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Abstract. The Schur problem for rational functions is linked to the theory
of complex multiplication and thereby solved. These considerations are
viewed as a special case of a general problem, prosaically labeled the
extension of constants problem. The relation between this paper and a letter
of J. Herbrand to E. Noether (published posthumously) is speculatively
summarized in a conjecture that may be regarded as an arithmetic version
of Riemann's existence theorem.

0. Introduction. Let F be a perfect field, and F a fixed algebraic closure of
P. We consider the finite Galois extensions of F that come from certain types
of geometric situations. Let W'(V'wiV be a cover (finite, flat morphism) of
quasi-projective varieties such that W, V, and <p(V, W) are defined over P,
and W and V are absolutely irreducible. For X, a variety defined over F, we
let P(A") be the field of rational functions on X defined over F. Therefore, we
have a field extension F(W) over F(V) (by abuse, F(W)/F(V)). If <p(V, W)
is a separable morphism, then F(W)/F(V) is a finite separable extension,
and we obtain

(0.1)     1 -* G(f(W)/F(V)) -> G(F{vv>)/F(V))%GiF/F)^l
where: F(W) is the smallest Galois extension of F(V) containing F(W) (the
Galois closure of F( W)/F(V)); F = F(W, F) is the algebraic closure of F in
F(W\,and; rest denotes the restriction of elements of the Galois group
G(P(W)/F(V)) to F. We call F the extension of constants obtained from
W/V.

The problem of the description of G(F/F) arises in several well-known
problems. For example, let G be a finite group which we desire to realize as
the Galois group of some Galois extension of the rational field Q. Suppose
thafc_P^= Q; F is a Zariski open subset of P" (prqjective n-space); and
G(Q(W)/Q(V)), the (geometric) monodromy group is equal to G (a fact that
may have come to us from analytic considerations, say in the manner of [Fr,
1]). In this case the limitation theorems of [Fr, 1, §2] sometimes serve to show
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142 MICHAEL FRIED

that Q = Q. If so we may apply Bertini's theorem and Hubert's irreducibility
theorem to show that G is realized as a Galois group over Q.

There are many diophantine (sic!) problems where our psychological
motivation is not to have F turn out to be P, but rather to have G(F/F) be as
large as possible. The Schur problem and the theory of complex multi-
plication are two examples of such problems. In §2 we complete the solution
of the Schur problem for rational functions (of prime degree) by noting the
precise connections between these two problems (and the theory of division
points of elliptic curves).

We review quickly the contents of this paper section by section.
After preliminary notation and definitions in §1, § LA discusses Riemann's

existence theorem and the description of covers of P1 through the use of
branch cycles. We have added to the classical interpretation of branch cycles
some important comments on the explicit (algebraic) computation of a
description of the branch cycles of a cover. In §1.B we consider the exact
conditions under which the points of a cover of P1 lying over branch points
provide rigidifying data (i.e., the identity is the only automorphism of the
cover leaving invariant each of these points).

In §2.A, after we explain carefully the original Schur problem, we consider
the general Schur problem which specializes to the Schur problem for rational
functions. The important results here are the translation between arithmetic
(diophantine) conditions and geometric conditions concerning the arithmetic
monodromy group of a cover. In §2.B, we show that, using the theory of
elliptic curves, it is possible to solve the problem posed by the conditions on
the arithmetic monodromy group of a cover that arises in the consideration of
the Schur problem for rational functions of prime degree.

Riemann's existence theorem says that the geometric monodromy group of
a cover of P1 is determined by branch cycle data. In §3 we consider all triples
(Y,<p,F) consisting of a cover Y ->P' defined over a field F such that the
cover has a given (a priori) description of its branch cycles. Using previous
notation, the arithmetic monodromy group of the cover is G(F(Y)/F(PX)). A
conjecture is described that supports a precise version of the statement: the
arithmetic monodromy group of the cover is determined by branch cycle data
and the residue class fields of points lying over the branch points of the cover.
Here we use the rigidifying data of §1.B to consider certain appropriate
families of covers of P1 related to (but not the same as) Hurwitz families. The
section also relates the extent to which the results of §2 are support for this
conjecture.

We would like to thank Armand Brumer for his suggestions on the
exposition of portions of this paper and the related results of [Fr, 1, §2]. Also,
it is fairly clear that Herbrand considered problems similar to those discussed
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GALOIS GROUPS AND COMPLEX MULTIPLICATION 143

in this paper. Since his letter to E. Noether consists of a sketchy list of private
discoveries it is difficult to make a precise comparison with [He]. However,
we make an attempt at the end of § 1 to give a technical interpretation of his
remarks. It was Marvin Tretkoff who suggested the relevance of Herbrand's
letter when we first tried to expose various arithmetic versions of Riemann's
existence theorem during a stay at the Institute for Advanced Study.

