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Galileo, a programming language for database applications, is presented. Galileo is a strongly-typed, 

interactive programming language designed specifically to support semantic data model features 

(classification, aggregation, and specialization), as well as the abstraction mechanisms of modern 

programming languages (types, abstract types, and modularization). The main contributions of Galileo 

are (a) a flexible type system to model database structure and semantic integrity constraints; (b) the 

inclusion of type hierarchies to support the specialization abstraction mechanisms of semantic data 

models; (c) a modularization mechanism to structure data and operations into interrelated units (d) 

the integration of abstraction mechanisms into an expression-based language that allows interactive 

use of the database without resorting to a new stand-alone query language. 

Galileo will be used in the immediate future as a tool for database design and, in the long term, as 

a high-level interface for DBMSs. 

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs- 

abstract data types; data types and structures; H.2.1 [Database Management]: Logical Design- 

data models; schema and subschema; H.2.3 [Database Management]: Languages-data description 

languages (DDW; data manipulation languages (DML); query languages 
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1. INTRODUCTION 

1.1 Motivation 

If complex applications utilizing DBMS technology are to be developed, the 
crucial aspects of these applications must be desjgned in a high-level language 
with features that differ considerably from those supported by traditional DBMSs 
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[18, 34, 35, 38, 541. Let us call this activity conceptual modeling, its result a 
conceptual schema, and the language used the conceptual language. 

There are many opinions as to the role of the conceptual schema during the 
design process. These ideas, which are reflected in the features of the conceptual 
language, are briefly outlined below. 

(1) The conceptual schema documents the database structure in terms very 
similar to those employed by users to describe an application. It is therefore a 
model that will be used during the entire life cycle of the database for consider- 
ations on the logical data structure and to verify informally that this structure 
can adequately satisfy user requirements, before the implementation begins. As 
the conceptual schema is only used for documentation, it does not have to be 
given in an executable language. The schema is automatically processed only to 
provide useful reports. An early significant example of this approach is the PSL/ 
PSA design environment [50]. 

(2) A second class of proposals extends the previous approach in a direction 
that more closely resembles the software specification problem. This perspective 
is particularly interesting because of the reciprocal influences of techniques and 
methodologies [l, 19, 21, 481. The rationale behind this approach is that since a 
complex database implementation is a long-term evolving activity, it is essential 
that the conceptual schema be carefully designed and tested to reduce logical 
errors in the implementation, and to safely incorporate the new requirements 
which will arise during the operational phase. The features of the conceptual 
language are at present still under discussion. In particular, attention is being 
given to operational aspects, besides the structure of data. However, in addition 
to abstract specifications, there are a number of pragmatic reasons why a high- 
level, executable language should be used in conceptual design. In fact, such a 
language could also be used to test the adequacy of the conceptual schema, if we 
do not care about execution efficiency [16, 26, 34, 391. 

(3) A third class of proposals considers a conceptual language as a tool that is 
much more than a mere step on the way to implementing a database application. 
To design complex, interactive computerized information systems, a program- 
ming language with abstraction mechanisms to model databases is needed. 

There are a few proposals that have adopted the last approach, although 
general agreement has been reached only with regard to certain basic features of 
the language [22, 31, 32, 37, 491. Such a language should provide constructs to 
aid the designer in expressing, as far as possible, the semantics of the application 
in the conceptual schema, rather than in the application programs. At the least 
it should provide the following features: 

(a) data defined both declaratively, with abstraction mechanisms (aggregation, 
classification, and specialization), and procedurally (derived data); 

(b) semantic integrity constraints, both standard (such as keys and mandatory 
values) and those described by a general-purpose constraint specification 
language; 

(c) operations to give the behavioral semantics of the data in the schema; and 
(d) a sound mathematical foundation for the language. 
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1.2 Assumptions 

This paper describes the features of the conceptual language Galileo, a program- 
ming language that supports semantic data model features. It therefore belongs 
to the third approach outlined above. The features presented here have been 
partially implemented [4]. These are the first results of a project that aims at 
designing and implementing a prototype system, Dialogo, to experiment with a 
stand-alone programming environment and to support the development and 
testing of database design [2]. 

The approach adopted in designing Galileo takes into account the requirements 
previously described, but also assumes that a conceptual language should provide 

(a) a set of independent constructs to be used in any combination to achieve 
simplicity and expressiveness; 

(b) features to design and test the solution incrementally; 
(c) a modularization mechanism to decompose the design into meaningful mod- 

ular units that correspond to a description of the database at different levels 
of successive refinements, or to application-oriented views of the database. 

1.3 Relation to Previous Work 

The design of Galileo has been influenced by two areas of research: conceptual 
modeling and programming languages. Although these areas have a number of 
overlapping issues, there are problems to be solved if the results from both areas 
are to be successfully integrated [18, 201. 

Galileo applies results from the conceptual modeling sector for features related 
to object-oriented databases, declarative definitions of constraints, multiple de- 
scriptions of objects, and view modeling [ll, 13, 17, 31-33, 35, 37, 42, 45, 47, 49, 
531. 

Galileo borrows features such as data types, abstract types, and modularization 
from the programming language area [44]. Although the utility of such features 
is recognized both pragmatically and theoretically, they have mainly been studied 
for applications to temporary data (i.e., not involving databases). 

The database proposals that have most influenced the design of Galileo are 
TAXIS, DIAL, and ADAPLEX. TAXIS is notable for introducing the basic 
knowledge representation mechanisms of semantic networks on data, transac- 
tions, and exceptions and for its approach to user dialogue modeling [12]. DIAL, 
which has evolved from SDM [32], uses data types, classes, derived classes, the 
“port” mechanism to deal with user interaction, and features to control concur- 
rency at the conceptual level [31]. Finally, ADAPLEX uses semantic data model 
features in a strongly-typed programming language, namely, Ada [49]. 

The main contributions of Galileo are 

(1) the integration of features to support semantic data model abstraction 
mechanisms within an expression-based, strongly-typed programming lan- 

guage; 
(2) a systematic use of both concrete and abstract types to model structural and 

behavioral aspects of a database; 
(3) the inclusion of type hierarchies to support the specialization abstraction 

mechanism of semantic data models as well as a software development 
methodology by data specialization [5, 141; 

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985. 



Galileo: A Strongly-Typed, Interactive Conceptual Language 233 

(4) the proposal of another abstraction mechanism, modularization, to organize 
a conceptual scheme in meaningful and manageable units, so as to deal with 
data persistence without resorting to specific data types such as files of 
programming languages, and to deal with application-oriented views of data 
in a similar way to the view mechanism of DBMSs [7]; 

(5) a small number of independent primitive features that can be applied or- 
thogonally, that is, in any combination. 

The basic ideas of Galileo have been investigated in ELLE, a programming 
language designed to deal uniformly with temporary and persistent complex data, 
that is, without resorting to special data type constructors to deal with permanent 
data [3]. Both ELLE and Galileo borrow many of their features from the 
functional programming language ML [29]. A comparison of ADAPLEX, DIAL, 
Galileo, and TAXIS is reported in [15]. 

