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Abstract

In 1966, Gallai conjectured that for any simple, connected graph G
having n vertices, there is a path-decomposition of G having at most
dn2 e paths. In this paper, we show that for any simple graph G hav-
ing girth g ≥ 4, there is a path-decomposition of G having at most
p(G)
2 +

⌊(
g+1
2g

)
q(G)

⌋
paths, where p(G) is the number of vertices of

odd degree in G and q(G) is the number of non-isolated vertices of
even degree in G.

Keywords : Graph, girth, path-decomposition.

1 Introduction

A decomposition of a graph G is a collection of subgraphs P such that each
edge of G belongs to exactly one subgraph of P. A path-decomposition
is a decomposition consisting of paths. A path-cycle-decomposition is a
decomposition consisting of paths and cycles. The following is a well-known
old conjecture due to Gallai:

1.1 Conjecture ( Gallai, 1966 )
For any simple, connected graph G having n vertices, there is a path-
decomposition having at most dn2 e paths.

We shall first give a brief overview of some of the previous work on this
conjecture. In [5], Lovász showed the following important result:
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1.2 Theorem ( Lovász )
For any simple, connected graph G having n vertices, there is a path-cycle-
decomposition P such that |P| ≤ bn2 c.

As a consequence of the proof of the above theorem, Gallai’s conjecture
holds for all graphs with only odd vertices.

1.3 Theorem ( Lovász )
For any simple, connected graph G having n vertices where all vertices are
odd, there is a path-decomposition with n

2 paths.

For a graph G, the E-subgraph of G is the subgraph induced by the
even vertices of G. We shall denote such a subgraph by Gev. In [6], Pyber
strengthened Theorem 1.3 by showing the following:

1.4 Theorem ( Pyber )
For any simple graph G having n vertices, if Gev is a forest, then G has a
path-decomposition with at most bn2 c paths.

Fan [4] subsequently improved upon Pyber’s Theorem.

1.5 Theorem ( Fan )
For any simple graph G having n vertices, if every block of Gev is a triangle-
free graph where every vertex has degree at most three, then G has a path-
decomposition with at most dn2 e paths.

It is easy to see that if the assumption of connectedness is omitted from
Gallai’s conjecture, then it is false. While a bound of n

2 is not possible for
disconnected graphs, Donald [3] showed that 3

4n is possible. This bound
was later improved to 2

3n by Dean and Koudier [2]. In their paper, they
actually proved a stronger result which we will describe. For a graph G, let
p(G) denote the number of odd vertices and let q(G) denote the number of
non-isolated even vertices. Dean and Koudier proved the following:

1.6 Theorem ( Dean, Koudier )
For any simple graph having n vertices, there is a path-decomposition with
at most p(G)

2 + b23q(G)c paths.

The bound of 2
3n can be seen to be best possible by taking a graph

consisting of vertex-disjoint triangles. In this paper, we show that the bound
in the above paper can be greatly improved when the girth is larger. We
shall prove the following theorem:
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1.7 Theorem
For every simple graph G having girth g ≥ 4, there is a path-decomposition

having at most p(G)
2 +

⌊(
g+1
2g

)
q(G)

⌋
paths.

We have attempted to make this paper as self-contained as possible.
While the material in Sections 2 and 3 is largely known, our treatment in-
volving directed graphs is different and contains various concepts and nota-
tion which will be used later. In Section 3, we shall provide various lemmas,
two of which can be found in [4]. Notably, we give a short proof of Lemma
3.1 based on directed graphs. In Section 4, we begin our assault on the main
theorem by proving a lemma which will be a key component in the proof of
Theorem 1.7. The proof of the main theorem is given in Sections 5 and 6.
It hinges on the case g = 4 and this case is dealt with in the last section.

For two subgraphs H and K of a graph we let H∪K denote the subgraph
with vertex set V (H)∪V (K) and edge set E(H)∪E(K). For a graph G and a
vertex u ∈ V (G), we shall let EG(u) denote the set of edges incident with u.
For a subset A ⊆ EG(u), we let NG,A(u) denote the set of vertices v for which
uv ∈ A. The graphs considered in this paper are simple. As such, we shall
often denote a path by its sequence of vertices, eg. v1v2 · · · vk. For a path P
and vertices u and v lying on P let P [uv] denote the portion of the path lying
between (and including) u and v. In this paper, we shall frequently make
use of the classic “lollipop” construction for a path. Suppose P = v0v1 · · · vk
is a path where k ≥ 2 and e = vivk is an edge where 1 ≤ i < k− 1. We refer
to P ∪ {e} as a P-lollipop. Now P ′ = P [v0vi] ∪ P [vi+1vk] ∪ {e} is seen to
be a new path starting at v0 and terminating at vi+1. We shall refer to P ′

as the path obtained from the lollipop P ∪ {e}. In the event that e = v0vk,
there are two possible paths obtained from the lollipop.

2 The Lovász Construction

In this section, we shall describe the path and cycle constructions used in
the proof of Theorem 1.2. Here we use a new approach using directed graphs
which is inspired in part by the work of Cai [1].

Let
−→
G be a directed graph. For every vertex v ∈ V (

−→
G), let d+−→

G
(v) and

d−−→
G

(v) denote the out-degree and in-degree at v, respectively. For every

subset S ⊆ V (
−→
G), let d+−→

G
(S) and d−−→

G
(S) denote the number of out-directed

arcs leaving S and the number of in-directed arcs entering S, respectively.

For every vertex v let δ−→
G

(v) = d+−→
G

(v)− d−−→
G

(v). For every subset S ⊆ V (
−→
G),
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let δ−→
G

(S) = δ+−→
G

(S)− δ−−→
G

(S).

We have the following elementary lemma whose proof is left to the reader.

2.1 Lemma

(i) For every subset S ⊆ V (
−→
G), we have δ−→

G
(S) =

∑
v∈S δ−→G (v).

(ii) δ−→
G

(V (
−→
G)) = 0.

(iii) For every S ⊆ V (
−→
G) where δ−→

G
(S) > 0, there is a directed path from

a vertex x ∈ S where δ−→
G

(x) > 0 to a vertex y ∈ V (
−→
G)\S where

δ−→
G

(y) < 0.

Let G be a simple graph and let P be a path-cycle-decomposition. For
every vertex v ∈ V (G), we let P(v) denote the number of paths of P which
terminate at v. Let x be a vertex of G. We shall define a directed graph−→
GP,x associated with P and x in the the following manner. We define the

vertex set of
−→
GP,x to be NG(x) ∪ {x}. We shall define the arcs of

−→
GP,x

using the paths of P. For every path P ∈ P and every terminal vertex y
of P belonging to NG(x) we shall define an arc as follows: if x is not on

the path P or xy ∈ E(P ), then let yx be an arc of
−→
GP,x. Otherwise, if x is

on the path P , let C = xyy1y2 · · · ykx be the unique (undirected) cycle of

P ∪{xy} which contains the edge xy. We define yyk to be an arc of
−→
GP,x. By

the way in which we have defined the arcs of
−→
GP,x we see that d−GP,x

(v) ≤ 1

and d+GP,x
(v) = P(v) for all v ∈ NG(x). Furthermore, d+GP,x

(x) = 0.

Let A ⊆ E(G) be a set of edges incident with x and let H = G\A.
Suppose that H has a path-cycle-decomposition P. Let xy ∈ A and suppose

there exists a directed path
−→
P in

−→
GP,x from y to x. Let

−→
P = y0y1 · · · ykx

where y0 = y. We observe that yi ∈ NH(x) for i = 1, . . . , k. Thus d−−→
GP,x

(yi) =

1, i = 1, . . . , k. We call
−→
P a (y,x)−path of

−→
GP,x. For every arc yi−1yi, ı =

1, 2, . . . , k in
−→
P , there is a corresponding path Qi−1 ∈ P where yi−1 is a

terminal vertex of Qi−1 and yix is an edge of Qi−1. Furthermore, the arc ykx

in
−→
P corresponds to a path Qk ∈ P where yk is a terminal vertex of Qk and x

is not a vertex of Qk. We call the k+1-tuple (Q0, Q1, . . . , Qk) a (y,x)-path-
fan of P. We also refer to (Q0, Q1, . . . , Qk) as the path-fan corresponding to
−→
P (conversely,

−→
P is the directed path corresponding to (Q0, Q1, . . . , Qk)).