1. Preliminaries on covers and Riemann's existence theorem. Let W't(y'wXV
be a cover of absolutely irreducible, normal, quasi-projective varieties such
that W, V,tp(V, W) are defined over a perfect field P. All function fields are
assumed to be embedded in a fixed algebraically closed field containing F.
We retain the notations of the introduction and we assume that <p(V, W) is a
separable morphism of degree n. Let F(}Y) be the Galois closure of the field
extension F(W)/F(V).

There is a variety over F, W, such that we have a cover W-*W-*V and
F(W) = F^W) [Mum, pp. 396-397]. Also: W is called the normalization of
W in F(W); W is absolutely irreducible if and only if F = F where F is the
algebraic closure of Fin F(W) and, the automorphisms of Was a cover of V
which are defined over F (denoted Aut(#/ V, F)) are in one-one correspon-
dence with the elements of G(F(W)/F(V)).

Let Sn be the symmetric group on « letters. Our notation throughout this
paper is: elements of Sn act on the right of the integers 1, 2,..., n; elements
of Aat(W/V, F) (for any cover W-*V defined over F) act on the left of
points of W; elements of G(F(W)/F(V)) act on the right of elements of
FfW), and, the identification between the groups G(f(W)/F(V)) and
Aut(W/V, F) is denoted by f(\>) = /(o"~'(*>)) for p E W,f E F(W), and
oEAut(W/V, F).

The group G(f(W)/F(V)) has a natural permutation representation:
T(W/V): G(F(W)/F(V))-^Sn (faithful and transitive) given by the action
on the right cosets of G(f(W)/F(W)). For 77, a subgroup of a group 77', we
let NH.(H) be the normalizer of 77 in 77'.

Lemma LI. The group G(T(W)/F(V)) is canonically identified with
G(F(W)/F(V)) {the geometric monodromy group of W/V). Abo, G(F/F) is
identified with a subgroup of the quotient
NSn(G(f^)/F(V)))/G(f(W)/F(V)) where G(f(W)/F(V)) is identified
with its image under T(W/ V).

Proof. The first part is well known, and the second part follows from the
definitions applied to the expression (0.1).   □

Remark 1.1. There can be certain notational problems in identifying
AutíW/V, F) and G(F(W)/F(V)), especially when we give these groups
the   structure   of  permutations   groups.   For   example,   the   group   of
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144 MICHAEL FRIED

automorphisms of K7 as a cover of V (defined over F; Aut(W/V, F)) is
canonically identified with Cens(G(F(W)/F(V))) (the centralizer in S„ of
the image of G(f(W)/F(V))"under T(W/V)). However, the group of
automorphisms of F(W)/F(V) is canonically identified with the quotient
group:

NC(^)/ny)iG(F^)/F(W)))/G(F(W)/F(W)).
Of course, these two groups are isomorphic; the isomorphism is just a simple
fact of group theory [Fr, 1, §2].   □

I.A. Branch cycles. We assume that K is an arbitrary field of zero
characteristic. Let y_->P' be a cover of irreducible nonsingular projective
curves defined over K (a fixed algebraic closure of K). Let w(l),..., u(r) E
P1 be the places of P1 ramified in the cover. We let £„ = e2w'/n to obtain a
compatible system of roots of 1: (Ç„m)m = $„ for n and m > 1. Refer to the
notation in the introduction. We let e(j) be the order of the inertial group of
a place of K(Y) lying over the place u(j) of K(PX) = K(x). The formal
power series field K(((x - u(J))x/eU))) (with (x - u(j))x/e(J) replaced by
(l/x)x/e(J) if u(f) = oo) has a canonical automorphism, denoted o(j), in-
duced from the substitution

(^»(i))IA01-^-«W)l/eW

For each/ we obtain an embedding (by Puiseux expansions):

(1.1)        KZ): k\J) ->k(((x - u(j))l/eU)j),      j = 1,..., r.

JJiis_ embedding is determined up to composition with an automorphism of
AT(y)^and_therefore, the restriction of o(j) determines an element a(j) of
G(K(Y)/K(PX)) up to conjugation. We note that it is possible to determine the
conjugacy class of o(j) in a constructive way from knowledge of the polynomials
used to define Y and the graph ofq> as projective varieties.

Riemann's existence theorem. For some choice of the embeddings <p(j),
j = 1,..., r, the collection o(l),..., o(r) satisfies:

(a) * (1),..., o(r) generate G (f(J)/K (P1)), and,
(b) o(l) • • • o(r) = Id.

We call such a collection o(l),..., o(r) (obtained from embeddings cp(/),
/ = 1, .. ., r) satisfying (1.2)(a) and (b), a description of the branch cycles of the
cover y-^P1. The group generated by o(l),..., o(r) is called the monodromy
group of the cover Y -»P1.

Conversely, suppose we are given: o(l),..., o(r) E S„ (the symmetric group
on n letters) satisfying (1.2)(b) and generating a transitive subgroup of S„, and,
u(l),..., u(r) E K. Then there exists
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GALOIS GROUPS AND COMPLEX MULTIPLICATION 145

y-^P1, with Y and <p defined over K, deg(qp) = n, such that
a(l),.... o(r) are obtained from (1.3) as in the process above.

