
Galileo: A Strongly-Typed, Interactive
Conceptual Language

ANTONIO ALBANO

Universita’ di Pisa

LUCA CARDELLI

AT&T Bell Laboratories

AND

RENZO ORSINI

Universita’ di Pisa

Galileo, a programming language for database applications, is presented. Galileo is a strongly-typed,

interactive programming language designed specifically to support semantic data model features

(classification, aggregation, and specialization), as well as the abstraction mechanisms of modern

programming languages (types, abstract types, and modularization). The main contributions of Galileo

are (a) a flexible type system to model database structure and semantic integrity constraints; (b) the

inclusion of type hierarchies to support the specialization abstraction mechanisms of semantic data

models; (c) a modularization mechanism to structure data and operations into interrelated units (d)

the integration of abstraction mechanisms into an expression-based language that allows interactive

use of the database without resorting to a new stand-alone query language.

Galileo will be used in the immediate future as a tool for database design and, in the long term, as

a high-level interface for DBMSs.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs-

abstract data types; data types and structures; H.2.1 [Database Management]: Logical Design-

data models; schema and subschema; H.2.3 [Database Management]: Languages-data description

languages (DDW; data manipulation languages (DML); query languages

General Terms: Design, Languages

Additional Key Words and Phrases: Type hierarchy, database semantics, integrity constraints,

exception handling.

1. INTRODUCTION

1.1 Motivation

If complex applications utilizing DBMS technology are to be developed, the
crucial aspects of these applications must be desjgned in a high-level language
with features that differ considerably from those supported by traditional DBMSs

This work was supported in part by the CNR (Italian National Research Council), Progetto

Finalizzato Informatica, Obiettivo DATAID, and in part by the Minister0 della Pubblica Istruzione.

Authors’ addresses: A. Albano, R. Orsini: Dipartimento di Informatica, Universita’ di Pisa, Corso

Italia 40, I-56100 Pisa, Italy; L. Cardelli: AT&T Bell Laboratories, Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

0 1985 ACM 0730-0301-85/0600-0230 $00.75

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985, Pages 230-260.

Galileo: A Strongly-Typed, Interactive Conceptual Language 231

[18, 34, 35, 38, 541. Let us call this activity conceptual modeling, its result a
conceptual schema, and the language used the conceptual language.

There are many opinions as to the role of the conceptual schema during the
design process. These ideas, which are reflected in the features of the conceptual
language, are briefly outlined below.

(1) The conceptual schema documents the database structure in terms very
similar to those employed by users to describe an application. It is therefore a
model that will be used during the entire life cycle of the database for consider-
ations on the logical data structure and to verify informally that this structure
can adequately satisfy user requirements, before the implementation begins. As
the conceptual schema is only used for documentation, it does not have to be
given in an executable language. The schema is automatically processed only to
provide useful reports. An early significant example of this approach is the PSL/
PSA design environment [50].

(2) A second class of proposals extends the previous approach in a direction
that more closely resembles the software specification problem. This perspective
is particularly interesting because of the reciprocal influences of techniques and
methodologies [l, 19, 21, 481. The rationale behind this approach is that since a
complex database implementation is a long-term evolving activity, it is essential
that the conceptual schema be carefully designed and tested to reduce logical
errors in the implementation, and to safely incorporate the new requirements
which will arise during the operational phase. The features of the conceptual
language are at present still under discussion. In particular, attention is being
given to operational aspects, besides the structure of data. However, in addition
to abstract specifications, there are a number of pragmatic reasons why a high-
level, executable language should be used in conceptual design. In fact, such a
language could also be used to test the adequacy of the conceptual schema, if we
do not care about execution efficiency [16, 26, 34, 391.

(3) A third class of proposals considers a conceptual language as a tool that is
much more than a mere step on the way to implementing a database application.
To design complex, interactive computerized information systems, a program-
ming language with abstraction mechanisms to model databases is needed.

There are a few proposals that have adopted the last approach, although
general agreement has been reached only with regard to certain basic features of
the language [22, 31, 32, 37, 491. Such a language should provide constructs to
aid the designer in expressing, as far as possible, the semantics of the application
in the conceptual schema, rather than in the application programs. At the least
it should provide the following features:

(a) data defined both declaratively, with abstraction mechanisms (aggregation,
classification, and specialization), and procedurally (derived data);

(b) semantic integrity constraints, both standard (such as keys and mandatory
values) and those described by a general-purpose constraint specification
language;

(c) operations to give the behavioral semantics of the data in the schema; and
(d) a sound mathematical foundation for the language.

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

232 l A. Albano, L. Cardelli, and R. Orsini

1.2 Assumptions

This paper describes the features of the conceptual language Galileo, a program-
ming language that supports semantic data model features. It therefore belongs
to the third approach outlined above. The features presented here have been
partially implemented [4]. These are the first results of a project that aims at
designing and implementing a prototype system, Dialogo, to experiment with a
stand-alone programming environment and to support the development and
testing of database design [2].

The approach adopted in designing Galileo takes into account the requirements
previously described, but also assumes that a conceptual language should provide

(a) a set of independent constructs to be used in any combination to achieve
simplicity and expressiveness;

(b) features to design and test the solution incrementally;
(c) a modularization mechanism to decompose the design into meaningful mod-

ular units that correspond to a description of the database at different levels
of successive refinements, or to application-oriented views of the database.

1.3 Relation to Previous Work

The design of Galileo has been influenced by two areas of research: conceptual
modeling and programming languages. Although these areas have a number of
overlapping issues, there are problems to be solved if the results from both areas
are to be successfully integrated [18, 201.

Galileo applies results from the conceptual modeling sector for features related
to object-oriented databases, declarative definitions of constraints, multiple de-
scriptions of objects, and view modeling [ll, 13, 17, 31-33, 35, 37, 42, 45, 47, 49,
531.

Galileo borrows features such as data types, abstract types, and modularization
from the programming language area [44]. Although the utility of such features
is recognized both pragmatically and theoretically, they have mainly been studied
for applications to temporary data (i.e., not involving databases).

The database proposals that have most influenced the design of Galileo are
TAXIS, DIAL, and ADAPLEX. TAXIS is notable for introducing the basic
knowledge representation mechanisms of semantic networks on data, transac-
tions, and exceptions and for its approach to user dialogue modeling [12]. DIAL,
which has evolved from SDM [32], uses data types, classes, derived classes, the
“port” mechanism to deal with user interaction, and features to control concur-
rency at the conceptual level [31]. Finally, ADAPLEX uses semantic data model
features in a strongly-typed programming language, namely, Ada [49].

The main contributions of Galileo are

(1) the integration of features to support semantic data model abstraction
mechanisms within an expression-based, strongly-typed programming lan-

guage;
(2) a systematic use of both concrete and abstract types to model structural and

behavioral aspects of a database;
(3) the inclusion of type hierarchies to support the specialization abstraction

mechanism of semantic data models as well as a software development
methodology by data specialization [5, 141;

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 233

(4) the proposal of another abstraction mechanism, modularization, to organize
a conceptual scheme in meaningful and manageable units, so as to deal with
data persistence without resorting to specific data types such as files of
programming languages, and to deal with application-oriented views of data
in a similar way to the view mechanism of DBMSs [7];

(5) a small number of independent primitive features that can be applied or-
thogonally, that is, in any combination.

The basic ideas of Galileo have been investigated in ELLE, a programming
language designed to deal uniformly with temporary and persistent complex data,
that is, without resorting to special data type constructors to deal with permanent
data [3]. Both ELLE and Galileo borrow many of their features from the
functional programming language ML [29]. A comparison of ADAPLEX, DIAL,
Galileo, and TAXIS is reported in [15].

1.4 Structure of the Paper

The purpose of this paper is to illustrate the features of Galileo. The schema
fragments used as examples are intended only to illustrate the main concepts,
and do not cover all the language features. A complete description of Galileo
exists as a technical report [6]. The semantics of Galileo are described informally,
but its formalization, using a denotational approach, is reported in [24, 411.
Pragmatic aspects of Galileo (schema design methodology and designers’ reac-
tions to the language) are also beyond the scope of this paper; they are currently
being studied in the context of a joint project by a group of Italian universities
and companies sponsored by the Italian National Research Council (CNR) [27].
The goal of the project is the development of a database design methodology,
together with a set of integrated computer-assisted tools covering all aspects of
the design process, including application analysis, conceptual modeling, and
logical and physical design in both centralized and distributed environments.

