needs in generic flow control applications, and delineate the changes
needed in the Galerkin paradigm to remove such conflicts.

3.3 A Simple Example of an Utter Failure

The litany of definitions and technicalities occupying the remainder of
this section provide the foundation for our subsequent extension of the
Galerkin framework. As a motivation we present first a brief, illustrative
preview, using the cylinder wake flow to highlight the sever modeling issues
that the traditional Galerkin modeling framework gives rise to.

As a matter of basic dynamic principles, a dynamic model capable to
resolve oscillatory fluctuations requires at least two states. In particular, a
meaningful Galerkin model of the unsteady cylinder wake flow requires at
least two modes. As mentioned earlier, this lower bound is kinematically
attainable over the natural attractor, where at least 94% of the TKE is
resolved by a Galerkin approximation that employs the attractor’s mean
flow, denoted u∗,0, as the base flow, and a single mode-pair (e.g., the leading
POD modes), to resolve the fluctuations. As shown in Noack et al. (2003),
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the Galerkin projection of the NSE on the chosen expansion is4 a linear
system of the form:

d

dt

[
a1

a2

]
=

[
σ −ω
ω σ

] [
a1

a2

]
. (8)

The excellent kinematic approximation and the simplicity of this dynamical
model certainly make it very appealing. Alas, this model suffers from severe
flaws, listed right below, that make it of little, if any use.

Instability. The Galerkin projection yields the values of the growth rate
σ ≈ 0.05 and the frequency ω ≈ 1.1 in (8). The predicted frequency is a
good approximation of the shedding frequency. However, with σ > 0, (8) is
linearly anti-stable, which precludes the existence of an attractor, i.e., the
key characterization of this flow configuration.

Poor transient prediction. The model also grossly mis-predicts the early
transient dynamics, near the unstable steady solution, us: The correct
growth rate of small perturbations from us is σs ≈ 0.44, i.e., it is nearly
nine folds larger than the Galerkin projection value of σ. The early tran-
sient shedding frequency is < 0.9, much smaller than the nominal ω.

Model structure inconsistency. Accepting the validity of the NSE,
model parameter mismatch is often attributed to aspects of low order mod-
els, such as the truncation of the energy cascade to neglected, higher order
modes. A common approach to remedy poor dynamic predictions is to
employ a posteriori parameter estimation from simulation or experimental
data. This procedure, known in our field as calibration, is based on the
implicit assumption that the NSE-based structure of the dynamical sys-
tems is correct, and that the desired predictive power will be achieved once
coefficients are appropriately adjusted, e.g., ensuring stability by adding
identified eddy viscosities (Aubry et al., 1988; Rempfer, 1991). Figure 3 re-
futes this assumption: The substantial drift in both the exponential growth
rate and in the shedding frequency along the transient is a property of the
exact NSE solution. Therefore no constant values of the coefficients σ and
ω can match the entire natural transient!

4To be precise, (8) is the phase-averaged Galerkin system: Due to the slight difference

between the oscillation amplitudes of the first and second POD modes, the oscillations

in the (a1, a2) plane would be along an ellipse, rather than a circle. The model (8) is

obtained by averaging the model coefficients over all rotational changes of coordinates.
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Modal expansion inconsistency. The inherent inconsistency of the
dynamical system structure with the entire transient is paralleled by the
Galerkin approximation: As seen in Figure 2, the flow structures that dom-
inate early transients, starting at small perturbations of the steady solution,
are substantially different from their counterparts over the attractor. The
implications on feedback flow control of using the same expansion through-
out the transient can be severe: A Galerkin approximation of the early
transient with an expansion based on the attractor’s mean, u∗,0, and on
attractor POD modes is guaranteed to fail in the near wake. Likewise, pre-
dictions based on an approximation by us and the stability eigenmodes will
be misleading as the flow approaches the attractor. As mentioned earlier,
the quality of TKE resolution, in both cases, drops to as low as 50%, when
the flow state is considered away from the nominal operating condition at
which the modes were obtained. These discrepancies can become manifest
both in state estimation by dynamic observers and in the anticipated impact
of actuation, based on any fixed pair of expansion modes. Poor closed-loop
performance will then be inevitable (Gerhard et al., 2003; Lehmann et al.,
2005; Luchtenburg et al., 2006).

Failure to predict an attractor. The observation above highlighted the
failure at modeling the entire transient. Here we note that the shortcom-
ings of the model persist even when one’s interest is restricted to a single
operating point, e.g., the generic focus on small fluctuations from the attrac-
tor: Calibrating the growth rate to the observed marginal stability value of
σ = 0, the model becomes a representation of an ideal linear oscillator, con-
sistent with the attractor’s periodic orbit. Yet this model has no preferred
oscillation amplitude and therefore cannot recover from disturbance-induced
drift. That is, the existence of periodic orbits does not translate to the ex-
istence of a true attractor.

Inconsistency with moving boundaries. The inclusion of actuation
requires adding a control term to the model, reflecting the effect of the ac-
tuated force field. The description of the cylinder wake benchmark includes
two forms of actuation: A volume force and cylinder oscillations. The inclu-
sion of the former is, at least conceptually, straightforward. That is not the
case when actuated cylinder oscillations are considered. One difficulty is due
to the fact that some points in the computational domain are alternately
occupied by a solid body (the cylinder) and by moving fluid. The Galerkin
projection of the NSE is ill defined at these points, and the model is not be
capable to produce meaningful dynamic predictions in their neighborhood.
A second difficulty is due to the fact that, since boundary motion does not
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involve a body force, it does not lead to a first principles based control term
in the Galerkin system.

As the discussion of this chapter unfolds, we shall demonstrate that
the difficulties we have just identified are not unfortunate peculiarities of
a specific example. Rather, they are the results of generic inconsistencies
between the very structure of the traditional Galerkin model and of model-
ing practices. The existence of many successful Galerkin models is typically
the results of implicit or explicit structural corrections. Even then, the
dynamic envelope and operational range of low order Galerkin models are
mostly severely limited. Our goal is to expose these generic inconsistencies
and to propose solutions at the structural level. The technical discussion in
this section, starting with the triple Reynolds decomposition, right below,
provide the necessary tools to do so.

3.4 The Triple Reynolds Decomposition (TRD)

The discussion of impediments to the success of standard low order
Galerkin models and of suggested remedies will employ the concepts and
notations of the TRD, which is formalized in Eq. (B.9) of Appendix B.3.
For convenience we present this formalism here, including both the standard
and the triple Reynolds decomposition:

u = uB + u′ = uB + uC + uS . (9)

The middle expression in (9) is the standard Reynolds decomposition of
the velocity field u as the sum of a base flow uB and an unsteady fluctuations
field u′. Associated with this decomposition is the concept of the fluctuation
energy

K ′ :=
1

2
‖u′‖2

Ω, (10)

where the bar indicates the ensemble average. In the generic ergodic case,
ensemble and time averages are equivalent, the latter providing the com-
putationally accessible option we shall use in this chapter. The turbulent
kinetic energy, and the abbreviation TKE are identified with K ′. We alert
the reader to the fact that this notation is a slight modification of the nomen-
clature listed in the appendix and used in the previous chapter, where the
TKE is denoted simply by K, i.e., without a prime. The reason for this
change is our explicit reference to the total kinetic energy of the flow field,
including the non-oscillatory base flow, which we shall denote by K:

K :=
1

2
‖u‖2

Ω. (11)
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The TRD is shown following the second equality in (9). Here the un-
steady fluctuation field u′ is partitioned into a coherent velocity field uC

and a remainder uS . The coherent component uC is understood as the part
of u that one is interested to resolve by a low order Galerkin approximation.
The superscript notation of uS is motivated by the conceptual parallel to
the stochastic flow component that is represented in CFD simulations only
indirectly, by subgrid, turbulence models. We will categorize state-related
modeling issues by their relations to each of the three components of (9).

As an illustration, in a two states attractor POD approximation of the
cylinder wake flow, the base flow is the attractor’s mean flow, and the
coherent fluctuations are defined by the projection of u′ = u − uB on the
dominant POD mode pair:

uB := u∗, 0 := u and uC :=
2∑

i=1

aiui with ai := (u′, ui)Ω , i = 1, 2.

The remainder, uS , comprises of higher frequency components of the flow.

3.5 Harmonic Modes and Harmonic Expansions

Here we provide an explicit mathematical definition of the three compo-
nents of the Reynolds decomposition.

As the unsteady flow component that is sought to be resolved by a low
order Galerkin approximation, uC is implicitly defined in terms of certain
ranges of length-scales and time-scales. In this chapter we focus on fre-
quency bandwidth characterizations of uC . That focus is motivated by the
observation that the dynamics of interest in phase-dependent feedback flow
control studies are invariably dominated by a finite set of distinct, slowly
varying frequencies. This description applies, in particular, to the two illus-
trating examples we have introduced in § 2.

Dynamical systems featuring a distinct set of slowly varying frequencies
match each frequency with a pair of states. It therefore appears prudent to
construct the reduced order model of frequency-specific expansion modes,
to begin with. In that case, the Galerkin expansion provides an explicit
definition for uB , uC and uS in terms of participating frequencies:

u = u∗ +A0 u0︸ ︷︷ ︸
u

B

+
∑Nh

i=1A2i−1 cos(φi)u2i−1 +A2i sin(φi)u2i︸ ︷︷ ︸
u

C

+
∑∞

i=Nh+1A2i−1 cos(φi)u2i−1 +A2i sin(φi)u2i︸ ︷︷ ︸
u

S

,

(12)
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where the distinct participating frequencies are d
dt
φi = ωi. In what follows

we add some needed details on the technical assumptions made regarding
the components of (12), on ways to compute them, on the meaning of the
equality in this expansion, and indeed, on its utility.

Starting with formalisms, the flow fields ui are assumed to be normal-
ized, ‖ui‖Ω = 1. This way {ui}i≥1 is viewed as playing the role of a Galerkin
expansion set, and the Galerkin expansion is defined by the scalar coeffi-
cients a2i−1 := A2i−1 cos(φi) and a2i := A2i sin(φi). In particular, w.l.o.g.,
we require that Ai ≥ 0, i ≥ 1. In preparation for the discussion of mean
field models, in § 4, the 0th mode in (12), defining the slowly varying base
flow, uB , includes a constant component, denoted u∗ and a slowly time
varying component, A0u0. Following common practice, one may define the
fixed component u∗ as either a steady NSE solution, us, or as the mean flow
of a studied attractor, which we denote by u∗,0, throughout this chapter.

We shall adopt the convention that the participating frequencies are or-
ganized in an ascending order, ωi < ωi+1, . . . . In the particular case in
which these frequencies are commensurate, when the flow is dominated by
a single base frequency and by its harmonics, ωi = i ω, then (12) is a tempo-
ral Fourier expansion and the distributed coefficients of that expansion are
Aiui. Regardless of whether the participating frequencies are commensu-
rate or not, we postulate that the flow component uC that we want resolved
by the Galerkin model is defined by the lower frequencies, ωi, i = 1, . . . , Nh.
The high frequencies ωi, i > Nh, are included merely in order to formalize
the definition of uS . These frequencies are not used in computational real-
izations, but they can be clearly selected in a way that ensures the possibility
of an equality in the restriction of (12) to time windows [t − 1

2 tp, t + 1
2 tp],

t ≥ 1
2 tp, for some fixed tp ≥ 2π/ω1.

The definitions above are obvious in “steady state”, i.e., when the fre-
quencies ωi, expansion modes ui and amplitudes Ai are time invariant.
What makes (12) useful in transient flows, as well, is the assumption that
the flow field u is band limited, allowing only slow time variations in these
harmonic characteristics. We interpret this assumption in terms of of a time
scale τ ≫ 2π/ω1 (equivalently, τ/tp ≫ 1) and the following smooth time
dependencies:

ui(x, t/τ), A0(t/τ), ωi(t/τ). (13)

By this assumption, the expansion modes remain essentially constant over
the short time windows [t− 1

2 tp, t+
1
2 tp], and the infinite sum equality in (12)

may be interpreted in the L2(Ω×[t− 1
2 tp, t+

1
2 tp]) sense, over such intervals.

The truncated series for uB + uS is then a smooth, periodically dominated
function of time, justifying the point-wise, mid-window interpretation of the
original L2(Ω × [t− 1

2 tp, t+ 1
2 tp]) approximation.
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We note Models based on slowly varying harmonic coefficients are com-
monplace, e.g., dynamic phasor models in power engineering (DeMarco and
Verghese, 1993; Lev-Ari and Stanković, 2008; Tadmor, 2002). The use of
harmonic mode sets and harmonic balancing has been motivated in flow ap-
plications as an effective and relatively simple computational approach to
system identification of otherwise complex phenomena, such as separated
flows (Tadmor et al., 2008), vortex breakdown (Mishra et al., 2009), and
aeroelastic fluid-body interactions (Attar et al., 2006).

The harmonic modes at the time t are computed by the straightforward
but generally oblique projection of the time function

r 7→ u( · , r) − u∗ :

[
t− tp

2
, t+

tp
2

]
7→ L2(Ω)

on the temporal expansion set {1, cos(φi), sin(φi), i ≥ 1} ⊂ L2
[
t− tp

2 , t+
tp

2

]
.

In the particular case of commensurate frequencies, where ωi = i ω, these
modes are computed by the standard Fourier series formulae, with tp =
2π/ω:

ũ0(x, t) =
1

tp

t+
tp
2∫

t− tp
2

u(x, r) dr, u0 :=
1

‖ũ0‖Ω
ũ0, (14a)

and for i = 1, 2, . . . ,

ũ2i−1(x, t) :=
2

tp

t+
tp
2∫

t− tp
2

u(x, r) cos(iω r) dr, u2i−1 :=
1

‖ũ2i−1‖Ω
ũ2i−1, (14b)

ũ2i(x, t) :=
2

tp

t+
tp
2∫

t− tp
2

u(x, r) sin(iω r) dr, u2i :=
1

‖ũ2i‖Ω
ũ2i. (14c)

To maintain notational simplicity, the remainder of this discussion is pre-
sented for the case of harmonically related frequencies. We note that the
only difference in the general case is in the need to compute the tempo-
ral correlation of the temporal basis, and use the inverse of that matrix to
“de-correlate” the modes.

Although convergence to an exact equality in the infinite expansion (12)
is guaranteed by standard harmonic analysis, an important distinction of the
harmonic modes is that spatial orthogonality is not generic. Nonetheless, we
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shall now demonstrate that these modes share useful advantages of spatially
orthogonal modes.

One such advantage is the simplicity of the computation of the time
coefficients, ai(t), by a straightforward extension of the projection formu-
lae for spatially orthogonal expansion sets, i.e. ai = (u, ui)Ω, which is
no longer valid in its original form. The harmonic time coefficients ai

are completely determined by the amplitudes Ai The latter are computed
by the Fourier series based spatio-temporal projections on the base func-

tions u2i−1(x) cos(φi(t)) and u2i(x) sin(φi(t)) in L2
(
Ω ×

[
t− tp

2 , t+
tp

2

))
.

Specifically:

A2i−1(t/τ) = 2
tp

t+
tp
2∫

t− tp
2

(u( · , r), u2i−1( · , t/τ))Ω cos(φi(r)) dr

= 2
tp

tp
2∫

− tp
2

(u( · , t+ r), u2i−1( · , t/τ))Ωcos(φi(t+ r)) dr

(15a)

A2i(t/τ) = 2
tp

t+
tp
2∫

t− tp
2

(u( · , r), u2i( · , t/τ))Ω sin(φi(r)) dr

= 2
tp

tp
2∫

− tp
2

(u( · , t+ r), u2i( · , t/τ))Ω sin(φi(t+ r)) dr

(15b)

A second appealing property is the Pythagorean property of the TKE.
The modal energy (for i ≥ 1, the modal TKE ) at the time t is the period
averaged kinetic energy of the respective mode:

K0(t/τ) :=
1

2
‖A0(t/τ)u0( · , t/τ)‖2

Ω =
1

2
A0(t/τ)

2,

K2i−1(t/τ) :=
1

2tp

t+
tp
2∫

t− tp
2

‖a2i−1(r)ui( · , t/τ)‖2
Ω dr
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The latter term is simplified as follows:

K2i−1(t/τ) :=
1

2tp

t+
tp
2∫

t− tp
2

a2i−1(r)
2 dr ‖ui( · , t/τ)‖2

Ω︸ ︷︷ ︸
=1

=
1

2tp

t+
tp
2∫

t− tp
2

(A2i−1(t/τ) cos(φi(r)))
2 dr

=
A2i−1(t/τ)

2

4 i π

φi(t)+i π∫

φi(t)−i π

cos(i ω r)2 dr

=
1

4
A2i−1(t/τ)

2.

Likewise we obtain

K2i(t/τ) = · · · =
1

4
A2i(t/τ)

2.

Having selected an index set I ⊂ N0 and denoted

uI =
∑

i∈I
ai ui,

the temporal orthogonality of the distinct components of a harmonic expan-
sion with a single base frequency now leads to the desired equality, which
is a distributed version of Plancharel’s theorem according to which

KI(t/τ) :=
1

2tp

t+
tp
2∫

t− tp
2

‖uI( · , r)‖2
Ω dr
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becomes

KI(t/τ) = 1
2tp

t+
tp
2∫

t− tp
2

(
uI( · , r) ,uI( · , r)

)
Ω
dr

= 1
2tp

t+
tp
2∫

t− tp
2

(∑
i∈I

ai(r)ui( · , t/τ) ,
∑
i∈I

aj(r)uj( · , t/τ)
)

Ω

dr

=
∑

i,j∈I
(ui, uj)Ω

1
2 ai(t+ ·)aj(t+ ·)

=
1

2
A0(t/τ)

2

︸ ︷︷ ︸
if 0∈I

+
∑

1≤i∈I

1
4Ai(t/τ)

2

= K0(t/τ)︸ ︷︷ ︸
if 0∈I

+
∑

1≤i∈I
Ki(t/τ)

2

(16)
It is noted that this version of the Pythagorean rule exceeds what is generi-
cally valid for standard, spatially orthogonal Galerkin expansion, where it is
valid only for K ′ and its components, but generally not for the total kinetic
energy. It is also noted that while (16) does not extend as an exact equality
when the various frequencies are not harmonically related, an arbitrarily
good approximation is achievable when the tp is selected sufficiently large.

It is easy to see that should a Krylov-Bogoliubov phase averaging hy-
pothesis be applicable, the oscillation amplitudes and the TKE become a
functions of the frequency alone and can be determined by the instantaneous
state of the Galerkin approximation. Thus

A2i−1 = A2i, and K2i−1 = K2i =
1

4
A2

2i−1 =
1

4

(
a2
2i−1 + a2

2i

)
. (17)

The cylinder wake flow is an example of a case where the Krylov-Bogoliubov
hypothesis is a good approximation of the exact dynamics (Noack et al.,
2003; Tadmor et al., 2010).

3.6 The Harmonically Dominated Galerkin System

Time variations in the modes ui and the frequencies ωi will be assumed
negligible, or recoverable from an exogenous, measurable parameter, which
we shall discuss in § 6. The components of the time evolution of the Galerkin
coefficients that need to be included in a reduced order dynamical system
are thus those involving the slowly varying amplitudes Ai and the locally
linear evolution of the phases φi. That is, we consider a polar coordinates
counterpart of the Galerkin system.
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The phase equations are straightforward:

φ̇i = ωi, i = 1, . . . , Nh. (18a)

We present the computation of the time derivatives of Ai only for commen-
surate frequencies, allowing us to appeal to the Fourier coefficient formulae
(15). For the time being we also assume that short time variations in ui,
i ≥ 1, are negligible, deferring treatment of faster modal variations to § 6.
Then,

d
dt
A2i−1(t/τ) = d

dt
2
tp

tp
2∫

− tp
2

(u( · , t+ r), u2i−1)Ω cos(φi(t+ r)) dr

= 2
tp

tp
2∫

− tp
2

d
dt

((u( · , t+ r), u2i−1)Ω cos(φi(t+ r))) dr

= 2
tp

tp
2∫

− tp
2

(∂t u( · , t+ r), u2i−1)Ω cos(φi(t+ r)) dr

−i ω 2
tp

tp
2∫

− tp
2

(u( · , t+ r), u2i−1)Ω sin(φi(t+ r)) dr

= 2
tp

tp
2∫

− tp
2

(N (u( · , t+ r) + f( · , t+ r), u2i−1)Ω cos(φi(t+ r)) dr

−ωi (u2i, u2i−1)ΩA2i.