For such a path-fan, we shall define new paths Q′i, i = 0, 1, . . . , k as follows:

Q′i =

{
(Qi\{yi+1x}) ∪ {yix}, for i = 0, . . . , k − 1;
Qi ∪ yix, for i = k.
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For i = 0, . . . , k − 1, the path Q′i is seen to be the path obtained from the
Qi-lollipop Qi ∪{xyi}. We call (Q′0, Q

′
1, . . . , Q

′
k) the extended path-fan of

(Q0, Q1, . . . , Qk). One can easily check that

P∗ = (P\{Q0, Q1, . . . , Qk}) ∪ {Q′0, . . . , Q′k}

is a path-cycle-decomposition of H ∪ {xy}. Moreover, |P∗| = |P|, P∗(x) =
P(x) + 1, P∗(y) = P(y) − 1, and P∗(v) = P(v) for all v ∈ V (G)\{x, y}.
We shall refer to P∗ as a xy-extension of P at x. In shorthand, we shall
simply write P x→

xy
P∗. When such a xy-extension exists, we shall say that

the edge xy is P-addible at x. Equivalently, xy is P-addible at x if there

exists a (y, x)-path in
−→
GP,x.

Suppose that xy and xz are both P-addible edges at x. Then there are

(y, x)- and (z, x)- paths in
−→
GP,x, say

−→
P y = y0y1 · · · ysx and

−→
P z = z0z1 · · · ztx

respectively. The vertices y1, y2, . . . , ys and z1, z2, . . . , zt all have in-degree

one in
−→
GP,x. Because of this,

−→
P y and

−→
P z share only one common vertex,

namely x. Let (Q0, . . . , Qs) and (R0, . . . , Rt) be the (y, x)− and (z, x)-path-

fans corresponding to
−→
P y and

−→
P z, respectively. Since

−→
P y and

−→
P z share

only the vertex x, the paths Q0, Q1, . . . , Qs−1, R0, R1, . . . , Rt−1 are distinct.
However, when zt is also a terminal vertex of Qs, it is possible that Qs = Rt.
See Figure 1. Suppose this is the case. Let C be the cycle C = Qs ∪
{xys, xzt}. Let (Q′0, . . . , Q

′
s) and (R′0, . . . , R

′
t) be the extended path-fans for

(Q0, . . . , Qs) and (R0, . . . , Rt) respectively. We shall define a path-cycle-
decomposition P∗ of H ∪ {xy, xz} as follows: let

P∗ = (P\{Q0, Q1, . . . , Qs, R0, R1, . . . , Rt})∪{Q′0, Q′1, . . . , Q′s−1R′0, R′1, . . . , R′t−1, C}.

We observe that P∗ contains one less path than P but one more cycle
(namely, C). The set P∗ is seen to be a path-cycle-decomposition of H ∪
{xy, xz} where |P∗| = |P|. We shall refer to the set {xys, xzt} as a P-pair of
edges at x. In shorthand, we shall denote the above transformation from P
to P∗ as P

x
⇒

{xy,xz}
P∗. Here⇒ is used to emphasize that the transformation

results in a path-cycle-decomposition containing a cycle which contains xy
and xz.

Let B ⊆ A and suppose that each edge of B is P-addible at x. We
say that an edge xy ∈ B is P-solitary at x with respect to B if there is
no P-pair of edges in B which contains xy. Suppose that all edges of B
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Figure 1: Two path-fans where Qs = Rt

are P-solitary. Let B = {xy1, xy2, . . . , xyt}. Then there is a sequence of
path-cycle-decompositions P1,P2, . . . ,Pt where

P x→
xy1
P1

x→
xy2
P2 · · · Pt−1

x→
xyt
Pt.

The collection Pt is seen to be a path-cycle-decomposition for H ∪B having
the properties that Pt(x) = P(x)+ |B|, Pt(yi) = P(yi)−1, i = 1, . . . , t, and
Pt(v) = P(v) for all v ∈ V (G)\{x, y1, . . . , yt}. In shorthand, we shall simply
write P x→

B
Pt. We shall say that the set B is P-addible at x.

More generally, when not all the edges of B are necessarily solitary, B
can be partitioned as B = B0∪B1∪· · ·Bk where B0 is the set of all P-solitary
edges of B, and B1, B2, . . . , Bk are the sets of P-pairs contained in B. Then
there exists a sequence of path-cycle-decompositions P1,P2, . . . ,Pk,Pk+1

such that

P x→
B0

P1
x
⇒
B1

P2 · · · Pk
x
⇒
Bk

Pk+1.

Pk+1 is seen to be a path-cycle-decomposition of H ∪ B where Pk+1 has k
more cycles than P (containing the pairs B1, B2, . . . , Bk) and k fewer paths.
We see that |Pk+1| = |P| and each of the k new cycles created contain x. In

shorthand, we shall denote such a transformation by P
x
V
B
Pk+1.
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3 Some Lemmas about Path-Decompositions

In this section, we shall provide some lemmas, the first two of which are due
to Fan [4]. For the purpose of being self-contained we shall provide proofs of
these lemmas. Notably, we shall provide a different, short proof of the first

lemma which is based on the directed graph
−→
GP,x introduced in Section 2.

3.1 Lemma
Let x be a vertex in G and let A = {xy1, xy2, . . . , xyk} be a set of edges
which are incident with x. Let P be a path-decomposition of H = G\A. If∑k

i=1 P(yi) > |{v ∈ NG(x)
∣∣ P(v) = 0}|, then there exists y ∈ {y1, . . . , yk}

such that xy is P-addible at x.

Proof. Suppose
∑k

i=1 P(yi) > |{v ∈ NG(x)
∣∣ P(v) = 0}|. Let Y = {y1, . . . , yk}

and Z = {v ∈ NG(x)
∣∣ P(v) = 0}. One sees that

δ−→
GP,x

(y) = P(y), ∀y ∈ Y \Z,

δ−→
GP,x

(z) ≥ −1, ∀z ∈ Z,

δ−→
GP,x

(v) ≥ 0, ∀v ∈ NG(x)\(Y ∪ Z),

and δ−→
GP,x

(x) ≤ 0.

Let S = Y ∪ Z. From the above, we see that δ−→
GP,x

(Y ) =
∑k

i=1 P(yi)

and δ−→
GP,x

(Z) ≥ −|Z|. Thus by our assumptions, we see that δ−→
GP,x

(S) =

δ−→
GP,x

(Y ) + δ−→
GP,x

(Z) > 0. It is also seen that δ−→
GP,x

(x) < 0. By Lemma 2.1

(iii), it follows that there is a directed path in
−→
GP,x from a vertex y ∈ Y

where δ−→
GP,x

(y) > 0 to the vertex x. It now follows that the edge xy is

P-addible at x.

3.2 Lemma
Let x be a vertex in a graph G, A ⊆ EG(x) and let H = G\A. Let r = |{v ∈
NG(x)

∣∣ P(v) = 0}|. Suppose that P is a path-decomposition of H where
P(y) ≥ 1 for all y ∈ NG,A(x). Then there exists a P-addible set B ⊆ A and

a path-decomposition P∗ of H ∪B such that |B| ≥
⌈
|A|−r

2

⌉
and P x→

B
P∗.

Moreover, if r = 0, then for all edges xy ∈ A, we may choose B such
that xy ∈ B.

Proof. By induction on A. Suppose |A| = 1 and A = {xy}. If r ≥ 1, then
there is nothing to prove. So we may assume that r = 0. Since P(y) ≥ 1,
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Lemma 3.1 implies that xy is P-addible at x. The lemma is now seen to
hold by taking B = A.

Suppose that the lemma holds when |A| = k (where k ≥ 1). Suppose
|A| = k+ 1. If r ≥ k+ 1, then there is nothing to prove. So we may assume
that |A| > r. Then∑

xy∈A
P(y) ≥ |A| > r = |{v ∈ NG(x)

∣∣ P(v) = 0}|.