Remark 1.2 (Riemann-Hurwitz formula). We call the collection
o(l),..., o(r) a description of the branch cycles for the cover y~»P'. If
deg(cp) = n, we have an embedding G(K(Y)/K(x))<-+ S„. For o E S„, we
can write o = ßx • ■ • ß, where ßx,..., ß, are disjoint cycles. If the order of
/?, is s(i), we abuse terminology and write o — (s(l)) • • • (s(t)), and ind(a) =
2/- i(5(0 ~ 0- The Riemann-Hurwitz formula says that the genus of the
curve y, g(Y), is determined from the formula [Sp, p. 268]

(1.4) 2(« + g(y)-i) = 2ind(o(0).   D
i=i

Remark 1.3 (Analysis \trsus_algebra). There are many collections
o(l),..., o(r) of elements of G(K(Y)/K(x)) that can arise as a description
of the branch cycles for y-»P', by varying the choice of the embeddings
9>C/)»/ = 1, • • ■ ,r. The fact that at least one collection exists satisfying the
conditions (1.2)(a) and (b) is a consequence of the explicit description of the
fundamental group of P1 — {«(1),..., u(r)} using paths (that is, using
topology). In fact, the collections o(l),..., o(r) which arise this way (by
abuse, an analytic description of the branch cycles of the cover Y-*P , as in
[Fr, 1, §3]) may be a proper subset of the collections satisfying (1.2)(a) and
(b). This is indeed the case if and only if a certain combinatorial quantity
called the Hurwitz Number of o(l),..., o(r) is not equal to 1 [Fr, 1, §3].

Grothendieck [Gr] has shown that o(l),..., o(r) exist satisfying (1.2)(a)tp
and (b) in the case that K is replaced by any field when y~»P is a tamely
ramified cover. However, as yet, there exists no purely algebraic proof of the
existence of o (I),.. ., o(r) satisfying (l.2)(a) and (b), although this existence
may be checked by a purely algebraic computation.

When K is replaced by a field F of positive characteristic the converse part
(condition (1.3)) is false, in general, unless the order of G(F(Y)/F(PX)) is
relatively prime to the characteristic of F [Gr]. Even in the characteristic zero
case there is no purely algebraic proof of (1.3).   □

LB. Rigidifying data. Injhis subsection all computations take place over an
algebraically closed field K of characteristic zero. Let Y^>PX be a connected
cover of P1 and let {p„ ..., pm) be a collection of distinct points on Y. We
say that the points {p„ . .., pm} provide rigidifying data for the cover
y-»P' if the identity is the only automorphism a: Y-> Y for which

(a) a: Y-► Y is commutative, and

(I4) \ /
P1
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146 MICHAEL FRIED

(1.4) (b) a leaves each of the points p„...,pm fixed.

Let y'-^P1 have rigidifying data p'„ ...,p'm. We say that {Y, <p;
p„..., pm} and {Y\ <p'; p'x,...,p'm) are isomorphic if there exists an
analytic isomorphism ß: Y-^Y' such that

(a) ß: Y-> Y'  is commutative, and

(1.5)

P1

(1.5) (b)/i(pJ) = p;,       /=l,...,m.
Since p'„ ..., p'm is rigidifying data for y'->P\ if ß exists, it is unique.

Let «(1),..., u(r) E Px be the branch points of the cover Y-+Px and let
P(iyj)J — 1.n(i) be the points of Y lying over «(/). Thus,

«(0
2 e(p(i,j)/u(i)) = deg(<p) = «
y-i

where e(\>(i,j)/u(i)) is the ramification index of the place p(/,/) over the place
«(/). Since u(i) is a branch point, e(p(i,j)/u(i)) > 1 for at least one value of
/. In the remainder of this subsection we find necessary and sufficient
conditions that the collection of points P(Y, <p) = {p(i,j); / = 1,..., n(i),
i = 1.r) is rigidifying data for the cover Y -^P1.

We return to the notation of U^Let y(j): K(Y) -> K(((x - u(J))x/e(J))),
j = 1,..., r be embeddings of K(Y) into Laurent series expansions in terms
of (x — u(j))x/eU). We assume that the embeddings are chosen so that the
restriction of the substitution automorphism

ix-uijtf^Ujyix-uiJ))1"»
induces o(j) on the image of K(Y) where a(l),..., o(r) is a description of
the branch cycles of_the cover. Each disjoint cycle of o(f) corresponds to one
of the places p of'K(Y) lying over the place u(i) of K(x). Let ßQp) be the
cycle in o(i) corresponding to p.

