
GALOIS DEFORMATION AND L-INVARIANT

HARUZO HIDA

1. Lecture 2

The notation is as in the first lecture (F : a totally real field, p > 2 is a fixed prime).
For simplicity, we assume that p splits completely in F/Q. We start with a Galois
representation ρF : Gal(Q/F ) → GL2(W ) associated to a Hilbert modular form (on
GL(2)/F ) with coefficients in W . We assume the ordinarity of ρF :

ρF |Dp
∼=

(
βp ∗
0 αp

)
with βp 6= αp, βp|Ip = N k−1 and αp(Ip) = 1

on the decomposition group and the inertia group Ip ⊂ Dp ⊂ Gal(Q/F ) for all
prime factor p of p in F . Here N (σ) ∈ Z×

p is the p-adic cyclotomic character with

exp(2πi
pn )σ = exp(N (σ)2πi

pn ) for all n > 0 and k > 1 is an integer. Again for simplicity,

we assume that ρ is unramified outside p.

We consider the universal nearly ordinary couple (R,ρ : Gal(Q/F ) → GL2(R))
considered in the first lecture where R is a pro-Artinian local K-algebra. The couple
(R,ρ) is universal among Galois deformations ρA : Gal(Q/F ) → GL2(A) (for Artinian
local K-algebras A with A/mA = K) such that

(K1) unramified outside p;
(K2) ρA|Gal(Qp/Fp)

∼= ( ∗ ∗
0 αA,p ) with αA,p ≡ αp mod mA (and the local cyclotomy

condition if p does not split completely in F );
(K3) det(ρA) = det ρF ;
(K4) ρA ≡ ρF mod mA.

Recall Γp = 1 + pZp = γ
Zp
p

N−1

↪→ Gal(Fp[µp∞]/Fp). Identify W [[Γp]] with W [[Xp]] by
γp ↔ 1+Xp. Since ρ|Gal(Qp/Fp)

∼= ( ∗ ∗
0 δp ), δpα

−1
p : Γp → R induces an algebra structure

on R over W [[Xp]]. Thus R is an algebra over K[[Xp]]p|p.
Here is the theorem we have seen in the first lecture:

Theorem 1.1 (Derivative). Suppose R ∼= K[[Xp]]p|p. Then, if ϕ ◦ ρ ∼= ρF , for the
local Artin symbol [p, Fp] = Frobp, we have

L(IndQ
F Ad(ρF )) = L(Ad(ρF )) = det

(
∂δp([p, Fp])

∂Xp′

)

p,p′

∣∣∣
X=0

∏

p

logp(γp)αp([p, Fp])
−1.

Greenberg proposed a conjectural recipe of computing the L–invariant. When
V = Ad(ρF ), his definition goes as follows. Under some hypothesis, he found a
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unique subspace H ⊂ H1(F,Ad(ρF )) of dimension e = |{p|p}| represented by cocycles
c : Gal(Q/F ) → Ad(ρF ) such that

(1) c is unramified outside p;
(2) c restricted to Dp is upper triangular after conjugation for all p|p.

By the condition (2), c|Ip modulo upper nilpotent matrices factors through the cyclo-
tomic Galois group Gal(Qp[µp∞ ]/Qp) because Fp = Qp, and hence c|Dp modulo upper
nilpotent matrices becomes unramified everywhere over the cyclotomic Zp-extension
F∞/F ; so, the cohomology class [c] is in SelF∞(Ad(ρF )) but not in SelF (Ad(ρF )).
Take a basis {cp}p|p of H over K. Write

cp(σ) ∼
(
−ap(σ) ∗

0 ap(σ)

)
for σ ∈ Dp′ with any p′|p.

Then ap : Dp′ → K is a homomorphism. His L-invariant is defined by

L(Ad(ρF )) = det
(
(ap([p, Fp′])p,p′|p

(
logp(γp′)

−1ap([γp′, Fp′]))p,p′|p
)−1

)
.