By Lemma 3.1, there exists xy ∈ A such that xy is P-addible at x. Note
that when r = 0, every edge of A is P-addible and hence xy can be any edge
of A. Let P x→

xy
P ′ and let A′ = A\{xy} and H ′ = H ∪{xy}. Let r′ = |{v ∈

NG(x)
∣∣ P ′(v) = 0}|. Given that P ′(y) = P(y) − 1, P ′(x) = P(x) + 1, and

P ′(v) = P(v) for all v ∈ NG(x)\{x, y}, it is seen that r′ ≤ r+1 and P ′(y) ≥ 1
for all xy ∈ A′. Since |A′| = k, we can apply the inductive assumption to
H ′, A′,P ′ and r′. Thus there exists a P ′-addible set B′ ⊆ A′ at x such that

|B′| ≥
⌈
|A′|−r′

2

⌉
. Let B = B′ ∪ {xy}. Then B is seen to be P-addible at x.

Furthermore

|B| = |B′|+ 1 ≥
⌈
|A′| − r′

2

⌉
+ 1 ≥

⌈
|A| − r − 2

2

⌉
+ 1 =

⌈
|A| − r

2

⌉
.

The proof now follows by induction.
In the case where r = 0, the above proof shows that for any edge e ∈ A,

we may choose the set B so that it contains e.

Let G be a simple graph and let F = Gev. Let x ∈ V (F ) and let H =
G\EF (x). Assume that P is a path-decomposition for H. We shall need the
following two technical lemmas.

3.3 Lemma
Suppose that x is an odd vertex of F and dF (v) ≥ 4 for at most one vertex
v ∈ NF (x). Then G has a path-decomposition P∗ where |P∗| = |P|, P∗(x) =
P(x) + 1, and P∗(v) = P(v) for all v ∈ V (G)\(NG(x) ∪ {x}).

Proof. Let EF (x) = {xy1, xy2, . . . , xy2k+1}. We observe that all the vertices
in NG(x)∪ {x} are odd in H and as such P(v) ≥ 1 for all v ∈ NG(x)∪ {x}.
Now Lemma 3.1 implies that each edge xyi, i = 1, . . . , 2k + 1 is P-addible
at x. Thus if dF (x) = 1 (or k = 0), then the desired path-decomposition P∗
of G is obtained via P x→

xy1
P∗. Thus we may assume that dF (x) ≥ 3 and
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k ≥ 1. Given that dF (v) ≥ 4 for at most one vertex v ∈ NF (x), we may
assume that dF (yi) ≤ 3, i = 2, . . . , 2k + 1.

By Lemma 3.2, there exists B ⊆ A such that xy1 ∈ B, |B| ≥ k + 1,
and B is P-addible at x. We may assume that B = {xy1, xy2, . . . , xyl}
where l ≥ k + 1. Let H0 = H ∪ B, and for i = 1, 2, . . . , 2k + 1 − l let
Hi = Hi−1 ∪{xyl+i}. Let P0 be a path-decomposition of H0 where P x→

B
P0.

Then P0(x) = P(x) + |B| ≥ 3, P0(yi) = P(yi) − 1, i = 1, . . . , l, and
P0(v) = P(v) for all v ∈ V (G)\{x, y1, . . . , yl}. Since dF (yl+1) ≤ 3, we have
|NF (yl+1)\{x}| ≤ 2. Thus

|{v ∈ NG(yl+1)
∣∣ P0(v) = 0}| ≤ 2 < P0(x).

Thus by Lemma 3.1, the edge xyl+1 is P0-addible at yl+1 and there is a

path-decomposition P1 of H1 where P0
yl+1→
xyl+1

P1 and P1(x) = P0(x) − 1.

Suppose now that for some 1 ≤ j < 2k + 1 − l we have the sequence of
path-decompositions P0,P1, . . . ,Pj where

P x→
B
P0

yl+1→
xyl+1

P1 → · · · → Pj−1
yl+j→
xyl+j

Pj .

Then
Pj(x) = P(x) + |B| − j = P(x) + l − j ≥ 3.

Again, since dF (yl+j+1) ≤ 3 we have that |{v ∈ NG(yl+j+1)
∣∣ Pj+1(v) =

0}| ≤ 2 < Pj(x). Thus by Lemma 3.1, the edge xyl+j+1 is Pj-addible at
yl+j+1 and consequently there is path-decomposition Pj+1 of Hj+1 where

Pj
yl+j+1→
xyl+j+1

Pj+1. Proceeding by induction, it follows that there is a sequence

P x→
B
P0

yl+1→
xyl+1

P1 → · · · → P2k−l
y2k+1→
xy2k+1

P2k+1−l

where P∗ = P2k+1−l is a path-decomposition for G. We note that |P∗| = |P|
and P∗(x) = P(x) + l − (2k + 1− l) ≥ P(x) + 1 ≥ 2.

3.4 Lemma
If dF (x) = 3, then either

(i) There exists a path-decomposition P∗ of G where P∗(x) ≥ 2 and
P∗(v) = P(v) for all v ∈ V (G)\(NF (x) ∪ {x})
or

(ii) There exists z ∈ NF (x) such that dF (z) ≥ 4.
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Proof. Suppose that dF (x) = 3. We observe that the vertices of NG(x)∪{x}
are odd in H and consequently P(v) ≥ 1 for all v ∈ NG(x)∪{x}. It follows by
Lemma 3.2 that there exists a P-addible set B ⊂ EF (x) where |B| = 2, and
there is a path-decomposition P0 of H0 = H ∪ B such that P x→

B
P0. Then

P0(x) = P(x) + 2 ≥ 3 and P0(v) = P(v) for all v ∈ NG(v)\(NG,B(x)∪{x}).
Let {z} = NF (x)\NF,B. Suppose that |{v ∈ NG(z)

∣∣ P0(v) = 0}| ≤ 2.
Since P0(x) ≥ 3, Lemma 3.1 implies that the edge xz is P0-addible at z.
Let P1 be a path-decomposition for H0 ∪ {xz} = G where P0

z→
xz
P1. Then

P∗ = P1, has the properties as described in (i). On the other hand, if
|{v ∈ NG(z)

∣∣ P0(v) = 0}| ≥ 3, then seeing as {v ∈ V (G)
∣∣ P(v) = 0} ⊆

V (F )\{x}, it follows that dF (z) ≥ 4. Thus (ii) holds in this case.

4 Path-Cycle-Decompositions into Path-Decompositions

A major step towards proving the main theorem is showing that certain
path-cycle-decompositions can be transformed into path-decompositions hav-
ing almost the same cardinality. The lemma presented in this section serves
just this purpose.

4.1 Lemma
Let G be a simple graph having girth g where g ≥ 4. Let P be a path
and let C be an edge-disjoint collection of cycles having the property that
E(C) ∩ E(P ) = Ø and V (C) ∩ V (P ) 6= Ø for all C ∈ C. Let H be the
subgraph where H = P ∪

⋃
C∈C C. If |V (P )|+ |C| ≤ 2g, then there is a path

decomposition of H having at most |C|+ 1 paths.

Proof. By induction on |C|. If |C| = 0 (that is, C = Ø) then {P} is the
desired path decomposition of H. Assume that the lemma holds for all P
and C where |C| ≤ k for some k ≥ 0. Suppose |C| = k+1 and let v1, v2, . . . , vp
be the consecutive vertices of P. We observe that p ≤ 2g − |C| ≤ 2g − 1.

We shall first assume that v1, vp ∈
⋃
C∈C V (C). The bulk of the proof

is devoted to this case. Let C,D ∈ C where v1 ∈ V (C) and vp ∈ V (D).
Note that it is possible that C = D. Suppose there exists a vertex v ∈
V (C)\V (P ) where vv1 ∈ E(C). Then P ′ = P ∪ vv1 is seen to be a path
having p′ = p + 1 vertices. Let P0 be the path C\{vv1}. Let C′ = C\{C}
and let H ′ = H\E(P0). Now P ′ and C′ are such that p′+ |C′| = p+ |C| ≤ 2g.
Since |C′| = |C|−1 = k, there exists a path decomposition P ′ of H ′ having at
most |C′|+ 1 paths. Now P = P ′ ∪ {P0} is seen to be a path decomposition
of H where |P| = |P ′|+ 1 ≤ |C′|+ 2 = |C|+ 1. In this case, the lemma holds
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for C. Thus we may assume that no such vertex v exists for v1. Letting
x1, x2 be the vertices such that x1vp, x2vp ∈ E(C), we may assume that
x1, x2 ∈ V (P ). Similarly, if y1, y2 are vertices such that x1v1, x2v1 ∈ E(D),
we may assume that y1, y2 ∈ V (P ).