Likewise,

d
dt
A2i−1(t/τ) = 2

tp

tp
2∫

− tp
2

(N (u( · , t+ r) + f( · , t+ r), u2i−1)Ω sin(φi(t+ r)) dr

+ωi (u2i, u2i−1)ΩA2i−1.

We note that the only difference in the case where incommensurate frequen-
cies are involved is the need for a left division of the vector formed by these
expressions by a slowly varying correlation matrix.

For later reference and in order to stress the simple structure of these
equations we rewrite them in a compressed form, in terms of the modified
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frequencies

ω̃i := ωi (u2i−1, u2i)Ω .

Then:

d
dt
A2i−1 + ω̃iA2i = the cos(φi) phasor of (N (u) + f , u2i−1)Ω ,

d
dt
A2i − ω̃iA2i−1 = the sin(φi) phasor of (N (u) + f , u2i)Ω .

(18b)

The left hand side terms of (18b) adhere to the generic form of dynamic
phasor models (DeMarco and Verghese, 1993; Tadmor, 2002; Lev-Ari and
Stanković, 2008). Dynamic phasor models are widely used in power engi-
neering, where they were introduced to predict the slowly varying transients
of the harmonic coefficients (termed dynamic phasors) of AC voltages and
currents. The right hand side terms in (18b) are affine-plus-quadratic ex-
pressions in the amplitudes Ai. These equations therefore adhere to the
general pattern of Galerkin models.

It is noted that the presence of the ω̃i-proportional terms on the left
hand side of (18b) gives rise to an oscillatory homogeneous dynamics at
the frequency ω̃i. Therefore, validity of the underlying hypothesis that the
amplitudes Ai are slowly varying means that these terms are either small,
e.g., when u2i−1 ⊥ u2i, or that they are (nearly) cancelled by the right hand
side terms of (18b).

We revisit the two modes POD expansion and the Galerkin system (8),
as the simplest illustration of (18). Due to the particular structure of the
cylinder wake flow, it has the non-generic property that the two dominant
POD modes are also harmonic modes at the shedding frequency, over the
attractor. Given the scope and objective of this example, we are satisfied
with the fact that flow state trajectories initiated at small perturbations of
attractor states are well approximated as

u(x, t) = u∗, 0(x) + a1(t)u1(x) + a2(t)u2(x)
= u∗, 0(x) +A1(t/τ)(cos(φ(t))u1(x) + sin(φ(t))u2(x)),

(19a)

and ignore the issue of the merit (or lack of merit) of (8) for dynamic pre-
dictions. Let us consider now the ingredients of (18) in this example:

• The fact that the harmonic modes we use are POD modes means that
they are spatially orthogonal. Thus, in this example, ω̃1 = 0 in (18).

• The fact that (8) is the Galerkin projection of the NSE over the expansion
(19a) means that:
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(N (u∗, 0 + a1u1 + a2u2, u1)Ω = σa1 − ωa2

= A1 (σ cos(φ) − ω sin(φ)),
(19b)

(N (u∗, 0 + a1u1 + a2u2, u2)Ω = σa2 + ωa1

= A1 (σ sin(φ) + ω cos(φ)).
(19c)

The cos(φ) phasor of the right hand side of (19b) is σ A1, and the sin(φ)
phasor of the right hand side of (19c), is σ A2. Thus, (8) gives rise to a
dynamic phasor model, comprising of the equations

d

dt
Ai = σ Ai, i = 1, 2. (20)

This model isolates and highlights the exponential instability of the oscilla-
tion amplitude under (8).

3.7 Interim Comments

The preceding discussion provided an explicit interpretation of the TRD
in terms of harmonic expansions and dynamic phasors. The focus of the
discussion has been on periodically dominated flows. The same focus will
be maintained throughout this chapter. It is noted however that the ra-
tionale and definitions of Galerkin expansions in terms of harmonically
specific modes extend, mutatis mutandis, to flows that involve multiple,
non-commensurate frequencies, on which we commented in the text.

While harmonic modes are generically not mutually orthogonal in the
state space L2(Ω), Galerkin expansions by harmonic modes do retain use-
ful properties of Galerkin expansions with spatially orthogonal mode sets.
Those properties include simple projection formulae to compute time coef-
ficients of distinct modes, the equality of the TKE stored in the ith mode
to the respective Galerkin state TKE, and the pythagorean law by which
the total TKE of a harmonic expansion is the sum of the respective modal
TKE levels.

An explicit TRD interpretation as a frequency band partition of the flow
field is provided by the (generalized) harmonic expansion: The base flow,
the coherent unsteadiness and the unresolved flow field represent the slowly
varying mean flow, the intermediate bandwidth and the high bandwidth
components of the harmonic expansion.

A side benefit of the formalism (12) that will prove extremely useful later
on, is that the continuity of the harmonic modes with respect to gradual
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changes in the flow provide a simple and consistent framework to represent
the continuous deformation of dominant coherent structures along transients
(Lehmann et al., 2005; Morzyński et al., 2007). This enables to maintain a
relatively small expansion set without any loss in model accuracy. Defining
counterpart concepts of deformable mode sets is a far greater challenge in
the POD framework, due to the lack of a firm generic dependence between
indices of POD modes and intrinsic dynamic characteristics, such as fre-
quencies and phases, as illustrated in Tadmor et al. (2007a, 2008); Mishra
et al. (2008, 2009). We shall revisit this issue when we discuss mode defor-
mation, in § 6.

Till then, the discussion of mean field models in § 4, and of turbulence
subgrid models, in § 5, will be based on the use of time invariant mode sets.
The one exception will be the 0th harmonic mode, which is the core of the
Galerkin mean field theory.

3.8 Dynamic Power Balancing

As in any physical system, the time evolution of the energy content of
distinct components state components, e.g., KB , KC and KS , is key to
understanding the dynamics of a fluid flow system. The last component
of the preliminaries concerns these concepts which we discuss first in the
context of exact NSE model, and then in the Galerkin model.

Dynamic Power Balancing: NSE Definitions The dynamic law gov-
erning the time evolution of the TKE, K ′, is derived from the NSE (Noack
et al., 2002, 2005, 2008). We use the following nomenclature to refer to the
contributions of distinct components of the (actuated) NSE to the energy
supply rate (i.e., the power) in the flow:

d

dt
K ′ = P +D + C + T + F +G , (21)

where P , D, C, T , F , G are the respective production, dissipation, convec-
tion, transfer, pressure and actuation components of the power d

dt
K ′, and

are defined as:

P = −(u′, ∇ · (u′ ⊗ uB))Ω , (22a)

C = −(u′, ∇ · (uB ⊗ u′))Ω , (22b)

T = −(u′, ∇ · (u′ ⊗ u′))Ω , (22c)

D =
1

Re
(u′, ∆u′)Ω , (22d)
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F = −(u′, ∇ p′)Ω . (22e)

G = (u′, f)Ω , (22f)

The power provided by the actuation force field f is included for later ref-
erence and will not be discussed in this section. With a continued focus
on periodically dominated systems, averaging at the time t is carried over

the period
[
t− tp

2 , t+
tp

2

]
. Effects on the supplied power of changes in

any of the harmonic modes, and in any of the amplitudes Ai, are assumed
negligible.

As we have already demonstrated, the total energy of periodically dom-
inated flows is the sum of the modal contributions, i.e., K =

∑
iKi. When

computing power terms in the context of the Galerkin system, we shall
therefore focus on modal contributions. Modal power contributions can
be derived from (22). For example, the combined contributions of the
(2i− 1)st and (2j− 1)st modes to the production power component is com-
puted by substituting A0 u0 for uB and A2i−1 cos((2i − 1)ω r)u2i−1 and
A2j−1 cos((2i − 1)ω r)u2j−1 for u′ in (22a). This leads to the following
expression:

−A2i−1A2j−1A0

(
(u2i−1, ∇ · (u2j−1 ⊗ u0))Ω

+ (u2j−1, ∇ · (u2i−1 ⊗ u0))Ω

)
·

· cos((2i− 1)ω ·) cos((2j − 1)ω ·)

= −δ(i− j) 1
2 (u2i−1, ∇ · (u2i−1 ⊗ u0))Ω A0A

2
2i−1

= −δ(i− j) 2
√

2 (u2i−1, ∇ · (u2i−1 ⊗ u0))Ω
√
K0K2i−1.

(23)

Similar expressions are obtained, by an obvious analogy, for the modal con-
tributions to the remaining power components.

Dynamic Power Balancing: Galerkin System Definitions As dis-
cussed in previous chapters, the inner product terms following the last two
equalities in (23) are the Galerkin projection definitions of coefficients of the
Galerkin system (7b). The same will hold for the modal contributions to
other power components. In other words, the total modal power contribu-
tions are equivalently computed in terms of the time coefficients in the ideal,
infinite Galerkin system. Motivated by our concentration on the Galerkin
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system, we continue our analysis with a focus on the Galerkin formulation:

d

dt
Ki =

d

dt

1

2
a2

i = ciai +
∞∑

j=1

lij aiaj +
∞∑

j,k=1

qijk aiajak + gi ai b. (24)

Considering harmonic Galerkin expansions, let us examine each of the
terms in (24):

The contribution of the constant terms vanishes.

ciai = 0.

This is a consequence of the sinusoidal nature of ai for i ≥ 1.

Only the diagonal linear terms make a nonzero power contribution. This is
simply a restatement of Plancharel’s theorem. Thus,

Qi :=

∞∑

j=1

lij aiaj =
1

2
liiA

2
i = 2 liiKi, Q′ =

∞∑

i=1

Qi, Q = Q0+Q′. (25)

This expression includes the combined contribution of the production, con-
vection and dissipation to the modal power. We say that the ith mode is
productive when lii > 0, that it is dissipative when lii < 0, and term the
marginal case, where lii = 0, as neutral. Productive modes are typically
a dominant component of u′. They are therefore included in uC and in
the expansion mode set of the Galerkin model. Modes spanning uS , are
invariably dissipative.

It is noted that the annihilation of off-diagonal linear terms by windowed
time averages remains a good approximation well beyond the periodically
dominant case. For example, assuming that a POD model is obtained over
a statistically representative interval, the time coefficients will remain or-
thogonal over sufficiently long time windows.

Triadic energy exchanges represent the transfer power in the NSE and their
cumulative contributions are conservative (lossless). This means that the
sum total of the rate of energy exchanges between any three modes through
the quadratic terms of the Galerkin system is zero. Denoting the (order
dependent) rate of energy supplied by the jth and kth modes to the ith

mode by
Tijk = qijkaiajak, (26)

the lossless nature of the triadic exchanges is a formal consequence of the
equality

qijk + qikj + qikj + qjik + qjki + qkij + qkji = 0.
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Evaluating each Tijk is generally an unsolved problem. Indeed, this issue
is at the core of what continues to keep the problem of turbulence closure
a Grand Challenge, even as we enter a second century of relentless efforts
to address it. The difficulty in the general case arises from the lack of
explicit expressions for phase relationships between the oscillations in the
three modes. For completeness we shall shortly discuss a simple axiomatic
finite time thermodynamics (FTT) framework that we proposed in Noack
et al. (2008), as an approximate solution, tailored specifically for Galerkin
systems. However, in the particular but important class of periodically
dominated flows, on which we focus here, an explicit computation is possible.
Starting with the products aj(t)ak(t), one has:

aj(t)ak(t) = 1
2Aj(t/τ)Ak(t/τ) ·

·






cos(φj − φk) + cos(φj + φk)
j = 2ℓ− 1
k = 2m− 1

cos(φj − φk) − cos(φj + φk)
j = 2ℓ
k = 2m

sin(φj + φk) + sin(φj − φk)
j = 2ℓ

k = 2m− 1

sin(φj + φk) − sin(φj − φk)
j = 2ℓ− 1
k = 2m.

(27)
Multiplying by ai and taking period averages, as in (26), we obtain:

Tijk = qijkaiajak

= σijk

{ 1
4qijkAiAjAk = 2qijk

√
KiKjKk i = |j ± k|

0 else .

(28)

where σijk = ±1 depending on i, j, k. Summing over all pertinent input
pairs, the net TKE flow rate to the ith mode is

Ti =
∑

j,k

i=|j±k|

2σijk qijk

√
KiKjKk . (29)

We defer the discussion of the actuation power to § 8. Ideally, the con-
tribution of the pressure term to the power balance in the Galerkin system
is zero. In cases where that is not the case, this term is approximated
by the linear and quadratic terms of the Galerkin system, and is therefore
subsumed by the terms discussed right above.
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A Finite Time Thermodynamics Variant The analytic form of the
transfer terms in (28)-(29) relied heavily on the near periodicity assumption,
which provided for the phase relations (27). The the lack of such models in
more general cases motivated our development of the axiomatic framework
of finite time thermodynamics (FTT) (Noack et al., 2008). The FTT ax-
ioms lead to an identical formulation of the contributions of linear Galerkin
system terms, in (25). The FTT estimates of triadic energy exchange rates
are of the form:

T̂ijk = χijk

√
KiKjKk

(
1 − 3Ki

Ki +Kj +Kk

)
. (30)

This form indicates that the respective phases of modal oscillations will be
aligned in a way that, on average, energy will flow “downhill”, i.e., from
TKE rich to low TKE modes. The expressions (30) match (28) when the
rational scaling term in (30) is nearly constant. That happens, e.g., when
the modal TKE levels are rapidly decaying, making the scaling term equal
to either 1, 0, -0.5 or -2.

3.9 Closing Comments

The following comment is made in anticipation of the review of mean
field models in § 4, below. Discussions of the kinetic energy in the flow and
of its time variations, including those by the present authors in Noack et al.
(2002, 2005, 2008, 2010); Tadmor et al. (2010), is typically focused on the
unsteady component of the flow, ideally u′, and on its energy content, the
K ′. In anticipation of the discussion of Galerkin mean field models, in § 4,
it is useful to highlight the implications of the preceding analysis on the
non-oscillatory base flow, and on the triadic energy exchanges between the
base flow and the fluctuations:

q0jja0a2
j = q0jjA0A

2
j = 2q0jj

√
K0Kj , (31)

This expression is analogous to the Reynolds stress term

(uB , ∇ · (u′ ⊗ u′))Ω , (32)

which is left out in the TKE focused (21), is obvious. This parallel, and
the importance of the bilateral energy transfer between fluctuating modes
and the base flow, is the basis of the Galerkin mean field theory that we we
shall discuss next.
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4 Broadband Galerkin Models: Mean Field Models

With an eye on low and least order models suitable for the design of flow
control, the sections spanning the remainder of this chapter, elaborate on
the challenges mentioned in the review of the spectacular failure of (8). The
first category of modeling challenges and solutions that we discuss occupies
this section and the following § 5. It can be broadly explained in terms of
the TRD (9), its explicit harmonic realization (12), and the trilateral energy
flow between uB , uC and uS .

With uC at the focus of attention, and with a usual concentration on
observed steady state dynamics, traditional low order Galerkin models use
an attractor’s mean flow as a time invariant definition of uB . Slow variations
in the base flow, and small structures that we conceptually aggregate in
uS , are both truncated and ignored. The adverse effects of this practice,
including the potential for utter failures, such as we have seen in the case of
(8), were explained In the seminal article by Aubry et al. (1988). Using the
vocabulary of the present discussion, the exposition highlighted the need to
include at least a lumped representation of the dynamic energy exchanges
between uC , uB and uS , to regain the stabilizing effects of changes in the
base flow and of energy transfer to turbulence, in the exact NSE solution.

The methods proposed by Aubry et al. (1988) defined the beginning of
efforts, continued to the present day, to effectively represent the contribu-
tions of truncated flow structures in a way that is simple enough to meet
sought complexity bounds. Directly or indirectly, investigations alongare
particularly Widely applicable solutions are yet to be developed.

The purpose of this section is to seek insight into the problem from an
analysis the very structure of the underlying physical mechanisms, at the
NSE and the Galerkin levels. That analysis will then reveal the root causes
of observed difficulties in structural inconsistencies in the traditional frame-
work, and guide us in the systematic development of viable alternatives.
The first part of the discussion addresses the need for and the form of mean
field representations, and the second part addresses the issue of turbulence
modeling.

4.1 The Need for a Mean Field Model: An NSE Perspective

The discussion of mean field representations summarizes key components
of the expositions in Noack et al. (2003); Tadmor et al. (2010), where the
interested reader will find additional details.

Let us apply the filters on the right hand sides of (14) to the entire NSE.
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The averaging of (14a) yields the familiar Reynolds averaged equation:

∂tu
B + ∇ ·

(
uB ⊗ uB

)
+ ∇ · (u′ ⊗ u′) = −∇pB + ν∆uB , (33a)

where the time derivative ∂tu
B scales with 1/τ and is commonly ignored.

The Reynolds averaged equation highlights the impact of the fluctuations
u′ on the base flow, via the slowly varying Reynolds stress ∇ · (u′ ⊗ u′).

The dynamical system explanation of this effect, via the Reynolds aver-
aged equation, is complemented by an energy flow interpretation, which was
discussed right above. That is, the Reynolds stress is the term responsible
for the energy flow rate (32) between u′ and uB .

An appeal to the combined higher order harmonic filters in (14b) and
(14c), would similarly yield a high-pass filtered harmonic counterpart of the
Reynolds equation:

∂tu
′ + ∇ ·

(
uB ⊗ u′) + ∇ ·

(
u′ ⊗ uB

)

+∇ · (u′ ⊗ u′)′ = −∇p′ + ν∆u′,
(33b)

where the prime ′ indicates the high-pass filtered component of a time
function. Thus ∇ · (u′ ⊗ u′)′ is the high-pass filtered component of ∇ ·
(u′ ⊗ u′), and the term ∇·

(
uB ⊗ uB

)
is eliminated by a high-pass filter. A

critical observation, in this equation, is that the component of (33b) that
is linear in u′ includes the base flow dependent terms ∇ ·

(
uB ⊗ u′) + ∇ ·(

u′ ⊗ uB
)
. Changes in uB will therefore modify the linear growth rate of

the u′.
Here too, the stabilizing mechanism is reflected by a power term, which

is the counterpart of (32) in (33b). That term is

(u′, ∇ · (uB ⊗ u′) + ∇ · (u′ ⊗ uB))Ω, (34)

Once again, it captures the energy transfer rate between the base flow and
the fluctuations. The conservatism of this flow rate means that (34) has the
negative value of (32).

This bilateral interdependence is precisely what enables the transition
from an unstable steady solution to a marginally stable attractor in the
NSE solution: Small perturbations of the steady solution experience high
production rate. As the base flow approaches the attractor’s mean, that
rate declines, and with it, the growth in K ′, saturating over the attractor.

This mechanism explains the structural failure of (8), where a constant
base flow is used and where the said change in the production rate cannot
take place. A detailed examination of the dynamic energy balancing along
the transient in the cylinder wake example, verifying this explanation, can
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be found in Tadmor et al. (2010). That analysis demonstrates that, regard-
less of the precision of the Galerkin approximation of u′, a substitution of
the slowly varying uB by a fixed field, e.g. by the steady NSE solution
or by the attractor’s mean flow, will lead to a drastic mis-match of energy
production and dissipation along the natural transient. For example the use
of the attractor’s mean field leads to the non-physical prediction of decay
of small fluctuations from the steady solution.

The conclusion at this point is therefore that, in order to provide a close
approximation of modal energy production and consumption, a reduced
order model must account for the interactions between the fluctuations and
a (slowly varying) dynamic mean field.