The above value is independent of the choice of the basis {cp}p. As we remarked in
the first lecture, assuming the following condition:

(ns) ρ = (ρ mod mW ) has nonsoluble image,

by using basically a result of Fujiwara and potential modularity of Taylor (plus a very
recent work of Lin Chen), we have R ∼= K[[Xp]]p|p. The following conjecture for the
arithmetic L-function is almost a theorem except for the nonvanishing L(Ad(ρF )) 6= 0
(see [HMI] Theorem 5.27 combined with (5.2.6) there):

Conjecture 1.2 (Greenberg). Suppose (ns). Let ? = arith,an. For L?
p(s,Ad(ρF )) =

Φarith
ρ (γ1−s − 1), then L?

p(s,Ad(ρF )) has zero of order equal to e = |{p|p}| and for the
constant L(Ad(ρF )) ∈ K× specified by the determinant as in the theorem, we have

lim
s→1

L?
p(s,Ad(ρF ))

(s − 1)e
= L(Ad(ρF ))

∣∣|SelQ(IndQ
F Ad(ρF )∗)|

∣∣−1/[K:Qp]

p
.

If ? = arith, the identity is up to units.

The factor E+(Ad(ρ)) does not show up in the above formula. If ρF is crystalline
at p, writing SF (Ad(ρF )∗) for the Bloch-Kato Selmer group H1

f (F,Ad(ρ)∗), we have
∣∣|SelQ(IndQ

F Ad(ρF )∗)|
∣∣−1/[K:Qp]

p
= E+(Ad(ρF ))

∣∣|SF (Ad(ρF )∗)|
∣∣−1/[K:Qp]

p
up to units,

and the value
∣∣|SF (Ad(ρF )∗)|

∣∣−1/[K:Qp]

p
is directly related to the primitive complex

L-value L(1, Ad(ρF )) up to a period (see [MFG] page 284). In the following section,
we describe the Selmer group and how to specify H.

1.1. Greenberg’s Selmer Groups. Write F (p)/F for the maximal extension un-
ramified outside p and ∞. Put G = Gal(F (p)/F ) and GM = Gal(F (p)/M). Let
V = Ad(ρF ). We fix a W -lattice T in V stable under G.

Write D = Dp ⊂ G for the decomposition group of each prime factor p|p. Choosing
a basis of ρF so that ρF |D is upper triangular, we have a 3-step filtration:

(ord) V ⊃ F−
p V ⊃ F+

p V ⊃ {0},
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where F−
p V is made up of upper triangular matrices and F+

p V is made up of upper
nilpotent matrices, and on F−

p V/F+
p V , D acts trivially (getting eigenvalue 1 for

Frobp). Since V is self-dual, its dual V ∗(1) = HomK(V,K)⊗N again satisfies (ord).
Let M/F be a subfield of F (p), and put GM = Gal(F (p)/M). We write p for a

prime of M over p and q for general primes of M . We put

Lp(V ) = Ker(Res : H1(Mp, V ) → H1(Ip,
V

F+
p (V )

)).

Define for the image Lp(V/T ) of Lp(V ) in H1(Mp, V/T )

(1.1) SelM (A) = Ker(H1(GM , A) →
∏

p

H1(Mp, A)

Lp(A)
)) for A = V, V/T .

The classical Selmer group of V is given by SelM(V/T ). We define the “−” Selmer
group replacing Lp(A) in the above definition by

L−
p (V ) = Ker(Res : H1(Mp, V ) → H1(Ip,

V

F−
p (V )

)).

Lemma 1.3 (Vanishing). Suppose R ∼= K[[Xp]]p|p. Then Sel−F (V ) ∼= HomK(mR/m2
R,K)

and SelF (V ) = 0.

Proof. We consider the space DerK(R,K) of continuous K-derivations. Let K[ε] =
K[t]/(t2) for the dual number ε = (t mod t2). Then writing K-algebra homomor-
phism φ : R → K[ε] as φ(r) = φ0(r) + φ1(r)ε and sending φ to φ1 ∈ DerK(R,K),
we have HomK-alg(R,K[ε]) ∼= DerK(R,K) = HomK(mR/m2

R,K). Note here that

φ1 = ∂φ
∂t

. By the universality of (R,ρ), we have

HomK-alg(R,K[ε]) ∼=
{ρ : Gal(Q/F ) → GL2(K[ε])|ρ satisfies the condtions (K1–4)}

∼=
.