Let y be a primitive generator for K(Y)/K(x), and let y = ym,..., y(n)
be the conjugates_of y overjKQc). Thus each y^ corresponds to an explicit
embedding ̂ (j): K(Y) -> £(T). The image of K(Y) under uV(j) is K(x,yV>),
and the action of o(j) on K(Y) is given by a permutationv(1),... ,y(n). For
notational simplicity, suppose that the cycle ¿8(p) is (1 2 • • • 0 (i.e. corre-
sponds to the permutation

As in the discussion preceding Lemma 1.1, an automorphism a of Y—>P
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may be naturally regarded as an element of S„ that centralizes the group
generated by a(l),..., o(r). Also, a induces an automorphism a* of
K(Y)/K(x). Consider ^(j)~l ° a* ° \p(j) as acting on (the right of) the
image of K(Y) under \p(j). Let/ be an integer between 1 and /. Let a be an
automorphism that leaves p fixed. Then

ypU)1 ° a* ° \p(J) acting on K(x,y<J)) is induced by some
(1.6) power of the cycle /?(p) (i.e. is given by the substitution in

Puiseux expansions).

Let ß(l),..., ß(s) be exactly the disjoint cycles of a which contain at
least one of the integers 1, 2,..., /. Since, from (1.6) each of these is some
power of ß(p), only the integers 1, 2,..., / appear in the cycles
/?(1),... ,_ß(s). Since a~x • o(i)' a = o(i), it is easy to deduce that
ß (1) • • • ß (s) is a power of ß (p).

Definition 1.1. Given a cover y-^P1 we denote by Aut(y/P')Ris the
subgroup of Aut(y/P') consisting of elements a such that each point of the
set P(Y, q>) is left fixed by a. We let y**8 be the nonsingular projective curve
that fits in the diagram

y^ y Rig _^ pi where q)] is a Galois cover of nonsingular
(1.7) curves   with   Galois   group   naturally   isomorphic   to

Aut(Y/Px)^s.

Proposition. 77ze* group Aut( y/P1)**8 is cyclic and consists of the elements a
of Aut(y/P!) such that: a commutes with each disjoint cycle of o(i), i —
1,..., r, and if a is of order t then t divides the order of each disjoint cycle of
o(i), i - 1.r>i

In addition, y-> y*"8 is a cover with cyclic Galois group such that, if
deg cp, > 1, every point p E P(Y, cp) is totally ramified over tp,(p) E Y™5.

Proof. Let a E Au^y/P1)1"8 and let a* be the associated automorphism
of K(Y)/K(x). The following facts follow from the discussion above: a,
regarded as an element of Sn centralizes every disjoint cycle of o(i), i =
1.r; if a is of order /, then / divides the order of eachjdisjoint cycle of
o(i), i = 1,. „ , r, and; if we denote the fixed field of a* in #(y) by L", then
the place of K(Y) corresponding to p E P(Y, <p) is totally ramified over its
restriction to La, for each p E P(Y, cp).

Let p E P(Y, cp) and let L be a field between A"(y) and K(x) such that

the place corresponding to p is totally ramified over its
^ ' '     restriction to L.

Then L, with property (1.8) is determined by the integer [K(Y): L], by use of
Puiseux expansions. For a and ß E Aut(y/P')Rig we deduce that [K(Y):
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La n Lß] is the least common multiple of the orders of a and ß, and
K(Y)/L" n Lß is a cyclic extension. From this we easily deduce that
Aut( y/P')R'8 is a cyclic group.

The only assertion that remains unproved is that if a E Aut( Y/Px), the
order of a divides the order of each disjoint cycle of o(i) and a commutes
with each disjoint cycle of o(i) for / = 1, ..., r, then a E Aut( Y/P1)Riê. That
is, we must show that a fixes the points in P(Y,<p). However, this is
immediate from (1.6) since this is equivalent to the statement that
<K/)-1 ° a* ° \p(J) maps yw to a Puiseux expansion having the same center
(i.e. leading value at x = u(j)) as doesvw.   □

Definition 1.2. Let y-^P1 be a cover of nonsingular curves for which
Aut(y/P')Rig = {Id}. We say that ramification provides rigidifying data for
y/p1.

If we are given a description of the branch cycles for Y/Pl, then the
proposition above gives a necessary and sufficient (and computable)
condition that ramification provides rigidifying data for Y/Px.

In §3 we explain the more general context to which the specific problems of
§2 belong. For covers y-»P' for which ramification provides rigidifying data
we may form Hurwitz type families of covers of P1 having a given description
of their branch cycles. For covers y-»P' for which ramification does not
provide rigidifying data, "Kummer Theory" is an especially appropriate and
explicit tool for extending these families. Indeed, a very special case of
Kummer Theory allows explicit presentation of the totally ramified cyclic
cover y~» y*"8 (as in the statement of the proposition). However, we have
yet to carry out these considerations in detail. These comments are included
here, since they may be the sort of thing that Herbrand had in mind in his
sketchy letter [He] to E. Noether.

2. The Schur problem: Elliptic curves and complex multiplication. Let K be a
number field, and let 0^ be the ring of integers of K. Let f(y) E ®K[y] be a
polynomial having the property that:

O i\      f(y) gives a one-one map on the cosets S^/q for infinitely
many prime ideals q of QK.

