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Abstract. Given a symmetric polynomial8(x, y) over a perfect fieldk of characteristic zero, the Galois graph
G(8) is defined by taking the algebraic closurek̄ as the vertex set and adjacencies corresponding to the zeroes of
8(x, y). Some graph properties ofG(8), such as lengths of walks, distances and cycles are described in terms of
8. Symmetry is also considered, relating the Galois group Gal(k̄/k) to the automorphism group of certain classes
of Galois graphs. Finally, an application concerning modular curves classifying pairs of isogeny elliptic curves is
revisited.
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1. Introduction

Let k be a perfect field of characteristic zero and letk̄ denote the algebraic closure ofk.
To a given polynomial8(x, y) with two indeterminates and coefficients ink, we attach the
following directed graphG(8):

• vertices: j ∈ k̄,
• arcs:( j1, j2) is an arc with multiplicityn if 8( j1, y) has j2 as a root with multiplicityn.

To make the definition consistent, the multiplicity of everyj2 ∈ k̄ is taken to be 1 whenever
8( j1, y) is the zero polynomial.

We will refer to G(8) as theGalois graphof 8. Note that if8(x, y) is a constant
polynomial, thenG(8) is the complete or the null graph depending on whether the constant
is zero or not. From now on, we will put to one side these degenerate cases and assume that
8(x, y) is a non-constant polynomial. As we will be mainly interested in properties of non
directed graphs, it is natural to assume (and we do from now on) that8(x, y) is a symmetric
polynomial. Nevertheless, Sections 2 and 3 can easily be adapted to the nonsymmetric case.

Our aim is to explore some properties ofG(8) in terms of the polynomial8(x, y). In
the next section, we classify what we call singular vertices ofG(8). These are vertices
destroying the regularity ofG(8) and form a finite set easily described from8. In Section 3
we will discuss walks, distances and cycles, providing detection and counting results from
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recursive sequences of polynomials. The notion of ak-graphis introduced in Section 4. A
k-graph is a graph with vertices in̄k such that the Galois automorphisms of Gal(k̄/k) are
graph automorphisms. For instance, Galois graphsG(8) arek-graphs. Then, for a finite
k-treeT , we show that the vertices in the centerZ(T) are algebraic numbers of degree 1
or 2 overk, and thatZ(T) is contained in thekernelof T , the subgraph induced by the
vertices of minimum degree. Moreover, we show that the kernel is a connected subgraph. In
Section 5, we deal with the action of Gal(k̄/k)onk-trees providing criteria to decide whether
the Galois automorphisms embed surjectively on the graph automorphism group. Finally,
in the last section we present an application concerning the Galois graphs resulting from
the modular curvesX0(N). These curves classify pairs of isomorphism classes of cyclic
isogenies of degreeN between elliptic curves and are defined by the classical modular
polynomials8N(x, y). For an introduction to modular curves and modular polynomials
we refer to [5, 6]. For algebraic and graph-theoretical notions we refer to [2] and [1, 4],
respectively.

2. Singular vertices

In this section we show that Galois graphsG(8) are almost regular. Letν be the degree of
8(x, y) in one of the indeterminates. A vertex is said to besingular if:

• its out-valency is notν, or
• it is the origin of a multiple arc, or
• it is a loop vertex.

We shall characterize the singular vertices as the roots of a certain polynomial and so only
a finite number exists.

The symmetric polynomial8(x, y) can be written as

8(x, y) =
ν∑

r=0

fr (x)y
r =

ν∑
r=0

fr (y)x
r ,

for some polynomialsfr (x) in k[x]. The out-valency of a vertexj in G(8) is the degree of
the polynomial8( j, y) and it coincides with the maximum subscriptr such thatfr ( j ) 6= 0
provided that8( j, y) is a non-zero polynomial. When8( j, y) = 0, the out-valency ofj
is∞ which means thatj is a root of the polynomial

F(x) = gcd( f0(x), . . . , fν(x)).

