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Abstract: Fix p odd prime. Let K = Q(ζp).

Let X be the Fermat curve xp + yp = zp.

Anderson studied the action of the absolute Galois group GK on a
relative homology group of X (Duke, 1987). He proved that the action
factors through Q = Gal(L/K ) where L is the the splitting field of
1− (1−xp)p. Using this, he obtained results about the field of
definition of points on a generalized Jacobian of X .

We build upon Anderson’s work: for p satisfying Vandiver’s conjecture,
we compute Q and find explicit formula for the action of q ∈Q on the
relative homology. Using this, we obtain information about maps
between several Galois cohomology groups which arise in connection
with obstructions to rational points.

This is joint work with R. Davis, V. Stojanoska, and K. Wickelgren.

Pries (CSU) Galois action on Fermat curves 2 / 26



Background on Fermat curve

Let p be an odd prime. Let ζ be a pth root of unity.

Let X be the Fermat curve xp + yp = zp, having genus g = (p−1)(p−2)
2 .

Let U = X −Z where Z is closed subscheme of p points where z = 0.

Let Y ⊂ X be closed subscheme of 2p points where xy = 0.

(this is not a talk about) Fermat’s Last Theorem: X (Q) = Z ∪Y .
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Other results about rational points

Theorem - Greenberg (paraphrased)
Let p ≥ 5 and let L0 be the field generated over K = Q(ζ) by the pth
roots of the real cyclotomic units of K .
Then L0 is the field generated by the points of order p on Jac(X ).

Theorem - Anderson
For p an odd prime, let L be the splitting field of 1− (1−xp)p.
Let S be the generalized Jacobian of X with conductor ∞.
Let b = “(0,1)− (1,0)”, a Q-rational point of S.
Then L is the number field generated by the pth roots of b in S(Q).

Similar results obtained by Ihara and Coleman.
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Étale homology groups (coefficients in Z/p)

There is an action of µp×µp on X : xp + yp = zp (stabilizing U and Y )
given by (ζi ,ζj) · [x ,y ,z] = [ζix ,ζjy ,z].

Let Λ1 = (Z/p)[µp×µp], generators ε0 and ε1.

The Jacobian (and other (co)homology groups) are Λ1-modules
and also modules for GK , the absolute Galois group of K = Q(ζ).

Consider the homology group H1(U), dimension (p−1)2

and its quotient H1(X ), dimension 2g = (p−1)(p−2)
and the relative homology group M = H1(U,Y ), dimension p2.

Consider the class β ∈M of the path (singular 1-simplex)
β : [0,1]→ U(C) given by t 7→ ( p

√
t , p
√

1− t) (real pth roots).
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Galois action on relative homology

Recall β ∈H1(U,Y ) chosen singular 1-simplex and Λ1 = (Z/p)[µp×µp].

Theorem - Anderson
M = H1(U,Y ) is a free Λ1-module of rank 1 with generator β.

Let K = Q(ζ).

The action of σ ∈GK on M is determined by its action on β.

For p an odd prime, let L be the splitting field of 1− (1−xp)p.

Theorem - Anderson
Then σ ∈GK acts trivially on M = H1(U,Y ) if and only if σ fixes L.
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More on the Galois action on relative homology

The GK -action on H1(U,Y ) factors through Q = Gal(L/K ).
For q ∈Q, write qβ = Bqβ for some unit Bq ∈ Λ1.

Let ε0,ε1 generate µp×µp. Recall Λ1 = (Z/p)[µp×µp].
Write Bq = ∑0≤i ,j<p bi ,jε

i
0ε

j
1 (view as p×p matrix).

Anderson: (i) Bq is a symmetric unit (bi ,j = bj ,i ).

(ii) Bq−1 is in the augmentation ideal (1− ε0)(1− ε1)Λ1.
(rows and columns of Bq−1 sum to zero mod p).
Observation: Identify Λ1 with H1(U,Y ), then Bq−1 ∈ H1(U).

(iii) (Cliff note version) There are maps Λ∗0
d ′→ (Λ∗1)sym d ′′→ Λ∗2 and Bq ∈ Ker(d ′′).