1.4 Structure of the Paper 

The purpose of this paper is to illustrate the features of Galileo. The schema 
fragments used as examples are intended only to illustrate the main concepts, 
and do not cover all the language features. A complete description of Galileo 
exists as a technical report [6]. The semantics of Galileo are described informally, 
but its formalization, using a denotational approach, is reported in [24, 411. 
Pragmatic aspects of Galileo (schema design methodology and designers’ reac- 
tions to the language) are also beyond the scope of this paper; they are currently 
being studied in the context of a joint project by a group of Italian universities 
and companies sponsored by the Italian National Research Council (CNR) [27]. 
The goal of the project is the development of a database design methodology, 
together with a set of integrated computer-assisted tools covering all aspects of 
the design process, including application analysis, conceptual modeling, and 
logical and physical design in both centralized and distributed environments. 

The next section presents the basic data modeling features of Galileo. Section 
3 describes the operators that affect the environment used to evaluate expres- 
sions. Section 4 describes the type system of the language, and Section 5 the 
notion of type hierarchies. Section 6 presents the class mechanism used to build 
an object-oriented view of a database, with classification, aggregation, and spe- 
cialization abstraction mechanisms. Section 7 presents the modularization mech- 
anism to structure a schema and to deal with persistent data. Section 8 illustrates 
the failure-handling mechanism together with transactions modeling. In the 
conclusions, we comment upon the implementation now underway and on our 
future plans. 

2. OVERVIEW OF GALILEO 

Galileo supports the following abstraction mechanisms for database modeling: 

Classification. Entities being modeled which share common characteristics are 
gathered into classes. All elements of a class have the same type. The name of 
the class denotes the elements present in the database. The elements of a class 
are represented uniquely, that is, only one copy of each element is allowed. 

Aggregation. Elements of classes are aggregates; that is, they are abstractions 
having heterogeneous components, and may have elements of other classes as 
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components. Associations among entities are represented by aggregations in a 
Galileo database. Components of aggregates can be collections of homogeneous 
values to represent, for example, multivalued associations among entities. Be- 
cause of the unique representation of elements of classes, any modification of an 
element is reflected everywhere that element appears as a component. 

Generalization. Elements of a class can be described in different ways by means 
of subclasses. Subclasses are derived from classes by using a predefined set of 
operators. Elements of a subclass also belong to their parent class. The type of 
the elements of a subclass is a subtype of the type of elements of the parent class. 
The subclass mechanism includes the IS-A hierarchy of semantic networks and 
semantic data models. 

Modularization. Data and operations can be partitioned into interrelated mod- 
ules. A complex schema can therefore be structured into smaller units. For 
instance, a unit may model a user view or a description of the schema produced 
by a stepwise refinement methodology. 

Galileo also has the following features: 

(1) It is an expression language; each construct is applied to values to return a 
value. 

(2) It is an interactive language; the system repeatedly prompts for inputs and 
reports the results of computations; this interaction is said to happen at the 
top level of evaluation. At the top level one can evaluate expressions or 
perform declarations. This feature allows the interactive use of Galileo 
without a separate query language. 

(3) It is higher order, in that functions are denotable values of the language. 
Therefore, a function can be embedded in data structures, passed as a 
parameter, and returned as a value. 

(4) Every denotable value of the language possesses a type: 
(a) A type is a set of values sharing common characteristics, together with 

the primitive operators which can be applied to these values. 
(b) The predefined types of the language are bool, num, string, equipped 

with the usual operators, and the type null, which is a singleton set with 
the element nil equipped with the equality operator. 

(c) The type constructors available to define new types, from predefined or 
previously defined types, are tuple (record), sequence, discriminated 
union (variant), function, modifiable value (reference), and abstract 
types. There are two constructors for abstract types: w and c-). The 
former is similar to CLU clusters, ALPHARD forms, or Euclid modules: 
it is used to define a new type together with the available operations. 
The latter is similar to the type constructor of Ada: it defines a new type 
which inherits the primitive operations of the representation type. 

(d) The type system supports the notion of type hierarchy; if a type t is a 
subtype of a type t’, then a value of t can be used as argument of any 
operation defined for values of t ‘, but not vice versa, because the subtype 
relation is a partial order. 

(5) Every Galileo expression has a type. The meaning of “an expression e having 
type t” is that the value of e possesses the type t. In general, any expression 
has a type that can be statically determined, so that every type violation can 
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be detected by textual inspection (static type checking). However, if the type 
checker is not able to ascribe a type to an expression, the user must specify 
the type with the notation “Expression: Type”. The language has been 
designed to be statically type-checkable for two reasons: first, for the consid- 
erable benefits in testing and debugging; second, because programs can be 
safely executed disregarding any information about types at run time. Exe- 
cution time testing will be required for constraints only. Finally, static type 
checking allows a typechecker to give the correct meaning to overloaded 
operators (i.e., operators that can be used with operands of different types). 

(6) Class elements possess an abstract type and are the only values which can 
be destroyed. Predefined assertions on classes are provided and, if not 
otherwise specified, the operators for including or eliminating elements of a 
class are automatically defined. 

(7) A control structure is provided for failures and their handling. 

The following simple schema illustrates Galileo. The example concerns de- 
partments and employees in a firm. The definitions are collected in the Organi- 
zation schema. 

Organization := ( 
ret Departments class 

Department c, 
(Name: string 
and Budget: num 
and Address: Address 
and Manager: var Employee 
and Employees: var seq Employee) 
key (Name) 

and Employees class 
Employee w 

(Name: string 
and Salary: var num 
and NameOfDept := 

derived Name of 
get Departments with this isin (at Employees)) 

key (Name) 

and NewEmployee(AName: string, ASalary: num): Employee := 
mkEmployee (Name := AName and Salary := var ASalary) 

and VipEmployees subset of Employees class 
VipEmployee w 

(is Employee 
and VipProperty: string) 

and type Address := 
(Street: string 
and Zip: string 
and City: string) 

drop mkEmployee) 
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The ret is used for recursive functions or for mutually dependent types, such 
as Department and Employee. 

Departments and Employees are examples of base classes, while key is an 
example of predefined class constraint to assert that the elements of the classes 
must differ in the value of the Name attribute. 

An attribute of an element of a class may be primitive or derived. A primitive 
attribute is one that is subject to direct initialization and updating. The value of 
a derived attribute is automatically computed from other information in the 
database and cannot be updated: every time the value of the attribute is used, it 
is as if the associated expression were evaluated to derive the value. An example 
of a derived attribute is NameOfDept in Employees, where “this” is bound to the 
current element of the class. 

An attribute can be modified if and only if it is defined as type var, otherwise 
it is constant, and any attempt to update the value is detected statically. 

The function NewEmployee is an example of a defined operation included in 
the schema. It is the only operation that can be used to create new elements of 
the class Employees, since the drop operator prevents the predefined mk- 

Employee operation from being exported outside the schema definition. For 
Departments and VipEmployees, the functions mkDepartment and mkVip- 
Employee are available. 

VipEmployees is an example of a subclass. It contains all those employees who 

are believed to be very important. The elements of a subclass must have a type 
that is a subtype of the elements of the parent class. For instance, the type of 
the elements of VipEmployees is that of Employee with the additional attribute 
VipProperty. 

This example shows how classes are used to deal with sets of related objects. 
The approach has some similarity to that adopted for relational databases: in 
both cases the associations among data are described by means of the value of 
an attribute. However, in relational databases, data are tuples of simple values 
collected in relations, and associations among them are represented by assigning 
as value to an attribute the key value of another tuple. To represent associations 
in Galileo, the mechanism of “data sharing” is used instead, so that an element 
of a class can be shared as a component by many others. 