Note that the out-valency of a vertex is infinite if and only if the in-valency is infinite,
although if both are finite they can be distinct (see Example 1 below). Lettingqr (x) =
fr (x)/F(x) for 0≤ r ≤ ν, we have

8(x, y) = F(x)
ν∑

r=0

qr (x)y
r = F(y)

ν∑
r=0

qr (y)x
r ,

so8(x, y) = 80(x, y)81(x, y), where80(x, y) = F(x)F(y), and81(x, y) is a symmet-
ric polynomial such that81( j, y) 6= 0 for all j in k̄. Then, the graphG(8) admits the
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decomposition

G(8) = G(80)⊕ G(81),

whereG(80) andG(81) are arc-disjoint andG(81) is locally finite (i.e., each vertex has
finite valency). The arcs ofG(80) are all the pairs( j1, j2), ( j2, j1) with F( j1) = 0 and
j2 ∈ k̄. According to the above, the structure ofG(8) is completely determined by the
structure ofG(81), so we can (and do) restrict ourselves to studying locally finite Galois
graphs.

Now, the degreeν of 8(x, y) in one of the indeterminates is an upper bound of the out-
valencies and the vertices with out-valency<ν are those which are roots of the polynomial
fν(x). In particular, the isolated vertices are the roots of the polynomial gcd( f1(x), . . . ,
fν(x)).

Let j be the origin of a multiple arc. In this case, the polynomial8( j, y) has a multiple
root which is a root of the discriminant

D(x) = Resultant(8(x, y), 8′y(x, y), y) ,

where8′y(x, y) means the partial derivative of8(x, y) with respect toy. The leading
coefficients of8(x, y) and8′y(x, y) as polynomials in the indeterminatey are fν(x) and
ν fν(x) respectively, sofν(x) is a factor ofD(x). Thus, the vertices with out-valency<ν
are also roots ofD(x). Conversely, ifD( j ) = 0, then eitherfν( j ) = 0 or the polynomials
8( j, y) and8′y( j, y) have a common root, i.e., eitherj has out-valency<ν or it is the
origin of a multiple arc.

Finally, the verticesj with a loop are the roots ofL(x) = 8(x, x).
Putting all this together, the singular vertices are characterized as the roots of the poly-

nomialS(x) = F(x)D(x)L(x), so they are in number less than or equal to degS(x).
If a subgraph ofG(8) does not have singular vertices, then every pair of arcs( j1, j2),

( j2, j1) is considered as anedgeand the subgraph as an (undirected simple) graph.
To end this section, we provide a first example of a Galois graph. For future reference,

the connected component inG(8) of a vertex j will be denoted byG(8, j ).

Example 1 Take8(x, y) = x3 + y3 − 1 overQ. We have fν(x) = 1, so every vertex
has out-valency 3. The discriminant isD(x) = 27(1− x3), and the loops are the roots of
L(x) = 2x3− 1. Figure 1 gives some connected components ofG(8), where the absence
of arrows represents edges. Note that all connected components apart fromG(8, 0) and
G(8, 3

√
1/2) do not have singular vertices, and therefore can be considered as undirected

graphs.

3. Walks, distances and cycles

A walk of lengthn (or an-walk) in G(8) is a sequence

j0, e1, j1, e2, j2, . . . , jn−1, en−1, jn,

whereei = ( ji−1, ji ) are arcs ofG(8). A pathis a walk with no vertex repetition. A vertex
j2 is said to ben-reachablefrom a vertexj1 if there is an-walk with j1 and j2 as, respectively,
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Figure 1. Some connected components ofG(8) where8(x, y) = x3 + y3 − 1.

the starting and end point vertices. Thedistancebetween distinct verticesj1 and j2 is defined
as the minimum length of a path fromj1 to j2, or∞ when there is none, and it is denoted
by d( j1, j2). Since8 is assumed to be symmetric, note thatd( j1, j2) = d( j2, j1).

We now introduce a recursive sequence of polynomials associated with the graphG(8)
which allows us to have control over reachability and the number of walks inG(8) joining
two vertices. Letj ∈ k̄ and define

ψ
j

0 (y) = y− j ;
ψ

j
1 (y) = 8( j, y);
ψ j

n (y) = Resultant
(
ψ

j
n−1(t),8(t, y), t

)
, if n ≥ 2.

Proposition 1 The vertex j2 is n-reachable from j1 if and only ifψ j1
n ( j2) = 0. Moreover,

the number of n-walks from j1 to j2 coincides with the multiplicity of the root j2 in ψ j1
n (y).