4.2 Simple Galerkin-Reynolds Mean Field Models

The preceding analysis exposes the sources of observed model failures
in both energy flow and dynamical system terms. By the same token, it
also suggests a clear solution path: Just as the NSE comprises of the bi-
laterally interacting (33a) and (33b), a least order Galerkin model should
include approximations of both these NSE components. The coherent flow
uC and the fluctuations equation (33b) are already addressed by the stan-
dard Galerkin modeling framework of (7). A Galerkin-Reynolds equation
needs to be added to the model, targeting the time variations in the base
flow component uB = u∗ + a0 u0 in (12), and serving as the counterpart of
the Reynolds averaged NSE (33a).

The previous chapter by Noack et. al. suggested a very simple recipe
for a least order Galerkin approximation of base flow variations

uB ≈ u∗, 0 + a∆u∆. (35a)

in terms of a single shift mode:

u∆ :=
1

‖us − u∗, 0‖Ω
(us − u∗, 0) , (35b)

were we return to the erstwhile interpretation of u∗ = u∗,0 as the time-
independent attractor’s mean flow. By this definition, a∆ = 0 over the
attractor and a∆,s < 0 near the steady solution. This definition arises
naturally when one is focused on the dynamic envelope of the flow between
an unsteady attractor and an unstable fixed point. As shown in Lehmann
et al. (2005); Tadmor et al. (2010), the relative TKE error in (35), in the
cylinder wake example, is ≤ 30%. The term shift mode was coined in Noack
et al. (2003) to indicate the role of mean field variations in determining the
rate of energy shifted from the base flow to the attractor. The cylinder wake
version of the shift mode (35b) is depicted in Figure 6.
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Figure 6. The shift mode as defined in (35b) for the cylinder wake flow
(right). For ease of reference we present here again the steady solution (left)
and the mean of the attractor flow (center).

Extensions are readily obtained in cases where a wider dynamic envelope
renders the approximation (35) insufficient. One example, continuing the
empirical approach underlying this chapter, is to approximate the trajectory
of the 0th harmonic component of the transient flow, a0u0 = uB − u∗, over
the dynamic envelope of interest, e.g., using a POD basis. The incremental
base flow is captured by period averaging uB−u∗ for a choice of u∗, the base
flow at a nominal operating point (e.g., an attractor). Alternatives with a
stronger first principle flavor appeal to evaluation(s) of the local orientation
of the mean field correction, as defined by the local period-averaged NSE.
Such definitions require also an approximation of the fluctuation field, u′,
e.g., by a (local or global) Galerkin expansion. Details can be found in
Tadmor et al. (2010) (cf. Tadmor et al. (2007b, 2008)). We shall revisit and
extend these ideas in our discussion of nonlinear manifold embedding and
parameterized Galerkin models on nonlinear manifolds, in § 6.

To illustrate the transformative power of these idea we apply the least
order approximation (35) to the failing example of the two state cylinder
wake model (8). The least order Galerkin expansion of the cylinder wake
flow that approximates time variations of both uC and uB employs the
modes {ui}2

i=1, as in (8), and the shift mode from (35b), u∆. The Galerkin
projection on this extended basis substitutes the faulty (8) by a three equa-
tions Stewart-Landau system, comprising of two components, derived in
Noack et al. (2003): The new, Galerkin-Reynolds equation, is a counterpart
of (33a):

d

dt
a∆ = −σB a∆ + βB

(
a2
1 + a2

2

)
. (36a)

The Galerkin-Reynolds stress counterpart is the term βB
(
a2
1 + a2

2

)
= 2βBK.

The Galerkin counterpart of the fluctuations equation (33b) is a nonlinear
variant of (8):

d

dt

[
a1

a2

]
=

[
σC − βCa∆ −(ω + γa∆)
ω + γa∆ σC − βCa∆

] [
a1

a2

]
. (36b)

The constant coefficients βB , βC , σC and σB , and the constant term c, in
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this model, are all positive.
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Figure 7. Natural transient of a DNS simulation (dotted line) and the
three states Galerkin model (36), that includes the two leading attractor
POD modes and the shift mode (35b) (solid curve). The added shift mode
enables the recovery of key qualitative aspects of the NSE solution, includ-
ing the existence of an attractor and the paraboloid manifold connecting
the steady solution, us, with the attractor. Reasons for the quantitative
difference between the Galerkin and the NSE predictions include the lack
of adequate turbulence representation, which will be discussed next, and
mode deformation, which is the subject of § 6.

When compared with the faulty two states model (8), the effect of the
added shift mode and the Galerkin-Reynolds equation in (36) is no less than
dramatic. The model now supports the the existence of both a marginally
stable attractor, where a∆ = σC/βC and a2

1 + a2
2 = (c + σBa∆)/2βB , and

a linearly unstable fixed point, a counterpart of us, where a1 = a2 = 0,
a∆ = −c/σB , and where the positive fluctuation growth rate is σC−βCa∆ =
σC + βCc/σB > 0. As shown in Figure 7, this new least order model
captures key dynamic qualitative features the NSE solution, as well as a
decent, albeit imperfect approximation of the paraboloid transient manifold
that is defined by the projection of the NSE solution on the expansion
modes. In fact, this approximation is a substantial improvement over the
prediction achievable by Galerkin model that employs four times as many
modes in the expansion of uC , but does not (explicitly) includes a mean field
representation, other than by trace components in the POD modes (Deane
et al., 1991; Noack et al., 2003). The residual mismatch is nonetheless
conspicuous: The oscillations amplitude is over-predicted, both throughout
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the transient and over the attractor, while the growth rate near the fixed
point is under-predicted. Our task in the following sections is to identify
and remove the key structural obstacles that cause model inaccuracies such
as this.

5 Broadband Galerkin Models: Subgrid Models

Continuing with the discussion of neglected scales, that we begun in the
previous section, we now turn our attention from the adverse effects of
suppressing uB to the impact of neglecting uS .

5.1 The Need for Subgrid Models

The language of dynamic energy balancing continues to be central. TKE
production, i.e., the extraction of energy from uB , occurs in the most dom-
inant modes which are therefore included in uC . Any remaining modes in
the expansion set that defines uC , and the entire uS , are dissipative. TKE
dynamics balances the net production and dissipation with the growth or de-
cay rate of modal energies. As follows from our previous discussion of energy
dynamics, the conduits for triadic intermodal energy flow are formed by the
quadratic term of the NSE, and by its representation by the quadratic terms
of the ideal, infinite Galerkin system. The suppression of these conduits,
when the dissipative modes spanning uS are truncated, therefore creates a
non-physical imbalance between energy production and dissipation. That
imbalance leads to a net over-prediction of the TKE in the Galerkin system.
This includes the modes aggregated in uC , and when a mean field model is
included, in the combined modes spanning uB and uC . In the extreme, the
imbalance may lead to global instability.

This phenomenon is manifest in both of the models we have previously
considered for the cylinder wake flow:

The two states model (8). The instability of this model is the consequence
of the suppression of all the quadratic terms, hence all the conduit for inter-
modal energy exchanges. This includes both conduits that lead to energy
balance with the base flow and those that allow energy flow to modes cap-
turing higher temporal harmonics. With no component capable to drain
the TKE generated by the first two modes, the TKE level of uC grows at
an exponential rate.

The three states model (36). The Galerkin-Reynolds stress βB(a2
1 + a2

2), in
(36a), and the quadratic terms −βC a∆ ai, in (36b), create lossless energy
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links between uC and uB . Their presence eliminates the possibility of global
instability and enables an energy balance over an attractor. Nonetheless,
the suppression of quadratic terms linking the dominant frequency with
modes representing higher harmonics causes the energy absorbed by those
modes, in the exact NSE solution, to remain trapped in the three states
representing uB +uC . The resulting over prediction by the Galerkin model
of both the transient and attractor amplitudes features prominently in Fig-
ure 7.

The significance of the distorting effects of truncated energy cascades in
low order Galerkin models was brought to attention by the aforementioned
article by Aubry et al. (1988). The solution approach suggested in that ar-
ticle is to correct the energy imbalance by increasing the kinematic viscosity
ν with an added eddy viscosity νt. The added dissipation is set to balance
the rate by which energy is transferred from uC to uS over the NSE attrac-
tor. Distinct modal eddy viscosities νt i were introduced shortly thereafter
(Rempfer, 1991), motivated by difficulties to tune a single νt. Mounting
examples of tuning difficulties continue to accumulate since.

We use the cylinder wake example to elucidate structural reasons for
these difficulties and to motivate the class of solutions we shall present
shortly. To simplify the discussion we exploit some particular properties
of the cylinder wake flow. First, a Krylov-Bogoliubov phase averaging hy-
pothesis, whereby A2i−1 = A2i for all i = 1, 2 . . . is nearly accurate (Noack
et al., 2003). The fact that modal TKE levels in the first several harmon-
ics decline geometrically, with a factor of some 20-30 folds and higher be-
tween successive harmonics, allows additional simplifications. Considering
the ideal, infinite Galerkin system (7b) and the explicit expressions (27), for
i = 1, . . . , 4, we then have the following restrictions on pertinent quadratic
terms:

• For i ∈ {1, 2}, non-negligible quadratic terms qijkajak can only be
those where either

– j ∈ {1, 2} and k ∈ {3, 4}
– j ∈ {3, 4} and k ∈ {1, 2}
– j ∈ {1, 2} and k = 0,

– j = 0 and k ∈ {1, 2},
Likewise, using the convention that a0 is the coefficient of the 0th harmonic,
namely, the shift mode coefficient, we have:

• For i ∈ {3, 4}, non-negligible quadratic terms qijkajak can only be
those where j, k ∈ {1, 2}.

These observations will be used to estimate the rate of energy transfer from
uC to uS , denoted TSC in two ways: One estimate will be based directly
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on the dynamic equations. The other will be based on a postulated eddy
viscosity model.
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Figure 8. The proposed turbulence model is evaluated in a three states
Galerkin model of the cylinder wake flow, comprising of the leading attractor
POD mode pair and the shift mode (35b). The second harmonic amplitude

A3 is used as a surrogate for aS =
√
KS . The projection of the exact NSE

solution (solid curve, left), is well approximated by the estimate obtained
by slaving A3 to A2

1, as in (37) (there, dashed). The effect of including
this turbulence model in the Galerkin system is illustrated by transient
plots in the (A1, a∆) plane. The bold line continues to represent the exact
NSE solution. The dissipation coefficient of the turbulence model (dashed
curve) is determined by energy balance over the attractor, whereas the
remaining coefficients are derived by the Galerkin projection of the NSE.
The advantage of adding the turbulence model is evident in eliminating
the over-prediction of the attractor amplitude and in reducing the transient
overshoot of the original three states Galerkin model (dotted curve). That
said, the remaining transient overshoot is nonetheless significant. It is the
result of mode deformation, as will be discussed in § 6.

A direct estimate of TSC . By the simplifications, above, the differential
equations governing ai, i ∈ {3, 4}, comprise linear (and stable) homoge-
neous parts and sinusoidal quadratic forcing terms at amplitudes that are
proportional to A2

1 = A2
2 (= 2K1 = 2K2). Consequently, A3 = A4 is linearly

slaved to A2
1. A time scale separation between the response times in the

first and second harmonics allows to approximate this property in algebraic,
rather than dynamic terms:

A3 = κA2
1. (37)
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This dependence can be seen in the left plot, in Figure 8.
The conclusion concerning qijkajak with i ∈ {3, 4} is that the TKE

transfer rate from KC := K1 + K2 = 1
2A

2
1 to KS ≈ K3 + K4 = 1

2A
2
3 is

captured by

TSC =

4∑

i=3

2∑

j,k=1

qijkai aj ak =: λA2
1A2 = λκ︸︷︷︸

=: 1
4
υ

A4
1 = υK2

1 . (38)

The same conclusion is obtained in complete analogy by evaluation of the
terms qijkaiajak with i ∈ {1, 2}, in order to estimate the same energy flow
rate.

An eddy viscosity estimate of TSC . A subgrid (modal) eddy viscosity
suggests that the suppression of the energy flow from uC to uS can be
compensated by adding dissipative terms of the form −νtai, i = 1, 2, to the
first two equations in the Galerkin system. The average rate of TKE loss,
i.e., TCS = −TSC , due to these terms is

T̂CS :=

2∑

j=1

νta2
j = νt A

2
1 = 2 νtK1. (39)

To be valid, the eddy viscosity estimate (39) needs to be reconciled with
(38). Denoting attractor related values by the subscript “∗”, the selection
of

νt :=
1

2
υK∗ 1 (40)

achieves that objective over the attractor. Yet along transients and near us,
the discrepancy between (39) and (38) grows indefinitely. The root cause
for the discrepancy is the very structure of the eddy viscosity compensation
by a linear dissipative term, instead of the quadratic nonlinearity of the
transfer terms in the exact Galerkin system.

Commenting on the discussion to this point, we stress that while the
approximate relations (37) and (38) were obtained under conditions that
extend beyond the specific example of the cylinder wake, these conditions
are not generic. Nonetheless, the illustrated causes for the mismatch be-
tween the eddy viscosity estimate and the correct value of TSC are generic
indeed. Specifically, the mismatch is due to the generic situation where
KS cannot be estimated at a constant level, and that the actual value of
TSC , arising from the sum of pertinent triadic terms qijkaiajak, cannot be
approximated by a term proportional to Ki alone.
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5.2 The Structure of Valid Subgrid Models

We seek a consistent, low complexity scheme for adding dissipation to
the Galerkin system, in a way that can compensate for the severance of
energy flow from uB + uC to uS in the exact model. We shall derive that
scheme in two steps: In the first step, termed the energy balancing step,
we focus on the slower, non-oscillatory dynamics of the energy flow equa-
tion (24). Here we shall formulate an added phase invariant dissipative term
with the goal of reconciling the energy levels of the truncated system with
those of the ideal model, as derived from NSE simulations. In the second
step will translate the expressions obtained for the energy dynamics equa-
tion to phase dependent correction terms in the truncated Galerkin system
(7b).

Energy Balance. The truncated energy conduits from uC to uS are the
triadic terms that involve at least one unresolved mode in (24):

TS
i :=

∑

j,k≥1

max{j,k}>N

qijkaiajak. (41)

The terms contributing to the summation in (41) have been analytically
computed in (28) for periodically dominated flows, yielding

TS
i :=

1

4

∑

j, k ≥ 1
max{j, k} > N
i = |j ± k|

σijk qijkAiAjAk, i = 1, . . . , N, (42)

In a more general setting, lacking the rigid phase information of periodically
dominant dynamics, an estimate can be based on the FTT terms (30):

TS
i :=

∑

j,k≥1

max{j,k}>N

χijkAiAjAk

(
1 − 3Ki

Ki +Kj +Kk

)
. (43)

The challenge in a reduced order model that suppresses a detailed reso-
lution of uS , is that TS

i needs to be estimated without explicit knowledge of
the amplitudes Aj , j > N . We shall base our estimates from two variants
of a simple axiom, motivated by generic power lows for the distribution of
modal energy as a function of the modal frequency:

Axiom 5.1 (A Global Algebraic Power Rule).

KS = κ (KC)λ

39



for some κ > 0 and λ > 1.

In the cylinder wake example we used the equality KC = 2K1 and
the approximation KS = 2K3 to show in (37) that this axiom is a good
approximation with λ = 2. Variants may include distinct effective modal
TKE levels KS

i , which allows the energy of the turbulence flow field that
interacts with ui to vary with i. In that case, KC substituted by Ki and
mode-dependent κi and λi need to be used.

For simplicity we focus first on periodically dominated flows satisfying
Axiom 5.1. In that case, the expression (41) is approximated by an expres-
sion of the form

TS
i ≈ (KC)

λ
2 Ai

N∑

j=0

ξij Aj , i = 0, . . . , N. (44)

The sum thus approximates contributions of terms in (42) that include a
single Aj , j > N , in the ideal, infinite system, but neglects the products of
two such terms, which are assumed small. The unresolved amplitudes are
substituted by (KC)

λ
2 .

The terms TS
i are added to the truncated energy equation. In nearly

periodic, un-actuated systems, that will be

d

dt
Ki =

N∑

j=1

2 liiKi +
∑

1 ≤ j, k ≤ N
i = |j ± k|

1

4
σijk qijk AiAjAk + TS

i , (45)

where σijk = ± is determined by which harmonic functions are involved.
Using NSE simulations data, the free parameters of the dissipative term,
i.e., ηi and ξij , are estimated by the requirement that (45) be satisfied by
that data. An additional simplification is this formulation is attained by
a focus only on energy exchanges between a single resolved mode and uS ,
whereby ξij = δ(i− j) ξi.

The Galerkin Subgrid Terms. The translation of a phase invariant es-
timate of TS

i in (44) into phase dependent terms in the Galerkin system
(7b), will be based on our previous derivation of the translation of terms
in (7b) into terms in the Galerkin energy equations (24): The quadratic
term qijkajak, in the former, gives rise to the term 1

4 qijk AiAjAk (or
1
2 qijk AiAjAk when one index is 0) in the latter. The conclusion, in the
reversed translation, the terms TS

i need to be multiplied by 2, that one copy
of Ai should be eliminated, and that the terms Aj should be substituted by
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∓aj , where, once again, the sign is determined by which harmonic functions
are involved. Thus, TS

i from (44) gives rise to Galerkin system terms of the
form

dS
i :=

1

2

N∑

j=0

ξij(K
C)

λ
2 aj . (46)

In a simplified version, those terms reduce to nonlinear modal eddy viscosity
terns

dS
i =

1

2
ξij(K

C)
λ
2 ai =: −νt, i(K

C)ai. (47)

Considering this approach in the context of the cylinder wake example
and the three states model (36), we recall the estimates (37) and thus, (38).
The former agrees with Axiom 5.1 with λ = 2. The latter agrees with the
simplified version (47) with ξ11 = ξ22 = υ. The added dissipative terms in
(36b) will thus be proportional to −Kcai. With that subgrid representation
added to (36), we obtain the system

d

dt

[
a1

a2

]
=

[
σC − βCa∆ − νtaS −(ω + γa∆ + ζaS)

ω + γa∆ + ζaS σC − βCa∆ − νtaS

] [
a1

a2

]
. (48a)

d

dt
a∆ = −σB a∆ + βB

(
a2
1 + a2

2

)
− c, (48b)

aS = κ
(
a2
1 + a2

2

)
. (48c)

We also note that slaving the shift mode to the fluctuations will make (48b)
an algebraic counterpart of (48c). The improvement in the dynamic pre-
diction due to the inclusion of this subgrid model is visualized in the right
plot, in Figure 8.

An alternative, substitutes the algebraic dependencies in Axiom 5.1 by
dynamic dependencies:

Axiom 5.2 (Global Dynamic Power Rule). The modal TKE level KS ,
satisfies

d

dt
aS = −σSaS + κ (KC)λ.

for some κ, σC > 0 and λ > 1.

Returning to our running example, with the dynamic variant, a fourth
dynamic state is added to (36), leading to the system:

d

dt

[
a1

a2

]
=

[
σC − βCa∆ − νtaS −(ω + γa∆ + ζaS)

ω + γa∆ + ζaS σC − βCa∆ − νtaS

] [
a1

a2

]
. (49a)
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d

dt
a∆ = −σB a∆ + βB

(
a2
1 + a2

2

)
− c, (49b)

d

dt
aS = −σS aS + κ

(
a2
1 + a2

2

)
, (49c)

5.3 Closing Comments

Lumped force models: A low order alternative to the binary resolve-

or-neglect choice. Low order models are differentiated from detailed mod-
els by a clear focus on an application-specific set of dynamic properties that
need to be resolved, and by the high premium put on low complexity. The
amplitude and phase of certain flow structures, e.g., the amplitudes and
phases associated with von Kármán vortices in wake control, the leading
and trailing edge vortices in separation control, are examples. This focus
labels as “uninteresting” significant portions of the flow’s dynamic charac-
teristics, and an inherent dilemma: Neglecting these structures, hence their
impact on retained flow structures, hinders effective and accurate dynamic
predictions. Including additional states increases complexity and sensitivity,
and therefore erodes a model’s utility in realtime applications. Motivated
by the universal significance and mean field and subgrid representations,
we have suggested a third path: Representing the lumped forces effected
by neglected structures on retained states. Time scale separations enables
to model such impact by few slow states that interact with similarly slow
properties, e.g., oscillations amplitudes, of retained states.