There is Γq ∈ Λsh
0 , unique up to Ker(d ′)sh , s.t. (d ′)sh(Γq ) = Bq .

The logarithmic derivative of Γq in Ω(Λsh
0 ) is represented by the class of (q−1)◦ [0,1] in H1(A1−µ∗p).

In theory, this determines the action of GK on H1(U,Y ) completely.

Pries (CSU) Galois action on Fermat curves 7 / 26



Our program: for all odd primes p

Make Anderson’s work more explicit,
(1) Determine Q = Gal(L/K ) and (2) Determine formula for Bq

in order to compute Galois cohomology groups of Fermat curves which
arise in connection with obstructions to rational points.

(3) Main target: X (K )→ H1(GK ,M) (with restricted ramification)

Quotient of target: kernel of the differential d2 : H1(N,M)Q → H2(Q,M)
when N = GL (with restricted ramification).

Main result so far: for all odd p, have bounds on Ker(d2)
(4) lower bound arising from (mod p) Heisenberg extensions of K .
(5) upper bound arising from Q-invariant local units of OL.

Application: If p = 3, then 12≤ dim(H1(GK ,M))≤ 22.
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(1) The Galois group Q of L/K

Vandiver’s Conjecture (first conjectured by Kummer in 1849)

The prime p does not divide the class number h+ of K + = Q(ζp + ζ
−1
p ).

True for all p < 163 million (Buhler/Harvey) and for all regular primes.

Let E be the units in OK and E+ = E ∩K +.

Let C = V ∩E be the cyclotomic units where V ⊂ K ∗ is generated by
{±ζp,1−ζi

p : 1≤ i ≤ p−1}. Let C+ = C∩O∗K + .

Then h+ is the index of C+ in E+.

If Vandiver’s conjecture is true for p, then E/Ep is generated by C.
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(1) The Galois group Q of L/K

Let K = Q(ζp). Let r = (p−1)/2. Let L be splitting field of 1− (1−xp)p.

Proposition: KR2V
If Vandiver’s Conjecture is true for the prime p, then the Galois group
Q of L/K is an elementary abelian p-group of rank r + 1.

Proof: L = K ( p
√

1−ζi
p : 1≤ i ≤ p−1) so Q is elem. abel. p-group and

L/K ramified only over 〈1−ζp〉.

Note rank≤ r + 1 because L/K generated by pth roots of elements in
subgroup B ⊂ K ∗/(K ∗)p generated by ζp and 1−ζi

p for 1≤ i ≤ r .

Then B = 〈1−ζp,B′〉 where B′ ⊂ K ∗/(K ∗)p is generated by the
cyclotomic units C. By Vandiver hypothesis, B′ = E/Ep.

By Dirichlet’s unit theorem, E ' Zr−1×µp so B′ has rank r .
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(2) The Galois action

The action of GK on M = H1(U,Y ) factors through Q = Gal(L/K ).
If q ∈Q, then action determined by q ·β = Bqβ for some Bq ∈M.

Fixed isomorphism Q ' (Z/p)r+1 with q 7→ (c0, . . . ,cr ).
Let c = ∑

p−1
i=1 ci and F a root of F p−F + c = 0.

Let γ(ε) = ∑
p−1
i=1 (ci +c−F

i )εi −∑
p−1
i=1

ci
i where εp = 1.

Let Λ0 = Z/p[µp] and y = ε−1 nilpotent variable since yp = 0.
For f ∈ yΛ0, define E(f ) = ∑

p−1
i=0 f i/i!.

Theorem: KR2V
The action of q ∈Q on H1(U,Y ) is determined explicitly by:
Bq = E(γq(ε0))E(γq(ε1))E(−γq(ε0ε1)).
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(2) Example when p = 3

If p = 3, then L = K (ζ9,
3
√

1−ζ−1)
and Q = 〈σ,τ〉 (commuting elements of order 3)

σ acts by multiplication by ζ on ζ9 and
τ acts by multiplication by ζ on 3

√
1−ζ−1.