Since G has girth g, it follows that x1, x2 ∈ {vg, vg+1, . . . , vp} and y1, y2 ∈
{v1, . . . , vg}. Given that p ≤ 2g − 1, there are only three possible pairs for
{x1, x2}, namely {vg, vp−1}, {vg, vp}, and {vg+1, vp}. Likewise, the three
possible pairs for {y1, y2} are {v1, vg}, {v2, vg}, and {v1, vg−1}. Notice that
when {x1, x2} = {vg, vp} we have that p ≥ 2g − 2 and 1 ≤ |C| ≤ 2. When
{x1, x2} = {vg, vp−1} or {vg+1, vp}, then p = 2g − 1 and |C| = 1. We shall
consider three cases:

Case A: {x1, x2} = {vg, vp}.

Proof In this case, if {y1, y2} = {v1, vg}, then v1vgvpv1 is seen to be a
triangle of G, contrary to our assumption that g ≥ 4. Thus {y1, y2} =
{v1, vg−1} and C = D. Since v1vgvg−1vpv1 is seen to be a cycle, it follows
that g = 4. Suppose v2 6∈ V (C). Let P ′ = (P\{v1v2}) ∪ {v1vp} and let
P0 = (C\{v1vp}) ∪ {v1v2}. Then P0 and P ′ are seen to be paths. Let
C′ = C\{C} and let H ′ = H\E(P0). Applying the inductive assumption
with P ′ and C′ in place of P and C, there exists a path-decomposition P ′
for H ′ having at most |C′|+ 1 = |C| paths. Now P = P ′ ∪{P0} is seen to be
a path-decomposition of H having at most |C| + 1 paths. From the above,
we may assume that v2 ∈ V (C) and (by symmetry) vp−1 ∈ V (C).

Let Q be the path C\{v1vp}. Let v be the neighbour of vp−1 on Q
such that v lies on the path Q[vp−1vp]. Suppose v 6∈ V (P ). Let P ′ be
the path (P\{vp−1vp}) ∪ vp−1v ∪ {v1vp} and let P0 be the path obtained
from the Q-lollipop Q ∪ {vp−1vp} (noting that vp−1v 6∈ E(P0)). Let H ′ =
H\E(P0). Applying the inductive assumption (as before), we can find a
path-decomposition P ′ forH ′ such that P = P ′∪{P0} is a path-decomposition
of G having at most |C| + 1 paths. Thus we may assume that v ∈ V (P ).
Given that g = 4 and p ≤ 2g − 1 = 7 there is only one choice for v,
namely v = v2. Given that v lies on the path Q[vp−1vp], when we travel
from v1 to vp along Q, we visit the vertices v4, vp−1, v2, v3 in this order.
Let v′ be the vertex adjacent to v2 on the path Q[v2v3]. Clearly v′ 6∈ V (P )
since G is triangle-free. Let P ′ = v1vpv3 ∪ P [v3vp−1] ∪ vp−1v2v′ and let
P0 = Q[v′v3] ∪ P [v3v1] ∪ Q[v1vp−1] ∪ vp−1vp. See Figure 2 . One sees that
P ′ and P0 are paths of G which form a path-decomposition of P ∪ C. Let
H ′ = H\E(P0) and let C′ = C\{C}. Now P ′ and C′ can play the roles of

11



Figure 2: The paths P ′ (dotted line) and P0 (solid line)

P and C in H ′. Applying the inductive assumption, there exists a path-
decomposition P ′ of H ′ containing at most |C′| + 1 = |C| paths. Now
P = P ′ ∪ {P0} is seen to be a path-decomposition of H having at most
|C|+ 1 paths. This completes the proof of Case A. �

Case B: {x1, x2} = {vg+1, vp}.

Proof As remarked before, p = 2g − 1 and |C| = 1 in this case. Thus
C = D. If {y1, y2} = {v1, vg}, then by symmetry, we could apply the proof
of Case A (with y1, y2 playing the role of x1, x2). Thus we may assume that
{y1, y2} = {v1, vg−1}. We see that v1vg+1vgvg−1vpv1 is a 5-cycle, and thus it
follows that g = 4 or 5 and p = 7 or 9. When v2 6∈ V (C) or vp−1 6∈ V (P ),
then one can apply the same arguments as in Case A. Thus we may assume
that v2, vp−1 ∈ V (P ). Let Q be the path C\{v1vp} and let v be the neighbour
of vp−1 on Q such that v lies on the path Q[vp−1vp]. If v 6∈ V (P ), then we can
apply the same arguments as in Case A. Thus we may assume v ∈ V (P ), or
more accurately, v ∈ {v2, v3, . . . , vg−2, vg}. Since any choice for v in this set
is seen to create a 3- or 4-cycle, we conclude that g = 4 and p = 7. There is
now only one choice for v, namely v = v2. We now construct similar paths P ′

and P0 as we did in the proof of Case A, and use our inductive assumption
to find a path-decomposition of H having at most |C|+ 1 paths. �

Case C: {x1, x2} = {vg, vp−1}.

Proof From Cases A and B, we may assume by symmetry that {y1, y2} =
{v2, vg}. Then v1v2vpvp−1v1 is seen to be a 4-cycle and hence g = 4, p = 7,
and C = {C}. We need only show that H has a path-decomposition with
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two paths. Let Q = C\{v1, vp}. Then Q is seen to be path from v2 to
vp−1 = v6. The path Q may or may not contain either of the vertices v3 or
v5. There are five possibilities given below, where we list the occurrence (or
non-occurrence) of v3 or v5 in the order which they appear when we move
along Q from v2 to v6. For example, the sequence v2, v5, v6 means that Q
passes through v5 en route from v2 to v6, but it does not pass through v3.
The possible sequences are:

i) v2, v6 ii) v2, v3, v6 iii) v2, v5, v6 iv) v2, v3, v5, v6 v) v2, v5, v3, v6.

For each of the possibilities i)-v), we shall choose a vertex v on the path Q
as follows:

If i) occurs, let v be a vertex in V (Q)\{v2, v6}.
If ii) occurs, let v be a vertex in V (Q[v2v3])\{v2, v3}.
If iii) occurs, let v be a vertex in V (Q[v5, v6])\{v5, v6}.
If iv) or v) occurs, let v be a vertex in V (Q[v3, v5])\{v3, v5}.

See Figures 3 and 4. For the each of the cases i) - v), we shall define two
paths P0 and P1. For cases i) and ii), let P0 = Q[vv6] ∪ v6v5v4v7v2v1 and
P1 = Q[vv2]∪ v2v3v4v1v6v7. For case iii), let P0 = Q[vv2]∪ v2v3v4v1v6v7 and
P1 = Q[vv6] ∪ v6v5v4v7v2v1. For case iv), let P0 = Q[vv3] ∪ v3v2v7v6v5v4v1
and P1 = Q[vv6] ∪ v6v1v2 ∪ Q[v2v3] ∪ v3v4v7. For case v, let P0 = Q[vv3] ∪
v3v2v7v6v5v4v1 and P1 = Q[vv2]∪v2v1v6∪Q[v6v3]∪v3v4v7. It can be readily
checked that {P0, P1} is a path-decomposition of H in each case. This
completes the proof of Case C. �

In the case where v1, vp ∈
⋃
C∈C V (C), the proof of follows from Cases A,

B, and C above. Suppose now that one of v1 or vp does not belong to⋃
C∈C C, and without loss of generality, we may assume this is true for vp.

Let j = max{i
∣∣ vi ∈ ⋃C∈C V (C)}. Let C ∈ C be a cycle containing vj .