3. THE BASIC ENVIRONMENT OPERATORS 

An important notion in Galileo is that of enuironment, as it used in the denota- 
tional semantics description of programming languages [51]. It is useful to 
distinguish between the definition of an environment and its run-time interpre- 
tation. 

An environment definition is a map from identifiers to definitions of types or 
values; it is used to typecheck declarations and expressions before their evalua- 
tion. 

A run-time environment is a map from identifiers to denotable values of the 
language, obtained by evaluating an environment expression. The evaluation of 
any expression takes place in the context of an environment, which specifies 
what the identifiers in use denote. Types are not present in run-time environ- 
ments since they are not denotable values; that is, types cannot be produced as 
the result of expressions. 
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An environment definition is given with the following operators, where A and 
B stand for environment expressions. 

Id := Term Introduces a new binding between the identifier Id 
and Term, which is the definition of a value or a 
type. 

AandB 

Aext B 

introduces the bindings of A and B, but the bindings 
of A cannot be used in B and vice versa. 
introduces the bindings of B and those of A not 
redefined in B. The bindings of A can be used in B, 
but not vice versa. In other words, A is extended 
with B. 

ret A 

type A 

A drop Id 

A take Id 

A rename Id by NewId 

introduces the bindings of A which can be used 
recursively in A. 
introduces the bindings between identifiers and 
types defined in A. 
introduces the bindings of A, except the one with 
binder Id. 
introduces only the binding with binder Id defined 
in A. 
introduces the bindings of A, but the binder Id is 
renamed as NewId. 

For instance 

type b := int 
ext ret fact(x:b):b := 

if x = 0 then 1 else x*fact(x - 1) 
ext a := fact(3) 
ext c := fact(4) 

The binders defined are b, fact, a, and c bound respectively to the type int, the 
factorial function, the expression fact(3), and the expression fact(4). Once this 
environment expression has been evaluated, it denotes the set of associations (a, 
6), (c, 24), and (fact, the internal representation of the function). 

The expression “use A in Expression” evaluates “Expression” in the current 
environment temporarily extended with the bindings of A. 

use a := 3 
andb:=4 
ina+b yields 7 

Other environment operators will be introduced in the sequel to this paper. 

4. THE TYPE SYSTEM 

All denotable values of the language possess a type. A type is a set of values, 
possibly infinite, together with the primitive operations that can be applied to 
these values. The predefined types of the language are bool, num, and string, 
equipped with the usual operators, and null, which is a singleton set whose only 
element is nil, equipped with the equality operator. 

Type constructors exist to define a type for the following values: tuples, 
discriminated unions, sequences, modifiable values, functions, and abstract val- 
ues. 
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4.1 Tuples 

The data structure tuple, such as the records of programming languages and 
traditional database models, consists of a set of (identifier (attribute or label), 
denotable value) pairs. The order of the pairs is unimportant. Examples of 
denotations of tuples are 

PaulBrown := 
(Name := “Paul” 
and Surname := “Brown” 
and BirthDate := “06/12/1941”) 

Department := 

(Name := “Computer Science” 
and NumOfEmployee := 10 
and Chairman := 

(Name := “John” 
and Surname := “Moore” 
and Salary := 80)) 

We say that a value is associated with an identifier when it appears in a pair 
together with that identifier. 

Tuples are equipped with the of operator which returns the value associated 
with an identifier (of is right associative): 

Name of 
(Surname := “Moore” 
and Name := “John” 
and Salary := 80) yields “John”. 

A tuple type consists of an unordered set of pairs (identifiers, type). Two tuple 
types are equal if they have equal sets of pairs. 

Tuples in Galileo are just environments constructed with any environment 
operators except type, although we continue to use the two terms to indicate 
their use as a data structure (tuple) or as a binding in which evaluation takes 
place (environment). The following example shows how to construct and use 
circular data with the operators ret, and, and use: 

use ret Cs := 
(Name := “Computer Science” 
and Budget := 100 
and Chairman := Smith) 

and Smith := 
(Name := “John” 
and Salary := 100 
ext Deductions := Salary* 0.1 
and Department := Cs) 

in 
Deductions of Chairman of Cs yields 10 

A discriminated union, or variant, type consists of a set of alternative values. 
It is different from the mathematical union of sets in that each value retains an 
inspectable tug, indicating the alternative to which it belongs. Two variant types 
are equal if the sets of their pairs (tag, type) are equal. An example of variant 
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type is 

type Employee := 
(Technician: (Name: string and Skill: string) 
or Secretary: (Name: string and TypingSpeed: string)) 

Values of such a type are denoted by giving the expected tag: 

JohnSmith := (Secretary := (Name := “John Smith” and TypingSpeed := “High”)) 
MarySmith := (Technician := (Name := “Mary Smith” and Skill := “Analyst”)) 

Two basic operators are defined on variants: is, to test the tag of a variant 
value, and as, to get the value contained in the variant. Suppose w denotes a 
value of type Employee, then a legal Galileo expression is 

if w is Technician 
then Skill of (w as Technician) 
else TypingSpeed of (w as Secretary) 

The case construct is a convenient form to test the tag of a variant and to bind 
the value to a local identifier: 

case w when 
(Technician := x. Skill of x 
or Secretary := y. TypingSpeed of y) 

The Pascal-like enumeration type (Id or. . . or Id) is an abbreviation for 
(1d:null or. . . or Idmull), and values of such a type can be denoted with (Id) 
instead of (Id := nil). “optional t” is an abbreviation for (bound: t or unbound: 
null). If x is a value of type “optional t”, it can be used in any expression as an 
abbreviation for “x as bound”. 

4.2 Sequences 

A sequence is a finite ordered collection of homogeneous elements (i.e., data with 
the same type). Sequences differ from sets in the ordering and multiplicity of 
elements. 

[3; 4; 6*3; 41 is a sequence of integers 
[(Name := “Jim” and Age := 20); 
(Name := “Alice” and Age := 31)] is a sequence of tuples 

A sequence type is denoted by seq followed by the type of the elements. For 
instance, the following are the types of the above sequences: 

seq num 
seq (Name: string and Age: num) 

Since each expression must have a type that is statically determinable, empty 
sequences must be followed by their types, as in 

[I: seq num 
[I: seq (Name: string and Age: num) 

Two sequences are equal when they meet three conditions: they have the same 
element types, the same cardinality, and their elements are pairwise equal, in the 
correct order. Two sequence types are equal if they have equal element types. 
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The following examples show some operators on sequences: 

first [2;3;2] yields 2 
rest [2;3;2] yields [ 3;2] 
[1;2] append [3;4;2] yields [ 1;2;3;4;2] 
setof [ 1;2;2;1] yields [ 1;2] 
3 isin [2;3;5] yields true 
emptyseq PI yields false 

first and rest generate a failure when applied to an empty sequence. 

all x in [2;3;2;3;6] with x > 2 yields [3;3;6] 
all p in [(Name := “Jim” and Age := 20); (Name := “Alice” and Age := 31)] 
with Age of p > 20 yields [(Name := “Alice” and Age := 31)] 

The following semantically equivalent expression is preferred for sequences of 
tuples, since it avoids the introduction of the explicit binder: 

all [(Name := “Jim” and Age := 20); (Name := “Alice” and Age := 31)] 
with Age > 20 

To evaluate an expression for each element of a sequence, such as “Select the 
names of persons aged more than 20”, the following expression can be used: 

for [(Name := “Jim” and Age := 20);(Name := “Alice” and Age := 31)] 
with Age > 20 do Name yields the sequence [“Alice”] 

The conventional aggregate functions sum, average, and so on, are available 
for sequences of numbers. 