M = Z/3[µ3×µ3] generated by ε0 and ε1

Our formula simplifies to:

Bσ−1 =−(ε0 + ε1)(1− ε0)(1− ε1) =

 0 −1 1
−1 −1 −1

1 −1 0


and

Bτ−1 = (ε0 + ε1)− (ε2
0 + ε0ε1 + ε2

1) + ε2
0ε2

1 =

 0 1 −1
1 −1 0
−1 0 1
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(2) Example when p = 5

When p = 5, then Q = 〈σ,τ1,τ2〉 ' (Z/5)3.

Bσ = 2ε4
0ε3

1 + ε4
0ε2

1 + 2ε4
0ε1 + 2ε3

0ε4
1 + ε3

0ε3
1 + ε3

0ε2
1 + ε3

0ε1 + ε2
0ε4

1 + ε2
0ε3

1 +
ε2

0ε2
1 + 2ε2

0ε1 + 2ε0ε4
1 + ε0ε3

1 + 2ε0ε2
1 + ε0ε1 + 4ε0 + 4ε1 + 2.

Bτ1 = 2ε4
0ε4

1 + 4ε4
0ε3

1 + 4ε4
0ε1 + 4ε3

0ε4
1 + 3ε3

0ε3
1 + 3ε3

0 + 3ε2
0ε2

1 + 4ε2
0ε1 + 3ε2

0 +
4ε0ε4

1 + 4ε0ε2
1 + 2ε0 + 3ε3

1 + 3ε2
1 + 2ε1 + 3

Bτ2 = 2ε4
0ε4

1 + ε4
0ε2

1 + 2ε4
0 + 2ε3

0ε3
1 + ε3

0ε2
1 + ε3

0ε1 + ε3
0 + ε2

0ε4
1 + ε2

0ε3
1 + ε2

0ε2
1 +

2ε2
0 + ε0ε3

1 + 2ε0ε1 + 2ε0 + 2ε4
1 + ε3

1 + 2ε2
1 + 2ε1 + 4.
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(2) Important observation about Bq

Recall q ∈Q acts by multiplication by Bq on β ∈ H1(U,Y ).
If q ∈Q, let Nq = ∑

p−1
i=0 (Bq)i .

Proposition: KR2V
The norm Nq = 0 for all q ∈Q except when p = 3 and q does not fix ζ9.

In that case, Nσ = (1 + ε0 + ε2
0)(1 + ε1 + ε2

1).

More generally, every line in (Z/p)r+1 gives a linear relation between
the elements Bq for q ∈Q.
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(3) Connection with rational points

Classical Kummer map: if θ ∈ K ∗, let κ(θ) : GK → µp by κ(θ)(σ) = σ
p√

θ
p√

θ
.

Generalized Kummer map: pick b = (1,0) ∈ X (K ) and let π = π1(XK̄ ,b).

Point in X (K ) gives splitting of 1→ π→ π1,ari(XK )→GK → 1

Let κ : X (K )→ H1(GK,π), κ(x) = [σ 7→ γ−1σγ] where γ is path b 7→ x .

The map κab,p : X (K )→ H1(GK,πab⊗Zp) is injective.

Since X has good reduction away from p,
it factors through κab,p : X (K )→ H1(G,πab⊗Zp), where

G = GK ,S is Galois group of max. extension of K ramified only over
〈1−ζ〉 and the infinite places, and πab is max. abelian quotient of π.

Change to Z/p coefficients.
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(3) Exact sequence for target for rational points

Let G = GK ,S is Galois group of maximal extension of K ramified only
over 〈1−ζ〉 and infinite places.

Let T be the set of primes of L above p, together with infinite places.

Let N = GL,T , Galois group of max. extension of L ramified only over T .

Write short exact sequence 1→ N→G→Q→ 1.

Goal: calculate H1(G,M) where M trivial N-module, M = H1(U,Y ).