Proof: The proof is by induction onn, the claim being easily checked forn = 0, 1.
For n ≥ 2, let t1, . . . , tr be the vertices(n − 1)-reachable fromj1 andni the number of
(n− 1)-walks from j1 to ti . By the induction hypothesis,ψ j1

n−1(t) = a0
∏r

i=1 (t − ti )
ni for

some constanta0 6= 0. Now,ψ j1
n (y) is

∏r
i=18(ti , y)ni up to some power ofa0. Therefore,

ψ
j1

n ( j2) = 0 if and only if j2 is adjacent from someti , that is to say, ifj2 is n-reachable from
j1. The multiplicity, saymi , of j2 as a root of8(ti , y) is the number of 1-walks fromti to
j2. Thus,ni mi is the number ofn-walks from j1 to j2 throughti . Therefore

∑r
i=1 ni mi is

the number ofn-walks from j1 to j2 and it is also the multiplicity ofj2 as a root ofψ j
n (y).

2
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A slight modification of the above permits the characterization of the vertices whose
distance to a fixed vertex is constant. Recall that theradical of a polynomial f (x) ∈ k̄[x]
is defined by radf (x) = f (x)/gcd( f (x), f ′(x)). This is a separable polynomial with the
same roots asf (x). Now, fix a vertex j of G(8) and define the sequence of univariate
polynomials

χ
j

0 (y) = y− j ;

χ j
n (y) = radψ j

n (y)/rad
n−1∏
k=0

gcd
(
ψ

j
k (y), ψ

j
n (y)

)
, if n ≥ 1.

We have:

Proposition 2 The roots ofχ j
n (y) are the vertices at distance n from j. Moreover, the

number of paths from j to such a vertex coincides with its multiplicity inψ
j

n (y).

Proof: The casen = 0 is obvious, so letn ≥ 1. The vertices at distancen from j are the
verticesn-reachable fromj which are notk-reachable for 0≤ k ≤ n − 1. The roots of
radψ j

n (y) are the verticesn-reachable fromj and have multiplicity one. On the other hand,
the roots of gcd(ψ j

k (y), ψ
j

n (y)) are the vertices which are simultaneouslyk-reachable and
n-reachable fromj . Then, the roots of the denominator are the verticesn-reachable fromj
which arek-reachable for some 0≤ k ≤ n− 1, and they have multiplicity one. Therefore,
we conclude that the roots ofχ j

n (y) are the vertices at distancen from j .
If j1 is at distancen from j , an-walk from j to j1 is an-path. Hence the second claim

follows from Proposition 1. 2

Note that a connected componentG(8, j ) is finite if and only ifχ j
n (y) is a non-zero

constant polynomial for somen ≥ 0. In this case the diameter ofG(8, j ) is≤n.
It is possible to give an alternative construction for the above distance polynomials as

follows. Define

χ̄
j

0 (y) = χ j
0 (y);

χ̄
j

1 (y) = χ j
1 (y);

ψ̄ j
n (y) = rad Resultant

(
χ̄

j
n−1(t),8(y, t), t

)
, if n ≥ 1;

χ̄ j
n (y) = ψ̄ j

n (y)
/(

gcd
(
ψ̄

j
n−1(y), χ̄

j
n−1(y)

)
gcd

(
ψ̄ j

n (y), χ̄
j

n−2(y)
))
, if n ≥ 2.

The roots ofψ̄ j
n (y) are the vertices adjacent to vertices at distancen − 1 from j , so are

vertices at distancen − 2, n − 1 or n from j , including all the vertices at distancen. By
dividing by the product of the gcd’s, only the vertices at distancen remain. Thus, we have
a result analogous to Proposition 2 for the polynomialsχ̄

j
n . In fact,χ j

n (y) = anχ̄
j

n (y) for a
constantan.

Example 2 Consider the Galois graph attached to the polynomial8(x, y) = x3 + y3 +
xy − 1 over the field of rational numbersQ. Figure 2 displays part of the connected
componentG(8, 0), and the polynomialsχ0

n(y) for 0≤ n ≤ 4 can be read from Table 1.
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Table 1. Polynomialsχ0
n (y) for the graphG(8) where8(x, y) = x3 + y3 + xy− 1.

Type (a) vertices Type (b) vertices

χ0
0 (y) = y

χ0
1 (y) = (y2 + y+ 1) (y− 1)

χ0
2 (y) = (y4 − y2 + 1) (y2 + 1)

χ0
3 (y) = (y4 − 2y3 + 2y2 − 4y+ 4) (y2 + 2y+ 2)

χ0
4 (y) = (y8 + 3y6 + 4y5 + 4y4 + 6y3 + 19y2 − 10y+ 25) (y4 − 3y2 + 2y+ 5)

Figure 2. Part of the connected componentG(8, 0) where8(x, y) = x3 + y3 + xy− 1.