4.3 Modifiable Values 

Values associated with the previous types cannot be modified. To introduce 
“modifiability” in the language, for example, to modify the value of a tuple pair 
or to change the value associated with an identifier in the environment, a new 
kind of value, the location, is introduced. Its name and meaning is one that is 
commonly used in the denotational semantics description of programming lan- 
guages [51]. Locations reside in a time-varying structure, the store, and are 
associated with values of any type, including other locations, since they are also 
denotable values. The expression “var 3” denotes a new location which is 
associated in the store with the value 3. The type of “var Expression” is “var 
TypeOfExpression”, and two location types are equal if and only if their associ- 
ated types are equal. 

The operations on locations are getting the associate value, that is, that content 
of the location; replacing the associated value with a new value of the same type 
(assigning a value); and testing for equality between locations. For instance, 

use x := var 3 
in at x + 1 yields 4 

The evaluation of at x gives the value associated with the declared location. 
The assignment operator t is an infix binary operator. The value of the left 

operand must be a location, while the value of the right operand must be a value 
of the same type as the previous content of the location. This operation modifies 
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the store replacing the old value of the location and returns nil. For example, 

use x := var 3 
in (n c at x + 1; x) yields 4 

where (El; . . . ; En) evaluates all expressions Ei sequentially and returns the 
value of the last one. 

4.4 Functions 

Functional types are built by the operator +. The type (tx + ty) consists of all 
the functions that map values of type tx to the result of type ty. The expression 
“fun(x: tx): ty is Expression” denotes a function with a formal parameter x and 
a body Expression that returns a value of type ty. The function possesses a type 
(tx -+ ty). To define a function f with formal parameter x and body Expression, 
one performs the declaration ‘Y(x: t): t’ := Expression”, equivalent to “f := 
fun(x: t): t’ is Expression”. To apply f to an actual parameter p, one evaluates 
the expression “f(p)“. The body off is evaluated in the environment where f is 
defined (static scoping) and extended with the bindings (formal parameters, value 
of the actual parameter). The value of the body is returned as the result of the 
application. The control structures available to define compound expressions are 
sequencing, selection, repetition, and failure handling; these will be discussed in 
Section 8. 

4.5 Abstract Types 

The types of the values presented so far depend on the structure of the values 
only. That is, the type compatibility rule adopted is the so-called structural 
equivalence rule. User-defined type names are used as abbreviations for the 
structures they represent. These types are called concrete, in contrast with a new 
kind of type, called abstract. Two user-defined abstract types are always different 
(i.e., the type compatibility rule adopted for them is the so-called name equiua- 
lence rule). 

Abstract types are not abstract in the sense of algebraic abstract types, but 
rather are analogous to CLU clusters, ALPHARD forms, and Euclid modules. 
They are mechanisms to abstract representations of the data from their behavior. 
Such behavior is defined by the designer in terms of the operations that can 
manipulate the data. However, an abstract type can be used like any other type 
in all the contexts where a type is expected. That is, user-defined abstract types 
have the same status as primitive types, which can be regarded as predefined 
abstract types provided by the language. 

The main reason for introducing abstract types is protection, that is, to provide 
a mechanism to define a new type together with the operations available on 
values of that type. Thus, values of different abstract types are not compatible, 
even though they have the same representation (e.g., a weight is different from a 
height, although both are represented by integers). In this way, it is possible to 
tailor unique operations for each type, which cannot be used for objects of other 
types. For example, a function that tests a height and an age against a table of 
standards cannot be misused by applying it to a weight and an age. Another 
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important protection introduced by abstract types is that programs are inde- 
pendent of changes in data representation as long as the primitive operations are 
the same. 

To define abstract types, Galileo offers the following environment operator: 

type Id w Type {assert [with “Name”] BoolExprJ 

This environment expression introduces the following bindings: 

(1) Id is bound to a new type with a domain isomorphic to the domain of the 
representation type, Type, possibly restricted by the assertions. 

(2) The identifiers mkId and repId are bound to two primitive functions, declared 
automatically, to map values of the representation type into the abstract one 
and vice versa: 

mkId: Type + Id 
repId: Id + Type 

If an assert clause is present, BoolExpr is a Boolean expression on the values 
of the type. The assertions impose constraints on data values, which are con- 
trolled at execution time, when the data is created. If an assertion is violated, 
the operation fails with the name of the operation or with the name of the 
assertion, if present. 

type Time w (hrs: num and mins: num) 
assert use this 

in hrs within (0,23) And mins within (0,59) 

This declaration defines an abstract type Time, together with the primitive 
functions mkTime and repTime. As an abbreviation, constraints on a property 
can be specified directly in the corresponding pair declaration: 

type Time w 
(hrs: num this within (0,23) 
and mins: num this within (0,59)) 

To define an abstract type with the representation hidden, but with user- 
defined operations, the following definition might be used: 

type Time w 
(hrs: num this within (0,24) 
and mins: num this within (0,60)) 

with Hours(t: Time): num := 
hrs of repTime( t ) 

and Minutes(t: Time): num := 
mins of repTime( t) 

and MakeTime(n: num,y: num): Time := 
mkTime( (hrs := x and mins := y)) 

This declaration exports an abstract type Time, together with three functions 
MakeTime, Hours, and Minutes. The two primitive functions mkTime and 
repTime are only available in the definitions that appear in the with part, but 
they are not exported in the scope of the type declaration. The with construct 
is not a special syntax for abstract types, but it is another environment operator: 
A with B means that the types in A can be used in B, and they are exported 

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985. 



Galileo: A Strongly-Typed, Interactive Conceptual Language 243 

together with the definitions in B; the values in A (like mkTime and repTime) 
can be used in B, but they are not exported. Abstract types are obtained from 
the interaction of two orthogonal features: the isomorphism constructor * and 
the environment operator with. Mutually dependent types can be defined with 
the expression: 

type ret 
(uw .f. 
and v - . . . 

. . . 

andzo .-.) 
withop(...) := ... 

. . . 

andop(..-):= ... 

To define new types, Galileo provides an additional environment operator: 

type Id c, Type (assert [NamelBoolExpr) 

This operator introduces the following bindings: 

(1) A new type that inherits the primitive operators on the representation type. 
The primitive operators retain their names, but this overloading does not 
introduce ambiguities because the typechecker can infer the meaning of an 
operator from the type of the operands. To restrict the set of operators to be 
inherited, the operators drop or take on the representation type might be 
used. 

(2) The identifiers mkId and repId, as for the ti operator. 

This environment operator has been included, since, in many cases, most of 
the primitive operators on the representation type are also needed for the abstract 
type, especially in database applications. The protection required is that the 
operators must never be applied to values of different types; and this is the effect 
of introducing a new type with this operator. When all the operators on the 
representation type are inherited, this operator is equivalent to the type construc- 
tor in Ada, where user-defined types are always different. 

type PersonAge c, num this within (0,150) 
drop mod,* 

This declaration introduces: 

(1) The new type PersonAge with a domain isomorphic to a subset of numbers. 
(2) The primitive functions mkPersonAge and repPersonAge. 
(3) The predefined operators on numbers translated on the type PersonAge, 

except mod and *. The operators incorporate the control of the assertion, so 
the expression “mkPersonAge( 10) + mkPersonAge(1)” is equivalent to 
mkPersonAge( 10 + 1). 