Let z1 and z2 be the neighbours of vj on C where vjz1, vjz2 ∈ E(C). If
z1 6∈ V (P ), then P ′ = P [v1vj ] ∪ vjz1 and P0 = (C\{vjz1}) ∪ P [vjvp] are
seen to be paths. Letting H ′ = H\E(P0), C′ = C\{C}, and applying the
inductive assumption to H ′, we see that there is a path-decomposition P ′
having at most |C′|+1 = |C| paths. Now P = P ′∪{P0} is seen to be a path-
decomposition for H having at most |C| + 1 paths. Thus we may assume
that z1 ∈ V (P ) and similarly, zw ∈ V (P ). Given that G has girth g, we are
lead to the conclusion that {z1, z2} = {v1, vg−1}, p = 2g−1, j = 2g−2, and
C = {C}. Thus v1 ∈ V (C) and v1v2g−2 ∈ E(C). Let x1 be the neighbour of v1
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Figure 3: Cases (i),(ii), and (iii)

Figure 4: Cases (iv) and (v)

along C where x1 6= v2g−2. If x1 6∈ V (P ), then we can use previous arguments
to find the desired path-decomposition for H. Thus we may assume that
x1 ∈ V (P ). Considering that G has girth g, there is only one possibility
for x1, namely x1 = vg. The situation we have now is very similar to the
one treated in Case C. By adapting the arguments there, one can find the
desired path-decomposition for H in this case. We leave the details to the
reader. This completes the proof of the lemma.

5 Proof of the Main Theorem: Part I

In this section, we shall begin our proof of the main theorem. For a graph

G having girth g, we let ξ(G) = p(G)
2 +

⌊(
g+1
2g

)
q(G)

⌋
. Suppose that the

theorem is false and let G be a counterexample having fewest possible edges.
Suppose that G has girth g where g ≥ 4. Then G has no path-decomposition
with ξ(G) or fewer paths. We shall establish a number of properties for G
and show that g = 4. For convenience, we shall let F = Gev. For each vertex
v ∈ V (F ), we define εv where εv = 0 or εv = 1, depending on whether v is
even or odd in F. For all v ∈ V (G), let d′G(v) = dG(v) + εv.

(5.1) dF (x) 6= 1 for all x ∈ V (F ).
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Proof Suppose to the contrary that there exists x ∈ V (G) where dF (x) =
1. Let y be the unique neighbour of x in F and let H = G\xy. Then x and
y are odd vertices in H, and moreover, each neighbour of x in G is odd.
Let P be a path-decomposition of H having fewest paths. By assumption,
|P| ≤ ξ(H). Since each neighbour of x in G is odd, we have that P(v) ≥ 1
for all v ∈ NG(x). Now by Lemma 3.1, the edge xy is P-addible at x and
hence G has a path-decomposition with |P| ≤ ξ(H) ≤ ξ(G) paths. This
gives a contradiction. �

(5.2) For all odd vertices x in F there exist vertices y1, y2 ∈ NF (x) such
that dF (yi) ≥ 4, i = 1, 2.

Proof Suppose to the contrary that there exists an odd vertex x of F
where dF (v) ≥ 4 for at most one vertex v ∈ NF (x). Let H = G\EF (x).
By assumption, H has a path-decomposition P with at most ξ(H) paths.
By Lemma 3.3, G has a path-decomposition P∗ where |P∗| = |P|. Since
|P| ≤ ξ(H) ≤ ξ(G), this gives a contradiction. �

(5.3) For all even, non-isolated vertices x in F there exist vertices y1, y2 ∈
NF (x) such that dF (yi) ≥ 3, i = 1, 2.

Proof Suppose to the contrary that there exists an even, non-isolated
vertex x of F for which dF (v) ≥ 3 for at most vertex v ∈ NF (x). Since x
is non-isolated, there exists y ∈ NF (x) such that dF (y) ≤ 2. By (5.1), we
have that dF (y) ≥ 2, and hence it follows that dF (y) = 2. Let z be the
unique neighbour in NF (y)\{x}. Let A = EF (x)\{xy}. Let G′ = G\{yz}
and H ′ = G′\A. Let P be a path-decomposition of H ′ having at most ξ(H ′)
paths. Let F ′ be the E-subgraph of G′. We observe that y and z are odd
vertices of G′ and hence dF ′(x) = dF (x)−1 is odd. Furthermore, dF ′(v) ≥ 3
for at most one vertex v ∈ NF ′(x). Applying Lemma 3.3, there is a path-
decomposition P∗ for G′ where |P∗| = |P| ≤ ξ(H ′) and P∗(x) ≥ P(x) + 1.
Noting that P(x) ≥ 1 since x is odd in H ′, it follows that P∗(x) ≥ 2.
Furthermore, P(z) ≥ 1 since z is odd in H ′. Thus P∗(z) = P(z) ≥ 1. Now
Lemma 3.1 implies that the edge yz is P∗-addible at y. Thus G has a path-
decomposition with |P∗| = |P| ≤ ξ(H ′) paths. However, it is seen that
ξ(H ′) ≤ ξ(G), and with this we reach a contradiction. �

From (5.1), (5.2), and (5.3) we obtain the following:

(5.4) For all non-isolated vertices x in F there exist vertices y1, y2 ∈ NF (x)
such that dF (yi) ≥ 3, i = 1, 2.
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(5.5) F has maximum degree at most 2g − 2.

Proof. Suppose to the contrary that there is a vertex x ∈ V (F ) where
dF (x) ≥ 2g − 1. Let H = G\EF (x). Then H has a path-decomposition P
having at most ξ(H) paths, and we see that P(v) ≥ 1 for all v ∈ NG(x) (since
every vertex v ∈ NG(x) is odd in H). Thus each edge of EF (x) is P-addible
at x. Using the Lovàsz construction, there is a path-cycle-decomposition P∗

of G where P
x
V

EF (x)
P∗. We observe that P∗ has at most bdF (x)

2 c cycles.

We have that p(H) = p(G) + d′F (v) and q(H) = q(G)− d′F (v). Thus

ξ(H) =
p(G)

2
+ d′F (v) +

⌊
g + 1

2g
(q(G)− d′F (v))

⌋
≤ ξ(G)−

⌊(
g + 1

2g
− 1

2g

)
d′F (v)

⌋
≤ ξ(G)−

⌊
1

2g
d′F (v)

⌋
.

Let a and b be nonnegative integers such that d′F (v) = a(2g) + b where
0 ≤ b < 2g. Since dF (v) ≥ 2g − 1, we see that d′F (v) ≥ 2g and hence a ≥ 1.
From the above, we see that ξ(H) ≤ ξ(G)−a. By Lemma 4.1, we can replace
any edge-disjoint set of cycles C containing v by |C| + 1 paths, provided

|C| ≤ 2g − 1. Since there are at most
⌊
dF (x)

2

⌋
≤ a · g + b

2 cycles in P∗ (all of

which contain v), we can partition the set of cycles of P∗ into at most a sets
having at most 2g cycles in each. Thus we can replace the cycles in each of
these sets by paths so as to obtain a path-decomposition of G containing at
most |P∗|+a paths. From the above, we see that |P∗|+a ≤ ξ(H)+a ≤ ξ(G).
This yields a contradiction.

For every path P in F , we shall define a functions µP , η : V (P ) → Z+

where µP (v) = |NF (v)\V (P )| + εv and ηP (v) =
⌊
|NF (v)\V (P )|

2

⌋
∀v ∈ V (P ).

We also define µ(P ) =
∑

v∈V (P ) µP (v) and η(P ) =
∑

v∈V (P ) ηP (v). It is
a straightforward exercise to show that µ(P ) is always even. When the
vertices of P share no common neighbours in V (G)\V (P ), µ(P ) represents
the number of new odd vertices created when one deletes all the edges of F
incident with P. We say that P is an F-path if

(i) dF (v) ≥ 3 for all v ∈ V (P ).

(ii) µ(P ) ≥ 2g.
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Using (5.4), it is easy to see that for any vertex v where dF (v) ≥ 3, there
is an F -path starting at v. We say that an F -path is minimal if it does not
properly contain another F -path as a subgraph. By (5.5), it follows that
any F -path must have at least two vertices. Furthermore, it is not difficult
to show that for any F -path P we have µ(P ) ≥ 2(|V (P )|+1). Thus it follows
that for any minimal F -path P , |V (P )| ≤ g − 1.