Figure 3. Illustrations of Lemma 3.1 (a) and Lemma 3.2 (b).

In order to detect non-obvious (i.e. of length≥3) cycles inG(8) and characterize
finite subtrees ofG(8), we need the following two Lemmas. They provide necessary and
sufficient conditions for the existence of a certain types of adjacencies, as illustrated in
figure 3.
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Given a fixedj ∈ k̄, for r ≥ 0 set

ar ( j ) = Resultant
(
Resultant

(
χ j

r (x),8(x, y), x
)
, χ j

r (y), y
)
.

Lemma 1 The equality ar ( j ) = 0holds if and only if there are either two distinct adjacent
vertices at distance r from j, or a loop vertex at distance r from j.

Proof: The conditionar ( j ) = 0 is equivalent to the existence of somej2 such that
Resultant(χ j

r (x), 8(x, j2), x) = 0 andχ j
r ( j2) = 0. The first condition is equivalent to the

existence of somej1 such thatχ j
r ( j1) = 0 and8( j1, j2) = 0. Thus,ar ( j ) = 0 if and only if

there exist two adjacent verticesj1, j2 at distancer from j , the casej1 = j2 corresponding
to the existence of a loop vertex. 2

Analogously, forj ∈ k̄ andr ≥ 0 define

br ( j ) = Resultant

(
ψ

j
r (y)

gcd
(
ψ

j
r (y), χ

j
r (y)

) , χ j
r (y), y

)
.

Lemma 2 Suppose that r≥ 2 and br−1( j ) 6= 0. Then, br ( j ) = 0 if and only if either
there are two distinct vertices at distance r− 1 from j simultaneously adjacent to a vertex
at distance r from j, or there is a vertex at distance r− 1 which is the origin of a multi-arc
with end-vertex at distance r from j.

Proof: For 0≤ s ≤ r , letqs(y) = ψ j
s (y)/gcd(ψ j

s (y), χ
j

s (y)). Suppose first thatbr ( j ) =
0. Thenqr ( j3) = χ j

r ( j3) = 0 for somej3 ∈ k̄. Sincej3 is also a root of gcd(ψ j
r (y), χ

j
r (y)),

it follows that the multiplicity of j3 as a root ofψ j
r (y) is≥2. Hence, by Proposition 1, there

are two distinct paths fromj to j3. Now, conditionbr−1( j ) 6= 0 impliesqr−1( j ′) 6= 0 for
all vertices j ′ at distancer − 1 from j , and the multiplicity of eachj ′ as a root ofψ j

r−1(y)
is one. Hence, there is only one path fromj to j ′. Thus, there exist two verticesj1, j2 at
distancer − 1 from j both of them adjacent toj3, and the casej1 = j2 corresponds to a
multiple arc.

Conversely, if j1, j2, j3 exist as in figure 3(b), we haveχ j
r ( j3) = 0 and the multiplicity

of j3 as a root ofψ j
r (y) is ≥2. Hence,qr ( j3) = 0 and j3 is a common root ofqr (y) and

χr (y). (Note that, in this part, the hypothesisbr−1( j ) 6= 0 is not needed.) 2

For n ≥ 0, let G(8, j, n) be the subgraph ofG(8) induced by the vertices ofG(8) at
distance≤n from j , and suppose that it does not have singular vertices, so it is considered
as an undirected simple graph. To decide whetherG(8, j, n) is a tree, we define

An( j ) =
n∏

r=0

ar ( j );

Bn( j ) =
n∏

r=0

br ( j ).
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Then, we have:

Proposition 3 Suppose that G(8, j, n) does not have singular vertices. Then G(8, j, n)
is a tree if and only if An( j )Bn( j ) 6= 0.

Proof: First, let us suppose thatAn( j )Bn( j ) = 0. It is sufficient to show that there are
two distinct paths between two vertices. IfAn( j ) = 0, then somear ( j ) = 0 and, since
G(8, j, n) has no singular vertices, Lemma 1 implies that there are two distinct adjacent
vertices j1, j2 at distancer from j . Therefore, we find two distinct paths fromj to j1, one
of lengthr and the other of lengthr + 1, the last edge being( j2, j1).