The next section presents the basic data modeling features of Galileo. Section
3 describes the operators that affect the environment used to evaluate expres-
sions. Section 4 describes the type system of the language, and Section 5 the
notion of type hierarchies. Section 6 presents the class mechanism used to build
an object-oriented view of a database, with classification, aggregation, and spe-
cialization abstraction mechanisms. Section 7 presents the modularization mech-
anism to structure a schema and to deal with persistent data. Section 8 illustrates
the failure-handling mechanism together with transactions modeling. In the
conclusions, we comment upon the implementation now underway and on our
future plans.

2. OVERVIEW OF GALILEO

Galileo supports the following abstraction mechanisms for database modeling:

Classification. Entities being modeled which share common characteristics are
gathered into classes. All elements of a class have the same type. The name of
the class denotes the elements present in the database. The elements of a class
are represented uniquely, that is, only one copy of each element is allowed.

Aggregation. Elements of classes are aggregates; that is, they are abstractions
having heterogeneous components, and may have elements of other classes as

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

234 l A. Albano, L. Cardelli, and R. Orsini

components. Associations among entities are represented by aggregations in a
Galileo database. Components of aggregates can be collections of homogeneous
values to represent, for example, multivalued associations among entities. Be-
cause of the unique representation of elements of classes, any modification of an
element is reflected everywhere that element appears as a component.

Generalization. Elements of a class can be described in different ways by means
of subclasses. Subclasses are derived from classes by using a predefined set of
operators. Elements of a subclass also belong to their parent class. The type of
the elements of a subclass is a subtype of the type of elements of the parent class.
The subclass mechanism includes the IS-A hierarchy of semantic networks and
semantic data models.

Modularization. Data and operations can be partitioned into interrelated mod-
ules. A complex schema can therefore be structured into smaller units. For
instance, a unit may model a user view or a description of the schema produced
by a stepwise refinement methodology.

Galileo also has the following features:

(1) It is an expression language; each construct is applied to values to return a
value.

(2) It is an interactive language; the system repeatedly prompts for inputs and
reports the results of computations; this interaction is said to happen at the
top level of evaluation. At the top level one can evaluate expressions or
perform declarations. This feature allows the interactive use of Galileo
without a separate query language.

(3) It is higher order, in that functions are denotable values of the language.
Therefore, a function can be embedded in data structures, passed as a
parameter, and returned as a value.

(4) Every denotable value of the language possesses a type:
(a) A type is a set of values sharing common characteristics, together with

the primitive operators which can be applied to these values.
(b) The predefined types of the language are bool, num, string, equipped

with the usual operators, and the type null, which is a singleton set with
the element nil equipped with the equality operator.

(c) The type constructors available to define new types, from predefined or
previously defined types, are tuple (record), sequence, discriminated
union (variant), function, modifiable value (reference), and abstract
types. There are two constructors for abstract types: w and c-). The
former is similar to CLU clusters, ALPHARD forms, or Euclid modules:
it is used to define a new type together with the available operations.
The latter is similar to the type constructor of Ada: it defines a new type
which inherits the primitive operations of the representation type.

(d) The type system supports the notion of type hierarchy; if a type t is a
subtype of a type t’, then a value of t can be used as argument of any
operation defined for values of t ‘, but not vice versa, because the subtype
relation is a partial order.

(5) Every Galileo expression has a type. The meaning of “an expression e having
type t” is that the value of e possesses the type t. In general, any expression
has a type that can be statically determined, so that every type violation can

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 235

be detected by textual inspection (static type checking). However, if the type
checker is not able to ascribe a type to an expression, the user must specify
the type with the notation “Expression: Type”. The language has been
designed to be statically type-checkable for two reasons: first, for the consid-
erable benefits in testing and debugging; second, because programs can be
safely executed disregarding any information about types at run time. Exe-
cution time testing will be required for constraints only. Finally, static type
checking allows a typechecker to give the correct meaning to overloaded
operators (i.e., operators that can be used with operands of different types).

(6) Class elements possess an abstract type and are the only values which can
be destroyed. Predefined assertions on classes are provided and, if not
otherwise specified, the operators for including or eliminating elements of a
class are automatically defined.

(7) A control structure is provided for failures and their handling.

The following simple schema illustrates Galileo. The example concerns de-
partments and employees in a firm. The definitions are collected in the Organi-
zation schema.

Organization := (
ret Departments class

Department c,
(Name: string
and Budget: num
and Address: Address
and Manager: var Employee
and Employees: var seq Employee)
key (Name)

and Employees class
Employee w

(Name: string
and Salary: var num
and NameOfDept :=

derived Name of
get Departments with this isin (at Employees))

key (Name)

and NewEmployee(AName: string, ASalary: num): Employee :=
mkEmployee (Name := AName and Salary := var ASalary)

and VipEmployees subset of Employees class
VipEmployee w

(is Employee
and VipProperty: string)

and type Address :=
(Street: string
and Zip: string
and City: string)

drop mkEmployee)

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

236 l A. Albano, L. Cardelli, and R. Orsini

The ret is used for recursive functions or for mutually dependent types, such
as Department and Employee.

Departments and Employees are examples of base classes, while key is an
example of predefined class constraint to assert that the elements of the classes
must differ in the value of the Name attribute.

An attribute of an element of a class may be primitive or derived. A primitive
attribute is one that is subject to direct initialization and updating. The value of
a derived attribute is automatically computed from other information in the
database and cannot be updated: every time the value of the attribute is used, it
is as if the associated expression were evaluated to derive the value. An example
of a derived attribute is NameOfDept in Employees, where “this” is bound to the
current element of the class.

An attribute can be modified if and only if it is defined as type var, otherwise
it is constant, and any attempt to update the value is detected statically.

The function NewEmployee is an example of a defined operation included in
the schema. It is the only operation that can be used to create new elements of
the class Employees, since the drop operator prevents the predefined mk-

Employee operation from being exported outside the schema definition. For
Departments and VipEmployees, the functions mkDepartment and mkVip-
Employee are available.

VipEmployees is an example of a subclass. It contains all those employees who

are believed to be very important. The elements of a subclass must have a type
that is a subtype of the elements of the parent class. For instance, the type of
the elements of VipEmployees is that of Employee with the additional attribute
VipProperty.

This example shows how classes are used to deal with sets of related objects.
The approach has some similarity to that adopted for relational databases: in
both cases the associations among data are described by means of the value of
an attribute. However, in relational databases, data are tuples of simple values
collected in relations, and associations among them are represented by assigning
as value to an attribute the key value of another tuple. To represent associations
in Galileo, the mechanism of “data sharing” is used instead, so that an element
of a class can be shared as a component by many others.

3. THE BASIC ENVIRONMENT OPERATORS

An important notion in Galileo is that of enuironment, as it used in the denota-
tional semantics description of programming languages [51]. It is useful to
distinguish between the definition of an environment and its run-time interpre-
tation.

An environment definition is a map from identifiers to definitions of types or
values; it is used to typecheck declarations and expressions before their evalua-
tion.

A run-time environment is a map from identifiers to denotable values of the
language, obtained by evaluating an environment expression. The evaluation of
any expression takes place in the context of an environment, which specifies
what the identifiers in use denote. Types are not present in run-time environ-
ments since they are not denotable values; that is, types cannot be produced as
the result of expressions.

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 237

An environment definition is given with the following operators, where A and
B stand for environment expressions.

Id := Term Introduces a new binding between the identifier Id
and Term, which is the definition of a value or a
type.

AandB

Aext B

introduces the bindings of A and B, but the bindings
of A cannot be used in B and vice versa.
introduces the bindings of B and those of A not
redefined in B. The bindings of A can be used in B,
but not vice versa. In other words, A is extended
with B.

ret A

type A

A drop Id

A take Id

A rename Id by NewId

introduces the bindings of A which can be used
recursively in A.
introduces the bindings between identifiers and
types defined in A.
introduces the bindings of A, except the one with
binder Id.
introduces only the binding with binder Id defined
in A.
introduces the bindings of A, but the binder Id is
renamed as NewId.

For instance

type b := int
ext ret fact(x:b):b :=

if x = 0 then 1 else x*fact(x - 1)
ext a := fact(3)
ext c := fact(4)

The binders defined are b, fact, a, and c bound respectively to the type int, the
factorial function, the expression fact(3), and the expression fact(4). Once this
environment expression has been evaluated, it denotes the set of associations (a,
6), (c, 24), and (fact, the internal representation of the function).

The expression “use A in Expression” evaluates “Expression” in the current
environment temporarily extended with the bindings of A.

use a := 3
andb:=4
ina+b yields 7

Other environment operators will be introduced in the sequel to this paper.