For example, another definition of Time, which introduces a new type equipped 
with the selector operators “Hours of” and “Minutes of” and the functions 
mkTime and repTime, is 

type Time c, 
(Hours: num this within (0,23) 
and Minutes: num this within (0,59)) 
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In defining a new tuple type with the operator c-), it is possible to declare a 
pair as default or derived: 

Type Product 
(Code: string 
and SaleTax: default 0.06 
and Price: var num 
and Cost: var num 
ext Profit:= derived(Price - Cost)) 

This declaration has the following meanings: 
(1) In the parameter of the function mkproduct, the derived attributes are 

ignored, and if default attributes are omitted, the specified value is assumed. 
(2) Every time the selector “Profit of” is used on a value of type Product, the 

associated expression is evaluated and its result is returned. If the derived 
attribute is defined with the ext operator, the expression is evaluated 
extending the definition environment temporarily with the pairs of the tuple. 
When the and operator is used, the function is evaluated in the definition 
environment. 

5. TYPE HIERARCHIES 

An important property of the Galileo type system is the notion of subtype: if a 
type u is a subtype of a type v (u C v), then a value of type u can be used in any 
context where a value of type v is expected, but not vice versa. The subtype 
relation is a partial order. For instance, if a function f has a formal parameter of 
type v, then an application of f to a value of type u is correctly typechecked 
because no run-time errors can occur. It is important to stress the point that 
since Galileo has a secure type system, the notion of type hierarchies is related 
to that of well-typed expressions [24, 281: expressions that are syntactically well 
typed are always semantically well typed (i.e., such expressions do not cause run- 
time type errors, and give a value of the correct type). In Milner’s words, “well- 
typed expressions do not go wrong” also [36] apply to hierarchies among types. 

This notion of type hierarchies is different from the subtype concept of Ada, 
but is similar to the subclass mechanisms of Simula 67 and Smalltalk. In Galileo, 
this notion is extended to all the types, in the sense explained in the sequel to 
this paper, while preserving two important properties: the language is still 
strongly-typed and the functions need not be recompiled in order to be used on 
parameters of any subtype. 

With this mechanism Galileo supports the notion of programming by data 
specialization, originally introduced in Simula 67 and generalized in TAXIS to 
all the constituents of a database application: data, transactions, assertions, and 
scripts [ 141. Complex software applications, especially those related to databases, 
can be designed and implemented incrementally. Once a set of functions has 
been designed and tested for the most general data, it can be used with data of 
any subtype introduced later on in the software development process. Moreover, 
new functions on the subtypes can be defined in terms of the old functions. 

The subtype relation is automatically inferred by the typechecker for concrete 
types, but it must be declared explicitly among abstract types. The rules followed 
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by the typechecker are 

(1) For any type t, t G t. 
(2) If r and s are tuple types, then r G s iff: 

(a) the set of identifiers of r contains the set of identifiers of s, and 
(b) If r’ and s’ are the types of a common identifier, then r’ C_ s’. 

For instance, if 

type (Address := 
(Street: string 
and Zip: string) 

and VipAddress := 
(Street: string 
and Zip: string 
and Country: string) 

and Person := 
Name: string 
and Address: Address) 

and Student := 
(Name: string 
and Address: Address 
and School: string) 

and VipPerson := 
(Name: string 
and Address: VipAddress)) 

then 

Student G Person 
VipPerson C Person 

while it is false that 

Person C VipPerson, 
Person E Student, 

Student G VipPerson and 
VipPerson G Student. 

(3) If r and s are variant types, then r Z s iffi 
(a) the set of tags of r is contained in the set of tags of s, and 
(b) if r ’ and s ’ are the types of a common tag, then r ’ G s ‘. 

For instance, if 

type (Day := 
(Monday or Tuesday 
or Wednesday or Thursday 
or Friday or Saturday 
or Sunday) 

and Weekend := (Saturday or Sunday)) 
then 

Weekend G Day. 

(4) If r and s are sequence types with elements of types r ’ and s ‘, then r C s iff 
r’ C s’. 

(5) A modifiable type “var r” is a subtype of another type “var .a” iff r and s 
are the same type. 
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To clarify the reason for this rule, consider the following expression evaluated 
in an environment containing the previous type definitions. 

use type Traveler := 
(Name: string 
and Address: var Address) 

ext Agnelli := 
(Name:= “Gianni Agnelli” 
and Address := 

var (Street:= “ZOO Bloor St, Toronto” 
and Zip:= “M4V 2H5” 
and Country:= “Canada”)) 

and ChangeAddress (X :Traveler, y: Address) := 
Address of x +- (Street:= Street of y and Zip:= Zip of y); 

in 
(ChangeAddress(Agnelli, 

(Street := “New Address” 
and Zip := “New Zip” 
and Country := “New Country”)); 

Country of at (Address of Agnelli) 

The application of ChangeAddress is not well typed according to the above 
rule because the type of Agnelli is not a subtype of Traveler. If, for instance, a 
different rule had been adopted, say that two types var r and var s are in the C 
relation if r c s, then the previous expression would have been accepted by the 
typechecker, but it would no longer be true that “well-typed expressions do not 
go wrong”: the last expression will generate a run-time error because the tuple 
Agnelli has lost the pair with attribute Country! This is a consequence of the 
assignment operation in the ChangeAddress function: it assigns a new data value 
of type (Street: string and Zip: string) to the Address of the actual parameter. 

(6) If (r + s) and (r’ + s’) are function types, then (r + s) C (r’ += s’) iff r’ 
GrandsCs’. 

Note the inversion of the subtype relation between the domains of the functions. 
To clarify the reason for this rule, consider the following expression (a parameter 
of type (r + s) means that the actual parameter can be any function mapping 
values of type r to values of type s): 

use type 
(Person := (Name: string) 
and Student := 

(Name: string 
and School: string) 

and Foreign&dent := 
(Name: string 
and School: string 
and Country: string)) 

and John := 
(Name := “John”) 

and JohnStudent := 
(Name := “John” 
and School := “UofT”) 

and AnItalian:= 
(Name := “Mario” 
and School: “UofT” 
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and Country: “Italy”) 
and NameOfPerson (x: Person): string := 

Name of 3c 
and CountryOf’ForeignStudent (x: ForeignStudent): string := 

Country of x 
and StringFromStudent (g: Student + string, X: Student): string := 

g(x) 
in 

(StringFromStudent (CountryOfForeignStudent,JohnStudent); 
StringFromStudent (NameOfPerson, AnItalian)) 

For the above rule, the first application of StringFromStudent is not well typed 
because the type of CountryOfForeignStudent (ForeignStudent + string) is not 
a subtype of (Student + string). In fact, if it were executed, a run-time error 
would occur because of the use of the selector “Country of” in the function 
CountryOfForeignStudent on a value of type Student. In contrast, the second 
application of StringFromStudent is instead well typed. 

