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Abstract. In this paper, we consider using conjugate gradient (CG) methods for solving multiple
linear systems A(i)x(i) = b(i), for 1 ≤ i ≤ s, where the coefficient matrices A(i) and the right-hand
sides b(i) are different in general. In particular, we focus on the seed projection method which
generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems,
called the seed system, by the CG method and then projects the residuals of other systems onto the
generated Krylov subspace to get the approximate solutions. The whole process is repeated until all
the systems are solved. Most papers in the literature [T. F. Chan and W. L. Wan, SIAM J. Sci.
Comput., 18 (1997), pp. 1698–1721; B. Parlett Linear Algebra Appl., 29 (1980), pp. 323–346; Y. Saad,
Math. Comp., 48 (1987), pp. 651–662; V. Simoncini and E. Gallopoulos, SIAM J. Sci. Comput., 16
(1995), pp. 917–933; C. Smith, A. Peterson, and R. Mittra, IEEE Trans. Antennas and Propagation,
37 (1989), pp. 1490–1493] considered only the case where the coefficient matrices A(i) are the same
but the right-hand sides are different. We extend and analyze the method to solve multiple linear
systems with varying coefficient matrices and right-hand sides. A theoretical error bound is given for
the approximation obtained from a projection process onto a Krylov subspace generated from solving
a previous linear system. Finally, numerical results for multiple linear systems arising from image
restorations and recursive least squares computations are reported to illustrate the effectiveness of
the method.
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1. Introduction. We want to solve iteratively, using Krylov subspace methods,
the following linear systems:

A(i)x(i) = b(i), 1 ≤ i ≤ s,(1)

where A(i) are real symmetric positive definite matrices of order n, and in general
A(i) 6= A(j) and b(i) 6= b(j) for i 6= j. We note that if the coefficient matrices and
the right-hand sides are arbitrary, there is nearly no hope to solve them more effi-
ciently than as s completely unrelated systems. We have to solve the s linear systems
independently either by using direct methods or iterative methods. Fortunately, in
many practical applications, the coefficient matrices and the right-hand sides are not
arbitrary, and often there is information that can be shared among the coefficient
matrices and the right-hand sides. Such a situation occurs, for instance, in recursive
least squares computations [17], wave scattering problems [11, 2, 6], numerical meth-
ods for integral equations [11], and image restorations [10]. In this paper, our aim is
to propose a methodology to solve these related multiple linear systems efficiently.
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In [21], Smith, Peterson, and Mittra proposed and considered using a seed method
for solving linear systems of the same coefficient matrix but different right-hand sides,
i.e.,

AX = [b(1) b(2) · · · b(s)].
In the seed method, we select one seed system and solve it by the conjugate gradient
(CG) method. Then we perform a Galerkin projection of the residuals onto the Krylov
subspace generated by the seed system to obtain approximate solutions for the un-
solved ones. The approximate solutions are then refined by the CG method again. In
[21], a very effective implementation of the Galerkin projection method was developed
which uses direction vectors generated in the CG process to perform the projection.
In [5], Chan and Wan observed that the seed method has several nice properties. For
instance, the CG method, when applied to the system with the projected solution as
the initial guess, converges faster than the usual CG process. Another observation is
that if the right-hand sides are closely related, the method automatically exploits this
fact and usually only takes a few restarts to solve all the systems. In [5], a theory
was developed to explain these phenomena. We remark that the seed method can be
viewed as a special implementation of the Galerkin projection method which had been
considered and analyzed earlier for solving linear systems with multiple right-hand
sides; see for instance, Parlett [16], Saad [18], van der Vorst [23], Papadrakakis and
Smerou [15], Simoncini and Gallopoulos [19, 20]. A very different approach based on
the Lanczos method with multiple starting vectors was recently proposed by Freund
and Malhotra [6]. In [7], Frommer and Maass proposed to use CG methods for solv-
ing shifted linear systems simultaneously at the expense of one matrix-vector multiply
only.

In this paper, we extend the seed method to solve the multiple linear systems
(1), with different coefficient matrices (A(j) 6= A(k)) and different right-hand sides
(b(j) 6= b(k)). We analyze the seed method and extend the theoretical results given
in [5]. We will see that the theoretical error bound for the approximation obtained
from a projection process depends on the projection of the eigenvector components of
the error onto a Krylov subspace generated from the previous seed system and how
different the system is from the previous one.