An analogy between mean field and subgrid representations. The
structure of (49c) in the augmented system (49), and the stabilizing role
played by the added state, aS , in that system, are completely analogous to
the structure and of the Galerkin-Reynolds equation (49b) and the role of
the shift mode coefficient a∆. The same parallelism applies to the algebraic
variant, i.e., to (48), and an obvious slaved mean field model counterpart.
This similarity is by no means accidental: Although uB and uS aggregate
altogether different frequency ranges and length scales in the flow, the focus
in both models is on representations of slow mechanisms for time averaged
energy exchanges with uC . This analogy is easily seen when stated in terms
of period averaged energy exchanges between states in ideal harmonic ex-
pansions.

The structural analogy to the mean field model may reduce in more com-
plex configurations, when λ 6= 2 provides the best fit, or when non-periodic
flows require an appeal to an FTT representation, based on (43), as ex-
plained in the previous chapter, and in more detail, in Noack et al. (2010).
Nonetheless, the main ingredients of the big picture will remain essentially
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unchanged: The centerpiece of the added viscosity in the ith equation will
remain of the form of −νt(K1, . . . ,KN )ai. The fundamental difference from
the standard linear eddy viscosity approach is the explicit dependence of the
positive dissipation coefficient νt on the resolved TKE, as a monotonously
increasing, algebraic or dynamic function. The viscosity coefficient vanishes
at the steady solution, and it grows indefinitely with the growth of KS . In
complete analogy to the state dependent stabilizing effect of the mean field
model, this functional dependence reflects the changes in the dissipative ef-
fects of turbulence on large coherent structures along the modeled dynamic
manifold.

A conceptual departure from the Galerkin framework. The intro-
duction of the mean field model may have constituted a new focus in low
order Galerkin models, but did not deviate from the traditional Galerkin
framework. In contrast, the Galerkin subgrid framework outlined here in-
troduces a significant conceptual departure from the Galerkin framework.
To this point, the state of the Galerkin system state has been the time
varying vector a = (a1, . . . , aN ) of coefficients of an approximation of the
NSE state u by a modal expansion (7a). The modeling premise is that the
compression of the NSE to the state space hyperplane that is defined by
these expansions is a good approximation, and the dynamical system was
based on the NSE as the constitutive equation. None of these ingredients
applies to (49c): Here aS is an estimated surrogate for the unresolved TKE
component, KS . The constitutive equation is not the distributed NSE, but
the lumped energy dynamics equation (21). A first principles derivation
of the coefficients of (49c) and of the added dissipative term in equations
governing the unsteady states (49a) now has to be derived by balancing
empirical energy flow rates, i.e., balancing (24) with empirical time trajec-
tories of ai, i = 1, . . . , N , and not by a projection of the NSE.

Is the subgrid model simply a calibration method? Attractor energy
flow analysis in Galerkin models was developed in (Rempfer, 1991) and
expanded in (Noack et al., 2002, 2005) and is the foundation of our FTT
framework (Noack et al., 2008). This useful tool was recently adapted to the
analysis of transient dynamics, and played a central role in establishing the
necessity of a mean field model by energy flow considerations, in Tadmor
et al. (2010). Energy balancing grew to become an important component of
what is known as calibration, i.e., parameter tuning in low order Galerkin
flow models, aiming to compensate for dynamic distortions such as those
described here (Manhart, 1998; Tadmor et al., 2004; Tadmor and Noack,
2004; Noack et al., 2005; Couplet et al., 2005; Attar et al., 2006; Galletti
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et al., 2007; Cordier et al., 2010; Bourguet et al., 2009; Navon, I. M. Navon).
One may thus argue that once system parameters are calibrated by em-

pirical data, there might not be any need for a subgrid model. For example,
in Tadmor et al. (2004); Tadmor and Noack (2004); we have demonstrated
that a properly calibrated three states model (36) can provide a near perfect
representation of the natural transient. In effect, here the subgrid model is
absorbed into (36), exploiting the identical structures of the mean field and
the subgrid equations. While that may well be the case in some examples,
even then we see a significance in the very understanding of the correct
structure of the subgrid model, in general, as well as in the ability to derive
a model from constitutive equations. Absent the rigorous hard error bounds
one has in linear systems theory, the reliance on the physical fundaments is
as important to ensure robustness and reliability of the model, as are, the
often very limited empirical validation experiments.

6 Mode Deformation and Models on Nonlinear

Manifolds

The very objective of flow control can be stated in terms of the deforma-
tion of leading flow structures (Prabhu et al., 2001). Such deformations are
also characteristic of short and long term changes in the ambient operat-
ing conditions, such as in the incoming flow velocity and orientation, and
during any significant transient, whether controlled or in response to dis-
turbances and ambient changes (Prabhu et al., 2001; Lehmann et al., 2005;
Morzyński et al., 2007). To be useful in flow control, models must accom-
modate these changes over the intended dynamic envelope, loosing neither
their predictive power, simplicity and robustness. Here we discuss struc-
tural issues that stand in the way of meeting these conflicting demands by
standard Galerkin flow models, and suggest a framework of Galerkin models
on nonlinear manifolds as a promising alternative.

Bifurcations, where small parameter changes lead to abrupt and dras-
tic realignment of the large scale topology of the flow are associated with
model discontinuity (Marsden and McCracken, 1976; Guckenheimer and
Holmes, 2002; Aref et al., 2007). Most feedback flow control tasks, however,
address flow regulation at a level of resolution where one encounters grad-
ual, continuous modification of dynamic and topological characteristics5.

5To further elaborate this point, note that while the supercritical bifurcation in the

wake flow at Rec ≈ 47 marks a transition to instability and the emergence of a pe-

riodic attractor, key flow characteristics are qualitatively preserved and undergo only

a gradual quantitative change during that bifurcation: A pair of least-stable (equiv.
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These changes preserve qualitative topological and dynamic properties but
may have significant cumulative quantitative effects. So much so, that the
representation capability of a Galerkin model derived at a single nominal
operating point may be seriously deteriorated over large portions of the de-
sired dynamic range, and with it, the utility of control design, based on
that model (Gerhard et al., 2003; Lehmann et al., 2005; Luchtenburg et al.,
2006).

Following a summary of key aspects of the effects of mode deformation
and a review of possible paths to address them, right below, the purpose of
this section is to describe a class of nonlinear Galerkin models, defined over
nonlinear manifolds and expressly geared to meet the challenge associated
with dynamic deformation of leading flow structures. In § 7 we shall uti-
lize the proposed framework to address yet another outstanding modeling
challenge, the representation of flow over unsteady boundary geometries.

Finally, we mention a recent elegant account of similar ideas in Sapsis
and Lermusiaux (2009) developed in the context of stochastic nonlinear
PDEs.

6.1 Adverse Effects of Deforming Coherent Structures

We highlight three aspects of the adverse cumulative effects of the defor-
mation of dominant flow structures, that we have already briefly mentioned
in the previous section, illustrated by properties of the cylinder wake flow.

Poor resolution of the flow field by the Galerkin expansion. To il-
lustrate this issue we revisit our previous observation that the quantitative
differences between stability and attractor POD modes, and between an
unstable steady NSE solution and the mean flow of an attractor, can both
be substantial. As seen in Figure 2, these differences are especially manifest
in the near wake of a cylinder, where the recirculation bubble of us is over
three times longer than that of the attractor’s mean, u∗,0. As a consequence,

most unstable) eigenmodes dominates the dynamics of perturbations from us, these

modes are associated with a complex conjugate pair of eigenvalues of the linearized

NSE, and changes in both these modes and eigenvalues are continuous as functions of

the Reynolds number. Moreover, while the suppression of mean field representation in

the Galerkin model will not entail an instability when Re < Rec, the arguments hereto-

fore regarding the significance of mean field variations to accurate dynamic predictions

remain valid, motivating a model of the form (36) or (49) to predict the dynamic

response to large initial perturbations, or in the use of dynamic models in branch con-

tinuation, as in Mishra et al. (2009). The point we make here is therefore that structure

of the model is preserved and the expansion modes undergo only a gradual change,

even during changes in flow conditions that entail stability related bifurcations.
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if the Galerkin approximation employs us and the modulated two dominant
eigenmodes, to resolve the unsteady flow, then attractor oscillations of the
significant unsteadiness of the velocity field cannot be adequately resolved
within that near wake area that is contained in the recirculation bubble of
us. Conversely, the use of the attractor mean, u∗,0, and of the two leading
attractor POD modes, in the Galerkin approximation, will lead to gross
over prediction of the oscillations amplitude in the near wake area, at the
beginning of the transient leading from us to the attractor. In fact, the
TKE resolution, in both cases, will deteriorate to ≤ 50%. In this example,
this poor resolution compares with the excellent resolution feasible by a
locally extracted two modes expansion of the same flow, seen in Figure 3.
Figure 5 provides an additional illustration of mode deformation, showing
changes between the actuated and the natural attractors of the high lift
configuration example.

Poor dynamic predictions. The prediction of dynamic properties of
the flow by the Galerkin system, including the growth rate and oscillation
frequencies, are determined by the Galerkin projection of the NSE on the
expansion hyperplane. The accuracy of the approximation of the NSE by
the Galerkin system critically depends on the resolution of the velocity and
the acceleration fields by the Galerkin approximation. The level of predic-
tion will therefore deteriorate, away from the operating point at which the
model was derived. This fact is vividly illustrated in Figure 3, where we
ignore for the moment the overshoot issue, which is caused by the lack of a
subgrid model, which we discussed previously. Comparing the trajectories
of the exact NSE solution and of the Galerkin model we see that many
more periods are needed in the latter to reach comparable changes in the
mean field, and eventually, to reach the attractor level. This difference is
due to an order of magnitude difference between the Galerkin projection
evaluation of σB , in (36) and (48), and the real part of the leading eigen-
value of the linearized NSE, at us. A careful observation will also reveal the
cumulative phase difference between the two trajectories, reflecting a nearly
25% difference between the POD-based Galerkin projection’s evaluation of
the oscillation frequency, and the imaginary parts of the said eigenvalues.
These qualitative changes are quantitatively visualized in the plots of the
time variations of the instantaneous vortex shedding frequency and of the
exponential growth rate of the fluctuations, along the natural transient of
the cylinder wake flow, in Figure 3.

Distorted phase predictions. As will be further elaborated in § 8, the
information about the phase of flow oscillations is critical in dissipative
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feedback control. Intuitively, in order to stabilize an unsteady flow by TKE
dissipation, the actuation must act as an opposition force and oscillate at
the same frequency and at an opposing phase to the oscillatory velocity
field it aims to attenuate. A correct prediction of both the relevant phase
of the flow and thus, of the effective phase of the actuation, are therefore
essential to the success of a stabilizing opposition control policy. The loss
of resolution of oscillations at the dominant frequency by expansion modes,
away from the operating conditions at which these modes were derived, leads
to the subsequent deterioration in the model based definition of the correct
actuation phase. As a consequence, control will become ineffective; not only
may it lose its dissipative effect, but it may actually become destabilizing
(Gerhard et al., 2003; Lehmann et al., 2005; Luchtenburg et al., 2006).

Existing Remedies The issues reviewed above are widely recognized
roadblocks, and have motivated considerable efforts to mitigate their im-
pact. Approaches to address these issues can be categorized as follows:

Limiting the operational envelope. A simple way to avoid the distor-
tions caused by mode deformation is to stick to the classical restriction of
Galerkin models to a single operating point and thus, the narrow validity re-
gion of the expansion set, such as near an attractor or a fixed point. Yet this
approach gives up on the very purpose of low order models in flow control
applications: As stated in the introduction, the essence of feedback control
is to enable a system to operate properly through time varying assignments
of the operating conditions and in unsteady ambient environments.

Extended mode sets. Representing the obvious flip side of the same
idea, mode deformations can be addressed by including in the expansion set
modes obtained at multiple operating conditions. This approach has been
adapted, in multiple variants by many research groups. In our own work,
Noack et al. (2003), we demonstrated that using both the stability and the
attractor POD modes, along with the shift mode (35b), the Galerkin system
recaptures a nearly exact dynamic representation.

The common denominator in the wide range of proposed versions of this
approach, is the goal to minimize the overall size of the extended expansion
set. Examples of variants are the double POD (Siegel et al., 2008) and
interval based POD (Borggaard et al., 2007), adding modes extracted by
sensitivity analysis (Hay et al., 2009), and informing snapshot selection
by computed probability densities and uncertainty quantification (Mathelin
and Maitre, 2009).

One obvious downside of this approach is an eventual loss on the model
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complexity front. A second issue that is perhaps less obvious at first glance,
is the possible raise of the numerical sensitivity associated with the design
of dynamic observers for the extended state space. This observation too is
illustrated by Figure 2: While modes obtained at different points that reflect
the continuous deformation of a distinct flow structure, along a transient,
may be different enough to cause the obstructions described right above,
these modes may still be far from mutually orthogonal, raising the specter
of numerical sensitivity in any effort to distinguish between their respective
contributions to a single noisy sensor signal.

Online mode set adaptation. To mitigate the proliferation of the ex-
pansion set for wide validity envelopes, yet another family of solutions is
based on the adaptation of the expansion set on the fly. Examples in-
clude an iterative, simulation based search for an optimal state trajectory
and an optimal control, or an iterative optimal state estimation, using an
adaptive reduced order model, along with a periodic appeal to the NSE.
These methods include, e.g., adaptive control methods (Ravindran, 2000),
the trust region approach (Fahl, 2000; Arian et al., 2000; Bergmann et al.,
2007; Bergmann and Cordier, 2008; Chen et al., 2009), and the episodal
POD technique (Mokhasi and Rempfer, 2008; Mokhasi et al., 2009). The
advantage of this class of methods is that the size of the expansion set re-
mains equal to that of a local model, avoiding both the aforementioned issues
of complexity and numerical sensitivity, which can be critical in nonlinear
dynamic optimization. Yet the need to repeatedly re-derive the modes and
model coefficients, as the operating conditions changes, would typically ren-
der adaptive low order models far more computationally taxing than their
nonadaptive counterparts. So much so, that such procedures become effec-
tive, primarily in off line computations, where they still enable substantial
computational savings when compared with using the NSE alone.

Offline mode set adaptation. The topic of this section is a third option:
The adaptation of the model and mode set using a pre-computed correction
scheme. This approach aims to realize the advantages of adaptation and ad-
dress the hurdles listed above, without sacrificing the potential for realtime
implementation. The ingredients of solutions in this class must include a
parameterization of the dynamic envelope, a method to utilize sensor read-
ings to determine changes in the operating point, within that envelope, and
characterization of changes in the expansion modes and the dynamical sys-
tem, as a function of the operating point parametrization. Next we shall
formalize these ingredients in terms of nonlinear manifold embedding, and
a Galerkin dynamical system, defined on that manifold, as an extension to
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the affine embedding of the classical Galerkin framework (7). Early versions
of these ideas have been presented in Lehmann et al. (2005); Luchtenburg
et al. (2006); Morzyński et al. (2007); Stankiewicz et al. (2008). Related
work on deformable modes in reduced order models in fluid dynamics can
be found in Amsallem and Farhat (2008); Amsallem et al. (2009); Sapsis
and Lermusiaux (2009). We also note that concepts of mode deformation
and interpolation have long been a mainstay in video processing and in the
generation of animation videos, including animation of fluid motion (Chiang
et al., 2008; Amanatiadis and Andreadis, 2009). Finally, nonlinear manifold
embedding is at the core of center and approximate inertial manifold mod-
els, including fluid dynamic and flow control applications (Foias et al., 1988;
Foiaş et al., 1988; Holmes, 1985; Du and Gunzburger, 2003; Noack et al.,
2003; Kasnakoğlu et al., 2009). The framework presented below bears both
similarities and points of departure from the center / inertial manifold for-
malism that we will highlight in the closing comments, at the end of this
section.

6.2 Deformable modes and accurate low order models

Instead of adding modes in order to resolve mode deformation over the
entire operating envelope, the proposed solution is to employ a low dimen-
sional parametrization α ∈ A of the operating point, allowing the modes to
deform as nonlinear functions of α, and the approximation, to take values
over a nonlinear manifold, parametrized by α:

u(x, t) ≈ uB(x, α) +

N∑

i=1

ai(t)ui(x, α). (50a)

The dimension N of the local tangent space of the nonlinear manifold em-
bedding is lower than that of the linear subspace span by the ensemble of
all local tangent spaces of the form (50a), for all α ∈ A, which is the re-
quired dimension of an affine approximation with the same resolution. The
difference is reflected in the order of the dynamical system, governing the
evolution of the state a = [ai]

N
i=1. This advantage comes at the obvious

cost of higher structural complexity. We will revisit this point along the
discussion.

To derive the form of the dynamical system component of the model
we first observe that the time derivative of the approximation (50a) now
includes an α̇-proportional force field, in additional to the traditional ex-
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pansion by the time derivatives of the coefficients ai:

∂tu(x, t) ≈ ∑N
i=1 ȧi(t)ui(x, α)

+
(

∂
∂α

u0(x, α) +
∑N

i=1 ai(t)
∂

∂α
ui(x, α)

)
α̇(t).

(50b)

The projection of the NSE on (50a) will therefore include both α-dependent
coefficients and α̇-proportional terms:

ȧi = ci(α) +
∑N

j=1 lij(α) aj +
∑N

j,k=1 qijk(α)ajak

+
(
c′i(α) +

∑N
j=1 l

′
ij(α)aj

)
α̇, i = 1, . . . , N.

(50c)

The α̇-dependent terms can be neglected when the time constant of
changes in the operating condition is small relative to the oscillation pe-
riod. This is fairly generic during natural transients. It is also a standard
requirement in on line adaptation schemes. Yet the significance of including
α̇-dependent terms is precisely in allowing fast transitions. Conceptually,
these terms define a spatially global force field that realizes the effect of the
deformation of leading flow structures. In this way, (50) provides a critical
enabler to representing intrinsically transient effects, such as the dynamic
morphing of a leading edge vortex over a rapidly pitching airfoil into a stag-
nant separation bubble, hence the hysteresis in lift loss. This effect cannot
be captured by the prediction of aerodynamic forces in terms of the state
of a traditional, low order Galerkin expansion. As we shall see in the dis-
cussion of unsteady boundaries, in § 7, this mechanism is also critical for
Galerkin modeling of flow interactions with moving boundaries.

Illustrating these ideas, we have shown (cf. Figure 2) that the topology
of both the respective mean fields and of the pairs of local modes repre-
senting the oscillatory field, gradually morph from one set of velocity fields
to the other along the transient, naturally lending themselves to smooth
parametrization. We have also shown (cf. Figure 3) that the unsteady
cylinder wake flow is well approximated near any point along the natural
transient by a Galerkin expansion, defined by a parametrized representa-
tion of the local mean field and a single pair of locally derived modes. The
excellent kinematic approximation is paralleled at the dynamic model level
by the agreement of the Galerkin projection values of system coefficients
with observed dynamic properties of the exact NSE solution for the natu-
ral transient of the cylinder wake flow (cf. Figure 9). The Galerkin model
employs interpolated modes of the form (52). A practical computational
method to explicitly realize the parameterization, including the one showed
in Figure 9, will be discussed next.
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Figure 9. To illustrate the quality of the parametrized Galerkin model,
we compare the transient values of Ȧ1/A1 along the natural transient of
the exact NSE solution (left, solid) with the Galerkin projection evaluation
of the expression σC − βCa∆, using the local bases at several intermediate
operating points (left, dots). The parametrization is by α = K1.5

1 . The
small positive residual illustrates both the need for a turbulence model and
the agreement between the empirical and theoretical observations. A similar
comparison is made in the center figure between the observed and predicted
shedding frequency. Once again the quality of the approximation is a vast
improvement of what is achieved with a single basis. The right figure depicts
the interpolation coefficients bi, k(α) for i = 0 and i = 1, 2, when the local
bases are defined by the interpolation scheme (52), with L0 = 4 and L1 =
L2 = 3.