(7) A type Id t, t(the same rule applies to M) is a subtype of another type Id’ 
c-, t ‘, with primitive types considered as predefined abstract types, when the 
subtype relation is declared explicitly to the typechecker as follows: 

Id is Id’ H t”NewAssertions”, and t G t’ 

Note that the assertions on Id are those of Id’ plus “NewAssertions”. 

type (PersonAddress := (HomeAddress: string) 
and StudentAddress := 

(HomeAddress: string 
and College: string) 

and Person c, 
(Name: string 
and Age: num this within (0,150) 
and Address: PersonAddress) 

and Student is Person c-f 
(Name: string 
and Age: num this within (6,25) 
and School: string 
and Address: StudentAddress)) 

The following abbreviation, used when the representation type is a tuple type, 
makes evident that the subtype Student inherits attributes and assertions of the 
type Person: 

type Student t-) 
(is Person 
and School: string 
ext Address: StudentAddress 
assert use this in Age within (6,25) 

In the abbreviated notation, the ext operator must be used to redefine the type 
of Address. A derived attribute cannot be redefined in a subtype. 

Finally, multiple hierarchies are declared as “Id is Id’, Id” t, t “, where t C t’, 
and t G t”, or in the abbreviated form “Id t* is Id’, Id”“. Note that in the 

abbreviated form, if a common identifier is presented with type tr’ in t’ and tr” 
in t”, then tr’ must be a subtype of tr” or vice versa. In the representation of 

type Id, the identifier will have the most specialized type. 
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6. CLASSES 

Classes provide a mechanism for representing a database by means of sequences 
of modifiable interrelated objects. An element of a class is an object that is the 
computer representation of certain facts of an entity of the world that is being 
modeled. An object-oriented view of a database is characterized by the following 
[14, 33, 351: 

(1) There is a one-to-one correspondence between objects in the database and 
entities of the world that is being modeled. 

(2) The objects of the database are all distinct, and they might not have an 
external reference, such as a key, that stands for them. 

(3) Associations among entities are modeled by relating the corresponding ob- 
jects and not the external references. Moreover, only objects that exist in the 
database can be used to model associations. 

A class is characterized by a name and the type of its elements. The name of 
a class denotes the elements of the class currently present in the database, while 
the type gives the structure of the elements. The type of the class elements must 
be abstract, therefore two elements of different classes are always of different 
types, although they may be defined with the same representation. 

Elements of classes are the only values in Galileo that can be created and 
destroyed. Moreover, they are uniquely represented, and when updated their 
modification is reflected in all other objects in which they appear as components. 

Each class can be either a base class or a subclass. A base class is defined 
independently of other classes, while a subclass is defined in terms of other 
classes. As in SDM [32], a base class is used to model a primitive collection of 
entities, while a subclass is used to model alternative ways of looking at the same 
entities. 

6.1 Base Classes 

A base class is defined by the environment operator class, as shown in the 
following example with two mutually defined classes: 

ret Departments class 
Department c--, 

(Name: string 
and Budget: num 
and Address: string 
and Manager: optional Employee 
and Employees: var seq Employee) 
key (Name) 

and Employees class 
Employee c-* 

(Name: string 
and Salary: num 
and NameOfDept := 

derived Name of 
get Departments with this isin (at Employees) 

key (Name) 
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The class operator introduces the following bindings: 

(1) The identifiers Department and Employee are bound to new types isomorphic 
to tuples. 

(2) The class identifiers Departments and Employees are bound to modifiable 
sequences of values of type Department and Employee, respectively. 

(3) The identifiers mkDepartment and mkEmployee are bound to two primitive 
functions, automatically declared, which differ from similar functions for 
abstract types in that every time they are applied, new objects are created 
and automatically inserted in front of the associated sequences if the specified 
constraints are not violated. The constructed elements are also the values 
returned by these functions. 

The above declaration defines the structure of the objects together with a few 
constraints, some of which are predefined constraints on sequences, to be tested 
when an instance is created or modified: 

(1) The key constraint asserts that elements of a class must differ in the value 
of certain constant attributes. Note that if the key constraint is not specified, 
the insertion will be made even though the values of the attributes are equal 
to those of another object already present in the class. That is, elements of 
classes are always distinct objects, but the construction of an element will 
fail when the constraints are violated. 

Other constraints are specified directly in the definition of the element type: 

(2) Only attributes with a var type can be modified. 
(3) Only modifiable attributes with an optional type can be left unspecified 

when an element is created. 
(4) A derived attribute such as NameOfDept is used to model a mapping from 

the employees to the department where they are employed, while the property 
Employees in Departments is used to model a part-of relationship, which 
implies the following dependency constraint: an employee cannot be elimi- 
nated from the database as long as he or she belongs to a department. 

Since the name of a class denotes the sequence of all the current elements 
present in the database, all the operators on sequences can be applied to classes. 
In addition to these operators, the following is also provided: 

get ClassId with Condition 

This is another operator on sequences: it returns the only element in a sequence 
which satisfies the condition. Otherwise, a failure is generated. 

6.2 Subclasses 

Subclasses and type hierarchies are the features provided by Galileo to support 
the abstraction mechanism of IS-A hierarchies, originally proposed in the context 
of semantic networks, and considered nowadays as an essential requirement for 
a language supporting semantic data model features [35]. 
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There are, however, differences between IS-A hierarchies and the type hierar- 
chies introduced in the previous section: 

(1) The subtype notion in Galileo refers to a static aspect of the language, and 
has been introduced to establish a compatibility rule among all the possible 
values of a type and those of its supertypes. 

(2) An IS-A hierarchy (e.g., Students IS-A Persons) involves two different 
notions. First, it establishes an existence constraint among the elements of 
Students and Persons present in the database: the elements of Students are 
always a subset of the elements of Persons (extensional notion). Second, it 
establishes a subtype hierarchy between the type of the elements of Students 
and Persons. Therefore, an element of Students can be used as an argument 
of any operation defined for elements of Persons (intensional notion). 

In Galileo, the two notions behind the IS-A hierarchy are expressed with two 
distinct mechanisms: the type hierarchy, to deal with the intensional aspect, and 
the subclass, to deal with the extensional aspect. This distinction increases the 
modeling capability of the language because it allows the use of the type hierarchy 
independently of the subclass mechanism. 

There are three ways of defining subclasses: by subset, partition, or restriction. 
A subset class with elements of type T contains those elements of the parent 

class that have been included explicitly in the subclass with the proper operator 
in T. 

A partition class is like a subset class, but it enforces the additional constraint 
that its elements are not included in another subclass of the same partition. 

A restriction class contains all the elements of the parent class that satisfy 
some predicate, which is evaluated at the time of element construction. This 
predicate cannot be defined over modifiable or derived values. 

In all cases, when a new element is added to a subclass it then also becomes 
an element of the parent class. In the case of restriction classes, a new element 
must also satisfy the restriction predicate. 

Finally, the operator 

remove Expressionl, . . . , ExpressionN 

is provided to eliminate objects from a class and from its subclasses, and return 
the value nil only if the objects are not used as components of other elements. 
Otherwise, a failure is generated. “Expression i” must evaluate to a sequence of 
elements. 

The type of the elements of a subclass must be a subtype of the element type 
of the parent class. New attributes can be added with the and operator or old 
attributes can be redefined with the ext operator, but the following restrictions 
must be satisfied: 
(1) Nonoptional attributes may be added only when a subclass is defined as a 

subset or partition. 
(2) When a subclass is defined by restriction, then only derived, optional, or 

default attributes can be added. 