In contrast to [5], in the general case here where the coefficient matrices A(i) can
be different, it is not possible to derive very precise error bounds since the A(i)’s have
different eigenvectors in general. Fortunately, in many applications, even though the
A(i)’s are indeed different, they may be related to each other in a structured way
which allows a more precise error analysis. Such is the case in the two situations that
we study in this paper, namely, the eigenvectors of the coefficient matrices are the
same and the coefficient matrices differ by rank-1 or rank-2 matrices. These kinds
of linear systems arise in image restoration and recursive least squares applications.
Numerical examples on these applications are given to illustrate the effectiveness of
the projection method. We will see from the numerical results that the eigenvector
components of the right-hand sides are effectively reduced after the projection process
and the number of iterations required for convergence decreases when we employ
the projected solution as an initial guess. Moreover, other examples involving more
general coefficient matrices (for instance, those that do not have the same eigenvectors
or differ by a low-rank matrix), are also given to test the performance of the projection
method. We observe similar behavior in the numerical results as in image restoration
and recursive least squares computations. These numerical results demonstrate that
the projection method is effective.
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The paper is organized as follows. In section 2, we first describe the seed projection
algorithm for general multiple linear systems. In section 3, we analyze the Galerkin
projection method. In particular, we study multiple linear systems arising from two
specific cases. Numerical examples are given in section 4 and concluding remarks are
given in section 5.

2. Derivation of the algorithm. CG methods can be seen as iterative solution
methods to solve a linear system of equations by minimizing an associated quadratic
functional. For simplicity, we let

fi(x) =
1

2
xTA(i)x− (b(i))Tx

be the associated quadratic functional of the linear system A(i)x(i) = b(i). The min-
imizer of fj is the solution of the linear system A(i)x(i) = b(i). The idea of the
projection method is that for each restart, a seed system A(k)x(k) = b(k) is selected
from the unsolved ones which are then solved by the CG method. An approximate
solution x̂(j) of the nonseed system A(j)x(j) = b(j) can be obtained by using search
direction pki generated from the ith iteration of the seed system. More precisely, given

the ith iterate xji of the nonseed system and the direction vector pki , the approximate
solution x̂(j) is found by solving the following minimization problem:

min
η
fj(x

j
i + ηpki ).(2)

It is easy to check that the minimizer of (2) is attained at

x̂(j) = xji + ηpki ,(3)

where

η =
(pki )T rji

(pki )TA(j)pki
and rji = b(j) −A(j)xji .(4)

After the seed system A(k)x(k) = b(k) is solved to the desired accuracy, a new seed
system is selected and the whole procedure is repeated. In the following discussion, we
call this method Projection Method I. We note from (4) that the matrix-vector mul-
tiplication A(j)pki is required for each projection of the nonseed iteration. In general,
the matrix-vector multiplication A(j)pki cannot be computed cheaply. The cost of the
method will be expensive in the general case where the matrices A(j) and A(k) are
different (cf. Table 2). However, in section 3, we will consider two specific applications
where the matrices A(k) and A(j) are structurally related. In these applications, the
coefficient matrices differ by a parameterized identity matrix or a low-rank matrix.
Therefore, the matrix-vector products A(j)pki can be computed cheaply by using the
matrix-vector product A(k)pki generated from the seed iteration.

In order to reduce the extra cost in Projection Method I in the general case, we
propose using the modified quadratic function f̃j ,

f̃j(x) ≡ 1

2
xTA(k)x− (b(j))Tx,

to compute the approximate solution of the nonseed system. Note that we have used
A(k) instead of A(j) in the above definition. In this case, we determine the next iterate
of the nonseed system by solving the following minimization problem:

min
α
f̃j(x

j
i + αpki ).
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Table 1
Preconditioned version of Projection Methods I (left) and II (right). The kth system is the seed

for the (k − 1)th restart. The first and second superscripts are used to denote the kth restart and
the jth system. The subscripts are used to denote the ith step of the CG method. Here C(k) is the
preconditioner for A(k).

for k=1, . . . , s until all the systems are solved
Select the kth system as seed
for i=0, 1, 2, . . . mk+1 % CG iteration
for j=k, k + 1, . . . , s % unsolved systems
if j=k then perform usual CG steps

δk,k
i

= (zk,k
i

)T rk,k
i

/(zk,k
i−1

)T zk,k
i−1

pk,k
i

= zk,k
i

+δk,k
i

pk,k
i−1

σk,k
i

= (zk,k
i

)T rk,k
i

/(pk,k
i

)TA(k)pk,k
i

xk,k
i+1

= xk,k
i

+σk,k
i

pk,k
i

rk,k
i+1

= rk,k
i
− σk,k

i
A(k)pk,k

i

zk,k
i+1

= (C(k))−1rk,k
i+1

% preconditioning

else perform Galerkin projection

ηk,j
i

= (zk,k
i+1

)T rk,j
i
/(pk,k

i
)TA(j)pk,k

i

xk,j
i+1

= xk,j
i

+ηk,j
i
pk,k
i

rk,j
i+1

= rk,j
i
− ηk,j

i
A(j)pk,k

i

end if
end for
end for
end for

for k=1, . . . , s until all the systems are solved
Select the kth system as seed
for i=0, 1, 2, . . . , mk+1 % CG iteration
for j=k, k + 1, . . . , s % unsolved systems
if j=k then perform usual CG steps

δk,k
i

= (zk,k
i

)T rk,k
i

/(rk,k
i−1

)T zk,k
i−1

pk,k
i

= zk,k
i

+δk,k
i

pk,k
i−1

σk,k
i

= (zk,k
i

)T rk,k
i

/(pk,k
i

)TA(k)pk,k
i

xk,k
i+1

= xk,k
i

+σk,k
i

pk,k
i

rk,k
i+1

= rk,k
i
− σk,k

i
A(k)pk,k

i

zk,k
i+1

= (C(k))−1rk,k
i+1

% preconditioning

else perform Galerkin projection

ηk,j
i

= (zk,k
i+1

)T rk,j
i
/(pk,k

i
)TA(k)pk,k

i

xk,j
i+1

= xk,j
i

+ηk,j
i
pk,k
i

rk,j
i+1

= rk,j
i
− ηk,j

i
A(k)pk,k

i

end if
end for
end for
end for

Table 2
Number of different operations per iteration of Projection Method I.