If Bn( j ) = 0, then taker as the first index such thatbr ( j ) = 0. Note thatr ≥ 1 due to
the fact thatb0( j ) 6= 0. By Lemma 2, there are two distinct verticesj1, j2 at distancer − 1
from j , both adjacent to a vertexj3 with d( j, j3) = r . Therefore, we also find in this case
two paths fromj to j3, one throughj1 and another throughj2.

Conversely, suppose thatG(8, j, n) has a cycle. Choosej3 to be a vertex belonging to
a cycle inG(8, j, n) and at a maximum distance, sayr , from j . If bs( j ) = 0 for some
s < r , we are done. So, suppose thatbs( j ) 6= 0 for all s < r . Let j1 and j2 be distinct
vertices adjacent toj3 of the cycle. Ifd( j, j1) = d( j, j2) = r − 1, then Lemma 2 implies
br ( j ) = 0 andBn( j ) = 0. Otherwise,j1 or j2 is at distancer from j , and, by applying
Lemma 1 we getar ( j ) = 0 andAn( j ) = 0. 2

4. k-graphs andk-trees

Let H = (V, E) be a graph withV ⊂ k̄. We say thatH is ak-graphif the map

ρ: Gal(k̄/k) −→ Aut(H) , σ 7→ σ|V

is well-defined and a group homomorphism. In other words,H is ak-graph if the automor-
phisms ofGk = Gal(k̄/k) act as automorphisms of the graphH . The automorphisms of
H in the image ofρ will be calledGalois automorphismsof H .

The class ofk-graphs is larger than that of Galois graphs. Indeed, ifσ ∈ Gk and j2 is
a root of8( j1, y), then j σ2 is a root of8( j σ1 , y) with the same multiplicity, soσ acts on
G(8) as a graph automorphism. The study of the symmetry of Galois graphs fits well in
the more general setting ofk-graphs.

The algebraicdegreeof a j ∈ k̄ is defined as the degree of its minimum polynomial
overk. Thekernelof a graphH , denoted in the sequel by KerH , is the graph induced by
the set of vertices inH with minimum degree. The degree of the vertices in KerH will be
denoted by deg KerH .

Lemma 3 If H is a k-graph, thenKerH is a k-graph.

Proof: If j ∈ KerH andσ ∈ Gk, then j σ ∈ H sinceH is ak-graph, and the degrees of
j σ and j coincide. Hence,j σ ∈ KerH . Therefore the Galois automorphisms ofH apply
the induced subgraph KerH on itself and they act on KerH as graph automorphisms.2
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As for the connected components ofk-graphs, the property of being also ak-graph admits
the following characterization:

Proposition 4 Let H be a k-graph, j a vertex of H, and H( j ) its connected component.
Then the following statements are equivalent:

(i) j Gk ⊂ H( j );
(ii) KerH( j ) is a k-graph;

(iii) H( j ) is a k-graph.

Proof: (i)⇒(iii) By hypothesis,j and j σ are in the same connected component ofH for
all σ in Gk. Moreover,σ applies the connected component ofj on the connected component
of j σ . Hence,H( j )σ = H( j σ ) = H( j ) andH( j ) is ak-graph.

(iii)⇒(ii) by Lemma 3.
(ii)⇒(i) Let j1 ∈ KerH( j ). Since KerH( j ) is ak-graph, j Gk

1 ⊂ KerH( j ) ⊂ H( j ) =
H( j1). By applying (i)⇒(iii), we have thatH( j ) = H( j1) is ak-graph. 2

By applying the above proposition to a rationalj in k, we obtain the following corollary.

Corollary 1 If j ∈ k is a vertex of a k-graph H, then H( j ) is a k-graph.

Note that this provides us with an easy way to constructk-graphs, just by taking
connected components of rational vertices in Galois graphs.

We now focus onk-trees. First, we consider finitek-trees. As we shall see, in this case
the center determines the degree of the kernel. Recall that theeccentricityof a vertex j
in a finite connected graph is the maximum of the distances fromj to any vertex, and the
centerof the graph is the set of vertices with minimum eccentricity. It is known that the
centerZ(T) of a finite treeT consists of a unique vertex or two adjacent vertices (see
[1]). Moreover,Z(T)σ = Z(T) for all automorphisms ofT , in particular ifT is ak-tree,
Z(T)σ = Z(T) for all σ ∈ Gal(k̄/k).