4. THE TYPE SYSTEM

All denotable values of the language possess a type. A type is a set of values,
possibly infinite, together with the primitive operations that can be applied to
these values. The predefined types of the language are bool, num, and string,
equipped with the usual operators, and null, which is a singleton set whose only
element is nil, equipped with the equality operator.

Type constructors exist to define a type for the following values: tuples,
discriminated unions, sequences, modifiable values, functions, and abstract val-
ues.

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

238 l A. Albano, L. Cardelli, and R. Orsini

4.1 Tuples

The data structure tuple, such as the records of programming languages and
traditional database models, consists of a set of (identifier (attribute or label),
denotable value) pairs. The order of the pairs is unimportant. Examples of
denotations of tuples are

PaulBrown :=
(Name := “Paul”
and Surname := “Brown”
and BirthDate := “06/12/1941”)

Department :=

(Name := “Computer Science”
and NumOfEmployee := 10
and Chairman :=

(Name := “John”
and Surname := “Moore”
and Salary := 80))

We say that a value is associated with an identifier when it appears in a pair
together with that identifier.

Tuples are equipped with the of operator which returns the value associated
with an identifier (of is right associative):

Name of
(Surname := “Moore”
and Name := “John”
and Salary := 80) yields “John”.

A tuple type consists of an unordered set of pairs (identifiers, type). Two tuple
types are equal if they have equal sets of pairs.

Tuples in Galileo are just environments constructed with any environment
operators except type, although we continue to use the two terms to indicate
their use as a data structure (tuple) or as a binding in which evaluation takes
place (environment). The following example shows how to construct and use
circular data with the operators ret, and, and use:

use ret Cs :=
(Name := “Computer Science”
and Budget := 100
and Chairman := Smith)

and Smith :=
(Name := “John”
and Salary := 100
ext Deductions := Salary* 0.1
and Department := Cs)

in
Deductions of Chairman of Cs yields 10

A discriminated union, or variant, type consists of a set of alternative values.
It is different from the mathematical union of sets in that each value retains an
inspectable tug, indicating the alternative to which it belongs. Two variant types
are equal if the sets of their pairs (tag, type) are equal. An example of variant

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language l 239

type is

type Employee :=
(Technician: (Name: string and Skill: string)
or Secretary: (Name: string and TypingSpeed: string))

Values of such a type are denoted by giving the expected tag:

JohnSmith := (Secretary := (Name := “John Smith” and TypingSpeed := “High”))
MarySmith := (Technician := (Name := “Mary Smith” and Skill := “Analyst”))

Two basic operators are defined on variants: is, to test the tag of a variant
value, and as, to get the value contained in the variant. Suppose w denotes a
value of type Employee, then a legal Galileo expression is

if w is Technician
then Skill of (w as Technician)
else TypingSpeed of (w as Secretary)

The case construct is a convenient form to test the tag of a variant and to bind
the value to a local identifier:

case w when
(Technician := x. Skill of x
or Secretary := y. TypingSpeed of y)

The Pascal-like enumeration type (Id or. . . or Id) is an abbreviation for
(1d:null or. . . or Idmull), and values of such a type can be denoted with (Id)
instead of (Id := nil). “optional t” is an abbreviation for (bound: t or unbound:
null). If x is a value of type “optional t”, it can be used in any expression as an
abbreviation for “x as bound”.

4.2 Sequences

A sequence is a finite ordered collection of homogeneous elements (i.e., data with
the same type). Sequences differ from sets in the ordering and multiplicity of
elements.

[3; 4; 6*3; 41 is a sequence of integers
[(Name := “Jim” and Age := 20);
(Name := “Alice” and Age := 31)] is a sequence of tuples

A sequence type is denoted by seq followed by the type of the elements. For
instance, the following are the types of the above sequences:

seq num
seq (Name: string and Age: num)

Since each expression must have a type that is statically determinable, empty
sequences must be followed by their types, as in

[I: seq num
[I: seq (Name: string and Age: num)

Two sequences are equal when they meet three conditions: they have the same
element types, the same cardinality, and their elements are pairwise equal, in the
correct order. Two sequence types are equal if they have equal element types.

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

240 l A. Albano, L. Cardelli, and R. Orsini

The following examples show some operators on sequences:

first [2;3;2] yields 2
rest [2;3;2] yields [3;2]
[1;2] append [3;4;2] yields [1;2;3;4;2]
setof [1;2;2;1] yields [1;2]
3 isin [2;3;5] yields true
emptyseq PI yields false

first and rest generate a failure when applied to an empty sequence.

all x in [2;3;2;3;6] with x > 2 yields [3;3;6]
all p in [(Name := “Jim” and Age := 20); (Name := “Alice” and Age := 31)]
with Age of p > 20 yields [(Name := “Alice” and Age := 31)]

The following semantically equivalent expression is preferred for sequences of
tuples, since it avoids the introduction of the explicit binder:

all [(Name := “Jim” and Age := 20); (Name := “Alice” and Age := 31)]
with Age > 20

To evaluate an expression for each element of a sequence, such as “Select the
names of persons aged more than 20”, the following expression can be used:

for [(Name := “Jim” and Age := 20);(Name := “Alice” and Age := 31)]
with Age > 20 do Name yields the sequence [“Alice”]

The conventional aggregate functions sum, average, and so on, are available
for sequences of numbers.

4.3 Modifiable Values

Values associated with the previous types cannot be modified. To introduce
“modifiability” in the language, for example, to modify the value of a tuple pair
or to change the value associated with an identifier in the environment, a new
kind of value, the location, is introduced. Its name and meaning is one that is
commonly used in the denotational semantics description of programming lan-
guages [51]. Locations reside in a time-varying structure, the store, and are
associated with values of any type, including other locations, since they are also
denotable values. The expression “var 3” denotes a new location which is
associated in the store with the value 3. The type of “var Expression” is “var
TypeOfExpression”, and two location types are equal if and only if their associ-
ated types are equal.

The operations on locations are getting the associate value, that is, that content
of the location; replacing the associated value with a new value of the same type
(assigning a value); and testing for equality between locations. For instance,

use x := var 3
in at x + 1 yields 4

The evaluation of at x gives the value associated with the declared location.
The assignment operator t is an infix binary operator. The value of the left

operand must be a location, while the value of the right operand must be a value
of the same type as the previous content of the location. This operation modifies

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language . 241

the store replacing the old value of the location and returns nil. For example,

use x := var 3
in (n c at x + 1; x) yields 4

where (El; . . . ; En) evaluates all expressions Ei sequentially and returns the
value of the last one.

4.4 Functions

Functional types are built by the operator +. The type (tx + ty) consists of all
the functions that map values of type tx to the result of type ty. The expression
“fun(x: tx): ty is Expression” denotes a function with a formal parameter x and
a body Expression that returns a value of type ty. The function possesses a type
(tx -+ ty). To define a function f with formal parameter x and body Expression,
one performs the declaration ‘Y(x: t): t’ := Expression”, equivalent to “f :=
fun(x: t): t’ is Expression”. To apply f to an actual parameter p, one evaluates
the expression “f(p)“. The body off is evaluated in the environment where f is
defined (static scoping) and extended with the bindings (formal parameters, value
of the actual parameter). The value of the body is returned as the result of the
application. The control structures available to define compound expressions are
sequencing, selection, repetition, and failure handling; these will be discussed in
Section 8.

4.5 Abstract Types

The types of the values presented so far depend on the structure of the values
only. That is, the type compatibility rule adopted is the so-called structural
equivalence rule. User-defined type names are used as abbreviations for the
structures they represent. These types are called concrete, in contrast with a new
kind of type, called abstract. Two user-defined abstract types are always different
(i.e., the type compatibility rule adopted for them is the so-called name equiua-
lence rule).

Abstract types are not abstract in the sense of algebraic abstract types, but
rather are analogous to CLU clusters, ALPHARD forms, and Euclid modules.
They are mechanisms to abstract representations of the data from their behavior.
Such behavior is defined by the designer in terms of the operations that can
manipulate the data. However, an abstract type can be used like any other type
in all the contexts where a type is expected. That is, user-defined abstract types
have the same status as primitive types, which can be regarded as predefined
abstract types provided by the language.

The main reason for introducing abstract types is protection, that is, to provide
a mechanism to define a new type together with the operations available on
values of that type. Thus, values of different abstract types are not compatible,
even though they have the same representation (e.g., a weight is different from a
height, although both are represented by integers). In this way, it is possible to
tailor unique operations for each type, which cannot be used for objects of other
types. For example, a function that tests a height and an age against a table of
standards cannot be misused by applying it to a weight and an age. Another

ACM Transactions on Database Systems, Vol. 10, NO. 2, June 1985.