6.3 Computational Aspects of Parametrized Mode Sets

The success of nonlinear Galerkin models of the form (50) depends on
several key ingredients. Those include the ability to derive a smooth, low
sensitivity mapping

α 7→ ui( · , α) : A 7→ L2(Ω), i = 0, 1 . . . , N.

that covers the desired range; the ability to derive a computationally simple
and robust approximation of these mappings; and the ability to robustly
estimate the parameter α from measurable quantities. Conceptually, there
are two interdependent facets to each of these issues. One facet concerns
the rate and extent of changes in the leading coherent flow structures along
transients, covered by the dynamic envelope. The smoothness and rate of
mode deformation along such transients is a measure of the feasibility of the
proposed framework, and can be determined by direct analysis of such tran-
sients. The other facet concerns the existence of a simple α parametrization
of the operating condition.

Parametrize the operating point. Externally determined components
of α include the incoming flow velocity and its orientation, the parameters
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of pulsatile actuation with slowly varying frequency, amplitude and phase
shift relative to a fixed reference frame (time) or to flow oscillations. Also
included in this category are parameters of a varying boundary geometry,
ranging from flapping flight through membrane actuators, to elastic fluid
body interactions. As noted earlier, the discussion of moving boundaries is
deferred to § 7. State dependent parameter components need to be robustly
estimated from measured surrogates. Examples include the TKE of the
unsteady flow, the TKE captured in a frequency band, and the dominant
oscillations frequency and the choice should be driven by minimizing the
numerical sensitivity of dynamic estimation from sensor data.

The examples we used to illustrate the discussion, above, were all re-
stricted to relatively slow deformations and straightforward parametriza-
tion. That said, our studies experimental and simulation based studies of
2D and 3D wake stabilization, in Lehmann et al. (2005); Pastoor et al.
(2008), demonstrate the ability of the suggested framework to produce eas-
ily, robustly implementable and effective control strategies. In the cylinder
wake example, Lehmann et al. (2005), both the shift mode coefficient a∆

and the instantaneous TKE can be used to parametrize the operating point
and both can be inferred from appropriately positioned point-wise flow ve-
locity sensing. In the experimental 3D bluff body stabilization, Pastoor
et al. (2008), an even simpler, implicit parametrization underlies a phase
feedback that depends on the incoming flow velocity and the phase of vortex
shedding from a single lip of the bluff body. A very similar phase feedback
strategy, successfully applied to the dynamic state estimates and feedback
control of shear layer vortices, in Pastoor et al. (2005), and to separation
control of the flow over an airfoil at a high AOA, in Joe et al. (2008); Joe
and Colonius (2010).

The dynamics of operating point parametrization. A central out-
standing challenge is the potential for dynamic interconnections between
measurable parameters and deformable flow structures. As an illustration,
consider the dynamic stall phenomenon (McCroskey, 1982). The dynamic
nature of the deformation of dominant flow structures that determine the
aerodynamic forces over a rapidly pitching airfoil is at the essence of this
phenomenon. To account for the dynamic dependence of lift and drag on the
angle of attack (AOA), Theodersen’s classic model incorporates the pitch
rate into a functional representation of these forces. Later extensions, e.g.,
McCroskey (1982); DeLaurier (1993); Goman and Khrabrov (1994); Peters
et al. (2007)), include in the lift model a simple dynamic system repre-
sentation of the dependence of aerodynamic forces on the AOA. The goal
is to account for such phenomena as the substantial delay in the gradual

52



changes of the lift, following the end of a pitching motion, i.e., when the
AOA is already constant. Despite some experimental demonstration in the
cited articles, our experience6 clearly shows that the this type of models is
very sensitive to changes in the characteristics of the pitching maneuvers.
The approach proposed in this chapter is to regain robustness by basing the
said dynamic model on the key physical aspects that come to play: Forces
generated by the moving boundary, which will be discussed in the following
section, and the dynamics mode deformation. By this approach, a success-
ful model will be able to correctly couple the parametrization (50a) of mode
deformation by α, with an identified auxiliary model that determines α dy-
namically, in terms of the AOA and other characteristics of the ambient
flow. This remark will be further clarified by our next discussion of moving
and bending boundaries.

The form and computation of deformable modes. The simplest op-
tion is to use (local) linear approximations:

ui(x, α) ≈ u∗,i(x) + κi(α)u∆, i(x),

∂αui(x, α) ≈ (∂ακi(α))u∆, i(x).
(51a)

Here u∗,i is the value of the ith mode at a nominal operating point, such
as over an attractor, and u∆, i approximates the gradient (or the Jacobian,
when α is vector valued) ∂αui. The nonlinearity of the dependence on α
is absorbed in the mappings α 7→ κi. As in the case of the shift mode
definition, (35b), the simplest way to define the approximate gradients u∆, i

is via

u∆, i :=
1

‖u∗,i − us,i‖Ω
(u∗,i − us,i) , , i = 0, 1, . . . N, (51b)

where the attractor is the selected nominal operating point and the steady
solution defines the maximal intended range of the approximation. The
evaluation of the interpolation coefficients κi as functions of α ∈ A can
then be identified and tabulated from transient numerical or experimental
data. Figure 10 illustrates these ideas with depictions of u∆, i, i = 1, 2,
calculated for the natural transient of the cylinder wake flow. The figure
thus complements Figure 6 which showed u∆ := u∆, 0.

Refined approximations are achievable by a projection of POD approxi-

6Here we refer to observation made during joint experimental work with D. R. Williams

and associates on flow control of a pitching 3D airfoil Williams et al. (2009).
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Figure 10. The “shift modes” in a least order approximation of the de-
forming mode pair that resolves the shedding frequency along the natural
transient of the cylinder wake flow. The two shift modes, as defined in
(51b), are depicted in the right column. For ease of reference we present
here again the corresponding stability eigenmodes, (left column), resolving
the 1st harmonic near the steady solution, and the mode pair that resolves
that harmonic over the attractor (center column).

mations of each of the “trajectories” α 7→ ui onto the unit sphere in L2(Ω):

ui( · , α) ≈
Li∑

ℓ=1

ãi,ℓ(α)ui, ℓ,

Li∑

ℓ=1

ã2
i,ℓ ≡ 1. (52)

The application of this option to the natural transient of the cylinder wake
flow is illustrated in Figure 9, depicting the flow fields bi, ℓ in POD ap-
proximations (52) of ui, i = 0, 1, 2. The smoothness of the α dependencies
illustrate the robustness and simplicity of these approximations. An illus-
tration focused on the 0th harmonic can be found in Tadmor et al. (2010).

The expressions (51) represent the interpolation of ui( · , α) between eval-
uations at the two ends of a transient. Yet another natural refinement is thus
the interpolation between sampled values of ui( · , α) at multiple interme-
diate points. This approach, in conjunction with POD modeling, gave rise
to the use of geodesic curves over the Grassmann manifold of orthonormal
bases, e,g., in Amsallem and Farhat (2008); Amsallem et al. (2009). The use
of geodesic interpolation, formalized in Edelman et al. (1998), is common
in image and video processing. Since the geodesic is defined in terms of the
interpolation hyperplane, rather than individual base vectors, it requires
an additional of extracting the explicit basis realization. The advantage of
the POD based interpolation (52) over the interpolation approach is that
as a POD approximation, (52) optimizes the approximation with respect
to bounds on the number of representative flow fields ui,ℓ, using the entire
data regarding the α-dependence of the expansion modes. In contrast, the
starting point of an interpolation scheme is the a priori selection of these
fields, as determined by the interpolation points.
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While geodesic interpolation over a Grassmann manifold concerns the en-
tire interpolation plane, the hierarchical significance of expansion modes, in-
dicated by their index, is a fundamental albeit implicit tenet of the Galerkin
framework. There is therefore an advantage to parametrization approaches
that retain the index references to the modes. The harmonic expansion has
this advantage, as modes are identified by both the harmonic number and
the phase alignment with respect to a common phase trajectory and slowly
varying frequencies. An advantage of harmonic modes over POD modes
is the instability of the indexing with respect to changes in the operating
points: POD approximations can experience significant state space rota-
tions between modes representing similar energy levels in response to small
variations in the operating point.

6.4 Closing Comments

Parametrized modes vs. higher dimension. Our first comment re-
visits the important distinction between higher state dimension and the
inclusion of a dependence on the parameter α. This is called for because,
at a first glance, an approximations such as (52) may appear as equivalent
to the use of the larger expansion set, {ui, ℓ}Li

ℓ=1
N
i=1, which is precisely what

we tried to avoid, in the first place. We therefore recall that the coefficients
ãi,ℓ(α) in the parametrization (52) are not states of the dynamical system.
As functions of α, these coefficients are determined either by an external
input, including control commands and the ambient conditions, or as func-
tions of the Galerkin system state, a = [ai]

N
i=1. In the latter case, this

slaving of {ãi,ℓ}i,ℓ is conceptually analogous to the slaving of higher modes
to few dominant modes in center and approximate inertial manifold models.
The distinction is that here, the goal is the resolution of mode deformation
between operating points, and not the not the resolution of smaller and
faster structures, as in center and approximate inertial manifold models.

Parametrized modes vs. center and inertial manifold models. Ex-
panding on this point, the center / approximate manifold approximation of
the flow field (and generally, the exact state of the high order system), is
by expansions of the form

u = u∗ +

N∑

i=1

aiui +

N+M∑

i=N+1

ãi(a)ui,

where a = [ai]
N
i=1 is the state of the low order Galerkin system, ui, i =

N + 1, . . . , N +M , are the slaved modes of a higher order model, resolving
finer spatial and temporal resolution.
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In contrast, when the formalism of (52) is used, the flow field reconstruc-
tion in the proposed framework is

u = u∗ +
∑N

i=1 aiui(α)

= u∗ +
∑N

i=1 ai

∑Li

ℓ=1 ãi,ℓ(α)ui,ℓ,

α = f(a, inputs).

(53)

What changes is therefore the purpose of using
∑N

i=1 Li > N modes, which
is the resolution of mode deformation, rather than smaller scales. The two
approaches are therefore complementary, rather than overlapping.

Analytic construction of the parametrized expansion set. The abil-
ity to compute the deforming expansion modes by direct appeal to the NSE
and stability eigenmodes, as an alternative to the empirical / post process-
ing approach we described earlier, is an interesting observation, previously
pursued in relation to base flow corrections (Tadmor et al., 2007b, 2010).
This approach is based by an extension of the use of the Reynolds equation
and a close variant can be found in the aforementioned independent and
elegant study by Sapsis and Lermusiaux (2009). A brief outline of key as-
pects of the procedure is presented here for harmonic expansions.

A useful observation. The computations is greatly facilitated by the ob-
servation that the local deformation of the mode ui must be orthogonal to
that mode. The reason is simply the fact that the normalized modes vary
over the unit sphere in L2(Ω), whereby the correction term, which is pro-
portional to the tangent vector ∂αui, must be orthogonal to the sphere at
ui:

∂αui ⊥ ui. (54)

Expansions of small fluctuations from us: Small fluctuations from a fixed
point are approximated by eigenmode expansions

u = us +A0u0 +

Nh∑

i=1

Ai(cos(φi)u2i−1 + sin(φi)u2i). (55)

Here Nh is the number of frequencies we aim to resolve and {u2i−1}Nh

i=1 are
the respective stability eigenmodes, at us is the fixed point. The linear
mean field correction mode, u0, is the eigenvector for the largest real eigen-
value. It may be difficult to compute when that eigenvalue represents fast
decay. In that case A0 = 0 and u0 can be ignored when very small fluctua-
tions are considered. To simplify this brief discussion, we shall nonetheless
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assume that u0 is known. The rationale presented here will allow the reader
to extend the observations we make to the case where we use u0 = 0 near us.

Generalized Reynolds averaged equations. Let us recall the spatio-temporal
projections we used in the discussion of harmonic expansions, in § 3.

The period averaged projection of the NSE on the expansion (55) is
the Reynolds equation, (33a). That equation determines the (quadratically
dominated) algebraic relationships between A0 and Ai, i = 1, . . . , Nh. How-
ever, as A1 is increased, so will the residuum in the period averaged NSE.
That residuum can be corrected by correcting both A0 and u0, i.e., by
defining

A0(αs + δα∂α)u0(αs + δα∂α)

≈ A0(αs)u0(αs) + (∂αA0u0(αs) +A0(αs)∂αu0) δα,

where αs is the parameter value at the steady solution and δα reflects the
change in the operating condition. The orthogonality property (54) allows
us to partition the residuum equation into two independent linearized equa-
tions, one for the component of the mean field correction that is aligned with
u0(αs), yielding the amplitude correction ∂αA0, and one for the component
orthogonal to u0(αs), yielding the orientation ∂αu0 of the α̇-proportional
mode deformation.

As in the computation of Fourier coefficients, (14), sinusoidally weighted
period averages distill the NSE components that are pertinent to each par-
ticipating frequency and phase. In precisely the same manner, and by pre-
cisely the same rationale as for the 0th harmonic, right above, these weighted
averages create equations that define the dependence of the incremental am-
plitudes and modes as functions of δα. That is, they allow us to solve for
∂αAi and for ∂αui, for all i. Moreover, a Galerkin projection of the NSE,
using the corrected modes and amplitudes, will yield the corrected value of
the dominant frequency ω(αs + δα).

Incremental marching. There is no conceptual difference between the com-
putation of ∂αAi and ∂αui, near αs, and between the computation of such
increments near any other operating point. Key to this observation is the
fact that the computations are based on period averaging, whether near αs

or near any other value of α. The conclusion is that expansion modes, coeffi-
cients and frequency can (ideally) be computed along the entire operational
range in terms of solutions of a succession of incremental equations.
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7 Galerkin Models for Flows in Unsteady Geometry

Fluid interactions with moving and deforming boundaries are part and
parcel of key fluid mechanics issues, from flow control challenges in engi-
neered systems through bio-flyers and swimmers, to plants. Familiar exam-
ples in engineered systems include damaging vibrations in turbine engines
(Russell, 1950; Hall et al., 2006; Boyce, 2006), wind turbines (Andersen
et al., 2007; Barlas and van Kuik, 2009; Wilson et al., 2009; Berg et al.,
2009), helicopter blades (Leishman, 2006) and civil infrastructure (Clark
et al., 2004; Strømmen, 2006; Stathopoulos and Baniotopoulos, 2007), full-
structure bending and torsional forces on light, high-altitude long-endurance
(HALE) flying wings, such as DARPA’s Vulture and NASA’s ill-fated He-
lios (Noll et al., 2007; Patil, 2007; Raghavan and Patil, 2010), and both
damaging flatter and buffeting and the currently pursued potential for lift
enhancement and drag reduction by active aero/hydroelastic and bound-
ary actuation mechanisms (Theodorsen, 1935; Livne, 2003; Ho et al., 2003;
Kamakoti and Shyy, 2004; Clark et al., 2004; Ansari et al., 2006; de C. Hen-
shaw et al., 2007; Kota et al., 2009; Carruthers et al., 2007; Liang et al.,
2006; Lopez and Sarigul-Klijn, 2010; Dong et al., 2010). Equally interest-
ing, elastic fluid body interactions are central to bio-swimmers and bio-flyers
(Pendleton, 2000; Ho et al., 2003; Fish and Lauder, 2006; Carruthers et al.,
2007; Kato and Kamimura, 2008; Lauga and Powers, 2009; Dong et al., 2010;
Shyy et al., 2010), and even plant-wind interactions (de Langre, 2008). In
addition to their critical roles in crisply encapsulating an accessible under-
standing of the physics of fluid-body interactions, and in the design of feed-
back controllers, low order models are increasingly sought as computational
tools, used to accelerate numerical simulations in these highly demanding
configurations (Schuster et al., 2003; FFAST, 2010). This section addresses
the conceptual challenge of a consistent definition of LOGMs for these flow
configurations, and the means to compute such models.

7.1 A Galerkin Modeling Conundrum and Existing Solutions

In applications such as the examples listed above, the Galerkin modeler
faces yet another, seemingly insurmountable conceptual conundrum: Un-
steady geometry requires that (Eulerian) global expansion modes satisfy at
once the mutually exclusive dynamic properties of body and of fluid, over
subdomains that are alternately occupied by body and by fluid. This inher-
ent contradiction precludes the physical credibility and consistency that are
at the very foundation of the Galerkin approach to model reduction. Here
we review existing approaches and set the ground for a solution path.
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Most prevalent solution categories. Reviewing today’s state of the art
(Dowell and Hall, 2001; Livne, 2003; Schuster et al., 2003; Clark et al., 2004;
Peters et al., 2007; Demasi and Livne, 2009; Silva et al., 2009), most existing
solutions may be broadly classified in one of two general categories:

In one category, low oscillation amplitudes justify a sole focus on the
generated acceleration forces acting on the fluid at the boundary. Boundary
displacements and domain variations are ignored, the ambiguity regarding
the governing dynamic laws is eliminated, and the Galerkin method can
be used in its traditional form. Methods that employ linearized elasticity
models are quintessential examples of this approach.

The primary focus of methods of the second category is on the elastic
body. Fluid dynamic representation is reduced to low order models of aero-
dynamic forces, induced by the flow. Tracing to Theodorsen (1935), such
models may postulate potential flows, with or without a periodic train of
vortices over an airfoil, and or claibrate aerodynamic forces by harmonic
balancing. Methods in this category provide effective computational and
analytical tools in (nearly) steady or in predictably periodic flows.

These broad-brush descriptions do not do ample justice to the rich and
diverse pools of ideas in each of the two categories. Nonetheless, they pro-
vide a “birds-eye view” of the limitations of both, when the targeted fluid-
body system displays large scale, unsteady, transient dynamics.

Actuation modes. Yet a third direction, applicable primarily to rigid
body motion, is based on two complementary ideas:

(i) Transition to body-locked coordinates. This is straightforward in an ex-
ternal flow around a single moving rigid body. Resulting variations of far
field geometry are viewed as negligible and handled by domain truncation
to a uniform, time invariant subdomain.

(ii) An unsteady coordinate change induces an unsteady addition to the ve-
locity field, including the boundary velocity. The unsteady velocity at the
boundary is absorbed by a modulated Galerkin expansion, using (incom-
pressible) actuation / boundary modes uact, i, so that the velocity field

u − uact := u −
Nact∑

i=1

biuact, i, (56)

is steady along the boundary. When this correction follows a transition to a
steady domain, then u−uact, has the properties required by the traditional
Galerkin framework: A steady domain with steady boundary conditions.
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We illustrate these ideas, right below, with two simple examples: The
oscillating cylinder (Noack et al., 2004b; Tadmor et al., 2004; Siegel et al.,
2008; Liberge and Hamdouni, 2010), and the rotating cylinder (Graham
et al., 1999a,b; Bergmann et al., 2005, 2007). Other pertinent examples in-
clude the lid-driven cavity (Fitzpatrick et al., 2005), and the flow around a
heaving and pitching airfoil (Lewin and Haj-Hariri, 2005; Stankiewicz et al.,
2008). Finally, we mention also actuation modes arising in the context of an
unsteady inflow which does not involve boundary motion, but does invoke
very similar ideas (Kasnakoğlu et al., 2008). We shall revisit these examples
throughout this section.

∗ The vertically oscillating cylinder. Referring to the description in § 2, we
use α to denote the instantaneous vertical coordinate of the center of the
cylinder, whereby the unsteady domain is

Ω(α) = {x = (x, y) ∈ [−5, 15] × [−5, 5], : ‖(x, y − α‖ ≥ 1/2 },

and the point-wise parametrization of the boundary is

Ω′(α) =

{
xb(α, κ) := 1/2

(
cos(κ)

sin(κ)

)
+ α

(
0

1

)
, κ ∈ [0, 2π)

}
.

Moving to a body locked coordinates, the cylinder center is used as ori-
gin. Vertical fluctuations of the upper and lower boundaries, now located
at y = ±5 +α, are ignored and Ωc := Ω(0) is used as a fixed computational
domain. Ignoring the far field unsteady boundary is justified since the spa-
tial development of flow unsteadiness near the upper and lower boundaries
is negligible.