Operations Usual PCG Projection Method I

iteration General matrix A(j) A(j) = A(k) + µI A(j) = A(k) + µrrT

n-vector DAXPY 3 2 3 3
n-vector DOT PROD. 2 2 2 3

MXV A(k)x 1 0 0 0

MXV A(j)x 0 1 0 0

MXV C(k)−1x 1 0 0 0

The approximate solution x̂(j) of the nonseed system A(j)x(j) = b(j) is given by

x̂(j) = xji + αpki ,(5)

where

α =
(pki )T r̃ji

(pki )TA(k)pki
and r̃ji = b(j) −A(k)xji .(6)

Now the projection process does not require the matrix-vector product involving the
coefficient matrix A(j) of the nonseed system. Therefore, the method does not in-
crease the dominant cost (matrix-vector multiplies) of each CG iteration. We call
this method Projection Method II. Of course, unless A(j) is close to A(k) in some
sense, we do not expect this method to work well because f̃j is then far from the
current fj .

To summarize the above methods, Table 1 lists the algorithms of Projection
Methods I and II. The major computational costs during Projection Methods I and
II are shown as in Tables 2 and 3, respectively.

3. Analysis of projection method. For Projection Methods I and II in the
absence of preconditioning, we have the following lemma in exact arithmetic.
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Table 3
Number of different operations per iteration of Projection Method II.

Operations Usual PCG Projection Method II

iteration General matrix A(j) A(j) = A(k) + µI A(j) = A(k) + µrrT

n-vector DAXPY 3 2 2 2
n-vector DOT PROD. 2 2 2 2

MXV A(k)x 1 0 0 0

MXV A(j)x 0 0 0 0

MXV C(k)−1x 1 0 0 0

Lemma 3.1. Assume that a seed system A(k)x(k) = b(k) has been selected. Let
xk,j` be the `th iterate of the nonseed system and V ki be the Lanczos vectors generated
by i steps of the Lanczos algorithm.

(a) Using Projection Method I, the approximate solution of the nonseed system
A(j)x(j) = b(j) at the ith iteration is given by

xk,ji = xk,j0 + V ki [(V ki )TA(j)V ki ]−1(V ki )T (b(j) −A(j)xk,j0 ).(7)

(b) Using Projection Method II, the approximate solution of the nonseed system
A(j)x(j) = b(j) at the ith iteration is given by

xk,ji = xk,j0 + V ki [(V ki )TA(k)V ki ]−1(V ki )T (b(j) −A(k)xk,j0 ).(8)

Proof. We remark that the proof of part (a) is similar to the proof of Lemma 3.1
in [5], except that V ki is not A(j)-orthogonal. (a) It is well-known that V ki satisfies the
three-term recurrence

A(k)V ki = V ki T
k
i + βki+1v

k
i+1e

T
i ,

where ei is the ith column of the identity matrix and βki+1 is a scalar. From (3),

the approximate solution xk,ji of the nonseed system is computed in the subspace
generated by the direction vectors {pk` } generated from the seed iteration which is
exactly the subspace spanned by the columns of V ki ; see [8]. Moreover, it is easy to
check from (4) that

(pk` )T (b(j) −A(j)xk,ji ) = 0, ` = 1, 2, . . . , i.

It follows that the solution xk,ji can be obtained by the Galerkin projection onto the
Krylov subspace K(k) generated by the seed system

(V ki )T (b(j) −A(j)z), where z = xk,j0 + y, and y ∈ V (k)
i ,

which gives (7). Part (b) can be proved similarly.
To analyze the error bound of the projection method in the absence of precon-

ditioning, without loss of generality, consider only two symmetric positive definite
n-by-n linear systems:

A(1)x(1) = b(1) and A(2)x(2) = b(2).

The eigenvalues and normalized eigenvectors of A(i) are denoted by λ
(i)
k and q

(i)
k ,

respectively, and by 0 < λ
(i)
1 ≤ λ

(i)
2 ≤ · · · ≤ λ

(i)
n for i = 1, 2. Theorem 3.2 gives
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error bounds for solving multiple linear systems with different coefficient matrices
and right-hand sides.