(5.6) For any minimal F -path P we have that η(P ) + |V (P )| ≤ 2g.

Proof For all v ∈ V (P ) we have µP (v) ≥ 2ηP (v). Thus µ(P ) ≥ 2η(P ).
Let v1, v2, . . . , vp be the consecutive vertices of P. By the minimality of P,

it follows that
∑p−1

i=1 µP (vi) < 2g. Thus µP (v1) < 2g −
∑p−1

i=2 µP (vi) and

hence µP (v1) ≤ 2(g − 1) −
∑p−1

i=2 µP (vi), seeing as
∑p−1

i=2 µP (vi) is even.
Likewise, we have that

∑p
i=2 µP (vi) < 2g and hence µP (vp) ≤ 2(g − 1) −∑p−1

i=2 µP (vi). Thus µP (v1) + µP (vp) ≤ 4(g − 1) − 2
∑p−1

i=2 µP (vi) and hence

µ(P ) ≤ 4(g−1)−
∑p−1

i=2 µP (vi). Since dF (vi) ≥ 3 for all vertices vi, it follows

that µP (vi) ≥ 2. Thus
∑p−1

i=2 µP (vi) ≥ 2(p − 2). Consequently, we see that

µ(P ) ≤ 4(g − 1) − 2(p − 2). Therefore, η(P ) ≤ µ(P )
2 ≤ 2g − p. From this it

follows that η(P ) + p ≤ 2g. �

(5.7) Let P = v1, v2, . . . , vp be a minimal F -path. Then we have the
following:

(i) v1 and vp share common neighbours in V (F )\V (P ).

(ii) p = g − 1.

(iii) dF (v) ∈ {3, 4} for all v ∈ V (P ).

Proof (i) Suppose to the contrary that v1 and vp share no common neigh-
bours in V (F )\V (P ). Then no two vertices of P share a common neighbour
in V (F )\V (P ). Let H = G\E(P ). For i = 1, . . . , p let Bi = EF (vi)\E(P ).
Let B =

⋃p
i=1Bi and let H0 = H\B. We first observe that p(H0) =

p(G)+µ(P ) and q(H0) = q(G)−µ(P ). For i = 1, . . . , p let Hi = H∪
⋃i
j=1Bj .

Let P0 be a path-decomposition of H0 having at most ξ(H0) paths. Given
that µ(P ) ≥ 2g, we have that

ξ(H0) =
p(G)

2
+
µ(P )

2
+

⌊
g + 1

2g
(q(G)− µ(P ))

⌋
≤ ξ(G)−

⌊
µ(P )

2g

⌋
≤ ξ(G)− 1.
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Thus ξ(H0) ≤ ξ(G) − 1. We observe that for i = 1, . . . , p and j = i, . . . p,
the vertices of NH(vj) are odd vertices of Hi−1. In particular, the vertices
of NH(v1) are odd in H0. Thus P(v) ≥ 1 for all v ∈ NH(v1) and hence there

exists a path-cycle-decomposition P1 of H1 where P0
v1
V
B1

P1. Then P1 has

at most
⌊
|B1|
2

⌋
= ηP (v1) cycles, all of which contain v1. Similarly, since all

the vertices of NH(v2) are odd in H1, there is a path-cycle-decomposition

P2 of H2 where P1
v2
V
B2

P2, and P2 has at most
⌊
|B2|
2

⌋
= ηP (v2) cycles, all of

which contain v2. Continuing in the same fashion, we obtain a sequence of
path-cycle-decompositions

P0
v1
V
B1

P1
v2
V
B2

P2 V · · ·V Pp−1
vp
V
Bp

Pp.

Now P = Pp is seen to be a decomposition of H where |P| = |P0| and P
contains at most

∑p
i=1 ηP (vi) = η(P ) cycles, where each cycle contains at

least one vertex of P. Let C be the set of cycles in P. Since |C| ≤ η(P )
and η(P ) + p ≤ 2g (by (5.6)), we see that |C| + p ≤ 2g. Now Lemma 4.1
implies that there is a path-decomposition P ′ for the subgraph induced by
P ∪

⋃
C∈C C where |P ′| ≤ |C|+ 1. Let P∗ = (P\C) ∪ P ′. Then P∗ is seen to

be a path-decomposition of G where |P∗| = |P|− |C|+ |P ′| ≤ |P|+ 1. Given
that |P| = |P0| ≤ ξ(H0), it follows that |P∗| ≤ ξ(H0) + 1 ≤ ξ(G). This gives
a contradiction. Thus v1 and vp share common neighbours in V (F )\V (P ).

�

Proof (ii) Since G has girth g, (i) implies that p ≥ g − 1. From our prior
remarks, we also know that p ≤ g− 1. Thus it follows that p = g− 1. �

Proof (iii) Suppose to the contrary that dF (vi) ≥ 5 for some i ∈ {1, . . . , g−
1}. If i < g − 1, then the path P ′ = P [v1vg−2] is seen to satisfy µ(P ′) ≥ 2g.
On the other hand, if i = g − 1, then P ′ = P [v2vg−1] is seen to satisfy
µ(P ′) ≥ 2g. Thus P properly contains an F -path, contradicting the mini-
mality of P. Therefore dF (vi) ∈ {3, 4}, i = 1, . . . , g − 1. �

As a direct consequence of (5.7) (ii), we have the following:

(5.8) Any F -path with g − 1 vertices is minimal.

(5.9) dF (v) ≤ 4 for all v ∈ V (G).
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Proof Suppose x is a vertex of G where dF (x) ≥ 3. By (5.4), we can
construct a path F -path P starting at x where dF (v) ≥ 3 for all v ∈ V (P )
and |V (P )| = g − 1. By (5.8), F is minimal. It now follows by (5.7) (iii)
that dF (x) ≤ 4. �

We shall now show that G has girth g = 4.

(5.10) g = 4.

Proof By (5.9), we have dF (v) ≤ 4 for all v ∈ V (G). Now using (5.2) and
(5.4), one can show that there exists a vertex v1 ∈ V (G) where dF (v1) = 4.
Using (5.4), we can construct an F -path Let P = v1v2 · · · vg−1 having g− 1
vertices. Such a path is minimal by (5.8). By (5.7) (ii), v1 and vp have
common neighbours in V (F )\V (P ). Note that if v1 and vg−1 have more
than one common neighbour in V (F )\V (P ), then G has a 4-cycle. Thus
we may assume that v1 and vg−1 have exactly one common neighbour in
V (F )\V (P ), which we denote by vg. We see that v1 and vg−1 are the only
two vertices of P having a common neighbour in V (F )\V (P ). By (5.9), we
have that dF (vi) ≤ 4 for all v ∈ V (G).

LetH = G\(E(P )∪{vg−1vg}). For i = 1, 2, . . . , g−1 letBi = EF (vi)\(E(P )∪
{v1vg, vg−1vg}. Let P ′ be the path P∪vg−1vg and let B =

⋃g−1
i=1 Bi. Let H0 =

H\B and for i = 1, . . . , g − 1 let Hi = Hi−1 ∪ Bi. Given that 3 ≤ dF (vi) ≤
4, i = 1, . . . , g−1, it is straightforward to show that p(H0) = p(G)+2g (and
q(H0) = q(G)− 2g) and ξ(H0) = ξ(G)− 1. Let P0 be a path-decomposition
for H0 having at most ξ(H0) paths. We may now proceed in a manner sim-
ilar to the proof of (5.7). There exists a path-cycle-decomposition P1 for

H1 where P0
v1
V
B1

P1 and P1 has at most
⌊
|B1|
2

⌋
≤ 1 cycles, all of which con-

tain v1. Similarly, there exists a path-cycle-decomposition P2 for H2 where

P1
v2
V
B2

P2 and P2 has at most
⌊
|B2|
2

⌋
≤ 1 cycles, all of which contain v2.