The transition to a body locked coordinates induces a global addition of a
vertical velocity −α̇

(
0
1

)
. This addition cancels the original vertical velocity

of points along Ω′
c, where a standard zero velocity boundary condition now

holds. Yet the added unsteadiness is felt away from the cylinder, and in
particular, the far field boundary velocity is now unsteady. The actuation
mode used to cancel this unsteadiness in Noack et al. (2004b); Tadmor
et al. (2004), is depicted in Figure 11 (left plot). It is a viscus potential flow
around the cylinder, with a vertical unit amplitude inflow.

∗ The rotating cylinder. This effects of cylinder rotation on lift, drag, and
wake stability have been studied extensively in both experimental and nu-
merical studies (Hu et al., 1996; Mittal and Kumar, 2003; Lo Jacono et al.,
2008). Flow control studies (Graham et al., 1999a,b; Bergmann et al., 2005,
2007; Bergmann and Cordier, 2008) employed low order Galerkin models
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Figure 11. Left: An actuation mode uact for the vertically oscillating
cylinder is defined as a potential flow with a vertical inflow. Right: An
actuation mode for the rotating cylinder is a potential vortex flow with a
zero far field azimuthal velocity.

and required a method to address boundary unsteadiness. The solution
proposed by these authors is the use of an actuation mode depicted in the
right plot, in Figure 11, formed as a potential vortex flow, driven by the
rotating cylinder with a no-slip boundary condition, and a zero azimuthal
velocity on a larger, concentric circle. Notice that while this example in-
volves an unsteady boundary, the geometry of the flow domain is steady, to
begin with.

Lagrangian- ulerian methods and deformable grids. Shortcomings
of the actuation / boundary modes approach include the lack of systematic
guidelines for generating actuation modes and, more significantly, a quan-
tum leap in the challenge of the transition to steady coordinates of elastic
and multiple bodies. To address the latter, a number of pioneering studies
(Epureanu et al., 2002; Anttonen et al., 2003, 2005; Feng and Souläımani,
2007; Liberge et al., 2008) endeavored to adapt Eulerian-Lagrangian dy-
namic mesh adaptation methods, that are commonly used in CFD models of
aeroelasticity (Batina, 1990; Farhat et al., 1998; Blom, 2000; Schuster et al.,
2003; Ishihara and Yoshimura, 2005; Hsu and Chang, 2007; Xie et al., 2007;
Braun et al., 2008; Roszak et al., 2009). The objective in these methods
is to continuously deform the fluid simulation’s grid, in a way that agrees
with the deforming fluid-body interface and that obeys pertinent geomet-
ric properties, including incompressibility. Identifying the flows state not
with the Eulerian location but rather, with the index of a Lagrangian grid
point, these methods achieve the equivalent of a transition to a canonical
computational domain. An analogy of the deforming fluid domain to the
boundary-driven equilibrium of an elastic body allows the developer of a
numerical method to draw on a vast body of knowledge in theoretical and
numerical solid mechanics. Developments along these lines are still vibrant,
not only in CFD and computational elasticity (Bijelonja et al., 2006; Pers-
son and Peraire, 2009) but also in other areas of applied geometry, notably,
in diverse areas of computer graphics (Hong et al., 2006; Irving et al., 2007;

61



Adams et al., 2008; Diziol and Bayer, 2009).

Our objective in this section is to review a broadly applicable methodol-
ogy that integrates these ideas with the observation underlying the actuation
modes approach, regarding the two ingredients of a successful solution: The
transition to a steady computational domain, where the ambiguity between
body and fluid is removed, and the cancellation of residual unsteady veloc-
ity at the boundary, to enable the space-time separation of variables, at the
essence of the Galerkin paradigm. In what follows we use two subsections to
derive the characteristics of each of these two components, preparing for the
subsequent constructive integration of the two. Setting the ground for these
technical discussions, we begin with a brief review of basic formalism and
assumptions that will be used, and introduce the concept of the complete
flow domain, for flows over unsteady boundaries.

7.2 Canonical Embedding Preliminaries

Nomenclature and assumptions. To simplify notations, throughout
this section we use α ∈ A only to define a smooth point-wise parametrization
of the boundary7 Ω′(α) of the compact domain Ω(α). That is, we assume
that boundary points are defined by a smooth function xb(α, κ) ∈ Ω′(α),
where κ is a local coordinates parametrization (in the differential geometric
sense) of the boundary curve or surface, for each α.

The boundary Ω′(α) may include both walls of bodies immersed in,
or bounding the flow, and free, far field inflow and outflow boundaries of
the studied domain. Restricting this discussion to incompressible flows, we
assume that the volume (or area) of Ω(α) is constant, and independent of
α. Where needed, the constant volume assumption can be easily enforced
by α-dependent far field, inflow and outflow boundaries.

The velocity conditions along the boundary include steady or unsteady
inflow and outflow conditions, and no-penetration and no-slip conditions
along body walls. The latter require that, along these sections, fluid velocity
must agree with wall velocity.

We treat α as an exogenous input. Control mechanisms and elastic fluid-
body interactions are represented by feedback laws, determining α.

The augmented domain and velocity field. While the ambiguity re-
garding the applicable dynamic rule at points in space that are alternately

7We bear in mind, however, that the need to parametrize mode deformations may only

rise in the presence of deforming boundaries, and that viable models should incorporate

parametrization of mode deformation, as discussed in § 6.
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occupied by fluid and structure is clear, we argue that essentially the same
ambiguity exists throughout the spatial domain: The dynamic rule at a
point x is determined by the location of x relative to the boundary. A com-
plete description of a point in the domain thus requires the specification of
the pair (x, α), whereby the complete flow domain is the manifold:

MΩ := {(x , α) : α ∈ A, x ∈ Ω(α) }. (57)

Vector fields over MΩ comprise of pairs (u, ν), so that

d

dt
(x, α) = (u, υ). (58)

The concept of the complete domain, MΩ, will enable the use of compact
and unambiguous formalism, throughout this discussion. For example, in
stating the prescribed wall velocity, by (58).

Should we develop LOGMs over MΩ? The derivation of expansion
modes by the methods considered heretofore requires a succession of snap-
shots of the flow. Among other issues (e.g., the nonlinearity of MΩ) we note
that a LOGM for the flow over MΩ stipulates that a snapshot is a vector
field (u, ν), which needs to be defined for all (x, α) ∈ MΩMΩ. Yet the time
trace of a simulation or an experiment defines the fluid velocity u( · , t) as a
vector field over Ω(α(t)), for the single value of α(t). This gap can be closed
in a way that conceptually parallels what will be described here. Consider-
ing the complexity of this option, however, our choice is to limit the use of
the augmented domain and vector fields to the notational and conceptual
simplifications they will enable along the discussion. LOGMs will be de-
veloped more traditionally, either over a canonical computational domain,
or equivalently, in an Eulerian-Lagrangian setting, over an unsteady grid in
the physical domain, as will be explained below.

7.3 Canonical Embedding for Deforming Boundaries

Admissible embedding in a canonical computational domain. The
transition to a steady (canonical) computational domain, Ωc, is made by an
admissible mapping, ψ,

ψ : (x, α) 7→ (xc, α) : MΩ 7→ Ωc ×A, (59)

which is required to satisfy the following basic properties:

• ψ is a diffeomorphism. This is clearly necessary to enable an unam-
biguous correspondence between the flow over the physical domain and its
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representation over the canonical domain.

• For each α, ψ(Ω′(α), α) = (Ω′
c, α). Thus, a coordinate parametrization

of Ω′
c is defined by κ 7→ ψ(xb(α, κ), α), for each α ∈ A.

• For each α, the induced mapping

x 7→ xc : Ω(α) 7→ Ωc

is incompressible (isocheric).

The velocity field over the canonical domain. Invoking (58), an ad-
missible mapping ψ induces a mapping of velocity fields over the physical
domain to velocity fields over the canonical computational domain, via:

Ψ(u, υ, x, α) =
(

d
dt
ψ(x, α), ψ(x, α)

)

= ((Jxc,x u + Jxc,αυ, υ) , ψ(x, α)) ,
(60a)

where

J :=

[
Jxc,x Jxc,α

0 I

]
:=

[
∂xxc ∂αxc

0 I

]
(60b)

is the Jacobian of ψ. The requirement that ψ be diffeomorphic guarantees
that Jxc,x is invertible, and that both this Jacobian and its inverse are
smooth functions of (x, α). The inverse mapping has a similar form:

Ψ−1(uc, υ, xc, α) =
(

d
dt
ψ−1(xc, α), ψ−1(xc, α)

)

=
((
J−1
xc,x uc − J−1

xc,x Jxc,αυ, υ
)
, (x, α)

)
.

(60c)

The mapping Ψ translates boundary conditions in the physical and the
velocity of the boundary motion, reflected by ν = α̇, into boundary velocity
conditions over the canonical domain.

An auxiliary flow. An admissible mapping ψ is associated with an aux-
iliary Lagrangian (particle) flow over the manifold MΩ: ∀α, β ∈ A,

S(β, α) := ψ−1( · , β) ◦ ψ( · , α) : (Ω(α), α) ⇄ (Ω(β), β). (61)

The smooth invertibility of ψ implies that S is a diffeomorphic and in-
compressible (isocheric) deformation of the physical domain, depending
smoothly on α.

The requirement that the boundary be invariant under ψ means that S
gives rise to a diffeomorphic flow over the boundary:

Sb(β, α) : (Ω′(α), α) ⇄ (Ω′(β), β), (62a)
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such that
∀α, β ∈ A, Sb(β, α) = S(β, α) |(Ω′(α), α). (62b)

The Lagrangian particle flow S induces a corresponding flow of velocity
fields, in complete analogy to (60):

T (β, α) := Ψ−1( ·, , β̇, · , β)Ψ( ·, , α̇, · , α) (63)

This definition leads to consistent concepts of algebra and analysis by which
snapshots of the velocity field over one boundary configuration can be com-
pared to, and algebraically co-manipulated with snapshots over another
boundary configuration. The, presence of the canonical domain is kept im-
plicit, and the governing equation, the NSE, remains unchanged!

A focus on S. The following observation allows us to consider the con-
struction of ψ and Ψ, indirectly, in terms of S and T :

Observation 7.1. An admissible mapping ψ generates an ensemble of ad-
missible, diffeomorphically equivalent maps {ψβ}β∈A:

ψβ(x, α) := S(β, α)(x, α) ∈ Ω(β) × {β}. (64)

Consequently, ψ also generates an ensemble of mappings {Ψβ}β∈A, which
correspond to {ψβ}β∈A in complete analogy to the definition (60) of Ψ in
terms of ψ. There is therefore no loss of generality in assuming that Ωc =
Ω(β), for any fixed β ∈ A, using ψβ and Ψβ in the roles of ψ and Ψ.

A “spring analogy” construction of S: Basic steps. Lagrangian-
Eulerian methods, mentioned on p. 61, offer a natural option for the con-
struction of S. Given the extensive literature on these methods, and ongoing
efforts invested in their continued improvement, we see no need or point to
expend on a favorite variant. This discussion is therefore limited to a con-
ceptual outline of generic key steps, right below, to be followed by highlight
of possible points of departure from CFD considerations and implementa-
tions of spring-analogy algorithms:

• A point β is selected as the origin in the parameter set A. In principle
this selection is arbitrary, but as we shall comment later, it may be advan-
tageous to select the parameter reflecting the elastic boundary in a relaxed
state.

• A grid X := {xi}Ng

i=1 ⊂ Ω(β), is selected to meet the desired resolution
of a LOGM at the parameter value β. For later reference, we denote the
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sub-grid of boundary points as Xb := {xb, j}Nb,g

j=1 ⊂ Ω′(β).

• Boundary deformation, as α varies, translate to variations in Xb. The
initial selections of xb, j , for the parameter value β, therefore immediately
extend to the definition of boundary grid points as functions of α. Thus

Xb(α) := {xb, j(α)}Nb,g

j=1 ⊂ Ω′(α), α ∈ A. (65)

• An algorithm for smooth, incompressible mesh adaptation defines the
deformation of X in response to changes in Xb(α), as α varies. Thus

X(α) := {xi(α)}Ng

i=1 ⊂ Ω(α), α ∈ A. (66)

The incompressibility of the deformation is interpreted by the requirement
that the volume of the grid cell represented by xi(α) is independent of α.

• The flow S is defined by the mappings X(α1) 7→ X(α2), αi ∈ A.

• The flow T maps velocity fields over Ω(α1) to a velocity fields over Ω(α2),
as a function of αi and α̇i, as detailed in (63).

• To extract expansion modes for a LOGM from velocity field snapshots
{u( · , t)}t∈I , these snapshots need to be evaluated (interpolated) at the La-
grangian grid points xi(α), and viewed as functions of the Lagrangian grid
points (identified by the indices, i). This way, the mapping T enables the
linear algebra of velocity fields from different snapshots, that can now be
used in mode extraction methods, such as POD.

Note that in the discrete setting, the index j of a boundary point xb, j(α),
is a discrete analogue of the parameter κ in a continuous description. Note
also that the inflow and outflow boundary sections are generically steady.
Thus, the generic boundary conditions for Lagrangian motion of grid points
over this sections are independent of α.

The “spring analogy” construction of S: Cautionary comments.

It is important to highlight differences between CFD and LOGMs needs,
and the essential implications of these differences on the implementation of
adaptive mesh algorithms.

• The very large grids used in CFD simulations necessitate the spatial and
temporal localization of mesh adaptation methods. Jumps and readjust-
ments that may occur as a consequence, are viewed as a matter of course.
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Consistency of the association of the instantaneous grid as a function of
boundary configuration, is not required. In contrast, in order to be able to
derive a viable parametrized LOGM, the essential property of (66) is that it
is defined globally, both in space and as a function of α, and the simplicity,
smoothness and robustness of this definition, held at a premium. At the
same time, the far sparser grids that suffice for LOGM computations, make
this type of grid definition feasible. An import of a mesh adaptation algo-
rithm, “as is”, from a CFD context to LOGM use, is therefore very likely
not to enable the desired definitions of S and T .

• A recurrent issues in the discussions of elasticity-based mesh adaptation
concerns the adverse effects of over-stretching of the grid, such as in response
to a rotational motion. Considering the simple example of a rotating cylin-
der, attaching boundary points of a grid formed as material points of a
fictitious elastic body, to points along the boundary of the physical domain,
i.e., the rotating cylinder and the steady far field boundary, will cause the
elastic material to stretch in an infinite spiraling motion. This stretching
will lead to loss of grid continuity and to numerical singularity. By the same
token, this scenario also illustrates a situation in which the use an adaptive
mesh is not only difficult, but, is utterly unnecessary, and is easily substi-
tuted by the simple and robust implementation of an actuation / boundary
mode, as discussed earlier.

What we have shown in the discussion leading to the outline of the
construction of S and T , amounts to the observation that, when successful,
that procedure can fully address the transition to a canonical domain, where
fluid velocity obeys steady boundary conditions. Yet the simple example
of the rotating cylinder demonstrates that the success of the outlined con-
structions is not guaranteed, highlighting grid stretching due to rotational
motion, as a major culprit. That example reminds us of the second ingre-
dient of the envisioned approach: The use of actuation modes. Our next
step is to suggest a simple means to define actuation modes, and a way to
use them to mitigate the observed shortfall.

The construction of S: Slip conditions and actuation modes. As
described above, and as commonly implemented in CFD applications, the
elastic body analogy requires a rigid attachment of the fictitious elastic
body, represents the fluid domain, to the physical domain’s boundary. That
requirement ensures that the mapping of fluid velocity to the Lagrangian
grid, will remain consistent with the inflow, outflow, no-penetration and
no-slip conditions.

Considering the difficulty illustrated by the rotating cylinder example,
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we note that its rout-cause is the wall-tangent velocity, imposed by the no-
slip condition. We also note that the no-slip condition has no bearing on
geometry variations. The solution path outlined here is to use grid defor-
mation only in order to track the unsteady geometry, as implied by the
no-penetration conditions. In this framework, the boundary grid points in

Xb(α) = {xb, j(α)}Nb, g

j=1 are allowed to slide along the walls of immersed
bodies, but are held locked to the far field boundaries. Actuation modes
will be used in a subsequent step, to absorb residual wall-tangent velocity,
as in (56). As an aside, we note that the need to absorb residual boundary
velocity may exist not only due to boundary motion, but also due to un-
steady inflow velocity, whether as a control mechanism or a disturbance.

Comments & alternative guidelines. The prevention and remedia-
tion of over-stretching grid cells are critical components of elasticity-based
adaptive mesh methods. The inclusion of torsional springs (Farhat et al.,
1998) is an example of a quintessential preventative measure. Since CFD
methods tolerate mesh discontinuity as a matter of course, a discontinuous
mesh update is the generic remediation, once the benefits of the way the
elastic structure is formulated, are exhausted. Giving up on the no-slip
conditions, and the use of actuation modes counterparts, is generally not
a viable option in CFD contexts. That said, a closer, localized look at the
remeshing step would typically reveal the conceptual partition into a sliding
grid component and a correction that resolve the residual slip velocity, i.e.,
the approach presented here as a global strategy. That analogy is explicit
even in the very title of the Shear-Slip mesh update method of Tezduyar
(2001). That said, some CFD methods do allow the mesh to slide over
moving boundaries (Demirdžić et al., 1997).

We also note that while the removal of the no-slip condition will resolve
the adverse effect of rotational stretching, it will not address the impact
of large scale translational motion. Methods to address this challenge are
based on multi-domain approach: A moving body is surrounded by a local
subdomain that is locked to the body’s geometry, and moved together with
the body. The methods described here will then apply to grid adaptation
within that local subdomain. Velocity fields on the local and global subdo-
mains are then reconciled in a subsequent step which is less challenging since
it does not involve unsteady geometries. Several authors have addressed the
issue of large scale translational motion in CFD contexts (Tezduyar, 2001;
Murman et al., 2003).

The last comment concerns the very of solid, rather than fluid mechan-
ics to derive the mesh adaptation scheme. The motivation is clear: Even
when a fluid flow is considered reversible, this applies only to the velocity
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field, and not necessarily to the induced Lagrangian particle motion. That
said, generic examples such as the substantial oscillations of a flexible air-
foil can be handled by use of highly viscous (Stokes) simulations to define
the auxiliary mappings S and T . The auxiliary Stokes flow is determined
by boundary motion, as is derived from the original fluid simulations. In
the generic case of (quasi) periodic oscillations, boundary motion can be
expanded by a short harmonic expansion. Expanding the induced parti-
cle motion within the domain by a truncated harmonic expansion of the
same length is a linear operation that does not affect incompressibility and
defines domain (and grid) deformation that obeys the imposed boundary
unsteadiness.

Example: A continuously deforming cylinder. Yet a third variant of
the cylinder wake flow provides a very simple illustration of the Lagrangian-
Eulerian approach to LOGMs of flows over unsteady boundaries. In this
example the cylinder undergoes forced periodic deformations, and the fluid
flow domain, Ω(α), is parametrized by the phase, α ∈ [0, 2π] =: A, of these
deformations:

Ω(α) := {x ∈ [−5, 15] × [−5, 5] : ‖x‖ ≥ 0.5 + ǫ sin(α) cos(3θ), θ = ∠x}.

(The notation θ = ∠x is interpreted by x = (x, y) = ‖x‖(cos(θ), sin(θ)).)
The deformations are illustrated by the top-left plot in Figure 12, where
ǫ = 0.1.