Theorem 3.2. Suppose the first linear system A(1)x(1) = b(1) is solved to the de-
sired accuracy in m CG steps. Let x1,2

0 be the solution of the second system A(2)x(2) =
b(2) obtained from the projection onto Km generated by the first system, with zero vec-
tor as the initial guess of the second system (x0,2

0 = 0). Let the eigen-decomposition of

x(2)−x1,2
0 be expressed as x(2)−x1,2

0 =
∑n
k=1 ckq

(2)
k , where q

(2)
k is the unit eigenvector.

Then we have the following.
(a) For Projection Method I, the eigenvector components ck can be bounded by

|ck| ≤ Ek + F +G, 1 ≤ k ≤ n,(9)

where

Ek = ‖P⊥mx(2)‖2| sin∠(q
(2)
k ,Km)|,(10)

F = ‖(A(2))−1‖2‖(A(2)−A(1))x(2)‖2, and G = ‖(A(1))−1− (A(2))−1‖2‖A(1)x(2)‖2.

Here Vm is an orthonormal basis for Km, P⊥m = I − VmT
−1
m V TmA

(1) is the A(1)-
orthogonal projection onto Km, and Tm = V TmA

(1)Vm is the matrix representation of
the projection of A(1) onto Km.

(b) For Projection Method II, the eigenvector components ck can be bounded by
|ck| ≤ Ek + F̂ , 1 ≤ k ≤ n, where Ek is defined in (10) and F̂ = ‖(A(1))−1‖2‖(A(2) −
A(1))x(2)‖2.

Proof. Using x0,2
0 = 0 as the initial guess for the second system, by (7), we get

x1,2
0 ≡ x0,2

m = Vm(V TmA
(2)Vm)−1V Tm b

(2). Then

x(2) − x1,2
0 =

[
I − Vm(V TmA

(2)Vm)−1V TmA
(2)
]
x(2)

= P⊥mx
(2) − Vm(V TmA

(2)Vm)−1V Tm (A(2) −A(1))x(2)

+Vm

[
(A(1))−1 − (A(2))−1

]
V TmA

(1)x(2).

Since Vm is the orthogonal vector of Km, we have ‖Vm‖2 ≤ 1. It follows that

|ck|=
∣∣∣(q(2)

k )T
{
P⊥mx

(2) − Vm(V TmA
(2)Vm)−1V Tm (A(2) −A(1))x(2)

+ Vm

[
(A(1))−1 − (A(2))−1

]
V TmA

(1)x(2)
}∣∣∣

≤ ‖P⊥mx(2)‖2‖q(2)
k ‖2| cos∠(q

(2)
k , P⊥mx

(2))|+ ‖(A(2))−1‖2‖(A(2) −A(1))x(2)‖2
+‖(A(1))−1 − (A(2))−1‖2‖A(1)x(2)‖2.

Knowing that | cos∠(q
(2)
k , P⊥mx

(2))| ≤ | cos∠(q
(2)
k ,K⊥m)| = | sin∠(q

(2)
k ,Km)|, we have

(9). Part (b) can be proved similarly.
Theorem 3.2 basically states that the size of the eigenvector component ck is

bounded by Ek, F (or F̂ ), and G. If the Krylov subspace Km generated by the seed

system contains the eigenvectors q
(2)
k well, then the projection process will kill off

the eigenvector components of the initial error of the nonseed system, i.e., Ek is
very small. On the other hand, F and G depend essentially on how different the
system A(2)x(2) = b(2) is from the previous one, A(1)x(1) = b(1). In particular, when
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‖A(1) − A(2)‖2 and ‖(A(1))−1 − (A(2))−1‖2 are small, then F (or F̂ ) and G are also
small.

We remark that when A(1) = A(2) and b(1) 6= b(2), the term F becomes zero,

and as q
(1)
k = q

(2)
k , the term Ek becomes ‖P⊥mx(2)‖2| sin∠(q

(1)
k ,Km)‖; see Chan and

Wan [5]. It is well known that the Krylov subspace Km generated by the seed system

contains the eigenvectors q
(1)
k . In particular, Chan and Wan [5] have the following

result about the estimate of the bound sin∠(q
(1)
k ,Km).

Lemma 3.3. Let θk = ∠(A(1)b(1), q
(1)
k ), τk =

(λ
(1)

k
−λ(1)

k+1
)

(λ
(1)

k+1
−λ(1)

n )
, and

ωk =
k−1∏
ν=1

(
λ

(1)
ν − λ(1)

n

λ
(1)
ν − λ(1)

k

)
/Tm−k(1 + 2τk),

where Tj(x) is the Chebyshev polynomial of degree j. Then

sin∠(q
(1)
k ,Km) ≤ ωk tan θk.(11)

If we assume that the eigenvalues of A(1) are distinct, then Tm−k(1 + 2τk) grows

exponentially as m increases and therefore the magnitude sin∠(q
(1)
k ,Km) is very small

for sufficiently large m. It implies that the magnitude Ek is very small when m is
sufficiently large. Unfortunately, we cannot have this result in the general case since

q
(1)
k 6= q

(2)
k , except in some special cases that will be discussed in the next section.