242 l A. Albano, L. Cardelli, and R. Orsini

important protection introduced by abstract types is that programs are inde-
pendent of changes in data representation as long as the primitive operations are
the same.

To define abstract types, Galileo offers the following environment operator:

type Id w Type {assert [with “Name”] BoolExprJ

This environment expression introduces the following bindings:

(1) Id is bound to a new type with a domain isomorphic to the domain of the
representation type, Type, possibly restricted by the assertions.

(2) The identifiers mkId and repId are bound to two primitive functions, declared
automatically, to map values of the representation type into the abstract one
and vice versa:

mkId: Type + Id
repId: Id + Type

If an assert clause is present, BoolExpr is a Boolean expression on the values
of the type. The assertions impose constraints on data values, which are con-
trolled at execution time, when the data is created. If an assertion is violated,
the operation fails with the name of the operation or with the name of the
assertion, if present.

type Time w (hrs: num and mins: num)
assert use this

in hrs within (0,23) And mins within (0,59)

This declaration defines an abstract type Time, together with the primitive
functions mkTime and repTime. As an abbreviation, constraints on a property
can be specified directly in the corresponding pair declaration:

type Time w
(hrs: num this within (0,23)
and mins: num this within (0,59))

To define an abstract type with the representation hidden, but with user-
defined operations, the following definition might be used:

type Time w
(hrs: num this within (0,24)
and mins: num this within (0,60))

with Hours(t: Time): num :=
hrs of repTime(t)

and Minutes(t: Time): num :=
mins of repTime(t)

and MakeTime(n: num,y: num): Time :=
mkTime((hrs := x and mins := y))

This declaration exports an abstract type Time, together with three functions
MakeTime, Hours, and Minutes. The two primitive functions mkTime and
repTime are only available in the definitions that appear in the with part, but
they are not exported in the scope of the type declaration. The with construct
is not a special syntax for abstract types, but it is another environment operator:
A with B means that the types in A can be used in B, and they are exported

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 243

together with the definitions in B; the values in A (like mkTime and repTime)
can be used in B, but they are not exported. Abstract types are obtained from
the interaction of two orthogonal features: the isomorphism constructor * and
the environment operator with. Mutually dependent types can be defined with
the expression:

type ret
(uw .f.
and v - . . .

. . .

andzo .-.)
withop(...) := ...

. . .

andop(..-):= ...

To define new types, Galileo provides an additional environment operator:

type Id c, Type (assert [NamelBoolExpr)

This operator introduces the following bindings:

(1) A new type that inherits the primitive operators on the representation type.
The primitive operators retain their names, but this overloading does not
introduce ambiguities because the typechecker can infer the meaning of an
operator from the type of the operands. To restrict the set of operators to be
inherited, the operators drop or take on the representation type might be
used.

(2) The identifiers mkId and repId, as for the ti operator.

This environment operator has been included, since, in many cases, most of
the primitive operators on the representation type are also needed for the abstract
type, especially in database applications. The protection required is that the
operators must never be applied to values of different types; and this is the effect
of introducing a new type with this operator. When all the operators on the
representation type are inherited, this operator is equivalent to the type construc-
tor in Ada, where user-defined types are always different.

type PersonAge c, num this within (0,150)
drop mod,*

This declaration introduces:

(1) The new type PersonAge with a domain isomorphic to a subset of numbers.
(2) The primitive functions mkPersonAge and repPersonAge.
(3) The predefined operators on numbers translated on the type PersonAge,

except mod and *. The operators incorporate the control of the assertion, so
the expression “mkPersonAge(10) + mkPersonAge(1)” is equivalent to
mkPersonAge(10 + 1).

For example, another definition of Time, which introduces a new type equipped
with the selector operators “Hours of” and “Minutes of” and the functions
mkTime and repTime, is

type Time c,
(Hours: num this within (0,23)
and Minutes: num this within (0,59))

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

244 . A. Albano, L. Cardelli, and R. Orsini

In defining a new tuple type with the operator c-), it is possible to declare a
pair as default or derived:

Type Product
(Code: string
and SaleTax: default 0.06
and Price: var num
and Cost: var num
ext Profit:= derived(Price - Cost))

This declaration has the following meanings:
(1) In the parameter of the function mkproduct, the derived attributes are

ignored, and if default attributes are omitted, the specified value is assumed.
(2) Every time the selector “Profit of” is used on a value of type Product, the

associated expression is evaluated and its result is returned. If the derived
attribute is defined with the ext operator, the expression is evaluated
extending the definition environment temporarily with the pairs of the tuple.
When the and operator is used, the function is evaluated in the definition
environment.

5. TYPE HIERARCHIES

An important property of the Galileo type system is the notion of subtype: if a
type u is a subtype of a type v (u C v), then a value of type u can be used in any
context where a value of type v is expected, but not vice versa. The subtype
relation is a partial order. For instance, if a function f has a formal parameter of
type v, then an application of f to a value of type u is correctly typechecked
because no run-time errors can occur. It is important to stress the point that
since Galileo has a secure type system, the notion of type hierarchies is related
to that of well-typed expressions [24, 281: expressions that are syntactically well
typed are always semantically well typed (i.e., such expressions do not cause run-
time type errors, and give a value of the correct type). In Milner’s words, “well-
typed expressions do not go wrong” also [36] apply to hierarchies among types.

This notion of type hierarchies is different from the subtype concept of Ada,
but is similar to the subclass mechanisms of Simula 67 and Smalltalk. In Galileo,
this notion is extended to all the types, in the sense explained in the sequel to
this paper, while preserving two important properties: the language is still
strongly-typed and the functions need not be recompiled in order to be used on
parameters of any subtype.

With this mechanism Galileo supports the notion of programming by data
specialization, originally introduced in Simula 67 and generalized in TAXIS to
all the constituents of a database application: data, transactions, assertions, and
scripts [141. Complex software applications, especially those related to databases,
can be designed and implemented incrementally. Once a set of functions has
been designed and tested for the most general data, it can be used with data of
any subtype introduced later on in the software development process. Moreover,
new functions on the subtypes can be defined in terms of the old functions.

The subtype relation is automatically inferred by the typechecker for concrete
types, but it must be declared explicitly among abstract types. The rules followed

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 245

by the typechecker are

(1) For any type t, t G t.
(2) If r and s are tuple types, then r G s iff:

(a) the set of identifiers of r contains the set of identifiers of s, and
(b) If r’ and s’ are the types of a common identifier, then r’ C_ s’.

For instance, if

type (Address :=
(Street: string
and Zip: string)

and VipAddress :=
(Street: string
and Zip: string
and Country: string)

and Person :=
Name: string
and Address: Address)

and Student :=
(Name: string
and Address: Address
and School: string)

and VipPerson :=
(Name: string
and Address: VipAddress))

then

Student G Person
VipPerson C Person

while it is false that

Person C VipPerson,
Person E Student,

Student G VipPerson and
VipPerson G Student.

(3) If r and s are variant types, then r Z s iffi
(a) the set of tags of r is contained in the set of tags of s, and
(b) if r ’ and s ’ are the types of a common tag, then r ’ G s ‘.

For instance, if

type (Day :=
(Monday or Tuesday
or Wednesday or Thursday
or Friday or Saturday
or Sunday)

and Weekend := (Saturday or Sunday))
then

Weekend G Day.

(4) If r and s are sequence types with elements of types r ’ and s ‘, then r C s iff
r’ C s’.

(5) A modifiable type “var r” is a subtype of another type “var .a” iff r and s
are the same type.

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

246 l A. Albano, L. Cardelli, and R. Orsini

To clarify the reason for this rule, consider the following expression evaluated
in an environment containing the previous type definitions.

use type Traveler :=
(Name: string
and Address: var Address)

ext Agnelli :=
(Name:= “Gianni Agnelli”
and Address :=

var (Street:= “ZOO Bloor St, Toronto”
and Zip:= “M4V 2H5”
and Country:= “Canada”))

and ChangeAddress (X :Traveler, y: Address) :=
Address of x +- (Street:= Street of y and Zip:= Zip of y);

in
(ChangeAddress(Agnelli,

(Street := “New Address”
and Zip := “New Zip”
and Country := “New Country”));

Country of at (Address of Agnelli)

The application of ChangeAddress is not well typed according to the above
rule because the type of Agnelli is not a subtype of Traveler. If, for instance, a
different rule had been adopted, say that two types var r and var s are in the C
relation if r c s, then the previous expression would have been accepted by the
typechecker, but it would no longer be true that “well-typed expressions do not
go wrong”: the last expression will generate a run-time error because the tuple
Agnelli has lost the pair with attribute Country! This is a consequence of the
assignment operation in the ChangeAddress function: it assigns a new data value
of type (Street: string and Zip: string) to the Address of the actual parameter.