Continuing in the same fashion, we obtain a sequence of decompositions

P0
v1
V
B1

P1
v2
V
B2

P2 V · · · Pg−2
vg−1

V
Bg−1

Pg−1.

Now P = Pg−1 is seen to be path-cycle-decomposition of H where |P| = |P0|
and P contains at most g−1 cycles, each of which contains at least one vertex
of P ′. Let C be the set of such cycles. Since |C| + |V (P ′)| ≤ g − 1 + g =
2g−1 < 2g, Lemma 4.1 implies that there is a path-decomposition P ′ for the
subgraph P ′∪

⋃
C∈C C where |P ′| ≤ |C|+1. Let P∗ = (P\C)∪P ′. Then P∗ is
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seen to be a path-decomposition of G where |P∗| = |P|−|C|+ |P ′| ≤ |P|+1.
Given that |P| = |P0| ≤ ξ(H0) ≤ ξ(G)− 1, it follows that |P∗| ≤ ξ(G). This
gives a contradiction. �

6 Proof of the Main Theorem: Part II

In this section, we shall complete the second part of the proof of the main
theorem. From (5.10) in the previous section, we know that g = 4. We also
note that by (5.9), dF (v) ≤ 4 for all v ∈ V (G). We shall establish several
more properties of G which will culminate in showing that any non-trivial
component of F is isomorphic to the complete bipartite graph K3,4.

(6.1) No two vertices of degree four in F are adjacent.

Proof Suppose to the contrary that x and y are vertices of degree four
in F which are adjacent. Let e = xy and let X = EF (x)\{e} and Y =
EF (y)\{e}. Let NF (x) = {y, x1, x2, x3} and NF (y) = {x, y1, y2, y3}. Let
H0 = G\(X ∪ Y ). One sees that the vertices in NG(x) ∪ NG(y) are odd
in H0. Let P0 be a path-decomposition of H0 where |P0| ≤ ξ(H0). Then

ξ(H0) = p(G)
2 +4+

⌊
5
8(q(G)− 8)

⌋
= ξ(G)−1. We also observe that P0(v) ≥ 1

for all v ∈ NG(x)∪NG(y). Let H1 = H0∪X and let F1 be the even-subgraph
of H1. The vertices of {x, x1, x2, x3} are seen to even in H1 and dF1(x) = 3.
We shall consider two cases.

Suppose there exists a path-decomposition P1 of H1 where P1(x) ≥ 2
and P1(v) = P0(v) ≥ 1 for all v ∈ V (G)\({x, x1, x2, x3}). Then P1(v) =
P0(v) ≥ 1 for all v ∈ NG(y). Applying Lemma 3.2, there exists a subset
Y0 ⊆ Y such that |Y0| = 2 and Y0 is P1-addible at y. We may assume that
Y0 = {yy1, yy2}. Then there is a path-decomposition P∗ of G\{yy3} where

P1
y→
Y0
P∗ and |P∗| = |P0| ≤ ξ(H0) = ξ(G) − 1. Let P ′ = yy3 be the path

induced by the edge yy3. Then P∗ ∪ {P ′} is a path-decomposition of G
having at most ξ(G) paths. This gives a contradiction.

Suppose no such path-decomposition P1 for H1 as described above exists.
Then Lemma 3.4 implies that there exists z ∈ NF1(x) for which dF1(x) ≥ 4.
This implies that |NF (z)\(NF (x) ∪NF (y))| ≥ 3 and dF (z) = 4. From this,
it also follows that NF (y) ∩ NF (z) = {x}. Let P = zxy. Then P is a path
such that µ(P ) ≥ 8 and consequently P is an F -path. Moreover, (5.8)
implies that P is minimal. However, the vertices y and z have no common
neighbour in V (F )\V (P ). This contradicts (5.7) (i). �
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(6.2) Let x ∈ V (F ) where dF (x) = 4. Let A ⊂ E(F ) and let H0 = G\A.
Let P0 be a path-decomposition of H0 where P0(v) ≥ 1 for all v ∈ NG(x) ∪
{x}. Suppose X ⊆ A where |X| = 3 and X ⊂ EF (x). Then there is a path-
decomposition P∗ of H0 ∪X such that P∗(x) ≥ 2 and P∗(v) = P0(v) for all
v ∈ V (G)\(NG,X(x) ∪ {x}).

Proof Similar to the proof of Lemma 3.4, one can show that if no such
path-decomposition P∗ exists for H0 ∪X, then there is a vertex z ∈ NF (x)
such that dF (x) ≥ 4 (and hence dF (z) = 4). However, x and z would be
adjacent vertices in F which have degree four. This contradicts (6.1). Thus
such a path-decomposition P∗ must exist. �

(6.3) Suppose x, y ∈ V (F ) where dF (x) = dF (y) = 4. If NF (x)∩NF (y) 6=
Ø, then NF (x) = NF (y).

Proof By (6.1), x and y are non-adjacent. Suppose first that |NF (x) ∩
NF (y)| = 1 and NF (x) ∩ NF (y) = {z}. Let X be the set of edges incident
with x in F\z and let Y be the set of edges incident with y in F. Let
H0 = G\(X ∪ Y ) and let P0 be a path-decomposition for H0 where P0
has at most ξ(H0) paths. Then ξ(H0) = ξ(G) − 1 and P0(v) ≥ 1 for all
v ∈ NG(x) ∪ NG(y). By (6.2), there exists a path-decomposition P1 of
H1 = H0 ∪X such that P1(x) ≥ 2 and P1(v) = P0(v) ≥ 1 for all v ∈ NG(y).
By Lemma 3.2, there exists Y1 ⊆ Y such that |Y1| = 2 and Y1 is P1-addible

at y. Let P2 be a path-decomposition of H1 ∪ Y1 where P1
y→
Y1
P2. Let P ′ be

the path induced by the edges of Y \Y1. Then P∗ = P2 ∪ {P ′} is seen to be
a path-decomposition of G having |P1| + 1 = |P0| + 1 ≤ ξ(H0) + 1 = ξ(G)
paths. This gives a contradiction.

Suppose |NF (x) ∩ NF (y)| = 2 and let NF (x) ∩ NF (y) = {w, z}. Let X
(respectively, Y ) be the set of edges incident with x (respectively, y) in F\w
(respectively, F\z). LetH0 = G\(X∪Y ) and let P0 be a path-decomposition
of H0 where P0 has a most ξ(H0) paths. Then ξ(H0) = ξ(G) − 1 and
P0(v) ≥ 1 for all v ∈ NG(x)∪NG(y). By (6.2), there is a path-decomposition
P1 of H1 = H0 ∪ X such that |P1| = |P0|, |P1(x)| ≥ 2, and P1(v) ≥ 1
for all v ∈ NG(y)\{z} (and P1(z) ≥ 0). Thus Lemma 3.1 implies that
there is an edge e ∈ Y for which e is P1-addible at y. Let P2 be a path-
decomposition of H1 ∪ {e} where P1

y→
e
P2. Let P ′ be the path induced by

the edges of Y \{e}. Then P∗ = P2 ∪ {P ′} is a path-decomposition of G
having |P∗| = |P2|+ 1 = |P1|+ 1 = |P0|+ 1 ≤ ξ(H0) + 1 = ξ(G) paths. This
gives a contradiction.
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Suppose |NF (x) ∩ NF (y)| = 3 and let NF (x) ∩ NF (y) = {u,w, z}. By
(5.4), x has a least two neighbours of degree three in F . Because of this,
we may assume that dF (u) = 3. Let X be the set of edges incident with x
in F\u. Let e be the edge incident with u in F\{x, y} and let f be the edge
incident with y in F\{u,w, z}. Let H0 = G\(X ∪ {e, f}) and let P0 be a
path-decomposition of H0 where P0 has at most ξ(H0) paths. We see that
ξ(H0) = ξ(G)−1. We observe that all the vertices in NG(x)∪NG(y)∪NG(u)
are all odd in H0. Thus P0(v) ≥ 1 for all vertices v in this set. By (6.2), there
is a path-decomposition P1 of H1 = H0 ∪ X where |P1| = |P0|, P1(x) ≥ 2
and P1(v) = P0(v) ≥ 1 for all v ∈ NG(u)\{x}. Thus by Lemma 3.1, e is
P1-addible at u. Let P2 be a path-decomposition of H1∪{e} where P1

u→
e
P2.