3.1. Special cases. In this section, we consider using the Galerkin projection
method for solving multiple linear systems arising in two particular situations: the
coefficient matrices differ by a parameterized identity matrix or a low-rank matrix.
We note from Theorem 3.2 that the theoretical error bound of the projection method
depends on Ek, F, and G. In general, it is not easy to refine the error bound Ek,
F, and G. However, in these cases, the error bound Ek, F, and G can be further
investigated.

Case 1. Consider for simplicity two linear systems:

(µiI +A)xi ≡ A(i)xi = b(i), i = 1, 2.

For instance, these kinds of linear systems arise in image restoration computations
that we will discuss in the next section. In this case, we can employ Projection Method
I to solve these multiple linear systems as the matrix-vector product (µ2I+A)p in the
nonseed iteration can be computed cheaply by adding together (µ1I +A)p generated
from the seed iteration and (µ2 − µ1)p (cf. Table 2). Moreover, we can further refine
the error bound of Projection Method II in Theorem 3.2. Now assume that m steps
of the CG algorithm have been performed to solve the first system. We note in this
case that the eigenvectors of the first and the second linear systems are the same, i.e.,

q
(1)
k = q

(2)
k . Therefore, we can bound sin∠(q

(1)
k ,Km) using Lemma 3.3. We shall prove

that if the Krylov subspace of the first linear system contains the extreme eigenvectors
well, the bound for the convergence rate is effectively the classical CG bound but with
a reduced condition number.

Theorem 3.4. Let x1,2
0 be the solution of the second system obtained from the

projection onto Km generated by the first system. Then we have
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(a) for Projection Method I, the bound for the A(2)-norm of the error vector after
i steps of the CG process is given by

‖x(2) − x1,2
i ‖2A(2) ≤ 4‖x(2) − x̄1,2

0 ‖2A(2)

(√
κr − 1√
κr + 1

)2i

+ δ,

where x̄1,2
i is the ith iterate of the CG process for A(2)x(2) = b(2) with the projection

of x(2)−x1,2
0 onto span {q(1)

k : k = 1, 2, . . . , `}⊥ as initial guess, κr = λ
(2)
n /λ

(2)
`+1 is the

reduced condition number of A(2), and

δ =
∑̀
k=1

λ
(2)
k

[∣∣∣∣1− µ1

µ2

∣∣∣∣ ‖x(2)‖2 +

∣∣∣∣µ1 − µ2

µ1µ2

∣∣∣∣ ‖A(1)x(2)‖2 + ‖P⊥mx(2)‖22ωk tan θk

]2

;(12)

(b) for Projection Method II, the bound for the A(2)-norm of the error vector after
i steps of the CG process is given by

‖x(2) − x1,2
i ‖2A(2) ≤ 4‖x(2) − x̄1,2

0 ‖2A(2)

(√
κr − 1√
κr + 1

)2i

+ δ̂,

where

δ̂ =
∑̀
k=1

λ
(2)
k

[∣∣∣∣1− µ2

µ1

∣∣∣∣ ‖x(2)‖2 + ‖P⊥mx(2)‖22ωk tan θk

]2

.(13)

Proof. We remark that the proof of part (a) is similar to the proof of Lemma 3.2
in [5], except that the quantity δ is different. By using properties of the CG iteration,
we have

‖x(2) − x1,2
i ‖2A(2) ≤ ‖x(2) − x̄1,2

i ‖2A(2) +
∑̀
k=1

p̄2
i (λ

(2)
k )c2kλ

(2)
k

≤ ‖x(2) − x̄1,2
0 ‖2A(2)

(√
κr − 1√
κr + 1

)2i

+
∑̀
k=1

p̄2
i (λ

(2)
k )c2kλ

(2)
k ,(14)

where p̄i is a polynomial of degree at most i and constant term 1; see [5, Equation 8].
Noting that ‖(A(2))−1‖2 ≤ 1/µ2, A

(2) −A(1) = (µ2 − µ1)I, ‖(A(1))−1 − (A(2))−1‖2 ≤
|µ1 − µ2|/|µ1µ2|, and max1≤k≤` p̄2

i (λ
(2)
k ) ≤ 1, see [5], and using Theorem 3.2 and

Lemma 3.3, the result follows by substitution of (11) into (14). Similarly, we can
prove the result for Projection Method II.

We see that for Projection Method I, the perturbation term δ contains two parts.
One depends on the ratio µ1/µ2 and the difference µ1 − µ2 of the regularization
parameters between two linear systems, and the other depends on how well the Krylov
subspace of the seed system contains the extreme eigenvectors. We remark that the
regularization parameter µ in practice is always greater than 0 in image restoration
applications [3] because of the ill-conditioning of A. In particular, µ1 6= 0. If the ratio
µ1/µ2 is near to 1 and the difference µ1 − µ2 is near to 0, then the magnitude of this
term will be near to zero. On the other hand, according to Lemma 3.3, the Galerkin
projection will kill off the extreme eigenvector components and therefore the quantity
ωk tan θk in (12) will be also small for k close to 1. Hence the perturbation term δ
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becomes very small and the CG method, when applied to solve the nonseed system,
converges faster than the usual CG process. The above discussion can also be applied
to Projection Method II.