Proposition 5 If T is a finite k-tree, then the following assertions hold:
(i) if Z(T) = {c}, then c∈ k anddeg KerT = 1;
(ii) if Z(T) = {c1, c2} 6⊂ k, then c1 and c2 are quadratic conjugates anddeg KerT = 2;

(iii) Z(T) ⊂ Ker T .

Proof:

(i) The centerZ(T) is fixed for all automorphism, socσ = c for all σ ∈ Gal(k̄/k). Hence,
c ∈ k and deg KerT = 1.

(ii) Suppose thatc1 6∈ k. For someσ ∈ Gal(k̄/k), we havecσ1 6= c1. Now, Z(T)σ = Z(T)
impliescσ1 = c2. Analogously,cσ2 = c1 andc2 6∈ k. Hence, the polynomialp(x) =
(x − c1)(x − c2) ∈ k[x] is irreducible and, therefore,c1, c2 are quadratic overk. We
claim thatT does not have a vertex ink. Indeed, letj ∈ k be a vertex ofT . Because
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c1 andc2 are adjacent andT is a tree, the distancesd(c1, j ) andd(c2, j ) differ by 1,
sayd(c2, j ) = r , andd(c1, j ) = r + 1. We have

r = d(c2, j ) = d
(
cσ1 , j σ

) = d(c1, j ) = r + 1,

which is a contradiction.
(iii) If Z(T) ⊂ k, then the vertices inZ(T) are of minimum degree andZ(T) ⊂ Ker T ;

otherwise, by applying (ii),Z(T) ⊂ Ker T . 2

In the case ofk-trees which are not necessarily finite, we have the following Proposition:

Proposition 6 If T is a k-tree, then the following assertions hold:
(i) deg KerT ∈ {1, 2};
(ii) if deg KerT = 2, then there is a vertex inKer T adjacent to its conjugate;
(iii) k( j1) = k( j2) for all j1, j2 ∈ Ker T;
(iv) Ker T is a k-tree;

Proof: Take j ∈ Ker T and letM be the minimal subtree ofT which contains the setj Gk

of all the conjugates ofj . The treeM is finite and, for allσ ∈ Gk, we have( j Gk)σ = j Gk ,
so Mσ = M andM is a finitek-tree. Therefore, Proposition 5 can be applied toM . Since
deg KerT = deg KerM ∈ {1, 2}, it follows (i).

If deg KerT = 2, thenZ(M) consists of two conjugate and adjacent vertices, which are
in Ker T and (ii) holds.

The proof of (iii) and (iv) depends onZ(M). First, assumeZ(M) ⊂ k and letc ∈ Z(M).
Thenk( j1) = k(c) = k for all j1 ∈ Ker T and (iii) holds. To show (iv), takej1, j2 ∈
Ker T and the pathP from j1 to j2. Since j1, j2 ∈ k, the pathP is fixed for all Galois
automorphismsσ . Hence,j σ = j for all j ∈ P. It follows that j ∈ Ker T and KerT is a
subtree ofT . From Lemma 3 it is also ak-graph.

Second, supposeZ(M) = {c1, c2} 6⊂ k. Observe that, sincec1 andc2 are quadratic
conjugate,k(c1) = k(c2). Let now j ∈ Ker T and fix a Galois automorphismσ ∈ Gal(k̄/k)
as before. Interchangingc1 andc2 if necessary, we can assume thatd( j, cσ1 ) = d( j, c2) =
d( j, c1)+ 1. There is a path, sayP, in T from j to j σ . If τ ∈ Gal(k(c1)/k), the pathPσ is
eitherP or the reverse ofP. Thenτ acts onP either as the identity or asσ , sok( j ) = k(c1).
Thus, (iii) is satisfied.

To show (iv), let j1 be a vertex of the path, sayP1, from j ∈ Ker T to c1 and consider
the pathP from j to j σ . It is clear thatP containsP1. Now, everyτ ∈ Gal(k̄/k) acts on
P either as the identity or asσ . Hencej1 has exactly one conjugate,j σ1 , which tells us that
j1 is quadratic overk. Moreover,P1 is a path in KerT and KerT is ak-tree. 2

5. Automorphisms

For a givenk-graphH , the representation

ρ: Gal(k̄/k) −→ Aut(H), σ 7→ σ|V
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is in general far from being surjective and it appears natural to ask how to determine the
image ofρ. As for the kernel, it is clear thatρ factors through Gal(k(H)/k), wherek(H)
denotes the extension obtained by adjoining the vertices ofH to the fieldk.