This example does not include rotational motion, and boundary un-
steadiness is fully addressed by the transition to the canonical domain, de-
fined by Ωc := Ω(0), or equivalently, by a transition to a Lagrangian grid.
Domain deformation, i.e., the mappings ψ and Ψ, were computed both by
an elasticity based adaptation and by the filtered Stokes simulation, as de-
scribed in the preceding comment. As illustrated by the top-right plot in
Figure 12, the maximum stroke of grid motion subsides rapidly as a func-
tion of the distance from the deforming cylinder, and is negligible near the
far field boundary. A reference simulation was initiated by the steady NSE
solution. As in the previous two cases, the amplitude of periodic vortex
shedding oscillations grows along a transient, reaching a periodic attrac-
tor. Interestingly, following a brief alignment period, the evolution of the
shedding frequency, ω, also shown in Figure 12, is quite similar to what is
observed for the wake of a steady, rigid cylinder; i.e., starting with a low
frequency at the early transient, and increasing as the flow approaches the
attractor. That is the case even though the actuation frequency is held
constant, at roughly the natural attractor shedding frequency of the flow
over the rigid cylinder, which is the dominant frequency over the very near
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Figure 12. The periodically deforming cylinder. Top left: Grid points along
the circular circumference are forced into sinusoidal fluctuations between the
values indicated by bullets and asterisks. Top right: The maximal fluctua-
tion of grid points {xi : |xi(0)− x| < 0.2}, plotted as a function x. Center:
Transient values of the instantaneous shedding frequency (solid), compared
with the attractor shedding frequency of the rigid cylinder (dashed). Bot-
tom: Near field zoom on 3 “physical domain” snapshots of the first harmonic
mode u1( ·α), as it varies along an attractor period. The far field evalu-
ation of u1( ·α) is nearly constant and similar to its counterpart over the
attractor of the static cylinder wake.
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field. Also noticed is the imperfect lock in of the shedding frequency onto
the actuation frequency, evidenced by the dip in ω towards the end of the
data stretch.

The velocity snapshots were mapped by the appropriate Ψ to equivalent
snapshots over Ωc, with a steady inflow velocity, and zero velocity over
the cylinder wall. Harmonic expansion modes uc,i were computed for the
velocity field over Ωc = Ω(0). These modes where computed with respect
to the instantaneous shedding frequency, and remain essentially constant
over the attractor. The harmonic modes were pulled back to each Ω(α) in
the “physical domain”, using the inverse mapping, Ψ−1, according to (60).
This defines (α, α̇)-dependent modes ui, over Ω(α). (We shall revisit the
revisit the general form of modes defined this way shortly; cf. (69)–(71),
below.) While the harmonic modes are very similar to their rigid cylinder
counterparts over the far field, the dependence on the oscillatory parameter
variations is reflected by near field unsteadiness of each ui. The three plots
at the bottom of Figure 12 illustrate this fact by a zoom on a streamline
depiction of harmonic mode u1 over the immediate neighborhood of the
cylinder, at three different points along a period.

7.4 Actuation Modes for Deforming Boundaries

The construction of actuation modes. As we have seen earlier, the
need to construct actuation modes at this point arises from two types of
sources: The slip velocity of grid points along walls of bodies immersed in the
flow, and unsteady inflow conditions, including actuation and disturbances,
global and local effects alike. The actuation modes are introduced in order
to absorb these components of the boundary velocity, by an expansion of
the form (56).

It will be convenient to formalize this requirement, and to discuss the
construction of actuation modes, considering the embedded flow over the
canonical domain Ωc. We start, rewriting the actuation modes expansion
(56) in clear reference to the embedded flow over Ωc:

uh,c := u − uc, act = uc −
Nact∑

i=1

biuact, c, i, (67)

Here uc is the velocity field in the image of Ψ, as in (60). The notation
of uh,c indicates the velocity field obtained at the end of the transition
process, satisfying traditional, steady boundary conditions: A zero velocity
along solid walls and a steady inflow. The actuation modes uact, c, i are
required to be defined as incompressible velocity fields over Ωc, they should
be independent of α, but include in their span the boundary velocity that
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needs to be removed from uc, which is denoted here as uc,act. The depen-
dence on (α, α̇), in (67), is delegated to the coefficients bi, where α may
parametrize both domain deformation and inflow unsteadiness.

We review two approaches for the construction of the actuation modes:

(i) Analysis of the primary data set, i.e., the simulation or experimental
data intended for the computation of expansion modes:

• The first step is the identification of a restriction of the modal expansion
in (67) to the boundary, Ω′

c. This task is trivial in the rotating and oscil-
lating cylinder examples. In general, one may use the adaptation to the
boundary, Ω′

c, of the empirical mode extraction methods discussed earlier,
including the computation of harmonic expansions and POD analysis.

• Both the definition of harmonic modes and of POD modes are as linear
combinations of data snapshots. Applying the same linear combinations
that were used over the boundary to the entire snapshots, over Ωc, defines
incompressible velocity fields that agree with the boundary modes and can
be used as actuation modes.

(ii) Using auxiliary simulations. Arguably, actuation modes that are in-
tended to be used in operating conditions that are not identical to those
used in model extraction, should translate boundary conditions into global
modes in a manner that captures only the largest and least detailed struc-
tures possible:

• An auxiliary Stokes simulation over Ωc is run, subject to the unsteady
boundary velocity that needs to be resolved8.

• Expansion modes are obtained from the auxiliary flow data. These ex-
pansion modes are the sought actuation modes.

Method (i) is reminiscent of approaches that extract actuation mod-
els by comparing the actuated and un-actuated flows, e.g. in Kasnakoğlu
et al. (2008). The simple actuation modes that were reviewed earlier for
the oscillating and rotating cylinder fit method (ii). The simulation based
derivation of actuation modes for the heaving and pitching (solid) airfoil,

8Note that this means that if the inflow is steady, to begin with, the inflow boundary

condition for the auxiliary simulation is zero.
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in the pioneering work by Lewin and Haj-Hariri (2005), is also belonging to
this class.

7.5 LOGMs in flows over deforming geometries

The Galerkin approximation in deforming geometries. The fluid
velocity field uh,c, in (67), is defined over the steady canonical domain Ωc,
satisfying steady boundary conditions, including zero velocity along body
wall. It is therefore amenable to the computation of POD or harmonic
expansion modes, with the familiar Galerkin approximation format:

uh,c(xc, t) ≈ uB
c (x) +

N∑

i=1

ai(t)uc, i(xc). (68a)

Equivalently,

uc(xc, t) ≈ uB
c (xc) +

N∑

i=1

ai(t)uc, i(xc) +

Nact∑

i=1

bi(α, α̇)uact, c, i(xc). (68b)

Parametrized mode deformation, due to transient changes in the flow, can be
included in this formulation, precisely as discussed in § 6, provided pertinent
entries to the parametrization vector α.

Applying the inverse mapping, Ψ−1, to the combined (68), one maps
the base flow uB

c , the expansion modes {uc, i}N
i=1, and the actuation modes

{uact, c, i}N
i=1, back to velocity fields over the deforming physical domain

Ω(α). The dependence of Ψ−1 on (α, α̇) implies the same, regarding the ex-
pansion modes over the physical domain, meaning that the Ω(α)–counterparts
of the fields in (68b) will all be unsteady. We begin this discussion with the
details of these fields.

In keeping with the convention that the base flow absorbs inhomogeneous
terms, we define

uB(x, α, α̇) := uB
p (x, α) + uB

v (x, α)α̇, (69)

where
uB

p := J−1
xc,x uB

c and uB
v := −J−1

xc,xJxc,α. (70)

The term uB
p , on the right hand side of (69), is in standard change of coor-

dinate form. It is determined by the slowly varying uB
c , and its dependence

on α is static, and does not involve α̇. The term uB
v α̇ reflects the velocity

field of the Lagrangian grid, and therefore includes the dependence on α̇.
With this definition of the base flow, actuation modes and expansion

modes depend on α, but not on α̇. Moreover, expansion modes will satisfy

73



homogeneous boundary conditions:

ui(x, α) = Jxc,x(x, α)−1 uc, i(ψ(x, α)) (71)

uact, i(x, α) = Jxc,x(x, α)−1 uact, c, i(ψ(x, α)) (72)

The Galerkin approximation, in the original domain, is therefore of the form

u(x, t) ≈ uB
p (x, α) + uB

v (x, α)α̇+
∑N

i=1 ai(t)ui(x, α)

+
∑Nact

i=1 bi(α, α̇)uact, i(x, α).
(73)

The Galerkin Dynamical System. The Galerkin dynamical system can
be computed now in two equivalent ways, working over the steady computa-
tional domain or over the physical domain. The first approach is to rewrite
the NSE in terms of the vector field uc over the spatial domain Ωc. In that
case, unsteady change of variables, dependent on (α, α̇), must be included
in the appropriately modified NSE, followed by the projection on the time
invariant expansion set. Here we detail only the alternative computation
over the physical, unsteady domain, where the NSE retains its original, time
invariant form.

Following the standard Galerkin paradigm, the acceleration field is ap-
proximated as the time derivative of the Galerkin approximation of the
velocity field:

∂tu(x, t) ≈ ∑N
i=1 ȧiui

+
∑Nact

i=1 (∂αbi · α̇+ ∂α̇bi · α̈)uact,i

+
(
∂αuB

p +
∑N

i=1 ai∂αui +
∑Nact

i=1 bi ∂αuact, i

)
α̇

+∂αuB
v α̇

2 + uB
v α̈.

(74)

The first sum on the right hand side of (74) is the mainstay of the standard
Galerkin system computation, the subsequent, α̇, α̇2 and α̈ terms reflect
the changing geometry and the velocity and acceleration that this change
induces along Ω(α).

The Galerkin projection of the NSE on the expansion set will therefore
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be of the following general form

ȧi = ci(α) +
∑N

j=1 lij(α)aj +
∑N

j,k=1 qijk(α)ajak

+
∑Nact

i=1 lact, ij(α, α̇)bj

+
(
c′i(α) +

∑N
j=1 l

′
ij(α)aj

+
∑Nact

i=1 l′act, ij(α, α̇)bj

)
α̇

+
(∑Nact

i=1 l′′act, ij(α, α̇)bj

)
α̈

+c2,i(α)α̇2 + c3,i(α)α̈.

(75)

7.6 Closing Comments

Let us recap the extensions of the Galerkin methodology outlined in this
section. Our starting point is the observation of an inherent inconsistency
between the traditional Galerkin method and the modeling needs of systems
with unsteady boundaries. As noted towards the end of the section, aspects
of that inconsistency are manifest also in systems with unsteady inflow
conditions.

Whereas studies that employ LOGMs for systems with unsteady bound-
aries commonly avoid the difficulty under a simplifying, small fluctuations
assumption, solution ideas that address the problem, head on, have been
proposed by a number of authors, over more than a decade. These ideas
invariably include the transition to a steady computational domain, and
where needed, the use of actuation modes. Methods for the transition to
a canonical domain varied from very simple transformations, applicable to
rigid body motion, to emulation of the string analogy, which is commonly
used in CFD simulations.

The presentation of this section aimed to incorporate and extend these
ideas, in a systematic, broadly applicable and computationally efficient
framework, that meshes seamlessly with the formulation of LOGMs on pa-
rameterized manifolds, that was developed in § 6. Guidelines for the gener-
ation of elasticity-based, parameterized Lagrangian grids, include both the
delineation of the properties required from such definitions in LOGM con-
texts, and the equally important highlights of the significant differences be-
tween these requirements, and the needs and implementations of Lagrangian
grids in CFD simulation models.

A central theme in Lagrangian grid methods, in computational aeroelas-
ticity, concerns the detrimental effects of excessive stretching of the fictitious

75



network of springs that control grid dynamics. Specifically, over-stretching
may hinder the representation of grid cells by positive volume polyhedra,
and requires a remeshing, a step we wish to avoid in parameterized grids
used in LOGMs. To avoid this obstacle, the proposed framework removes
the no-slip condition from the requirements used to define the Lagrangian
grid, thus necessitating the complementary use of actuation modes, to ab-
sorb the residual wall-tangent velocity. Actuation modes are also needed to
absorb unsteady boundary velocity due to actuation and or disturbances.
We reviewed two alternative computations of actuation modes: One uti-
lizes the same simulation data that is also used for mode extraction, in the
derivation of the LOGM. The other utilizes auxiliary high viscosity (Stokes)
fluid simulations, driven by the residual boundary conditions.

The two-step method is an enabler for a systematic, analytically derived
modeling framework that is equally applicable to internal and external flows
over moving boundaries, subject to unsteady inflows, allowing multiple,
independently moving, immersed elastic bodies.

Finally, the singularity of boundary forcing has been a persistent im-
pediment to the analytic incorporation of important actuation mechanisms
in LOGMs. It necessitated the use of ad hoc, and often fragile calibration
based substitutes, to include control mechanisms in the model. A signifi-
cant aspect of the proposed framework is therefore in removing this obstacle.
Indeed, the representation of forces along the boundary by global volume
forces, proportional to α̈ in (75), is analytically derived as an integral part
of the Galerkin projection of the NSE, in the extended framework.

8 Feedback Design

Feedback flow control design may be characterized by a comparison of tar-
geted response time scales to the time scales of dominant flow structure:

The regulation of a turbulent flow at rates that are much longer than
those dominating flow unsteadiness is generically limited to statistical prop-
erties of the flow. The role of feedback is that of a slow adaptation of an
otherwise open loop actuation, such as the amplitude and frequency of a
pulsating synthetic jets (King, 2010; Becker et al., 2005; Pastoor et al., 2008;
Little et al., 2009; Williams et al., 2009). Actuation is often at frequencies
that are different than that of the dominant flow instability and feedback
gains are not synchronized with the phase of flow oscillations. The mod-
els that are used to design control mechanisms in this class are therefore
required to track and predict only the slowly varying statistical quantities
of interest: The turbulent energy level of the flow or its sensed surrogates,
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the aerodynamic forces acting on an airfoil, etc. Transfer functions are
commonly used in such contexts, as well the mere implicit monotonicity as-
sumption used in9 model-free designs, such as in extremum-seeking control
(Ariyur and Krstić, 2003; Wiederhold et al., 2010). Referring to the discus-
sion in the chapter by Noack et al., the control of modal energy statistics,
using FTT models Noack et al. (2008, 2010) belongs in this category as well.

Feedback flow control that acts at the flow’s time scale is typically geared
to attenuate, or to otherwise regulate, an oscillatory instability. This class
of control tasks an oscillatory actuation to be tightly choreographed with
the flow. The demands from design models are escalated accordingly, to
providing accurate phase predictions of flow unsteadiness. In addition to
analytical PDE and high dimensional numerical models (Aamo and Krstic,
2003; Bewley, 2001; Kim and Bewley, 2007; Vazquez and Krstic, 2007),
reduced order models used in here cover the gamut, from simple sine-wave
tracking (Pastoor et al., 2006, 2008; Joe et al., 2008), through state-space
and transfer function linear time invariant and adaptive models Kegerise
et al. (2007); Cattafesta et al. (2008) and vortex models Protas (2007, 2008)
to LOGMs, the subject of the current discussion.

With that focus in mind, our objective here is not to review the range
of design methods that have been, or that can be employed in feedback
flow control. Rather, our goal is to highlight some key issues that have been
identified as critical to the successful use of LOGMs in feedback flow control
design, regardless of the underlying design philosophy. We shall illustrate
these issues by the simple volume force actuated cylinder wake benchmark,
as described in § 2.

8.1 Volume Force Actuation of the Cylinder Wake

A volume force actuator represents, e.g., a regulated magnetic field in the
domain of a magnetohydrodynamic flow. Flow dynamics in the immediate
vicinity of a plasma actuators is an example of this class of actuated flows
(Moreau, 2007; Little et al., 2009). For convenience we repeat here the
notations of a volume force actuated Galerkin model, which have been set in
(7). Actuation is included in the NSE (6) as a distributed force field, f(x, t).
The Galerkin projection of the NSE on an orthonormal set of expansion
modes, includes an explicit representation of the volume force by terms

fi(t) = (f( · , t), ui)Ω, i = 1, . . . , N. (76a)

9Arguably, any feedback design requires a model that predicts the response of the

system to actuation or disturbance. The term “model-free” is used when the model is

restricted to such rudimentary properties as an assumed continuity, monotonicity and

slow response.
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Modifications for non-orthogonal expansions are straightforward. The ith

equation in the Galerkin system is thus of the form

ȧi = ci +
∑

j≥1 lijaj +
∑

j,l≥1 qijkajak + fi, i ≥ 1. (76b)

We focus here on periodically dominated flows, where the volume force
oscillates at harmonics of the dominant flow frequency. Suppressing space
and time dependencies, the harmonic expansion of the actuation is

f = B0g0 +
N∑

i=1

B2i−1 cos(φi)g2i−1 + B2i sin(φi)g2i. (77)

The amplitudes Bi are treated here as slowly varying control commands.
Explicit expressions are derived in these terms for the forcing terms in the
amplitude Galerkin system, (18b):

F2i−1(t/τ) = 2
tp

tp
2∫

− tp
2

(f( · , t+ r), u2i−1)Ω cos(φi(t+ r)) dr

= (g2i−1, u2i−1)ΩB2i−1(t/τ)

F2i(t/τ) = (g2i, u2i)ΩB2i(t/τ).

(78)

These expressions translate to forcing terms in the corresponding differential
equations for a2i−1 and a2i:

f2i−1(t) = F2i−1(t/τ) cos(φi(t))

f2i(t) = F2i(t/τ) sin(φi(t)).
(79)

As in the case of (15)-(18), the expressions (78) and (79) do not require
mutual orthogonality of the harmonic modes.

8.2 Direct and Indirect Design Objectives

A single, vertical force field is specified in (3) as

f(x, t) = b(t) g(x),

where g is a unit amplitude vertical force field, supported over the disc Ωvf ,
and where b is the control command.

The formal design objective, as stated in § 2, is engineering driven, with
the goal to avoid the deleterious effects of cylinder oscillations:
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1. Attenuate vortex shedding.

From a physical perspective, our objective is to use the actuator as a
distributed deceleration force, applied to the vertical component of the ve-
locity oscillations over the domain Ωvf . An ideal selection would be at an
anti-phase to the averaged vertical velocity field:

b(t) = −κ(t) (u( · , t), g)Ω = −κ(t)
∫

Ωvf

dx v(x, t), (80)

where v is the vertical component of the velocity u = (u, v), and where κ > 0
is a selected gain. Using the nomenclature of energy dynamics, in (21),
this selection defines the actuation power as G = −κ|(u, g)Ω|2, ensuring
a negative contribution to the TKE; i.e., (80) defines a dissipative control.
When κ is selected large enough, the actuation power will dominate all
other contributions to the power equation (21), and ensure that the TKE
will be driven to zero. This option can be easily demonstrated by DNS
implementation (Gerhard et al., 2003; Lehmann et al., 2005).

In fact, the fact that feedback stabilization of flow oscillations by syn-
chronous actuation needs to be dissipative, is generic. It is implied by the
very nature of this design objective, and is therefore independent of the con-
trol theoretical approach used for solving the specific design problem. Our
simple example is therefore representative of a very wide class of flow control
problems, as is the ideal formulation of a dissipative control, in (80). Alas,
access to the the distributed flow state, as required in (80), is available only
in DNS simulations. Control decisions need to be based on realtime pro-
cessing of sensor readings. In line with the focus of this chapter, this means:

2. Feedback design should be based on reduced order model based

state estimates and control design.

The bulk of this section was dedicated to model development, motivated
by this objective. Implicit in it is the onus on the designer to maintain the
controlled flow within the validity envelope of the design model. Surely,
model based state estimation, and predictions of control effects, will have
little value, once the flow exits that envelope:

3. Model based feedback design should maintain the flow within

the validity envelope of the reduced order model.

The purpose of the ensuing discussion is to highlight the implications of
this indirect, but truly critical requirement, put in the generic context of
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dissipative control design. The model we intend to use here is the least order,
three state model (36). the generic property of this model is its very limited
dynamic range. Regardless of any other aspect, it is valid only when the
flow is characterized by periodic vortex shedding, when the shedding occurs
at the frequency predicted by the model, and when the dominated coherent
structures in the flows are those used as expansion modes in (36). As the
discussion progresses, we shall review the options of using a fixed expansion
set, comprising of the leading attractor POD modes and a shift mode, and
the alternative of using the parameterized variant of this model.

The discussion will be focused, in the most part, on control and modeling
related issues. To the limited degree at which state estimation issues will
be discussed, that discussion will concern a broadly applicable issues, and
will not relate to issues of specific observer design methods. It is therefore
assumes that some text-book standard methods such as a Luenberger ob-
server, an extended Kalman filter, and extensions thereof, are ample for the
estimation task (Grewal and Andrews, 1993; Meurer et al., 2002; Åström
and Murray, 2008; Crassidis, 2006). Otherwise, the assumption is that a
dynamic state estimation has already been designed, producing reliable es-
timates of the Galerkin model’s state, a, and that this estimate has been
reliably translated to estimates of the amplitude A := A1 = A2 and of the
oscillations’ phase φ.