The original Schur Problem (conjecture; [Sc]) was to show that a polynomial
satisfying (2.1) is a composition of polynomials of two types:

.    . (a)   ay" + b (nth degree cyclic polynomial), or;
(    }(b)    T„(y) « 2-"-,{(v + (y2 + 4)»/2)» + (y - (y2 + 4)'/2)"}

(nth degree Chebyshev polynomial).
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There are, of course, two aspects to this problem. The first, that the conjec-
ture is true, is proven in [Fr, 4]. The second, finding the polynomials that are
compositions of the polynomials of type (2.2) that do indeed satisfy condition
(2.1), is a very special case of the arithmetic considerations of this paper.

In §2.A we state the general Schur problem which specializes to the
problem above. The genus zero case (corresponding to the analogue of (2.1),
where f(y) E K(y) is a rational function instead of a polynomial) is treated
in great detail by listing the possible descriptions of the branch cycles for the
corresponding curves as cover of P1. The most difficult part of this problem is
to show that there is at least one cover of P1 corresponding to each branch
cycle type in this list, which yields a rational function f(y) satisfying
condition (2.1). This is accomplished in §2.B through the use of division
points on elliptic curves and the theory of complex multiplication. We hasten
to add that an elementary argument suffices to show that for K = Q,
condition (2.1) is satisfied for compositions of polynomials of type (2.2) whose
degrees are relatively prime to 6 [Fr, 4, Lemma 13].

For the reader's convenience we add a comment on the use of Hubert's
Irreducibility Theorem in §2.B. Let Y-*P' be a cover of nonsingular
projective curves such that Y and cp are defined over the number field K. For
p, a point of y ® K, where K is the algebraic closure of K, we let K(p)
denote the field generated by inhomogeneous coordinates for p over K. Then
Hubert's theorem says there exist infinitely many AT-rational points q E P1
such that p E y ® K lying over p, [K(p): K] = n = deg(cp). In fact, we may
even take q to be Q-rational.

2.A. The general Schur problem. Let Pbe a perfect field. We retain previous
notation. Let y~>P' be a cover defined over F, etc. Let F = F(Y, cp) be the
algebraic closure of F in F(Y) (as in the introduction). For r E G(F/F) we
let P(t) be the fixed field of t in F. We consider two groups: G (I) =
G(F(Y)/F(Y)), and; G(1,t) = G(f{Y)/FW{Y)). In the natural embed-
ding of G(F(Y)/F(Px)) in S„ (discussion before Lemma 1.1) both G(l) and
G(l, t) act as permutations on the set Z = {2, 3,..., n). Let Zx,... ,Z, be
the orbits of G(l, t) on (2, 3,..., n).

Definition 2.1. We say that a cover y-»P' satisfies the Schur condition
(over P) if there exists t E G(F/F) such that for each orbit Z„ Z, breaks up
into strictly smaller orbits under the action of G (I).

This complicated, but entirely Galois theoretic definition is equivalent
(surprisingly!) to a far more pleasant diophantine condition.

Definition 2.2. We say that the triple (Y, cp, F) has the diophantine
covering property if: for each P-rational place q of P' there is one and only
one P-rational place p of Y lying over q (in the cover y-^P1). In the case that
P = ©je/p and y is a projective model of the affine curve f(y) - x = 0
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where/(y) E F[y], we have condition (2.1).

Proposition 2.1. Suppose that the cover Y-+P1 satisfies the Schur condition
(over F). We consider two cases.

If F is a finite field then:
("2 31      (Y>'P>F')  has  the  diophantine  covering property for all

extensions F' of F such that [F': F] is relatively prime to [F: F].
If F = K is a number field we denote by (Yv <p„, 0^/q) the reduction of the
triple (Y, <p, K) modulo aprime ideal qofBK. Then:

•- ...      (yq, <pq, 0*/q) has  the diophantine covering property for
infinitely many prime ideals q of BK.

Conversely, if either (2.3) or (2.4) hold, then Y^PX satisfies the Schur
condition (over F).

Proof. Proposition 1 of [Fr, 5] shows that if F is a finite field and (Y,<p,F)
satisfies the Schur condition (in the special cases considered in [Fr, 5] this
property is referred to as: (Y, <p, P) is a virtually one-one cover) then (Y,q>,F)
has the diophantine covering property. If F is a finite field we immediately
deduce (2.3) since (Y, tp, F') also satisfies the Schur condition if [F': F] is
relatively prime to [F: F],

Now assume that F = K is a number field, and that t E G(F/F) is the
element for which Definition 2.1 holds. From the Cebotarev density theorem
there exist infinitely many primes a of QK such that t is the Frobenius
element for a prime of F lying above q. Applying Noether's Lemma (as in [Fr,
3, §2]) we deduce that for all but a finite number of the primes q for which t
is the Frobenius element for q we have:

(2.5)

(a) G((0*/q)(yq)/ (eK/q){Px )) is isomorphic to

G(K(Y)/K^(Px)),and;

(b) G((ÍAKÍr)/(í75W))is isomorphic to
G(K^Y)/K{PX)).