We remark that the special case of shifted linear systems with identical right-hand
sides has been considered in [7] and the references therein. The CG method can be
performed on all systems simultaneously at the expense of one matrix-vector multiply
only [7]. However, our projection method can be applied to more general systems, for
example, the linear systems (µiB + A)xi = bi arising from Tikhonov regularization
using the Laplacian as the regularization matrix; see [4].

Case 2. Consider two symmetric positive definite n-by-n linear systems:

A(1)x(1) = b(1) and A(2) = A(1) + ρrrT = b(2),

where r has unit 2-norm and each component is nonzero. For instance, these kinds
of linear systems arise in recursive least squares computations that we will discuss
in the next section. In this case, Projection Method I can be used to solve these
multiple linear systems as the matrix-vector product in the nonseed iteration can be
computed inexpensively. For instance, the matrix-vector product for the new system
can be computed by

A(2)p := p1 + rrT p,

where p1 := A(1)p is generated from the seed iteration. The extra cost is some inner
products (cf. Table 2).

By using the eigenvalue-eigenvector decomposition of A(1), we obtain

A(2) = Q(Λ(1) + ρzzT )QT ,

with Q = [q
(1)
1 q

(1)
2 · · · q(1)

n ], Λ(1) a diagonal matrix containing eigenvalues λ
(1)
i of A(1),

and z = QT r. It has been shown in [9] that if λ
(1)
k 6= λ

(2)
k for all k, then the eigenvalues

λ
(2)
k of A(2) can be computed by solving the secular equation

φ(λ) = 1 + ρ
n∑
i=1

[(q
(1)
i )T r]2

(λ
(1)
k − λ)

= 0.

Moreover, the eigenvectors q
(2)
k of A(2) can be calculated by the formula

q
(2)
k =

Q(Λ(1) − λ(2)
k I)−1QT r

‖(Λ(1) − λ(2)
k I)−1QT r‖2

, 1 ≤ k ≤ n.(15)

Theorem 3.5. Suppose the first linear system A(1)x(1) = b(1) is solved to the
desired accuracy in m CG steps. Then we have

(a) for Projection Method I, the eigenvector components ck of the second system
are bounded by |ck| ≤ Ek + F +G, for 1 ≤ k ≤ n, where

Ek = ‖P⊥mx(2)‖2
n∑
i=1

|γi,k|
∣∣∣sin∠(q

(1)
i ,Km)

∣∣∣ and F = |ρ|‖(A(2))−1‖2‖rTx(2)‖2,(16)

G = ‖ρ|‖(A(1))−1‖2‖A(1)x(2)‖2 and γi,k =

(q
(1)
i

)T r

(λ
(1)
i
−λ(2)

k
)√∑n

j=1

[
(q

(1)
j

)T r

λ
(1)
j
−λ(2)

k

]2
,
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where {q(1)
i } is the orthonormal eigenvector of A(1) and Km is the Krylov subspace

generated for the first system;
(b) for Projection Method II, the eigenvector components ck of the second system

are bounded by |ck| ≤ Ek + F̂ , for 1 ≤ k ≤ n, where Ek is defined as in (16) and
F̂ = |ρ|‖(A(1))−1‖2‖rTx(2)‖2.

Proof. (a) We just note from Theorem 3.2 that

|ck| ≤ |(P⊥mx(2))T · q(2)
k |+ |ρ|‖(A(2))−1‖2‖rTx(2)‖2 + |ρ|‖(A(1))−1‖2‖A(2)x(2)‖2.

By using (15), Theorem 3.2, and Lemma 3.3, we can analyze the term |(P⊥mx(2))T ·q(2)
k |

and obtain∣∣∣(P⊥mx(2))T · q(2)
k

∣∣∣ =
n∑
i=1

|γi,k|
∣∣∣cos(q

(1)
i , P⊥mx

(2))
∣∣∣ ≤ ‖P⊥mx(2)‖2

n∑
i=1

|γi,k|
∣∣∣sin∠(q

(1)
i ,Km)

∣∣∣ .
(b) We note that the term G is equal to zero.

Since |γi,k| and | sin∠(q
(1)
i ,Km)| are less than 1, we have

Ek ≤ ‖P⊥mx(2)‖2
 ∑

small and large i

∣∣∣sin∠(q
(1)
i ,Km)

∣∣∣+
∑

remaining i

|γi,k|
 .(17)

From Lemma 3.3, for i close to 1 or n, | sin∠(q
(1)
i ,Km)| is sufficiently small when m

is large. Moreover, we note that if ρ > 0, then

λ
(1)
k ≤ λ(2)

k ≤ λ(1)
k+1, k = 1, 2, . . . , n− 1, and λ(1)

n ≤ λ(2)
n ≤ λ(1)

n + ρ.