(6) If (r + s) and (r’ + s’) are function types, then (r + s) C (r’ += s’) iff r’
GrandsCs’.

Note the inversion of the subtype relation between the domains of the functions.
To clarify the reason for this rule, consider the following expression (a parameter
of type (r + s) means that the actual parameter can be any function mapping
values of type r to values of type s):

use type
(Person := (Name: string)
and Student :=

(Name: string
and School: string)

and Foreign&dent :=
(Name: string
and School: string
and Country: string))

and John :=
(Name := “John”)

and JohnStudent :=
(Name := “John”
and School := “UofT”)

and AnItalian:=
(Name := “Mario”
and School: “UofT”

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 247

and Country: “Italy”)
and NameOfPerson (x: Person): string :=

Name of 3c
and CountryOf’ForeignStudent (x: ForeignStudent): string :=

Country of x
and StringFromStudent (g: Student + string, X: Student): string :=

g(x)
in

(StringFromStudent (CountryOfForeignStudent,JohnStudent);
StringFromStudent (NameOfPerson, AnItalian))

For the above rule, the first application of StringFromStudent is not well typed
because the type of CountryOfForeignStudent (ForeignStudent + string) is not
a subtype of (Student + string). In fact, if it were executed, a run-time error
would occur because of the use of the selector “Country of” in the function
CountryOfForeignStudent on a value of type Student. In contrast, the second
application of StringFromStudent is instead well typed.

(7) A type Id t, t(the same rule applies to M) is a subtype of another type Id’
c-, t ‘, with primitive types considered as predefined abstract types, when the
subtype relation is declared explicitly to the typechecker as follows:

Id is Id’ H t”NewAssertions”, and t G t’

Note that the assertions on Id are those of Id’ plus “NewAssertions”.

type (PersonAddress := (HomeAddress: string)
and StudentAddress :=

(HomeAddress: string
and College: string)

and Person c,
(Name: string
and Age: num this within (0,150)
and Address: PersonAddress)

and Student is Person c-f
(Name: string
and Age: num this within (6,25)
and School: string
and Address: StudentAddress))

The following abbreviation, used when the representation type is a tuple type,
makes evident that the subtype Student inherits attributes and assertions of the
type Person:

type Student t-)
(is Person
and School: string
ext Address: StudentAddress
assert use this in Age within (6,25)

In the abbreviated notation, the ext operator must be used to redefine the type
of Address. A derived attribute cannot be redefined in a subtype.

Finally, multiple hierarchies are declared as “Id is Id’, Id” t, t “, where t C t’,
and t G t”, or in the abbreviated form “Id t* is Id’, Id”“. Note that in the

abbreviated form, if a common identifier is presented with type tr’ in t’ and tr”
in t”, then tr’ must be a subtype of tr” or vice versa. In the representation of

type Id, the identifier will have the most specialized type.

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

248 l A. Albano, L. Cardelli, and R. Orsini

6. CLASSES

Classes provide a mechanism for representing a database by means of sequences
of modifiable interrelated objects. An element of a class is an object that is the
computer representation of certain facts of an entity of the world that is being
modeled. An object-oriented view of a database is characterized by the following
[14, 33, 351:

(1) There is a one-to-one correspondence between objects in the database and
entities of the world that is being modeled.

(2) The objects of the database are all distinct, and they might not have an
external reference, such as a key, that stands for them.

(3) Associations among entities are modeled by relating the corresponding ob-
jects and not the external references. Moreover, only objects that exist in the
database can be used to model associations.

A class is characterized by a name and the type of its elements. The name of
a class denotes the elements of the class currently present in the database, while
the type gives the structure of the elements. The type of the class elements must
be abstract, therefore two elements of different classes are always of different
types, although they may be defined with the same representation.

Elements of classes are the only values in Galileo that can be created and
destroyed. Moreover, they are uniquely represented, and when updated their
modification is reflected in all other objects in which they appear as components.

Each class can be either a base class or a subclass. A base class is defined
independently of other classes, while a subclass is defined in terms of other
classes. As in SDM [32], a base class is used to model a primitive collection of
entities, while a subclass is used to model alternative ways of looking at the same
entities.

6.1 Base Classes

A base class is defined by the environment operator class, as shown in the
following example with two mutually defined classes:

ret Departments class
Department c--,

(Name: string
and Budget: num
and Address: string
and Manager: optional Employee
and Employees: var seq Employee)
key (Name)

and Employees class
Employee c-*

(Name: string
and Salary: num
and NameOfDept :=

derived Name of
get Departments with this isin (at Employees)

key (Name)

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 249

The class operator introduces the following bindings:

(1) The identifiers Department and Employee are bound to new types isomorphic
to tuples.

(2) The class identifiers Departments and Employees are bound to modifiable
sequences of values of type Department and Employee, respectively.

(3) The identifiers mkDepartment and mkEmployee are bound to two primitive
functions, automatically declared, which differ from similar functions for
abstract types in that every time they are applied, new objects are created
and automatically inserted in front of the associated sequences if the specified
constraints are not violated. The constructed elements are also the values
returned by these functions.

The above declaration defines the structure of the objects together with a few
constraints, some of which are predefined constraints on sequences, to be tested
when an instance is created or modified:

(1) The key constraint asserts that elements of a class must differ in the value
of certain constant attributes. Note that if the key constraint is not specified,
the insertion will be made even though the values of the attributes are equal
to those of another object already present in the class. That is, elements of
classes are always distinct objects, but the construction of an element will
fail when the constraints are violated.

Other constraints are specified directly in the definition of the element type:

(2) Only attributes with a var type can be modified.
(3) Only modifiable attributes with an optional type can be left unspecified

when an element is created.
(4) A derived attribute such as NameOfDept is used to model a mapping from

the employees to the department where they are employed, while the property
Employees in Departments is used to model a part-of relationship, which
implies the following dependency constraint: an employee cannot be elimi-
nated from the database as long as he or she belongs to a department.

Since the name of a class denotes the sequence of all the current elements
present in the database, all the operators on sequences can be applied to classes.
In addition to these operators, the following is also provided:

get ClassId with Condition

This is another operator on sequences: it returns the only element in a sequence
which satisfies the condition. Otherwise, a failure is generated.

6.2 Subclasses

Subclasses and type hierarchies are the features provided by Galileo to support
the abstraction mechanism of IS-A hierarchies, originally proposed in the context
of semantic networks, and considered nowadays as an essential requirement for
a language supporting semantic data model features [35].

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

250 l A. Albano, L. Cardelli, and R. Orsini

There are, however, differences between IS-A hierarchies and the type hierar-
chies introduced in the previous section:

(1) The subtype notion in Galileo refers to a static aspect of the language, and
has been introduced to establish a compatibility rule among all the possible
values of a type and those of its supertypes.

(2) An IS-A hierarchy (e.g., Students IS-A Persons) involves two different
notions. First, it establishes an existence constraint among the elements of
Students and Persons present in the database: the elements of Students are
always a subset of the elements of Persons (extensional notion). Second, it
establishes a subtype hierarchy between the type of the elements of Students
and Persons. Therefore, an element of Students can be used as an argument
of any operation defined for elements of Persons (intensional notion).

In Galileo, the two notions behind the IS-A hierarchy are expressed with two
distinct mechanisms: the type hierarchy, to deal with the intensional aspect, and
the subclass, to deal with the extensional aspect. This distinction increases the
modeling capability of the language because it allows the use of the type hierarchy
independently of the subclass mechanism.

There are three ways of defining subclasses: by subset, partition, or restriction.
A subset class with elements of type T contains those elements of the parent

class that have been included explicitly in the subclass with the proper operator
in T.

A partition class is like a subset class, but it enforces the additional constraint
that its elements are not included in another subclass of the same partition.

A restriction class contains all the elements of the parent class that satisfy
some predicate, which is evaluated at the time of element construction. This
predicate cannot be defined over modifiable or derived values.

In all cases, when a new element is added to a subclass it then also becomes
an element of the parent class. In the case of restriction classes, a new element
must also satisfy the restriction predicate.