Therefore (Yv <pq, 0*/q) satisfies the Schur condition. We again apply
Proposition 1 of [Fr, 5] to see that (Yv <pq, BK/q) has the diophantine
covering property.

Now assume that either (2.3) or (2.4) hold. In either case this implies that
there exists a finite field F' of arbitrarily large cardinality and a triple
(Y, <p, P') with deg(cp) = n such that (Y,<p,F') satisfies the diophantine
covering property. We may (in order to establish the converse) assume that
(y, <p, P') does not satisfy the Schur condition.
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Let YX-*PX and y24p' be two copies of the cover y-^P1. The
P'-irreducible components of YXx xY2 (fiber product) are in one-one corre-
spondence with the orbits {1}, Zx,'..., Z, of G(F(Y)/F'(Y)) acting on the
integers 1,2,... ,n. Of course the integer 1 is itself an orbit of length 1. The
absolutely irreducible components of YlXpXY2 are m one-one correspondence
with those orbits X among {1}, Zx,..., Z, such that

(2.6) G (P'( y)//"( y)) acts transitively on the elements of X.
pn pr^

We define: YXx XY2-*YX and YXx XY2-*Y2. The irreducible components
of YXXpXY2 give (nontrivial) correspondences between Y and itself. The
identity correspondence is represented by the orbit {1}. Since (Y, <p, F') does
not satisfy the Schur condition, there exists an orbit X (¥= {1}) satisfying
(2.6).

Let Q(X) c YXx ,y2 be the absolutely irreducible curve corresponding to
X. Since Q(X) is not the identity correspondence the intersection of Q(X)
and the identity correspondence has support whose degree (as a point set) can
be bounded as a function of n.

Let p E Q(X) be an P'-rational place such that

(2.7) p is not on the identity correspondence.

From the Riemann hypothesis for curves over finite fields there are
\F'\ + G(|P'|1/2) P'-rational places p satisfying (2.7) where: 0(|F'|I/2) is
bounded in absolute value by C- |P'|I/2 for some constant C which can be
given explicitly as a function of n. Thus, for \F'\ large there is at least one
such P'-rational place p satisfying (2.7). In addition: <px(prx(p)) = <p2(pr2(to))
(equal to an P'-rational place q on P1), and, if we identify Yx and Y2 with Y,
from (2.7), pr,(p) ^ pr2(p).

Therefore Y has two P'-rational places lying above the same P'-rational
place on P1. This contradicts our assumption that (Y, <p, F') has the diophan-
tine covering property, and we conclude the proof of the converse.   □

Let (Z/(n))* denote the invertible integers modulo n. For A a subgroup of
(Z/(n))* let

G(iM)"{(í¡    î)lfle^'èeZ/(«)}

be a group of 2 X 2 matrices (under multiplication). The standard represen-
tation of this group on the integers modulo n is designated by T(A, n). We
identify^ with the subgroup of G (A, n) given by {(g ?)|a E A).

Theorem 2.1. Let (Y, q>, F) be a triple satisfying the Schur condition where:
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(2.8) the degree o/cp is a prime p (p = n). Then:

(a)     G(F{Y)/F(PX)) - GiA{9),p), and;

(2.9) (b)    G(F(Y)/F(Px)) = G(A(í),p),where
A (cp) Ç A (cp) are subgroups of (Z/ (p))*.

<p
Assume that the characteristic of F is zero (or just that Y->PX is a tamely

ramified cover). If, in addition, we assume that Y is of genus zero, then a
description of the branch cycles for (Y,.<p) (§1.A) is given by:

(a) r=s 4,0(/) = (-!    *<')),,-1,..., 4, ar;

(b) r - 3, a(i) = ¡"^    b^ \ where a(i) E (Z/ (/?))*

is of order 3, / = 1,2, 3, or;

(2.10) (c)    r = 3, a(i) = (a(/)    b(lA where a (I) is of order 2, a (2)

is of order 3, and a (3) is of order 6, or;
(d) r = 3, a(l) is of order 2, a(2) and a(3) are of order 4, or;

<p    .
(e) y-H>P' has a totally ramified place (and therefore

comes from a polynomial f (y) satisfying (2.1) where f(y)

is of form (2.2)(a) or (b)).

Outline of Proof. For details see the proof of Lemma 5 of [Fr, 5].
Since (Y, cp, P) satisfies the Schur condition, the group G(F(Y)/F(PX))

(equipped with its natural embedding in Sp) is not a doubly transitive group.
By a theorem of Burnside [Bu] this implies that (2.9)(b) holds. Since
G(F(Y)/F(PX)) is a normal subgroup of G(F(Y)/F(PX)) we deduce
(2.9)(a). Also, Fi- F implies that JÍ(cp) Ç. A (cp).