In order to determine the image ofρ, we will make some restrictions on thek-graphs
under consideration. Indeed, we will analyze the situation for finitek-trees with some extra
conditions.

For a finitek-tree, sayT , we need to consider the filtration

Ker T = T0 ⊂ T1 ⊂ · · · ⊂ Tr−1 ⊂ Tr = T,

whereTs is the subtree ofT induced by the vertices at distance at mosts from Ker T , and
s runs the integers 0 through the eccentricity of the kernelr = max{d( j,Ker T) | j ∈ T}.
Since KerT is ak-tree, and the Galois action preserves distances, it follows that eachTs is
also ak-tree.

Our assumption onT will be null if the eccentricity of KerT is 0, otherwise the following
hypothesis (H) will apply:

H1: all the leaves ofT are at distancer from Ker T ;
H2: Gal(k(Ts)/k(Ts−1)) ' { f ∈ Aut(Ts) : f|Ts−1 = id}, for 1≤ s ≤ r .

Note that under hypothesis (H1), the treeTs−1 is obtained fromTs by deleting all its
leaves and, therefore, the restriction of everyf ∈ Aut Ts to Ts−1 yields to an automorphism
of Ts−1.

The following result shows that in this particular setting, the property of being a Galois
automorphism can be decided just by checking it over the kernel.

Proposition 7 Let T be a finite k-tree which satisfies(H), and denote its representation
byρ: Gal(k̄/k) −→ Aut(T). Then, we have:

Im ρ = { f ∈ Aut(T) : there isσ ∈ Gal(k̄/k) such that f|KerT = ρ(σ)|KerT }.

Proof: Let r be the eccentricity of KerT . The caser = 0 is immediate, so we assume
r ≥ 1. For 1≤ s ≤ r , let

Hs =
{

f ∈ Aut(Ts) : f|Ts−1 = id
}
,

0s = { f ∈ Aut(Ts) : there isσ ∈ Gal(k̄/k) such thatf|KerT = ρ(σ)|KerT }.

Our claim is Imρ = 0r . The inclusion Imρ ⊂ 0r holds in general due to the fact that
Ker T is ak-tree. We shall show that [0r : Im ρ] = 1 by induction onr ≥ 1.

The treeTr−1 satisfies the induction hypothesis, so we have Imρr−1 = 0r−1, where
ρr−1: Gal(k(Tr−1)/k) −→ Aut(Tr−1) is the corresponding natural representation. Since
we have the inclusion

Hr ' Gal(k(Tr )/k(Tr−1)) ⊂ Gal(k(Tr )/k) ' Im ρr ,
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we can write the equality

[0r : Im ρ] = [0r : Hr ]

[Im ρ : Hr ]
.

Calculating the above denominator, we obtain

|Im ρ|
|Hr | =

|Gal(k(Tr )/k)|
|Gal(k(Tr )/k(Tr−1))| = |Gal(k(Tr−1)/k)| = |Im ρr−1| = |0r−1|,

and

[0r : Im ρ] = [0r : Hr ]

|0r−1| .

It is easy to check that the map

0r /Hr −→ 0r−1

defined by sending each cosetf Hr to the restriction of f to Tr−1 is well-defined and
injective. Thus, we have [0r : Im ρ] = 1. 2

Corollary 2 Let T be as above and assume thatKer T = Z(T). Then, ρ is surjective.

Proof: By Proposition 5, the centerZ(T) contains either only one or two rational vertices
in k, or two conjugate quadratic vertices overk. In both cases, all automorphisms ofT act
on KerT as Galois automorphisms. Hence, the above proposition shows that0r = Aut(T)
andρ is surjective. 2

Example 3 Take the modular polynomial

82(x, y) = x3+ y3− x2y2+ 243 · 31(x2y+ xy2)− 243453(x2+ y2)

+ 34534027xy+ 283756(x + y)− 2123959.

After computing the first distance polynomials as in Section 3, we consider the induced
subgraphT of the connected componentG(8,−1/15) shown in figure 4, where

A −1/15 E 272223782641/164025

B 13997521/225 F 4733169839/3515625

C 111284641/50625 G −147281603041/215233605

D 56667352321/15 H 1114544804970241/405
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Figure 4. The graphT from the Example 3.

and the pairs(A1, A2), (D1, D2), (F1, F2), (G1,G2), and(H1, H2) are respectively the
roots of the polynomials

x2 − 243 · 2081x + 33613/15

x2 − 24326203· 61471· 259925329x − 2351308813/15

x2 + 243 · 17489· 26387· 213131/516x + 1933769325933/(32520)

x2 + 24101· 1811· 2129521· 3324077/332x + 23634330093/(3405)

x2 − 243 · 17 · 97583· 95108797967742721x − 134688131276813/(345).