Pick ρ as above. Write ρ(σ) = ρ0(σ) + ρ1(σ)ε. Note here again ρ1 = ∂ρ
∂t

. Then

cρ = ρ1ρ
−1
F can be easily checked to be a 1-cocycle having values in M2(K) ⊃ V .

Since det(ρ) = det(ρF ) ⇒ Tr(cρ) = 0, cρ has values in V . By the reducibility
condition (K2), [cρ] ∈ Sel−F (V ). We see easily that ρ ∼= ρ′ ⇔ [cρ] = [cρ′]. We can
reverse the above argument starting with a cocycle c giving an element of Sel−F (V ) to
construct a deformation ρc with values in K[ε]. Thus we have

{ρ : Gal(Q/F ) → GL2(K[ε])|ρ satisfies the condtions (K1–4)}
∼=

∼= Sel−F (V ).

Since the algebra structure of R over W [[Xp]]p|p is given by δpα
−1
p , the K-derivation

δ : R → K corresponding to a K[ε]-deformation ρ is a W [[Xp]]-derivation if and only
if ρ1|Gal(F p/Fp) ∼ ( ∗ ∗

0 0 ), which is equivalent to [cρ] ∈ SelF (V ), because we already knew

that Tr(cρ) = 0. Thus we have SelF (V ) ∼= DerW [[Xp]](R,K) = 0. �

If ρ|Dp is isomorphic to
( N ξ

0 1

)
⊗ η for a finite order character η of Dp and a cocycle

ξ : Dp → K(1) of the form ξ(σ) = limn→∞( pn√q
p
)σ−1 for a non-unit qp ∈ F×

p , we

call ρ multiplicative at p. If ρ comes from an elliptic curve E/F , E has multiplicative
reduction modulo p if and only if it is multiplicative at p. We order primes p|p so
that ρ is multiplicative at pi if and only if i ≤ b. The number b can be zero.
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We need to have a slightly different definition of Selmer groups behaving well under
Tate duality. For each prime q ∈ {p|p}, we put
(1.2)

Lq(V ) =

{
Ker(H1(Fpj , V ) → H1(Fpj ,

V
F+

pj
(V )

)) ⊂ Lpj (V ) if q = pj with j ≤ b,

Lq(V ) otherwise

Once Lq(V ) is defined, we define Lq(V
∗(1)) = Lq(V )⊥ under the local Tate duality

between H1(Fq, V ) and H1(Fq, V
∗(1)), where V ∗(1) = HomK(V, Qp(1)) as Galois

modules. Then we define the balanced Selmer group SelF (V ) (resp. SelF (V ∗(1)))
by the same formula as in (1.1) replacing Lp(V ) (resp. Lp(V

∗(1))) by Lp(V ) (resp.
Lp(V

∗(1))). By definition, SelF (V ) ⊂ SelF (V ).

Lemma 1.4 (Isomorphism). Let V be Ad(ρE). We have

(V) SelF (V ) = 0 ⇒ H1(G, V ) ∼=
∏

p|p

H1(Fp, V )

Lp(V )
.

Proof. Since SelF (V ) ⊂ SelF (V ), the assumption implies SelF (V ) = 0. Then the
Poitou-Tate exact sequence tells us the exactness of the following sequence:

SelF (V ) → H1(G, V ) →
∏

l∈{p|p}

H1(Fl, V )

Ll(V )
→ SelF (V ∗(1))∗.

It is an old theorem of Greenberg (which assumes criticality at s = 1) that

dimSelF (V ) = dimSelF (V ∗(1))∗

(see [G] Proposition 2 or [HMI] Proposition 3.82); so, we have the assertion (V). In
[HMI], Proposition 3.82 is formulated in terms of SelQ(IndQ

F V ) and SelQ(IndQ
F V ∗(1))

defined in [HMI] (3.4.11), but this does not matter because we can easily verify
SelQ(IndQ

F ?) ∼= SelF (?) (similarly to [HMI] Corollary 3.81). �

Actually, for the Selmer group with coefficients in a Galois representation of adjoint
type in characteristic 0, we will later prove (in the fourth lecture) that

SelF (V ) = SelF (V ).