Spectral sequence yields: 0→ H1(Q,M)→ H1(G,M)→ Ker(d2)→ 0,

where d2 : H1(N,M)Q → H2(Q,M).
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(3) Understanding H1(Q,M)

0→ H1(Q,M)→ H1(G,M)→ Ker(d2)→ 0,

Example: Let p = 3.
Can compute H1(Q,M) using cohomology (Ker/Im) of complex:

M
M

Nσ 33ggggggggg
1−τ

++WWWWWWWWW ⊕
M

1−σ 33ggggggggg

1−τ
++WWWWWWWWW ⊕ M
M
−(1−σ) 33ggggggggg

Nτ
++WWWWWWWWW ⊕
M.

Then dim(H1(Q,M)) = 9.

For application, need to show 3≤ dim(Ker(d2))≤ 13.
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(3) Kernel of d2, set-up

Suppose 1→ N→G→Q→ 1 is an exact sequence

For us, Q = Gal(L/K ), and G = GK ,S, and N = GL,T .

Fix a set-theoretic section s : Q→G
This yields 2-cycle w : Q×Q→ N via w(q1,q2) = s(q1)s(q2)s(q1q2)−1.
Let w ab : Q×Q→ Nab.

Consider the differential d2 : H1(N,M)Q → H2(Q,M).

Suppose N acts trivially on M (true for us by Anderson)

Then φ ∈ H1(N,M)Q “is” a Q-invariant homomorphism φ : N→M.
Since M is abelian, φ factors through φab : Nab→M.
Since φ is fixed by Q, it determines a map φ∗ : H2(Q,Nab)→ H2(Q,M).

Proposition: KR2V
Then d2(φ) =±φ∗w ab.
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(3) Kernel of d2 : H1(N,M)Q→ H2(Q,M)

Recall the section s : Q→G = GK ,S with Q = 〈τ0,τ1 . . . ,τr 〉.

Let ai = s(τi)
p and ci ,j = s(τj)s(τi)s(τj)

−1s(τi)
−1.

Then ai ,ci ,j ∈ N = GL,T since they are in kernel of G→Q.

Proposition: KR2V
We characterize Ker(d2) in terms (φ(ai),φ(ci ,j) being in image of map
in a cohomology complex associated with Q.

Proof: φ ∈ Ker(d2) iff φ∗w ab = df for some map f : Q→M of sets.

Explicitly, φ ∈ Ker(d2) if and only if φ(ai) = Nτi (= 0 for p ≥ 5)
and, for some map of sets f : {0, . . . , r}→M,
φ(ci ,j) = (Bτj −1)f (i)− (Bτi −1)f (j) (note this is in H1(U)).
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(3) Example: Kernel of d2 : H1(N,M)Q→ H2(Q,M)

Let p = 3. Then L = Q(ζ9,
3
√

1−ζ−1).

Then Q = 〈σ,τ〉 where τ fixes ζ9 and σ fixes 3
√

1−ζ−1.

Recall the section s : Q→G = GK ,S.

Let a0 = s(σ)3, a1 = s(τ)3, and c = s(τ)s(σ)s(τ)−1s(σ)−1.

Then a0,a1,c ∈ N = GL,T since they are in kernel of G→Q.

Example when p = 3

Let φ : N→M be in H1(N,M)Q. Then φ ∈ Ker(d2) if and only if

φ(a0) = tNσ = t(1 + ε1 + ε2
0)(1 + ε1 + ε2

1) for t ∈ Z/3,

φ(a1) = 0, and φ(c) ∈ H1(U).
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(4) Lower bound: Heisenberg group and extensions

Hp: upper triangular 3×3 matrices with coeffs in Z/p, 1’s on diagonal.
Up: normal subgroup, upper right is the only non-zero off diagonal.
Then Hp→ Hp/Up ' (Z/p)2.

Two projections (Z/p)2→ Z/p produce ι1, ι2 in H1((Z/p)2,Z/p).

The cup product ι1∪ ι2 in H2((Z/p)2,Z/p) classifies the extension
1→ Z/p→ Hp→ (Z/p)2→ 1.

special case of Theorem of Sharifi

Given a field extension F = K ( p
√

a,
p
√

b) of K with Gal(F/K )' (Z/p)2,
there is a Galois field extension R/K dominating F/K such that
Gal(R/K )→ Gal(F/K ) is isomorphic to Hp→ (Z/p)2 if and only if
κ(a)∪κ(b) = 0 in H2(GalK ,Z/p(2))∼= H2(GalK ,Z/p).
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(4) lower bound: producing Heisenberg extensions

Fix 1≤ I ≤ p−1, let a = ζI
p and b = 1−ζI

p and let

FI = K ( p
√

ζI
p, p

√
1−ζI

p).