The graphT is ak-tree, and its kernel is the subtree induced by the rational verticesA, B,
C, D, E, F , andG. Observe that the eccentricity of KerT is 1 and that the hyphotesis (H)
of Proposition 7 is satisfied. In this case, we find that the Galois automorphisms ofT form
a group isomorphic toC5

2, which is a subgroup of Aut(T) ' C2+C2[C2[C2]] of order 28,
where the brackets stand for the wreath product (see [4]).

6. Application

Let G = (V, E) be ak-graph and denote byρ: Gal(k̄/k) −→ Aut(G) the representation
ρ(σ) = σ|V . A mapping f from G to a graphH is a morphism of graphs ifj1 ∼ j2 implies
f ( j1) ∼ f ( j2) for all j1, j2 ∈ G, where∼ means adjacency. A surjective morphism of
graphsf : G→ H will be calledGk-equivariantif for all j1, j2 ∈ G andσ ∈ Gal(k̄/k),

f ( j1) = f ( j2)⇒ f
(

j σ1
) = f

(
j σ2
);

f ( j1) ∼ f ( j2)⇒ f
(

j σ1
) ∼ f

(
j σ2
)
.
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The morphismf induces an action onH as follows:

ρ ⊗ f : Gal(k̄/k)→ Aut(H), σ 7→ f ◦ ρ(σ) ◦ f −1.

Indeed, it is easy to check thatρ ⊗ f is well-defined and a group homomorphism. We call
this action onH the twisted action byf , or simply the quotient action. Note that in general
this new action onH does not make it ak-graph.

Proposition 8 Assume that G(8182, j ) is a k-graph such that:
(i) G(81, j ), G(82, j ) are trees,
(ii) there are Gk-equivariant projectorsπi : G(8182, j )→ G(8i , j ), i = 1, 2.
Then G(8182, j ) has a vertex over a compositum of at most two quadratic fields.

Proof: From the hypothesis we know that the Galois orbit ofj is a subset of vertices in
G(8182, j ). Note that for eachσ in Gk = Gal(k̄/k)we can view the connected components
G(8i , j σ ) as subgraphs ofG(8182, j ). Considerπ1( j Gk) ⊂ G(81, j ) and letT1 denote
the minimal subtree ofG(81, j ) that connects the vertices ofπ1( j Gk). Analogously, define
T2 making use of the projectorπ2. Since eachρ ⊗ πi restricts to an automorphism ofTi ,
the centersZ(Ti ) satisfy

(ρ ⊗ πi )(Z(Ti )) ⊂ Z(Ti ), for i = 1, 2.

As a consequence, and by using the fact that the projectors areGk-equivariant,Gk permutes
the set of vertices6 = π−1

1 (Z(T1)) ∩ π−1
2 (Z(T2)). Indeed, as forv ∈ 6 andσ ∈ Gk,

we haveπi (v) ∈ Z(Ti ) so (ρ ⊗ πi )(σ )(πi (v)) = πi (v
σ ) ∈ Z(Ti ) which yields tovσ ∈

6. Moreover, the Galois action on the centers determines the Galois action on6, each
automorphismσ|6 being of order 1 or 2. 2

Proposition 8 admits an obvious generalization for any finite product of symmetric poly-
nomials. As a particular case, we reobtain Elkies’ result on the field of definition fork-elliptic
curves without complex multiplication [3]. Ak-elliptic curveE is an elliptic curve defined
over k̄ which is isogenous to all its Galois conjugates. By taking8i (x, y) as the classi-
cal modular polynomials8p(x, y), one describes the graph of primep-powers isogenies
between elliptic curves. Letj be the modular invariant ofE. In the absence of complex
multiplication (CM),G(8p, j ) is a tree. Then, in order to define the corresponding projec-
tors, one uses the properties of factorization of isogenies between non-CM elliptic curves.
The conclusion is that eachk-elliptic curve without CM isk̄-isogenous to ak-elliptic curve
defined over a compositum of quadratic fields.
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