Finally, the operator

remove Expressionl, . . . , ExpressionN

is provided to eliminate objects from a class and from its subclasses, and return
the value nil only if the objects are not used as components of other elements.
Otherwise, a failure is generated. “Expression i” must evaluate to a sequence of
elements.

The type of the elements of a subclass must be a subtype of the element type
of the parent class. New attributes can be added with the and operator or old
attributes can be redefined with the ext operator, but the following restrictions
must be satisfied:
(1) Nonoptional attributes may be added only when a subclass is defined as a

subset or partition.
(2) When a subclass is defined by restriction, then only derived, optional, or

default attributes can be added.

Subclasses can also be defined from more than one parent class, with the
restriction that the type of the elements must be a subtype of the element type

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 251

of each parent class. An element of a subclass is always an element of all its
parent classes. Some examples follow to clarify these points:

PublicEmployees restriction of Employees class
PublicEmployee c, is Employee

The elements are the same as the Employee class.

DowntownDepartments restriction of Departments
with Address = “Downtown”

class
DowntownDept c-,

(is Department
ext ManagerSalary := derived Salary of (at Manager))

The elements of the DowntownDepartments class are all the departments in
Downtown.

Managers partition of Employees
with Secretaries, Craftsmen class

Manager c, (is Employee and Bonus: num)

Secretaries partition of Employees
with Managers, Craftsmen class

Secretary c, is Employee

Craftsmen partition of Employees
with Secretaries, Managers class

Craftsman c, is Employee

Carpenters subset of Craftsmen class
Carpenter t, is Craftsman

Bricklayers subset of Craftsmen class
Bricklayer c-, is Craftsman

The Employees are partitioned into three disjoint subsets, while the Craftsmen
have been refined into two overlapping subsets of instances. In all the above
cases, the classes must be populated explicitly.

The predicate alsoin is provided to check whether or not an object of one class
also belongs to a subclass:

Expression alsoin Subclass

Expression must evaluate to an object of a class.
The following operator is used to include an element of a class in a subclass

with elements of type T:

inT (Expressionl, Expression2)

Expression1 must evaluate to the object to be included in the subclass, while
Expression2 must evaluate to a value of the representation type T. The operator

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

252 - A. Albano, L. Cardelli, and R. Orsini

checks that the values of the corresponding attributes of Expression1 and
Expression2 are the same. Expression2 can be omitted when an object of a
subclass has the same attributes as an object of the superclass.

Finally, to operate on an object of a parent class as if it were the element of a
subclass, the object must be retyped with the following operator:

Expression likein Subclass

Expression must evaluate to an object of a class. The result is the object as
member of Subclass. This operator is needed due to the static type checking
discipline.

7. ENVIRONMENTS AS A MODULARIZATION MECHANISM

The languages hitherto proposed for conceptual modeling do not provide features
to help the designer to develop and test a schema incrementally or to express the
overall structure of a schema in terms of smaller related parts. This issue has

been addressed in Galileo by using the environment, whch is a denotable value,
as a modularization mechanism [5]. As will be shown in the sequel to this paper,
the environment operators previously defined can be used to structure a schema
in a way similar to that suggested for theories by Burstall and Goguen in their
specification language Clear [231.

Another use of environments is to deal with data and operations as a single
unit which can be accessed by programs. This problem has also been addressed
in ADAPLEX with a specialized form of Ada packages [49]. In fact, a drawback
to commercial DBMSs is that no kind of procedural knowledge can be described
in the schema, whether “derived” information or application domain oriented
operations. In other words, in these systems data can be shared, but the proce-
dural knowledge cannot: it must be embedded in the applications. The inclusion
of the operations in the schema has the following advantages:

(1) The same operations on the database are not duplicated in all the programs
that need them.

(2) The database schema does reflect all the knowledge available about the
application domain. In particular, the schema contains not only the descrip-
tion of the structure of the objects and the constraints, but also the operations
on the objects, which complete their semantics.

(3) It is possible to constrain user programs to operate on the database through
a set of predefined operations, especially designed to include critical design
choices, such as integrity preservation.

Environments also have other useful applications. First, it is the mechanism
used by Galileo to deal with persistence without resorting to specific data types,
such as files of programming languages. Second, to deal with evolving applica-
tions, the environment is used to establish explicitly the way in which new
applications interact when they use common data. Finally, the environment is
used to define application-oriented views of data in a similar way to the view
mechanisms of DBMSs.

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 253

7.1 Persistence

Temporary values exist in the system only during the execution of the expression
in which they are defined. None of the abstraction mechanisms described previ-
ously have the property of defining persistent values. For instance, user programs
may also contain class definitions, if temporary classes must be kept while
running an application. To deal with persistence, a global environment is assumed
in which all values are automatically maintained. Such an environment is
managed by the system that supports the language. For other approaches to the
treatment of persistence as an orthogonal property of data, see [101.

The global environment is extended by adding new bindings with the command
use. In fact, for user protection, a warning is generated if use is used with
identifiers already bound in the current environment. Instead of having a single
set of unrelated definitions and values, as imposed by the interactive approaches
of LISP top level and APL workspace, the user can fruitfully employ the
environment mechanism to structure the global environment. For instance, the
following is the definition, at top level, of an environment Personnel with two
permanent classes (for brevity, defined operations are omitted):

use
Personnel :=

(ret Departments class
Department c,

(Name: string

and Manager: var Employee
and Budget: num)
key (Name)

and Employees class
Employee c,

(Name: string
and Salary: num
and Dept: var Department)

key (Name));

Each expression is evaluated inside an environment, initially the global one,
called the current environment. Any environment that can be accessed from the
global environment can become the current one with the command “enter

Environment”, while to return to the global environment there is the command
quit. Since the language is expression-based, it is possible in the current envi-
ronment to evaluate any expression by simply typing it. For example, assuming
that the classes in Personnel have already been populated, a simple interactive
session is?

enter Personnel:

To get the names of all the employees with a salary less than the average salary

1 A more elaborate session is reported in [4].

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

254 l A. Albano, L. Cardelli, and R. Orsini

of their department:

for x in Employees
with Salary of x

< avg(for y in Employees
with at Dept of x = at Dept of y
do Salary of y)

do Name of x;

To add a new employee to the Research department:

mkEmployee
(Name := “Brown”
and Salary := 4
and Dept := get Departments with Name = “Research”);

7.2 Encapsulation

Another use of the environment mechanism is to model a schema as a set of
interrelated units. Each unit encapsulates data and operations that are closely
related. For instance, let us assume that we are interested in describing as distinct
units data relevant to the planning and administration departments of our
hypothetical firm, although these departments share data of the environment
Personnel:

use Planning :=
(Personnel
and Projects class

Project c,
(Name: string
and Budget: num)

key (Name));
use Administration :=

(Personnel
and Suppliers class

Supplier c,
(Name: string
and Address: var string
and Credit: var num)

key (Name));

Note that, because of the semantics of environment operators, the Personnel
environment is shared by Planning and Administration, so that any updating of
a class in any environment will be reflected in all the others.

7.3 Refinements

It is possible to start with one environment and to generate others by extending
the environment with new dgfinitions. Thus, data concerning the same applica-
tion are visible at different levels of detail.

use DetailedPersonnel :=
(Personnel
and Branches class

Branch t,
(Name: string
and Address: string
and Other: string)

key (Name)

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985

Galileo: A Strongly-Typed, Interactive Conceptual Language 255

ext Special Employees subset of Employees class
SpecialEmployee c-*

(is Employee
and PrivateData: string));

7.4 View Modeling

To provide controlled access to the database, it is possible to give a different
view of an environment by excluding some of its data or operations.

use OnlyDepartments := Personnel drop Employees

In OnlyDepartments, Employees are not visible, while in the following environ-
ment only the names of the employees and the names of the departments where
they work can be accessed:

use EmployeesView :=
(use Personnel
in Employees :=

derived for e in Employees
do (e ext NameOfDept := Name of Dept)
drop Dept, Salary);

The expression “Id := derived Expression” denotes an environment in which
the only association is between the Id and a virtual value, which is obtained by
evaluating Expression every time the value of Id is requested. All the operators
used to query a class can be applied to Employees, which therefore behaves like
a view of relational database.