Let P ′ be the path induced by the edge f. Then P∗ = P2 ∪ {P ′} is seen
to be a path-decomposition of G where having at most ξ(H0) + 1 = ξ(G)
paths. This gives a contradiction.

From the above, we conclude that |NF (x) ∩ NF (y)| = 4 and hence
NF (x) = NF (y). �

(6.4) Each non-trivial component of F is isomorphic to K3,4.

Proof Let K be a non-trivial component of F. It is an easy exercise to show
that K has two vertices of degree four in F which share a common neighbour.
Let x and y be two such vertices. By (6.3), we have NF (x) = NF (y). Let
NF (x) = {u, v, w, z}. By (5.4), at least two vertices in {u, v, w, z} have
degree at least three in F. We may assume that dF (u) ≥ 3 and dF (v) ≥ 3.
Now (6.1) implies that dF (u) = dF (v) = 3.

Suppose first that NF (u) 6= NF (v). Let e (respectively, f) be the edge
in F\{x, y} incident with u (respectively, v). Let g = xw and h = yz. Let
H0 = G\{e, f, g, h}. Then ξ(H0) = ξ(G)−1. Let P0 be a path-decomposition
of H0 having at most ξ(H0) paths. All vertices in

⋃
v′∈{u,v,w,z}NG(v′) are

seen to be odd in H0. By Lemma 3.1, both e and f are P0-addible at u
and v respectively. Let P1 be a path-decomposition of H1 = H0 ∪ {e}
where P0

u→
e
P1. Let P2 be a path-decomposition of H2 = H1 ∪ {f} where

P1
v→
f
P2. We observe that P2(u) ≥ 2, P2(v) ≥ 2, and P2(v′) ≥ 1 for all

v′ ∈ NG(x). Thus Lemma 3.1 implies that g is P2-addible at x. Let P3
be a path-decomposition of G\{h} = H2 ∪ {g} where P2

x→
g
P3. Let P ′

be the path induced by the edge h. Now P∗ = P3 ∪ {P ′} is seen to be
a path-decomposition of G where |P∗| ≤ ξ(H2) + 1 ≤ ξ(H0) + 1 = ξ(G).
This gives a contradiction. Thus NF (u) = NF (v). The above argument
also shows that for any two vertices u′, v′ ∈ {u, v, w, z} where dF (u′) =
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dF (v′) = 3, NF (u′) = NF (v′). Let NF (u) = {x, y, t}. Suppose that u and
v are the only two vertices in {u, v, w, z} having degree three in F. Let
H0 = G\{xw, xz, yv, ut}. Let P0 be a path-decomposition of H0 having
at most ξ(H0) paths. Then y, u, w, z, t, v are all odd vertices in H0 and
consequently P0(v′) ≥ 1 for all v′ ∈ {v, y, w, z, u, t}. Furthermore, P0(v′) ≥ 1
for all v′ ∈ NG(y). By Lemma 3.1, the edge yv is P0-addible at y. Let P1 be

a path-decomposition of H1 = H0 ∪ {yv} where P0
y→
yv
P1. Then P1(v) ≥ 0,

P1(y) ≥ 2, and P1(v′) = 0 for at most one vertex v′ ∈ NG(x). Given that
P1(w) ≥ 1 and P1(z) ≥ 1, Lemma 3.2 implies that at least one of xw
or xz is P1-addible at x. Without loss of generality, we may assume that
xw is P1-addible. Let P2 be a path-decomposition of H2 = H1 ∪ {xw}
where P1

x→
xw
P2. Then P2(x) ≥ 1, P2(w) ≥ 0, and P2(v′) ≥ 1 for all

v′ ∈ NG(u). Now Lemma 3.1 implies that ut is P2-addible at u. Let P3 be
a path-decomposition of H3 = H2 ∪ {ut} where P2

u→
ut
P3. Then P3(u) ≥ 2,

P3(t) ≥ 0, and P3(v′) ≥ 1 for all v′ ∈ NG(z). By Lemma 3.1, xz is P3-addible
at z. Let P4 be a path-decomposition of G = H3 ∪ {xz} where P3

z→
xz
P4.

Since |P4| = |P0| ≤ ξ(H0) ≤ ξ(G), this gives a contradiction.
From the above, at least one of the vertices w or z has degree three

in F. Without loss of generality, we may assume that dF (w) = 3. By our
previous observation, it follows that NF (u) = NF (v) = NF (w) = {x, y, t}.
If dF (t) = 3, then (5.2) implies that at least two of the vertices of {u, v, w}
have degree four in F . However, since x and y have degree four in F, this
would contradict (6.1). Thus dF (t) = 4. Now (6.3) implies that NF (t) =
NF (x) = NF (y). We now see that K ' K3,4. �

If F only has non-trivial components, then it follows by Theorem 1.3
that G has a path-decomposition with at most p(G)

2 paths. Thus F has at
least one non-trivial component, say F1. By (6.4), we have that F1 ' K3,4.
Let X = {x1, x2, x3} and Y = {y1, y2, y3, y4} be a bipartition of the vertices
of F1, where xiyj ∈ E(F1) for all i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}. Suppose
first that F = F1. Let H0 = G\{x1y1, x1y2, x1y3, x2y4} and let P0 be a
path-decomposition for H0 having at most ξ(H0) paths. We observe that
p(H0) = p(G) + 6 and q(H0) = q(G) − 6 = 1. Thus we see that ξ(H0) =
ξ(G) − 1. Given that dF (yi) = 3, i = 1, 2, 3, 4, it follows from (6.2) that
H1 = H0∪{x1y1, x1y2, x1y3} has a path-decomposition P1 where |P1| = |P0|.
Let P ′ be the path induced by the edge x2y4. Then P∗ = P1∪{P ′} is seen to
be a path-decomposition of G having |P1|+1 = |P0|+1 ≤ ξ(H0)+1 = ξ(G)
paths. This gives a contradiction.
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From the above, we see that F 6= F1 and hence there must be other
components of F other than F1. Let P be a shortest path from F1 to another
component of F which we will call F2. If P terminates in X, then we may
assume that its terminal vertex is x3. Otherwise, if P terminates in Y , we
may assume its terminal vertex is y4. Suppose first that P terminates at x3.
Let H0 = G\({x1y1, x1y2, x1y3, x2y4} ∪E(P )). Observe that all the vertices
of P are odd in H0. Thus we see p(H0) = p(G) + 8, q(H0) = q(G) − 8
and ξ(H0) = ξ(G) − 1. By (6.2), there exists a path-decomposition P1 of
H1 = H0 ∪ {x1y1, x1y2, x1y3} where |P1| = |P0|, P1(x1) ≥ 2, and P1(v) =
P0(v) ≥ 1 for all v ∈ NG(y4). By Lemma 3.1, the edge x2y4 is P1-addible at

y4. Let P2 be a path-decomposition of H2 = H1 ∪ {x2y4} where P1
y4→
x2y4
P2.

Now P∗ = P2∪{P} is seen to be a path-decomposition of G having at most
ξ(H0) + 1 = ξ(G) paths. This gives a contradiction.

Suppose instead that P terminates at y4. Let

H0 = G\({x1y1, x1y2, x1y3, x2y4, x3y4} ∪ E(P ))

and let P0 be a path-decomposition of H0 having at most ξ(H0) paths.
Again, we see that ξ(H0) = ξ(G)−1. By (6.2), there is a path-decomposition
P1 of H1 = H0 ∪ {x1y1, x1y2, x1y3} where |P1| = |P0|, P1(x1) ≥ 2, and
P1(v) ≥ 1 for all v ∈ NG(y4). Thus x2y4 is P1-addible at y4. Let P2 be a path-

decomposition of H2 = H1 ∪ {x2y4} where P1
y4→
x2y4
P2. Let P ′ = P ∪ x3y4.

Then P∗ = P2 ∪ {P ′} is seen to be a path-decomposition of G having at
most ξ(H0) + 1 = ξ(G) paths. This gives a final contradiction and the proof
is complete.
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