Subclasses can also be defined from more than one parent class, with the 
restriction that the type of the elements must be a subtype of the element type 
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of each parent class. An element of a subclass is always an element of all its 
parent classes. Some examples follow to clarify these points: 

PublicEmployees restriction of Employees class 
PublicEmployee c, is Employee 

The elements are the same as the Employee class. 

DowntownDepartments restriction of Departments 
with Address = “Downtown” 

class 
DowntownDept c-, 

(is Department 
ext ManagerSalary := derived Salary of (at Manager)) 

The elements of the DowntownDepartments class are all the departments in 
Downtown. 

Managers partition of Employees 
with Secretaries, Craftsmen class 

Manager c, (is Employee and Bonus: num) 

Secretaries partition of Employees 
with Managers, Craftsmen class 

Secretary c, is Employee 

Craftsmen partition of Employees 
with Secretaries, Managers class 

Craftsman c, is Employee 

Carpenters subset of Craftsmen class 
Carpenter t, is Craftsman 

Bricklayers subset of Craftsmen class 
Bricklayer c-, is Craftsman 

The Employees are partitioned into three disjoint subsets, while the Craftsmen 
have been refined into two overlapping subsets of instances. In all the above 
cases, the classes must be populated explicitly. 

The predicate alsoin is provided to check whether or not an object of one class 
also belongs to a subclass: 

Expression alsoin Subclass 

Expression must evaluate to an object of a class. 
The following operator is used to include an element of a class in a subclass 

with elements of type T: 

inT (Expressionl, Expression2) 

Expression1 must evaluate to the object to be included in the subclass, while 
Expression2 must evaluate to a value of the representation type T. The operator 
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checks that the values of the corresponding attributes of Expression1 and 
Expression2 are the same. Expression2 can be omitted when an object of a 
subclass has the same attributes as an object of the superclass. 

Finally, to operate on an object of a parent class as if it were the element of a 
subclass, the object must be retyped with the following operator: 

Expression likein Subclass 

Expression must evaluate to an object of a class. The result is the object as 
member of Subclass. This operator is needed due to the static type checking 
discipline. 

7. ENVIRONMENTS AS A MODULARIZATION MECHANISM 

The languages hitherto proposed for conceptual modeling do not provide features 
to help the designer to develop and test a schema incrementally or to express the 
overall structure of a schema in terms of smaller related parts. This issue has 

been addressed in Galileo by using the environment, whch is a denotable value, 
as a modularization mechanism [5]. As will be shown in the sequel to this paper, 
the environment operators previously defined can be used to structure a schema 
in a way similar to that suggested for theories by Burstall and Goguen in their 
specification language Clear [ 231. 

Another use of environments is to deal with data and operations as a single 
unit which can be accessed by programs. This problem has also been addressed 
in ADAPLEX with a specialized form of Ada packages [49]. In fact, a drawback 
to commercial DBMSs is that no kind of procedural knowledge can be described 
in the schema, whether “derived” information or application domain oriented 
operations. In other words, in these systems data can be shared, but the proce- 
dural knowledge cannot: it must be embedded in the applications. The inclusion 
of the operations in the schema has the following advantages: 

(1) The same operations on the database are not duplicated in all the programs 
that need them. 

(2) The database schema does reflect all the knowledge available about the 
application domain. In particular, the schema contains not only the descrip- 
tion of the structure of the objects and the constraints, but also the operations 
on the objects, which complete their semantics. 

(3) It is possible to constrain user programs to operate on the database through 
a set of predefined operations, especially designed to include critical design 
choices, such as integrity preservation. 

Environments also have other useful applications. First, it is the mechanism 
used by Galileo to deal with persistence without resorting to specific data types, 
such as files of programming languages. Second, to deal with evolving applica- 
tions, the environment is used to establish explicitly the way in which new 
applications interact when they use common data. Finally, the environment is 
used to define application-oriented views of data in a similar way to the view 
mechanisms of DBMSs. 
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7.1 Persistence 

Temporary values exist in the system only during the execution of the expression 
in which they are defined. None of the abstraction mechanisms described previ- 
ously have the property of defining persistent values. For instance, user programs 
may also contain class definitions, if temporary classes must be kept while 
running an application. To deal with persistence, a global environment is assumed 
in which all values are automatically maintained. Such an environment is 
managed by the system that supports the language. For other approaches to the 
treatment of persistence as an orthogonal property of data, see [ 101. 

The global environment is extended by adding new bindings with the command 
use. In fact, for user protection, a warning is generated if use is used with 
identifiers already bound in the current environment. Instead of having a single 
set of unrelated definitions and values, as imposed by the interactive approaches 
of LISP top level and APL workspace, the user can fruitfully employ the 
environment mechanism to structure the global environment. For instance, the 
following is the definition, at top level, of an environment Personnel with two 
permanent classes (for brevity, defined operations are omitted): 

use 
Personnel := 

(ret Departments class 
Department c, 

(Name: string 

and Manager: var Employee 
and Budget: num) 
key (Name) 

and Employees class 
Employee c, 

(Name: string 
and Salary: num 
and Dept: var Department) 

key (Name)); 

Each expression is evaluated inside an environment, initially the global one, 
called the current environment. Any environment that can be accessed from the 
global environment can become the current one with the command “enter 

Environment”, while to return to the global environment there is the command 
quit. Since the language is expression-based, it is possible in the current envi- 
ronment to evaluate any expression by simply typing it. For example, assuming 
that the classes in Personnel have already been populated, a simple interactive 
session is? 

enter Personnel: 

To get the names of all the employees with a salary less than the average salary 

1 A more elaborate session is reported in [4]. 
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of their department: 

for x in Employees 
with Salary of x 

< avg(for y in Employees 
with at Dept of x = at Dept of y 
do Salary of y) 

do Name of x; 

To add a new employee to the Research department: 

mkEmployee 
(Name := “Brown” 
and Salary := 4 
and Dept := get Departments with Name = “Research”); 

7.2 Encapsulation 

Another use of the environment mechanism is to model a schema as a set of 
interrelated units. Each unit encapsulates data and operations that are closely 
related. For instance, let us assume that we are interested in describing as distinct 
units data relevant to the planning and administration departments of our 
hypothetical firm, although these departments share data of the environment 
Personnel: 

use Planning := 
(Personnel 
and Projects class 

Project c, 
(Name: string 
and Budget: num) 

key (Name)); 
use Administration := 

(Personnel 
and Suppliers class 

Supplier c, 
(Name: string 
and Address: var string 
and Credit: var num) 

key (Name)); 

Note that, because of the semantics of environment operators, the Personnel 
environment is shared by Planning and Administration, so that any updating of 
a class in any environment will be reflected in all the others. 