7.5 Logical independence

The environment operators allow the designer to make applications independent
from changes in an environment, as long as the old view of the database is
derivable from the redefined environment. For instance, let us assume that an
application program was designed to work in the DetailedPersonnel environment
on Branches of a certain area, “Downtown”, to retrieve data. The database was

then extended to include Branches in other areas, with the elements type
redefined as

Branch c,
(Name: string
and Address: string
and Area: string
and Other: string)

In order to make the old program independent of these changes, it can be used
in the following environment:

use NewDetailedPersonnel :=
(DetailedPersonnel
ext Branches :=

derived for b in Branches
with Area = “Downtown”
do b drop Area);

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

256 - A. Albano, L. Cardelli, and R. Orsini

8. TRANSACTIONS AND FAILURE HANDLING

Every top level Galileo expression is a transaction. That is to say, it is considered
an atomic action against the database: once invoked, it either completes all its
operations or behaves as if it were never invoked. Transactions may fail due
either to a hardware or software failure or to a run-time program error. In Galileo
it is possible to cause such an event, and also to sense its occurrence so as to
perform an appropriate action. The failure of a transaction causes an interruption
of the normal control flow, and, in addition, all updatings from the beginning of
the transaction are undone.

A transaction can be either simple or compound. Each expression typed in at
top level by the user is a simple transaction. Therefore, if the expression fails,
the persistent data are unaffected. However, if more than one top level expression
must be considered as a single transaction, the expressions must be enclosed in
“transaction brackets”: transaction and end-transaction. A compound trans-
action is a sequence of top level expressions enclosed in such brackets.

Since any operation whether predefined or defined that is accessible to the
user may be applied as a simple transaction, whenever the schema designer
defines operations, he or she is in fact defining transactions. As a consequence,
transactions can be nested by defining a new function as a composition of
predefined ones: an action, atomic at a higher level of abstraction, may be
decomposed into subatomic actions to perform, for example, a stepwise updating
of the database [30]. A failure of inner transactions can be controlled, and
alternative transactions can be started to achieve the desired effect. Consider,
for example, the case of booking a tour with an airline reservations system. Even
if the reservation of single parts of the tour succeeds, unless all the tour has been
reserved, the effects of previous operations must be revoked, and a new attempt
could be made with a different airline, or with a different schedule. The different
attempts should be treated as alternative transactions, and the outermost one
should fail only if all attempts fail. Another important advantage of nested
transactions is the ability to define transactions not knowing the context in
which they might be used [9].

The linguistic construct for handling failures has a block structure, unlike the
usual proposed commit and abort statements [30]: “Expression if-fails Expres-
sion”. If the first expression fails, its effects are undone, and the value of the
whole construct is that of the second expression. Otherwise, it is that of the first
one with the effects preserved.

Failures have associated with them a string that can be used for a selective
handling of failures with the case-fails construct. For failures which occur
during the execution of primitive operations, the string returned is the name of
the operation. The user can generate a failure with the expression “failwith
string” or with fail, which is equivalent to “failwith “fail”“. When a failure
occurs, the normal execution path is interrupted, control is passed to the first
surrounding failure handler, and the effects are undone. If no handler is present,

the top level expression fails, all its effects are undone, an error message is
printed, and the execution terminates. Let us consider an example with the

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

Galileo: A Strongly-Typed, interactive Conceptual Language 257

selective failure handler:

Employee class
Employee c,

(Name: string
and Salary: num
and Dept: Department)

key (Name)
assert with “LowPay” Salary < Minimum
assert with “HighPay” Salary < (Budget of Dept)/lO

ext ret NewEmployee(AName: string, ASalary: num, ADept: string):Employee :=
mkEmployee

(Name := AName
and Salary := ASalary
and Dept := get Departments with Name = ADept)

case-fails
[“LowPay”]

NewEmployee(AName, Minimum, ADept)]
[“HighPay”]

NewEmployee(AName,
(Budget of get Departments with Name = ADept)/lO,
ADept)

9. CONCLUSIONS

A strongly-typed programming language for database applications has been
presented. Unlike other proposals, which integrate a relational data model into
a conventional, general-purpose programming language, e.g., Pascal, [8, 40, 43,
46, 521, we have integrated into the framework of the programming language
Edinburgh ML [29], a strongly-typed interactive language, features to support
semantic data model abstraction mechanisms (classification, aggregation, and
specialization) as well as abstraction mechanisms of modern programming lan-
guages (types, abstract types, and modularization).

The approach adpoted is therefore closer to that of ADAPLEX, which extends
Ada with new features to support databases modeling [49]; although the features
included in Galileo, notably the type hierarchies, are not ad hoc for databases,
but can be used independently. This approach was preferred for two reasons.

First, we were interested in studying a uniform approach towards the design
of a modern strongly-typed programming language, which would include features
to support semantic data models. We believe that this paper provides evidence
of how types, abstract types, type hierarchies, classification, aggregation, spe-
cialization, and modularization can be integrated in an expression-based language
that is statically type-checkable. In particular, we have shown the effectiveness
of the environment, a novel abstraction mechanism, in the context of conceptual
modeling, for structuring complex applications and for view modeling.

Second, we were interested in developing an interactive database designer’s
workbench, which would integrate a set of tools for creating, testing, and
implementing on a traditional DBMS a database design [2]. Since, in the short
term, we have mainly been interested in using this aid for conceptual modeling,
we have found it more convenient to design a new language for dealing with the
specific problems in this area. We have already implemented a prototype version

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

258 l A. Albano, L. Cardelli, and 13. Orsini

of the system, called Dialogo, which presently supports a significant subset of
Galileo [4]. Tools are available to edit a conceptual schema, query the definitions,
and load and query test data. An interesting feature of Dialog0 is that it is based
on a top level cycle in which a Galileo expression from the user is accepted,
executed, and the result displayed while the effect of the user expression on the
database is permanently preserved. An expression may be the invocation of a
single predefined function or any complex expression of the language.

Future studies on Galileo will proceed along the following lines:

(1) Extensions. We will extend the language to provide (a) a form-oriented,
input/output interface; (b) a process construct to model interactions with
the users and database evolution, with an approach similar to that adopted
in TAXIS.

(2) Implementation. The Dialog0 system is being reimplemented by extending
the present implementation of the ML compiler, available on a VAX 11/780
running the UNIX’ operating system.

(3) Applications. With the new implementation of Dialogo, it will be possible to
effectively experiment with the design of database applications using Galileo.
This will also provide the opportunity to test the tools available in our
designer’s workbench against the demands of specific user environments.

ACKNOWLEDGMENTS

We are indebted to M. E. Occhiuto, who contributed to the design of a preliminary
version of Galileo, and to the members of the Galileo Project, M. Capaccioli, F.
Giannotti, B. Magnani, D. Pedreschi, and M. L. Sabatini, for their constructive
criticisms. Also, many thanks to A. Borgida, S. Gibbs, D. Lee, A. Mendelzon, J.
Mylopoulos, B. Nixon, and I. Reichstein for their helpful suggestions in improving
a previous version of this paper, at the time A. Albano was visiting professor at
the Computer Science Department of the University of Toronto. The paper has
also benefitted from the constructive comments made by the referees.

REFERENCES

1. ABRIAL, J.R. Data semantics. In Data Management Systems, J. K. Klimbie and K. L. Koffeman,
Eds., North-Holland, Amsterdam, 1974, l-60.

2. ALBANO, A., AND ORSINI, R. An interactive integrated system to design and use data bases. In
Proceedings Workshop on Data Abstraction, Data Bases and Conceptual Model@, ACM SIGMOD

Special Issue II, 2 (1981), 91-93.
3. ALBANO, A., OCCHIUTO, M.E., AND ORSINI, R. A uniform management of persistent and

complex data in programming languages. In Znfotech State of Art Report on Databases, M.P.
Atkinson, Ed., Series 9, No. 4, Pergamon Infotech, 1981, 321-344.

4. ALBANO, A., AND ORSINI, R. Dialogo: An interactive environment for conceptual design in
Galileo. In Methodology and Tools for Database Design, S. Ceri, Ed., North-Holland, Amsterdam,
1983,229-253.

5. ALBANO, A. Type hierarchies and semantic data models. ACM Sigplan ‘83: Symposium on
Programming Language Issues in Software Systems (San Francisco, 1983), 178-186.

6. ALBANO A., CAPACCIOLI, M., AND ORSINI, R. La detinizione de1 Galileo (Versione 83/6).
Rapport0 Tecnico DATAID N.20, Pisa, 1983.

’ UNIX is a trademark of Bell Laboratories.

ACM Transactions on Database Systems, Vol. 10, No. 2, .June 1985.

Galileo: A Strongly-Typed, Interactive Conceptual Language 259

7. ALBANO, A., CAPACCIOLI, M., OCCHIUTO, M.E., AND ORSINI, R. A modularization mechanism
for conceptual modeling. In Proceedings 9th International Conference on VLDB (Florence, Italy,
1983), 232-240.