If ρ < 0, then

λ
(1)
1 − ρ ≤ λ(2)

1 ≤ λ(1)
1 , and λ

(1)
k−1 ≤ λ(2)

k ≤ λ(1)
k , k = 2, 3, . . . , n;

see [8]. Therefore, if the values (q
(1)
i )T r are about the same magnitude for each

eigenvector q
(1)
i , then the maximum value of |γi,k| is attained at either i = k or

i = k + 1. We may expect that the second term of the inequality (17) is small when
k is close to 1 or n. By combining these facts, we can deduce that Ek is also small
when k is close to 1 or n. On the other hand, if the scalar ρ is small (i.e., the 2-norm
of rank-1 matrix is small), then F and G are also small.

4. Numerical results. In this section, we provide some experimental results of
using Projection Methods I and II to solve multiple linear systems (1). More numerical
examples can be found in [4]. All the experiments are performed in MATLAB with

machine precision 10−16. The stopping criterion is ‖rk,ji ‖2 < tol×‖b(j)‖2, where tol is
the tolerance we used. The first and the second examples are Tikhonov regularization
in image restoration and the recursive least squares estimation, as discussed in [3]
and [17]. The coefficient matrices A(i)’s have the same eigenvectors in Example 1. In
Example 2, the coefficient matrices A(i)’s differ by rank-1 or rank-2 matrices. We will
see that the extremal eigenvector components of the right-hand sides are effectively
reduced after the projection process. Moreover, the number of iterations required
for convergence when we employ the projected solution as initial guess is less than
that required in the usual CG process. In Example 3, we consider more general
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(a) (b)

(c) (d) (e) (f)

Fig. 1. (Example 1) Observed image (a), guide star image (b), restored images using regular-
ization parameter µ = (c) 0.072, (d) 0.036, (e) 0.018, and (f) 0.009.

coefficient matrices, i.e., the consecutive linear systems do not differ by the scaled
identity matrix and rank-1 or rank-2 matrices. In this example, the matrix-vector
products for the nonseed iteration may not be computed cheaply; therefore we apply
Projection Method II only to solve the multiple linear system. However, the same
phenomenon as in Examples 1 and 2 is observed in this example as well.

Example 1 (tol = 10−4). We consider a two-dimensional deconvolution problem
arising in ground-based atmospheric imaging and try to remove the blurring in an
image (see Figure 1(a)) resulting from the effects of atmospheric turbulence. The
problem consists of a 256-by-256 image of an ocean reconnaissance satellite observed
by a simulated ground-based imaging system together with a 256-by-256 image of a
guide star (Figure 1(b)) observed under similar circumstances. The data are provided
by the Phillips Air Force Laboratory at Kirkland AFB, NM, through Professor Bob
Plemmons at Wake Forest University, Winston-Salem, NC. We restore the image using
the identity matrix as the regularization operator suggested in [3] and therefore solve
the linear systems

(µiI +A)xi = bi

with different regularization parameters µi; see [4]. The regularization parameter µ
controls the degree of smoothness of the solution. Choosing µ is not a trivial problem.
In some cases a priori information about the signal and the degree of perturbations
in the right-hand side can be used to choose µ [1]; if no a priori information is known,
then it may be necessary to solve the linear systems for several values of µ.

Table 4 shows the number of matrix-vector multiplies required for the convergence
of all the systems. Using the projection method, we save on the number of matrix-
vector multiplies in the iterative process with or without preconditioning. From Table
4, we also see that the performance of Projection Method I is better than that of
Projection Method II. For comparison, we present the restorations of the images
when the regularization parameters are 0.072, 0.036, 0.018, and 0.009 in Figure 1. We
see that when the value of µ is large, the restored image is very smooth, while when
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Table 4
(Example 1) Number of matrix-vector multiplies required for convergence of all the systems.

Regularization parameter µ =(1) 0.072, (2) 0.036, (3) 0.018, and (4) 0.009.

Linear systems (1) (2) (3) (4) Total
Starting with Projection Method I 36 40 43 49 168
Starting with Projection Method II 36 48 55 76 205

Starting with previous solution 36 54 66 87 243

Table 5
(Example 1) Number of flops required for solving the second linear system using different methods.

Projection Conjugate gradient Total
Matrix-vector Others

Products
Starting with 8.5× 104 1.8× 109 1.0× 105 1.8002× 109

Projection Method I
Starting with 6.4× 104 2.45× 109 1.2× 105 2.4502× 109

Projection Method II
Starting with 0 2.75× 109 1.38× 105 2.7501× 109

previous solution

the value of µ is small, the noise is amplified in the restored image. By solving these
multiple linear systems successively by the projection method, we can select Figure
1(e) which presents the restored image better than the others.

To further show the effectiveness of the projection method, we see from Table
5 that the dominant cost is matrix-vector multiplications per iteration (cf. Tables 2
and 3). According to these results, projection methods can reduce the cost of solving
multiple linear systems in this example.