8.3 Modeling Periodic Actuation

The implication of Objective 3 is that the shedding frequency will con-
tinue to dominate the dynamics, and will vary slowly, as the oscillation
amplitude declines. It is therefore natural to define an actuation force that
oscillates at the shedding frequency:

b = B cos(φ+ ∆φ) = B (cos(∆φ) cos(φ) − sin(∆φ) sin(φ)) . (81)

Here φ is the phase of oscillatory states of (36), as in the counterpart of the
Fourier expansion (19). The phase shift, ∆φ, determines the relationship
between the oscillations of the unknown full state u and the actuation force
f . In particular, it determines whether the negative forcing power (dissipa-
tivity) requirement (80) is satisfied. A wrong selection of ∆φ may not only
render the actuation ineffectual, but it may actually become destabilizing.
In what follows we shall analyze this condition in terms of the actuated ver-
sion of the LOGM (36). Our first task is therefore to compute the forcing
term in that equation.

We have two options to explore the response: One is in terms of a direct
appeal to the Galerkin projection, in the time domain. The other option

80



is an appeal to the expressions(78) and (79). This second option is based
on the stipulation of periodic dominance, in line with Objective 3. We now
review both options:

The forcing terms: A Direct Galerkin Projection. This computation
is facilitated by the fact that, in this particular example, the three modes
used in (36) are mutually orthogonal (Noack et al., 2003). The respective
forcing terms are thus defined as in (76): f∆ := (f , u∆)Ω, is the actuation
force in the shift mode equation, and fi := (f , ui)Ω, i = 1, 2, are the re-
spective forces for the two oscillatory states. Theses definitions lead to the
following values:

• f∆ = 0. The symmetry of the shift mode and the anti-symmetry of the
force field g with respect to the x-axis10 causes (g, u∆)Ω = 0.

• To define the forcing terms acting on the oscillatory state we introduce
the notations of gi := (g, ui)Ω, i = 1, 2, The projection of the force field f
is defined in these terms as:

f1 = (f , u1)Ω = b (g, u1)Ω = Rg B cos(θ) cos(φ+ ∆φ)

= Rg B cos(θ)(cos(∆φ) cos(φ) − sin(∆φ) sin(φ)),

f2 = (f , u2)Ω = b (g, u2)Ω = Rg B sin(θ) cos(φ+ ∆φ)

= Rg B sin(θ)(cos(∆φ) cos(φ) − sin(∆φ) sin(φ)) .

(82)

We note that the angle θ, in these expressions, is a function of g1 and g2,
hence of the expansion modes u1 and u2. It remains constant if mode
deformation is not accounted for, and it varies along with the expansion
modes, when parameterized models are used.

Amplitude and phase equations are derived in terms of the polar co-
ordinates representation of the oscillatory Galerkin states, a1 = A cos(φ)
and a2 = A sin(φ). Explicitly, these equations are computed by substi-
tuting these expressions in the actuated variant of (36b) followed by an

10We say that a 2D vector field u = (u, v) is symmetric with respect to the x-axis when

u(x, y) = u(x,−y) and v(x, y) = −v(x,−y). The vector field is anti-symmetric with

respect to the x-axis when u(x, y) = −u(x,−y) and v(x, y) = v(x,−y).
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inner-product with
[

cos(φ)
sin(φ)

]
and

[
− sin(φ)
cos(φ)

]
, respectively:

ȧ∆ = −σBa∆ + βB
(
a2
1 + a2

2

)
, (83a)

Ȧ =
(
σC − βC a∆

)
A + BRg cos(φ− θ) cos(φ+ ∆φ) (83b)

φ̇ = ω − RgB

A
sin(φ− θ) cos(φ+ ∆φ). (83c)

The forcing terms: A phasor equation derivation. Here the starting
point of the computation is the assumption of harmonic dominance of the
flow and the dynamic phasor equations (18b). Deriving the forcing terms
for the phasor amplitude equations from the general formulae (78) leads to
the following equalities:

F1 = (g, u1)ΩB cos(∆φ) = Rg B cos(θ) cos(∆φ)

F2 = −(g, u2)ΩB sin(∆φ) = −Rg B sin(θ) sin(∆φ).
(84)

Dynamic equations for the oscillations amplitudes are obtained by adding
the forcing terms (84) to the homogeneous amplitude equation, (18b). We
recall that the precise form of the homogeneous equation for the linear
cylinder wake model, (8), has already been computed in (20). An obvious
adaptation to a model that includes the shift model, leads to the equations:

d

dt
A1 = (σC − βC a∆)A1 + F1

= (σC − βC a∆) A1 +Rg B cos(θ) cos(∆φ) (85a)

d

dt
A2 = (σC − βC a∆)A2 + F2

= (σC − βC a∆)A2 −Rg B sin(θ) sin(∆φ). (85b)

Examining these equation, one observes an apparent discrepancy: The two
oscillation amplitudes are essentially identical, A1 = A2, in our phase aver-
aged system. In contrast, eq:act:pgap suggests the possibility of two distinct
dynamic rules. We shall revisit this issue shortly.

The tasks ahead includes the derivation of guidelines for the selection
of the control parameters B and ∆φ, and the reconciliation of the two sets
of equations, i.e., (82) and (83), which were derived by direct projection,
and (84) and (85), which were derived in a dynamic phasor formulation. In
addition, the observed mismatch between the two equations in (85), needs
to be addressed. The analysis of these issues will reveal important modeling
and design aspects of the generic scenario where the goal of flow control is
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the stabilization of oscillatory flow instabilities. Indeed, our motivation for
employing the dual formulation is precisely as an opportunity to unveil and
illustrate these issues.

8.4 Detailed Design Guidelines

Dissipative actuation phase. We examine the requirement that actua-
tion will have a dissipative, stabilizing effect in each of the presented for-
mulations.

Let us start with the amplitude equation (83b). Here the requirement is
that the oscillatory forcing term be (maximally) negattive:

cos(φ− θ) cos(φ+ ∆φ) < 0.

This objective is achived with the selection of

∆φ = π − θ ⇒ cos(φ− θ) cos(φ+ ∆φ) = − cos(φ− θ)2. (86a)

A by product of this selection is that this selection creates an oscillatory
forcing term in the phase equation (83c):

− sin(φ− θ) cos(φ+ ∆φ) =
1

2
sin(2(φ− θ)). (86b)

We shall revisit this added term shortly.
Next, let us consider the effect of the same selection on the two phasor

based amplitude equations, in (85). Indeed, here too, both forcing terms
become negative when ∆φ = π − θ:

cos(θ) cos(∆φ) = − cos(θ)2, − sin(θ) sin(∆φ) = − sin(θ)2. (87)

While the assignment of ∆φ has the desired dissipative effects in each
of the two settings, the expressions we computed appear to include several
inherent inconsistencies:

Creating an oscillatory frequency in (86b). The validity envelope
characterized by a slowly varying frequency. The actual frequency now sec-
ond harmonic sinusoidal fluctuation in ω, which is modulated by the growing
inverted amplitude, 1/A, in the closed loop (83c).

An imbalance in (87). Unless θ = 2k+1
4 π and g1 = ±g2, the closed loop

forcing terms in the two equations, in (87), are not identical. (In the ex-
treme, either g1 or g2 = 0.) In particular there appears to be a possibility
of driving the values of A1 and A2 apart, thus violating the characterization
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A = A1 = A2 of the model’s validity envelope.

An inconsistency between (86a) and either of the two expressions

in (87). The directly derived forcing term in the amplitude equation is
oscillatory, whereas the alternative counterparts in the phasor description
are constant (or slowly varying).

It is left to the reader to observe that a joint root cause for these issues is
the fact that the benchmark under consideration stipulates the use of only
a single actuator. Two independent control inputs, would have enabled the
independent regulation of a1 and a2, and similarly, of A and of ω. That
extra degree of freedom could have been used to ensure that, indeed, the
forcing in (83b) be slowly varying, that it will agree with both forcing terms
in (87), and that not actuation effects will be felt by ω. Under actuation,
however, is the reality one faces in fluid flow systems, and at least in this
sense, the difficulties observed here are generic. In fact, there generic in yet
another aspect, which we discuss next.

Time scale separation as an inherent design guideline. A require-
ment that closed loop stabilization adhere to a time scale separation between
the shedding half-period and the attenuation of the oscillations amplitude,
emerges as a common solution to the apparent inconsistencies listed above:
As long as changes in 1/A are small over a half period, the net forcing effect
on ω over a shedding period, will be small. The same time scale separation
ensures that the period averaged contribution of the periodic fluctuations in
− cos(φ−θ)2 to the amplitude dynamics, under (86a), will also be negligible.
The net effect of the actuation in (83b) will therefore be nearly equivalent
to that of the slowly varying input 1

2 BRg.

Phase averaging requirement in phasor models actuation. To un-
derstand the case of g1 6= ±g2 we refer to the FTT terminology (Noack
et al., 2008) that was introduced in the chapter by Noack et al., and used
in our discussion of energy dynamics. The dynamic role of the skew sym-
metric component of the original matrix coefficient in (36b), is precisely the
continuous exchange of TKE between the two oscillatory states, a1 and a2,
leading to equal time averages of the respective K1 and K2, hence of A1

and A2. In fact, this implicit energy redistribution is an essential property
of harmonically dominant systems and of their models, and is equivalent
to a generalized weighted variant of the phase averaging property, allowing,
e.g. elliptical limit cycles.

An inherently implied property of a system that maintains a constant
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(or slowly varying) ratio between the TKE contents of oscillatory state-
pairs, is that the energy redistribution that is mediated by the oscillations,
occur at substantially higher rates than the actuated or natural transient
changes in these TKE levels. In effect, harmonic dominance implies that
the actuation inputs into each such pair of states will be phase averaged
in the same manner as the said states. The upshot of this discussion is
that the use of the “raw” gi in the phasors of the forcing terms, in (84), and
subsequently, in (85), constitutes a contradiction in terms. The correct gains
in the phasor dynamics formulation are, indeed, gi = ± 1√

2
Rg, θ = 2k+1

4 π

and the identical actuation terms in the two equations, in (85), are 1
2 Rg B.

That is, these equations are precisely the period averaged variants of (83b).
For convenience we rewrite this equation here:

Ȧ = (σC − βC a∆)A− 1

2
Rg B. (88)

In summary, time scale separation between actuation and (half) the vor-
tex shedding period justifies the suppression of nearly zero mean terms in
the closed loop (85), as well as the corrected phase averaged modeling of
the actuation term, in a dynamic phasor model.

Actuation amplitude, subject to dissipation and time scale sep-

aration constraints. The observations above lead to two requirements
from the actuation amplitude, B: It needs to be high enough, to overcome
the instability in (88), and yet low enough, to ensure the required time
scale separation between the oscillations period and the rate of decay in the
actuated flow. This dual requirement is simply formulated a a two sided
inequality, on B:

(
σC − βC a∆

Rg

+ ǫ

)
A < B <

(
σC − βC a∆

Rg

+ δ

)
A. (89)

The values of ǫ and δ, in (89), represent the minimal and the maximal
acceptable decay rates, with corresponding time constants τǫ := 1/ǫ and
τδ := 1/δ.

8.5 Performance Limitations

Like many nonlinear control problems, flow control is often subject to
performance limitations that stem from the very structure of the system.
Here we highlight two types of generic limitations, illustrated by our run-
ning example.
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Stability of the operating point: An amplitude perspective. The
expressions on both sides of (89) involve both a∆ and A. Simplifying these
expressions for the purpose of this discussion, let us slave a∆ to A2. The
two expressions bounding B are then cubic polynomials in A, defining the
normalized destabilizing force in (88). The solid curve in Figure 13 is a
schematic representation of the amplitude of that destabilizing force, drwan
as a function of A. Considering this representation, we observe that a con-
stant actuation amplitude, B, would balance the destabilizing force in (88),
at two distinct values of A, illustrated by the examples of Alow and Ahigh,
in Figure 13. The fixed point at Ahigh is dynamically stable: Oscillations

0

A
high

A
low

B

A
peak

Figure 13. A schematic illustrating the existence of two oscillating ampli-
tudes, Alow and Ahigh, at which an actuation level, B, balances the desta-
bilizing force (solid curve) in (88). The fixed point at Alow is dynamically
unstable, whereas that at Ahigh is dynamically stable.

at an amplitude A > Ahigh create a destabilizing force that is lower than
the actuation force, and will be attenuated. Oscillations at an amplitude
A < Ahigh generate a destabilizing force that is higher than the actuation
force, and will grow. In contrast, the same reasoning shows that the fixed
point at Alow is dynamically unstable and is therefore intrinsically more
difficult to enforce. Furthermore, the reasoning we have just provided also
applies to the slow feedback stabilization, as the system traverses a slowly
decaying actuated transient A(t). That threshold for dynamic instability is
the value Apeak, at which the destabilizing force, on the right hand side of
(88), reaches its maximal value.

This observation reveals an important root cause of the observed phe-
nomenon, whereby controllers designed to stabilize an oscillatory instability,
seem to “loose their grip”, once the fluctuations level has been reduced be-
low a certain threshold. At that point, the flow begins to displays chaotic
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oscillations. Careful design may nonetheless succeed in maintaing a low
averaged TKE. In other cases, the emerging oscillations stimulate new in-
stabilities which are not covered by the model, leading to a return higher
oscillation levels.

Stability of the operating point: A phase perspective. The exact
definition of the phase φ requires knowledge of the distributed velocity field,
u. This information is not available and a observer is needed to produces
an estimate φ̂ of φ. That estimate is then used instead of φ, in the applied
actuation force:

b = B cos(φ̂+ ∆φ) = −B cos(φ̂− θ). (90)

We us consider this actuation command, using the assignment (86) for ∆φ.
Later we shall comment also on the issue of the correct evaluation of ∆φ.

We shall now illustrate the growing difficulty in maintaining a good
estimate in the closed loop actuated system, as the shedding instability is
increasingly attenuated. To do so, we consider the closed loop actuated
dynamics of φ. The use of φ̂ instead of φ brings (83c) to the following
period averaged form:

φ̇ = ω − RgB

A
sin(θ − φ) cos(φ̂− θ) ≈ ω − RgB

2A
sin(φ̂− φ). (91)

In this formulation an overline indicates period average. The approximation
is justified when the phase estimated error, denoted φ̃ := φ−φ̂, is sufficiently
small to make φ + φ̂ − 2θ close to 2(φ − θ), allowing to neglect the period

averaged contribution of cos(φ + φ̂ − 2θ). As noted earlier, this equation
coincides with the un-actuated phase dynamics, in (18a), in the ideal case
of a precisely known phase.

To illustrated the estimation difficulty, let us consider a dynamic observer
of φ, with a correction term h

˙̂
φ = ω + h. (92)

As a simplifying hypothesis, we implicitly assumed in this formulation that
the slowly varying (effective) ω is known. The purpose of this analysis is to
reveal the growing demands on a stabilizing h.

Following the standard derivation of the estimation error dynamics, we
subtract (92) from (91), followed by a linearization, justified for small values
of φ̃.

˙̃
φ =

RgB

2A
sin(φ̃) − h ≈ RgB

2A
φ̃− h. (93)
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Indeed, not only is this equation anti-stable, but its growth rate is reversely
proportional to the oscillations amplitude, A. The correction term h there-
fore needs to overcome this instability, a task that becomes ever harder, as
A approaches zero.

An interesting observation concerns the stability of dynamic phase esti-
mation in the closed loop system, under the reversed objective, of feeding
energy into the instability. Backtracking on our computations, above, the
ideal selection of the actuation phase shift is ∆φ = −θ, precisely an anti-
phase to the stabilizing selection. In that case, however, the sign of the
right hand side of (93) will be reversed, and the homogeneous component
of this equation will become stable. Indeed its small signal stability will
only increase for small values of A!

This simple analysis is aligned with the observation of a generic tendency
of a fluid flow system to extract energy from an active external source that
is coupled with the flow, till the coupled system reaches an equilibrium.

The role of mode deformation. Both the analysis of the actuation am-
plitude and of the actuation phase reveals the dependence of an effective
actuation on the exact definition and correct estimation of the flow phase φ
and of the values of the projections gi, hence of the amplitude Rg and phase
θ. A dynamic observer used to translate sensor readings into state estimates
is also dependent on the phase shifts and amplitude relations between sen-
sor oscillations and the oscillations of the time coefficients ai, i = 1, 2 in
the actuated flow. The deformation of the leading oscillatory modes along
natural and actuated transients lead to growing discrepancies between the
correct relations between the required quantities and those predicted by a
model based on a constant mode set. These facts were illustrated by the
observations in Figures 2, 3 and 9. The deleterious effects of using constant
modes in model based control have been clearly demonstrated, in this ex-
ample, in Gerhard et al. (2003); Lehmann et al. (2005); Luchtenburg et al.
(2006). These studies showed that the feasible closed loop TKE attenuation
is meager, and can be improved several folds when control design employs
a parameterized mode set. This observation is aligned with similar ob-
servations by numerous investigating teams. References to some pertinent
literature can be found in § 6.

9 Concluding Remarks

The evolution of the field of fluid flow control has been driven by signif-
icant and still growing engineering needs, and by an accumulating body
of experimental and numerical studies. The adaptation of control design

88



and related modeling methods to the needs of fluid flow applications, have
been by a potpourri of pioneering theoretical investigations and ad-hoc ex-
perimentation with diverse methods and ideas, borrowed from a similarly
diverse ensemble of fields.

Of the many types of models used in the design of feedback flow control,
the Galerkin paradigm is clearly a dominant presence. It has the advantage
of allowing a more direct contact between the reduced order model and
the constitutive equations than black-box identified linear models, while
maintaing manageable complexity, when compared with CFD models, or
even with the often unruly, Lagrangian vortex models. The use of Galerkin
models have been further popularized by the efficient approximation offered
by POD mode sets. Within this vibrant realm, observations of fundamental
discrepancies between ends and means, methods and needs, have been made
early on, and are now widely recognized by the flow control community.

Building on our presentations in the previous two chapters (i.e., by
Morzyński et al. and by Noack et al.), our goal here is to systematically
identify the root causes of a number of persistent obstacles, and to propose
an equally systematic enhancement of the Galerkin paradigm, that is geared,
by design to remove these obstacles. Issues covered included the mean field
and subgrid models, mode deformation and unsteady boundaries. At the
model development level we have also reviewed a useful framework based
on temporal harmonics, that is especially suitable for the generic task of
controlling periodically dominated instabilities.

We closed the discussion with an illustration of generic feedback design
issues that arise specifically, because of the use of low and least order models.
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T. von Kármán and H. Rubach. über den mechanismusdes fl”ussigkeits-und
luftwiderstandes. Phys. Z., 13:49–59, 1912.

O. Wiederhold, R. King, and B. R. Noack. Robust control in turbumachi-
nary configurations. In R. King, editor, Active Flow Control II, volume
108 of Lecture Notes on Numerical Fluid Mechanics and Interdisciplinary
Design, pages 187–201. Springer Verlag, 2010.

D. R. Williams, G. Tadmor, T. Colonius, W. Kerstens, V. Quach, and
S. Buntain. The lift response of a stalled wing to pulsatile disturbances.
AIAA J., 47:3031–3037, 2009.

C.H.K. Williamson. Vortex dynamics in the cylinder wake. Annu. Rev.
Fluid Mech., 28:477–539, 1996.

D. G. Wilson, D. E. Berg, M. F. Barone, J. C. Berg, B. R. Resor, and D. W.
Lobitz. Active aerodynamic blade control design for load reduction on
large wind turbines. In Proc. Euro. Wind Energy Conf. and Exhibit.
(EWEC), 2009.

X. Xie, L. C. Musson, and M. Pasquali. An isochoric domain deformation
method for computing steady free surface flows with conserved volumes.
J. Comp. Phys., 226:398–413, 2007.

H. Yu, M. Leeser, G. Tadmor, and S. Siegel. Real-time particle image
velocimetry for feedback loops using FPGA implementation. AIAA J.
Aerospace Computing, Information, and Communication, 3:52–56, 2006.

102