8. AMBLE, T., BRATBERGSENGEN, K., AND RISNES, 0. ASTRAL, a structured and unified ap-
proach to database design and manipulation. In Data Base Architecture, G. Bracchi and G.M.
Nijssen, Eds., North-Holland, Amsterdam, 1979, 240-257.

9. ATKINSON, M.P., CHISHOLM, K.J., AND COCKSHOTT, W.P. The new Edinburgh persistent
algorithmic language. In Infotech State of Art Report on Databases, M.P. Atkinson, Ed., Series 9,
No. 4, Pergamon Infotech, 1981,299-318.

10. ATKINSON, M.P., BAILEY, P.J., CHISHOLM, K.J., COCKSHOIT, W.P., AND MORRISON, R. An
approach to persistent programming. Comput. J. ,264 (1983), 360-365.

11. BALTZER, R. An implementation methodology for semantic database models. In Entity Relu-

tionship Approach to System Analysis and Design, P.P. Chen, Ed., North-Holland, Amsterdam,
1980,433-444.

12. BARRON, J. Dialogue organization and structure for interactive information systems. MSc.
thesis, Dept. of Computer Science, Univ. of Toronto, 1980.

13. BILLER, H. AND NEUHOLD, E.J. Semantics of databases: The semantics of data models. Znf.

Syst. 3 (1978), l-30.
14. BORGIDA, A.T., MYLOPOULOS, J., AND WONG, H.K.T. Methodological and computer aids for

interactive information systems design. Automated Tools for Information System Design, H.J.
Schneider and A. Wasserman, Eds., North-Holland, Amsterdam, 1982.

15. BORGIDA, A. Features of languages for the development of information systems at the conceptual
level. IEEE Softw. (1984), to appear.

16. BREUTMAN, B., FALKENBERG, E., AND MAUER, R. CSL: A language for defining conceptual
schemas. In Data Base Architecture, G. Bracchi and G.M. Nijssen, Eds., North-Holland, Amster-
dam, 1979,237-256.

17. BRODIE, M.L. The application of data types to database semantic integrity. Znf. Syst. 5, 4

(1980), 287-296.
18. BRODIE, M.L., AND ZILLES, S.N. Eds. Proceedings Workshop on Data Abstraction, Data Bases,

and Conceptual Modelling, ACM SZGMOD Special Issue 11, 2 (1981).
19. BRODIE, M.L. On modeling behavioral semantics of databases. In Proceedings 7th International

Conference on VLDB (Cannes, 1981), 32-42.
20. BRODIE, M.L., MYLOPOULOS, J., AND SCHMIDT, J.W. Eds. On Conceptual Modeling: Perspec-

tives from Artificial Intelligence, Databases, and Programming Langwrges, Springer Verlag, New
York, 1984.

21. BUBENKO, J.A. Information modeling in the context of system development. In IFZP Congress

2980, North-Holland, Amsterdam, 1980,395-411.
22. BUNEMAN, P., AND FRANKEL, R.E. FQL-a functional query language. In Proceedings of ACM

SZGMOD Conference (Boston, Mass., 1979), 52-58.
23. BURSTALL, R.M., AND GOGUEN, J.A. Putting theories together to make specifications. In

Proceedings ZJCAI (Boston, Mass., 1977), 1045-1058.
24. CAPACCIOLI, M. La Semantica Denotazionale de1 Galileo. Tesi di laurea in Scienze

dell’Informazione, Univ. di Pisa, Italy, 1983.
25. CARDELLI, L. A semantics of multiple inheritance. In Semantics of Data Types, G. Kahn, D.B.

MacQueen, and G. Plotkin, Eds., Lecture Notes in Computer Science, Vol. 173, Springer Verlag,
New York, 1984, 51-67.

26. CERI, S., PELAGATTI, G. AND BRACCHI, G. Structured methodology for defining static and
dynamic aspects of data base applications. Inf. Syst. 6, 1 (1981), 31-45.

27. CERI, S., Ed. Methodology and Tools for Database Design, North-Holland, Amsterdam, 1983.
28. GORDON, M. The Denotational Description of Programming Languages. An Introduction, Sprin-

ger Verlag, New York, 1979.
29. GORDON, M., MILNER, R., AND WADSWORTH, C. Edinburgh LCF, Lecture Notes in Computer

Science, Vol. 78, Springer Verlag, New York, 1979.
30. GRAY, J. The transaction concept: Virtues and limitations. In Proceedings 7th International

Conference on VLDB (Cannes, 1981), 144-154.
31. HAMMER, M., AND BERKOWITZ, B. DIAL: A programming language for data intensive appli-

cations. In Proceedings of ACM SIGMOD Conference, (Santa Monica, Calif., 1980), 75-92.

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

260 l A. Albano, L. Cardelli, and R. Orsini

32. HAMMER, M., AND MCLEOD, D. Database description with SDM: A semantic database model.
ACM Trans. Database Syst. 6,3 (1981), 351-386.

33. KENT, W. Limitations of record-based information models. ACM Trans. Database Syst. 4, 1

(1979) 107-131.
34. LUM, V., ET AL. 1978 New Orleans Data Base Design Workshop Report. In Proceedings 5th

International Conference on VLDB (Rio de Janeiro, 1979), 328-339.
35. MCLEOD, D., AND KING, R. Semantic database models. In Principle of Database Design, S.B.

Yao, Ed., Prentice-Hall, 1984.
36. MILNER, R. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17, (1978),

348-375.

37. MYLOPOULOS, J., BERNSTEIN, P.A., AND WONG, H.K.T. A language facility for designing
database-intensive applications. ACM Trans. Database Syst. 5,2 (1980), 185-207.

38. NAVATHE, B.S. Information modeling tools for data base design. Panel on Logical Database
Design (Fort Lauderdale, Fla., 1980).

39. ROUSSOPOULOS, N. CSDL: A conceptual schema definition language for the design of data
base applications. IEEE Trans. Softw. Eng. SE-$5 (1979), 481-496.

40. ROWE, L.A., AND SHOENS, K.A. Data abstraction, views and updates in RIGEL. In Proceedings

ACM SZGMOD Conference (Boston, Mass., 1979), 71-81.
41. SABATINI, L. La Semantica Statica de1 Galileo. Tesi di laurea in Scienze dell’Informazione,

Univ. di Pisa, Italy, 1982.
42. SCHMIDT, J.W. Type concepts for database definition. In Database: Improving Usability and

Responsiueness, B. Schneidermann, Ed., Academic Press, New York, 1978, 215-244.
43. SCHMIDT, J.W., AND MALL, M. Pascal/R Report. Univ. of Hamburg, Fachbereich Informatik,

Rep. 66, Jan. 1980.
44. SHAW, M. The impact of abstraction concerns on modern programming languages. Proc. IEEE

68,9 (1980), 1119-1130.
45. SHIPMAN, D.W. The functional data model and the data language DAPLEX. ACM Trans.

Database Syst. 6, 1 (1980), 140-173.
46. SHOPIRO, J.E. A programming language for relational databases. ACM Trans. Database Syst.

4,4 (1979), 493-517.
47. SMITH, J.M., AND SMITH, D.C.P. Database abstraction: Aggregation and generalization. ACM

Trans. Database Syst. 2, 2 (1979), 105-133.
48. SMITH, J.M., AND SMITH, D.C.P. A database approach to software specifications. In Software

Development Took, W.E. Riddle and R.E. Fairley, Eds., Springer Verlag, Berlin, 1979, 176-200.
49. SMITH, J.M., Fox, S., AND LANCERS, T. Reference manual for ADAPLEX. Tech. Rep. CCA-

81-02, Computer Corporation of America, Jan. 1981.
50. TEICHROEW, D., AND HERSHEY, E.A. PSL/PSA: A computer-aided technique for structured

documentation and analysis of information processing systems. IEEE Trans. Softw. Eng. SE-3,

1 (1977), 41-49.
51. TENNENT, R.D. Principles of Programming Languages. Prentice-Hall International, London,

1981.
52. WASSERMAN, A.I. The data management facilities of PLAIN. In Proceedings of the ACM

SIGMOD Conference (Boston, Mass., 1979), 60-70.
53. WEBER, H. A software engineering view of data base systems. In Proceedings 4th International

Conference on VLDB (Berlin, 1978), 36-51.
54. YAO, S.B., NAVATHE, S.B., AND WELDON, J.L. An integrated approach to logical database

design. In Proceedings NYU Symposium on Data Base Design, (1978), l-14.

Received April 1984; revised January 1985; accepted February 1985

ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985.