When y is of genus zero the Riemann-Hurwitz formula (1.4) implies that

(2.11) 2(p - 1) = J ind(a(/)).
f-i

Let the order of o(i) be e(i). If e(i) is equal to p then ind(a(/)) = p — 1.
Otherwise the index of cr(/) is easily computed to be [(/? — l)/e(i)](e(i) — 1).
Therefore, if a(i) is not of order p for / = 1,..., r, (2.11) becomes 2 =
2UM0 - \)/e(¡).

Combinatorics show that the possible values of e(l),..., e(r) are given by
(2.10)(a) through (e).   □

Statement of the general Schur problem. In a search for covers y~>P'
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having the diophantine covering property we come upon the Schur condition
(Proposition 2.1). Putting aside the geometric and arithmetic aspects of the
problem, our search is for transitive subgroups G of S„ having certain
properties. These properties are:

(a) G must be a normal subgroup of some group G <z S„ where,

(b) G/Gis a cyclic group, and, if G ( 1 ) (resp. G ( 1 )) is

(2.12) the stabilizer of 1 in G (resp. G ) and Z„ ..., Z, are
the orbits of G (1) on the integers 2,..., n, then for each i

(c) Z, breaks up into strictly smaller orbits under the
action of G(l), / = 1,..., /.

Suppose that G and G are given satisfying the conditions (2.12)(a), (b), and
(c). Assume also that we are given o(l),..., o(r) E S„ such that

(2 13) ^    a^' " ' ' °^ generate G(a) = G'and;
(b)    a(l) • • - a(r) - Id.

Definition 2.3. We say that a triple ( Y, <p, P) is a solution of the Schur
problem corresponding to the data ^ = (a(l),..., o-(r); G} if:

(a) The cover Y-+P is defined over the field F,
(b) o(l),..., o(r) is a description of the branch cycles

*■ '   ' of the cover ( Y, <p), and,

(c) G=G(F(Y)/F(PX)).
The general Schur problem for a given set of data ty = {o(l),..., o(r); G)

is to decide whether or not there is a triple (Y, cp, F) that is a solution of the
Schur problem corresponding to ^. Of course, we would hope to be able to
answer this question in an arithmetic-geometric fashion that would reflect on
the true diophantine nature of this problem. That is, the solutions should
correspond to points on some algebraic variety.

In §2.B we solve the general Schur problem (affirmatively) in the special
case that y~»P' must be a genus zero cover of P1 of prime degree p (i.e.
deg(<p) = p). The condition on the branch cycles o(l).o(r) E Sp is

(2.15) 2(p - 1) - 2 ind(o(0).
/=i

From Theorem 2.1 this is equivalent to solving the Schur problem (affirma-
tively) in the case that the data ty is given by (a(l),..., o(r); G) where
o(l),.. ., o(r) are elements of& that appear in the list (2.10)(a)-{e), and G is
any one of the subgroups G (A(<p),p) containing G(A((p),p) (as in (2.9)(b)).

Remark 2.1 (Further problems). From the properties that must be
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satisfied by the groups G and G (conditions (2.12)(a), (b), and (c)) we know in
particular that G is not a doubly transitive group. In the case that « is a prime
p, Burnside's Theorem (as in Theorem 2.1) describes the possible groups G
and G quite explicitly. For general n, it is of particular interest to consider the
case that G is a primitive (not doubly transitive) subgroup of S„. At the end of
§2.B we suggest further such groups that may arise in geometric situations
and thereby be amenable to the same type of methods that are used in §2.B.
However, even for these groups there are further conditions (besides those
listed in expression (2.12)) that must be satisfied. These conditions are a
consequence of arithmetic results and are listed in [Fr, 1, §2] under the title of
Limitation conditions. These are relevant to the general consideration of the
extension of constants problems (§0).

We might add that the generalization of the results of §2.B to the case
when n = p but (2.15) does not hold would seem to be quite significant.

2.B. Elliptic curves and complex multiplication. In this subsection F is a
subfield of C. Let E, E' denote elliptic curves (over Ç). That is: E (resp. E') is
a projective algebraic curve of genus 1 having distinguished point p0 (resp. PÓ)
which acts as the origin for the natural addition structure on E (resp. E1). We
say that E is defined over F if the projective structures on E and point p0 are
defined over P. The algebraic addition law is then automatically defined over
P. We denote the elliptic curve (determined up to isomorphism over Q with 4
(resp. 6) automorphisms by Ea (resp. Eß). Let 0(E) be a nontrivial subgroup
of the automorphisms (fixing p0) of E. We may regard E as a complex torus
C/(2co,, 2co2) where (2w„ 2^ denotes the Z lattice of C generated by 2co, and
2co2- For E different from Ea or Eß, 0(E) is induced by multiplication by — 1
onC.