7.3 Refinements 

It is possible to start with one environment and to generate others by extending 
the environment with new dgfinitions. Thus, data concerning the same applica- 
tion are visible at different levels of detail. 

use DetailedPersonnel := 
(Personnel 
and Branches class 

Branch t, 
(Name: string 
and Address: string 
and Other: string) 

key (Name) 
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ext Special Employees subset of Employees class 
SpecialEmployee c-* 

(is Employee 
and PrivateData: string)); 

7.4 View Modeling 

To provide controlled access to the database, it is possible to give a different 
view of an environment by excluding some of its data or operations. 

use OnlyDepartments := Personnel drop Employees 

In OnlyDepartments, Employees are not visible, while in the following environ- 
ment only the names of the employees and the names of the departments where 
they work can be accessed: 

use EmployeesView := 
(use Personnel 
in Employees := 

derived for e in Employees 
do (e ext NameOfDept := Name of Dept) 
drop Dept, Salary); 

The expression “Id := derived Expression” denotes an environment in which 
the only association is between the Id and a virtual value, which is obtained by 
evaluating Expression every time the value of Id is requested. All the operators 
used to query a class can be applied to Employees, which therefore behaves like 
a view of relational database. 

7.5 Logical independence 

The environment operators allow the designer to make applications independent 
from changes in an environment, as long as the old view of the database is 
derivable from the redefined environment. For instance, let us assume that an 
application program was designed to work in the DetailedPersonnel environment 
on Branches of a certain area, “Downtown”, to retrieve data. The database was 

then extended to include Branches in other areas, with the elements type 
redefined as 

Branch c, 
(Name: string 
and Address: string 
and Area: string 
and Other: string) 

In order to make the old program independent of these changes, it can be used 
in the following environment: 

use NewDetailedPersonnel := 
(DetailedPersonnel 
ext Branches := 

derived for b in Branches 
with Area = “Downtown” 
do b drop Area); 
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8. TRANSACTIONS AND FAILURE HANDLING 

Every top level Galileo expression is a transaction. That is to say, it is considered 
an atomic action against the database: once invoked, it either completes all its 
operations or behaves as if it were never invoked. Transactions may fail due 
either to a hardware or software failure or to a run-time program error. In Galileo 
it is possible to cause such an event, and also to sense its occurrence so as to 
perform an appropriate action. The failure of a transaction causes an interruption 
of the normal control flow, and, in addition, all updatings from the beginning of 
the transaction are undone. 

A transaction can be either simple or compound. Each expression typed in at 
top level by the user is a simple transaction. Therefore, if the expression fails, 
the persistent data are unaffected. However, if more than one top level expression 
must be considered as a single transaction, the expressions must be enclosed in 
“transaction brackets”: transaction and end-transaction. A compound trans- 
action is a sequence of top level expressions enclosed in such brackets. 

Since any operation whether predefined or defined that is accessible to the 
user may be applied as a simple transaction, whenever the schema designer 
defines operations, he or she is in fact defining transactions. As a consequence, 
transactions can be nested by defining a new function as a composition of 
predefined ones: an action, atomic at a higher level of abstraction, may be 
decomposed into subatomic actions to perform, for example, a stepwise updating 
of the database [30]. A failure of inner transactions can be controlled, and 
alternative transactions can be started to achieve the desired effect. Consider, 
for example, the case of booking a tour with an airline reservations system. Even 
if the reservation of single parts of the tour succeeds, unless all the tour has been 
reserved, the effects of previous operations must be revoked, and a new attempt 
could be made with a different airline, or with a different schedule. The different 
attempts should be treated as alternative transactions, and the outermost one 
should fail only if all attempts fail. Another important advantage of nested 
transactions is the ability to define transactions not knowing the context in 
which they might be used [9]. 

The linguistic construct for handling failures has a block structure, unlike the 
usual proposed commit and abort statements [30]: “Expression if-fails Expres- 
sion”. If the first expression fails, its effects are undone, and the value of the 
whole construct is that of the second expression. Otherwise, it is that of the first 
one with the effects preserved. 

Failures have associated with them a string that can be used for a selective 
handling of failures with the case-fails construct. For failures which occur 
during the execution of primitive operations, the string returned is the name of 
the operation. The user can generate a failure with the expression “failwith 
string” or with fail, which is equivalent to “failwith “fail”“. When a failure 
occurs, the normal execution path is interrupted, control is passed to the first 
surrounding failure handler, and the effects are undone. If no handler is present, 

the top level expression fails, all its effects are undone, an error message is 
printed, and the execution terminates. Let us consider an example with the 
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selective failure handler: 

Employee class 
Employee c, 

(Name: string 
and Salary: num 
and Dept: Department) 

key (Name) 
assert with “LowPay” Salary < Minimum 
assert with “HighPay” Salary < (Budget of Dept)/lO 

ext ret NewEmployee(AName: string, ASalary: num, ADept: string):Employee := 
mkEmployee 

(Name := AName 
and Salary := ASalary 
and Dept := get Departments with Name = ADept) 

case-fails 
[“LowPay”] 

NewEmployee(AName, Minimum, ADept) ] 
[“HighPay”] 

NewEmployee(AName, 
(Budget of get Departments with Name = ADept)/lO, 
ADept) 

9. CONCLUSIONS 

A strongly-typed programming language for database applications has been 
presented. Unlike other proposals, which integrate a relational data model into 
a conventional, general-purpose programming language, e.g., Pascal, [8, 40, 43, 
46, 521, we have integrated into the framework of the programming language 
Edinburgh ML [29], a strongly-typed interactive language, features to support 
semantic data model abstraction mechanisms (classification, aggregation, and 
specialization) as well as abstraction mechanisms of modern programming lan- 
guages (types, abstract types, and modularization). 

The approach adpoted is therefore closer to that of ADAPLEX, which extends 
Ada with new features to support databases modeling [49]; although the features 
included in Galileo, notably the type hierarchies, are not ad hoc for databases, 
but can be used independently. This approach was preferred for two reasons. 

First, we were interested in studying a uniform approach towards the design 
of a modern strongly-typed programming language, which would include features 
to support semantic data models. We believe that this paper provides evidence 
of how types, abstract types, type hierarchies, classification, aggregation, spe- 
cialization, and modularization can be integrated in an expression-based language 
that is statically type-checkable. In particular, we have shown the effectiveness 
of the environment, a novel abstraction mechanism, in the context of conceptual 
modeling, for structuring complex applications and for view modeling. 

Second, we were interested in developing an interactive database designer’s 
workbench, which would integrate a set of tools for creating, testing, and 
implementing on a traditional DBMS a database design [2]. Since, in the short 
term, we have mainly been interested in using this aid for conceptual modeling, 
we have found it more convenient to design a new language for dealing with the 
specific problems in this area. We have already implemented a prototype version 
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of the system, called Dialogo, which presently supports a significant subset of 
Galileo [4]. Tools are available to edit a conceptual schema, query the definitions, 
and load and query test data. An interesting feature of Dialog0 is that it is based 
on a top level cycle in which a Galileo expression from the user is accepted, 
executed, and the result displayed while the effect of the user expression on the 
database is permanently preserved. An expression may be the invocation of a 
single predefined function or any complex expression of the language. 

Future studies on Galileo will proceed along the following lines: 

(1) Extensions. We will extend the language to provide (a) a form-oriented, 
input/output interface; (b) a process construct to model interactions with 
the users and database evolution, with an approach similar to that adopted 
in TAXIS. 

(2) Implementation. The Dialog0 system is being reimplemented by extending 
the present implementation of the ML compiler, available on a VAX 11/780 
running the UNIX’ operating system. 

(3) Applications. With the new implementation of Dialogo, it will be possible to 
effectively experiment with the design of database applications using Galileo. 
This will also provide the opportunity to test the tools available in our 
designer’s workbench against the demands of specific user environments. 
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