2. Greenberg’s L–invariant

Here is Greenberg’s definition of L(V ): The long exact sequence of F−
p V/F+

p V ↪→
V/F+

p V � V/F−
p V gives a homomorphism, noting Fp = Qp and writing GFp =

Gal(F p/Fp),

H1(Fp,F−
p V/F+

p V ) = Hom(Gab
Qp

,F−
p V/F+

p V )

ιp−→ H1(Fp, V )/Lp(V ) = Im(H1(Fp, V ) → H1(Fp, V/F+
p V )

Res−−→ H1(Ip, V/F+
p V )).

Note that Hom(Gab
Qp

,F−
p V/F+

p V ) ∼= (F−
p V/F+

p V )2 ∼= K2 canonically by

φ 7→ (
φ([γ, Fp])

logp(γ)
, φ([p, Fp])).
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Here [x, Fp] = [x, Qp] is the local Artin symbol (suitably normalized). Restricting to
Ip, we lose one coordinate: φ([p, Fp] (the Frobenius coordinate). Since

Lp(F−
p V/F+

p V ) = Ker(H1(Fp,F−
p V/F+

p V )
Res−−→ H1(Ip,F−

p V/F+
p V )),

the image of ιp is isomorphic to F−
p V/F+

p V ∼= K. By (V), we have a unique subspace

H of H1(G, V ) projecting down onto
∏

p

Im(ιp) ↪→
∏

p

H1(Fp, V )

Lp(V )
.

Then by the restriction, H gives rise to a subspace L of
∏

p

Hom(Gab
Fp

,F−
p V/F+

p V ) ∼=
∏

p

(F−
p V/F+

p V )2

isomorphic to
∏

p(F−
p V/F+

p V ). If a cocycle c representing an element in H is unrami-
fied, it gives rise to an element in SelF (V ). By the vanishing of SelF (V ) (Lemma 1.3),
this implies c = 0; so, the projection of L to the first factor

∏
p(F−

p V/F+
p V ) (via

φ 7→ (φ([γ, Fp])/ logp(γ))p) is surjective. Thus this subspace L is a graph of a K–linear
map L :

∏
p F−

p V/F+
p V →

∏
p F−

p V/F+
p V . We then define L(V ) = det(L) ∈ K.

Let ρ : GF → GL2(R) be the universal nearly ordinary deformation with ρ
∣∣
D

=(
∗ ∗
0 δ

)
. Then cp = ∂ρ

∂Xp
|X=0ρ

−1
F is a 1-cocycle (by the argument proving Lemma 1.3)

giving rise to a class of H. By Lemma 1.3, H = Sel−F (V ), and {cp}p gives a basis of H
over K. We have δ([u, Fp]) = (1 + Xp)

logp(u)/ logp(γ) for u ∈ O×
p = Z×

p . Writing

cp(σ) =

(
−ap(σ) ∗

0 ap(σ)

)
ρF (σ)−1,

we have ap = δ−1 dδ
dXp

|X=0, and from this we get the desired formula of L(Ad(ρF )).

Write F∞ for the cyclotomic Zp–extension of F . If one restricts c ∈ H to G∞ =
Gal(F (p)/F∞), its ramification is exhausted by Γ = Gal(F∞/F ) (because Fp = Qp)
giving rise to a class [c] ∈ SelF∞(V ). The kernel of the restriction map: H1(G, V ) →
H1(G∞, V ) is given by H1(Γ,H0(G∞, V )) = 0 because H0(G∞, V ) = 0. Thus the
image of H in SelF∞(V/T ) gives rise to the order d exceptional zero of Larith(s,Ad(ρF ))
at s = 1. We have proved

Proposition 2.1. For the number of prime factors d = [F : Q] of p in F , we have

ords=1 Larith
p (s,Ad(ρF )) ≥ d.
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