Example 2 (tol = 10−8). In this example, we test the performance of Projection
Methods I and II in the block (sliding window and exponentially-weighted) recursive
least squares (RLS) computations. We illustrate the convergence rate of the method
by using the adaptive finite impulse response (FIR) system identification model; see
[12]. The second-order autoregressive process xt + 0.8xt−1 + 0.1xt−2 = vt, where {vt}
is a white noise process with variance being 1, is used to construct the data matrix.
The reference (unknown) system is an nth order FIR filter. The Gaussian white noise
measurement error with variance 0.025 is added into the desired response. In the
tests, the forgetting factor β is 0.99 and the order n of filter is 100.

In the case of the exponentially-weighted RLS computations, the consecutive
systems differ by a rank-1 positive semidefinite matrix,

A(1)x(1) = b(1) and A(2)x(2) = [A(1) + β−1x(t)x(t)T ]x(2) = b(2),

whereas in the case of the sliding window computations, the consecutive systems differ
by the sum of a rank-1 positive definite matrix and a rank-1 negative definite matrix,

A(1)x(1) = b(1) and A(2)x(2) = [A(1) + x(t)x(t)T − x(t− k)x(t− k)T ]x(2) = b(2).

Here x(t) = [xt, xt−1, . . . , xt−n+1]T and k is the length of sliding window. For details,
we refer the reader to [4, 12]. Table 6 lists the number of matrix-vector multiplies re-
quired for the convergence of all the systems arising from exponentially weighted and
sliding window RLS computations. We observe that the performance of Projection
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Table 6
(Example 2) Number of matrix-vector multiplies required for convergence of all the systems.

(a) Exponentially-weighted RLS computations and (b) sliding window RLS computations.

Linear systems (1) (2) (3) (4) (5) Total
Starting with Projection Method I 45 31 28 25 24 153
Starting with Projection Method II 45 37 32 31 29 174

Starting with previous solution 45 43 44 42 40 214

(a)

Linear systems (1) (2) (3) (4) (5) Total
Starting with Projection Method I 68 51 45 36 30 165
Starting with Projection Method II 68 55 49 42 35 249

Starting with previous solution 68 61 59 56 54 308

(b)

Table 7
(Example 3) Number of matrix-vector multiplies required for convergence of all the systems with

ck = 0.1551× 0.9524k and dk = 7.7566× 0.9524k.

Linear systems (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Total
Starting with Projection 83 82 80 75 62 53 47 21 26 24 553

Method II
Starting with previous 83 83 83 83 83 83 83 83 84 83 831

solution

Method I is better than that of Projection Method II. The projection method requires
fewer matrix-vector multiplies than using the previous solution as an initial guess. We
find that matrix-vector multiplies always count for 99% or more of the total flop count.
Projection methods can reduce the cost of solving multiple linear systems. Moreover,
we find that the eigenvector components of b(2) are effectively reduced after projection
in both cases of exponentially weighted and sliding window RLS computations. We
see that the decreases of eigenvector components when using Projection Method I are
indeed greater than those obtained when using Projection Method II; see the figures
in [4].

Example 3 (tol = 10−7). The matrices for the final set of experiments arise from
the three-point centered discretization of the operator − d

dx (a(x)dudx ) in [0, 1], where
the function a(x) is given by a(x) = c + dx, where c and d are two parameters. The
discretization is performed using a grid size of h = 1/65, yielding matrices of size 64
with different values of c and d. The right-hand sides of these systems are generated
randomly with their 2-norms being 1. We remark that the consecutive linear systems
do not differ by low-rank or small norm matrices in this example.

Table 7 shows the number of iterations required for convergence of all the systems
using Projection Method II and using a previous solution as an initial guess having
the same residual norm. We observe from Figure 2 that the eigenvector components
are effectively reduced after the projection.

5. Concluding remarks. In this paper, we developed Galerkin projection meth-
ods for solving multiple linear systems. Experimental results show that the method
is an efficient method. We end with concluding remarks about the extensions of the
Galerkin projection method.

(i) A block generalization of the Galerkin projection method can be employed
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(c)

Fig. 2. (Example 3) Size distribution of the components of (a) the original right-hand side
b(7), (b) b(7) after Galerkin projection and (c) b(7) − A(7)x(6) (using the previous solution as an
initial guess).

in many applications. The method is to select more than one system as seed
so that the Krylov subspace generated by the seed is larger and the initial
guess obtained from the Galerkin projection onto this subspace is expected
to be better. One drawback of the block method is that it may break down
when singularity of the matrices arising from the CG process is encountered.
For details about block Galerkin projection methods, we refer to Chan and
Wan [5].

(ii) In the literature, there are some methods for solving nonsymmetric systems
with multiple right-hand sides. Three methods that have been proposed are
block generalizations of solvers for nonsymmetric systems: the block bicon-
jugate gradient algorithm [14, 13], block GMRES [22], block QMR [2, 6].
Recently, Simoncini and Gallopoulos [20] proposed a hybrid method by com-
bining the Galerkin projection process and Richardson acceleration technique
to speed up the convergence rate of the CG process. In the same spirit, we
can modify the above Galerkin projection algorithms to solve nonsymmetric
systems with multiple coefficient matrices and right-hand sides.
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