Steinberg relation: the cup product κ(a)∪κ(b) = 0 is zero.

So there is RI/K dominating FI/K such that Gal(RI/K )' Hp.
In fact, RI = FI( p

√
cI) where, for w = ζp2 ,

cI =
p−1

∏
J=1

(1−ζ
IJ
p w I)J ,

and τ0(cI) = (1−w I)p

1−ζI
p

cI and other τi act by multiplication by ζp.

Example: When p = 3, then c1 = (1−w4)(1−w7)2.
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(4) Lower bound: all Heisenberg extensions

Let R̃ be the compositum of RI for 1≤ I ≤ p−1.

The field extension R̃/K is Galois and ramified only over p.

Let N̄ = Gal(R̃/L) which is a quotient of N.

Recall s section of 1→ N→GK ,S →Q→ 1, where N = GL,T .

Recall ci ,j = [s(τj),s(τi)] ∈ N.

Proposition: KR2V

The order of N̄ is pr where r = (p−1)/2
and N̄ is generated by the images of c0,j for 1≤ j ≤ r .

Proof: the image of c0,j in Gal(R̃/L) is non-trivial iff j = I.
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(4) This gives a lower bound for Ker(d2) because....

Ker(N→ N̄) acts trivially on M, so H1(N̄,M)Q ↪→ H1(N,M)Q

Elements of H1(N̄,M)Q are Q-invariant maps φ̄ : N̄→M.
Q-invariance means φ̄(q · n̄) = q · φ̄(n̄).
Note q · n̄ = n̄ since action is by conjugation and Up central in Hp.

Also N̄ generated by c̄0,j for 1≤ j ≤ r .
φ̄ : N̄→M is Q-invariant iff φ̄(c0,j) ∈MQ (fixed by mult. by Bq).

Application: When p = 3, then φ̄ determined by m = φ̄(c̄0,1).

Magma: φ̄ ∈ Ker(d̄2) iff m ∈ H1(U) (dim 4)
and −m11 + m10 + m01−m00 = 0

So 3 = dim(Ker(d̄2))≤ dim(Ker(d2)).
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(5) Upper bound: Not everything is in Ker(d2)

Proposition: KR2V

The codimension of Ker(d2) in H1(N,M)Q is at least r = (p−1)/2.

Elements of H1(N,M)Q are Q-invariant maps φ : N→M.
Find r -dim space of Q-invariant maps φ̄ : N̄→M not in Ker(d2).

Q-invariant iff mj = φ̄(c̄0,j) ∈MQ (fixed by mult. by Bq for all q ∈Q).

Earlier proposition: If mj 6∈ H1(U) for any j , then φ̄ not in Ker(d2).

The element m = ∑
p−1
i=0 εi

0 is in MQ but not in H1(U).

For application, need to show dim(H1(N,M)Q)≤ 14.
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(5) Upper bound - alternative description of Ker(d2)

Since N = GL,T acts trivially on M, then H1(N,M)∼= H1(N,Fp)⊗M.

Koch: there is an exact sequence of Q-modules

0→ H1(N,Fp)→ (O∗pL
/p)∗

ϕ∗2→ (O∗L/p)∗.

We have found a good description of local and global units mod p.

Proposition: KR2V

Let r = (p−1)/2. Then H1(N,Fp) is the kernel of a linear map
(Z/p)1+(p−1)pr+1 → (Z/p)

1
2 (p−1)pr+1

.

Note, dim((H1(N,Fp)⊗M)Q)≤ (1 + (p−1)pr+1)dim(MQ). Way too big!

Currently, looking at Q-invariants of H1(N,Fp)⊗M.

Ex: If p = 3, then dim(H1(N,M)Q) = 14, finishing the upper bound!
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