Let/? be an odd prime. We consider 4-tuples (E, E'; $, P) where P-» E' is
a degree p morphism of elliptic curves with E, E', and $ defined over P.
Thus, E' = P/G(0) where G(0) is a subgroup of E generated by some
p-division point p on E. Also, G(0) as a set is defined over P. We assume also
that the elements of 0(E) are defined over P and that G(0) (as a set) is 0(E)
invariant. The curve E/0(E) (quotient of E by the group 0(E)) is a
projective genus zero curve (Kummer variety of dimension 1). From the
4-tuple (E, E', <E», P) we obtain a commutative diagram

->£"

(2.16) pi(E) pr(P')

E/d(E)-^ E'IQ(E')
of projective curves and morphisms, where 0, cp, pr(P), pr(£')> E/0(E), and
E'/0(E') are all defined over P.
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Lemma 2.1. For suitable choices of E and 9(E), each of the covers y-»P'
having a description of its branch cycles given by (2.10)(a), (b), (c), or (d) is
isomorphic to the cover E/9(E) -^ E'/9(E') (a cover of genus zero curves).

Proof. We interpret the conclusion to mean: there is an isomorphism \p':
E'/9(E')-+PX; an isomorphism ¡p: E/9(E)-*Y, and; a commutative
diagram

E/9(E)-£—+E'l8(E')

<P I'
->P>

First we describe the branch cycles that occur in the cover given by the lower
line of the diagram (2.16). There are 4 cases:

(a) 9(E) is generated by multiplication by — 1 ;
(b) E' ^E ^Eß and 9(E) = 9 (£") is generated by multiplication

by p, a cube root of 1;
(2.17) (c)    E' ^E=Eß and 9(E) = 9(E') is generated by multiplication

by — p, and;
(d)    E' « E =* Ea and 9 (E ) = 9 (£') is generated by multiplication

by/="v^T.
A point p' of E' projects to a branch point of E/9(E) -> E'/9(E') if and
only if two or more points px,..., pp of E above p' are equivalent under the
action of 9(E). This implies that p' is a fixed point of 9(Er). In case (2.17)(a)
the group 9(E') has 4 fixed points, the division points on E' of order 2.
Above each such division point p' is one of the division points (say px) of E of
order 2. The remaining points p,.pp are permuted in pairs by 9(E).
Thus, in the case (2.17)(a) the branch cycles for the cover E/9(E)
^E'/9(E')areofform

(2.18) a(/) = (2)(2)...(2)   (p-l)/2times,     /=1,2,3,4.
We denote by <P(z; w„ wj the Weierstrass ^P-function of a complex

variable z (where E » C/(2ux, 2^, as above). The field of functions on
E/9(E) over C (resp. E'/9(E') over Q is given by C(<$(z; w„ oj) (resp.
C($(z; <o'„ w^)). We recall the addition formula for <$(z; ux, uj = <B(z):

i Í 9'(u\ - <$'(v\ \2
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where u and v are independent complex variables and $"(z; c?,, coj) =
d/dz{9{z',al,a2))[Hi,p. 136].

Let the p-division point p on E generating G(0) (where E' =* P/G(0)) be
represented by the complex  number z0 E C.  Then  the  conjugates of
9(z; co„ «2) over C(^(z; w'i» "2)) are given by
(2.20) <$(z + j. z0; to,, co2),      / = 0, 1,..., p - 1.
From (2.19) we easily deduce that the Galois closure of the field extension
C(9>(z; «„ o>2))/C(<$(z; o\, «9) is the field

C(9(z; co„ co2), V'(z; co„ co2), $(z; co'„ <o2)) = M.

Clearly the group G(M/C(^(z; co',, co2))) is isomorphic to the group G(A,p)
(see discussion before Theorem 2.1) where A is generated by (~l% I*1 fact>
the substitutions z -» — 2 and z -* z + z0 in the functions generating M
induce generators of G(M/C(c3'(z; co',, co2))) corresponding (resp.) to (~¿i)
and (¿ ¡) in G(A,p). Thus, to show that the branch cycles of (2.10)(a) come
from covers as in (2.17)(a) we have only to count the number of inequivalent
types of branch cycles in (2.17)(a), and then show that each of these arise
from (2.18).

Consider the cycles of (2.10)(a). Since ct(1) • o(2) • a(3) ■ a(4) = Id, we have
o(l) - 6(2) + 6(3) - 6(4) = 0. By conjugating each of o(l),.... o(4) by
(¿ ~bvy2) (thereby giving an equivalent description of the branch cycles) we
may assume that 6(1) = 0. By conjugating each of the cycles by (g ?) we may
assume that 6(2) = 0 or 1, and in the former case 6(3) = 1. Note that
6(2) = 6(3) = 6(4) = 0 is not allowed as the group generated by o(l), o(2),
o(3), and o(4) is not transitive in this case. Therefore we conclude case
(2.10)(a) if we show that there are/? + 1 distinct covers E/0(E) -^ E'/0(E')
with E' fixed, deg(cp) = p.

For given E%E' we have the dual isogeny E'-» E (also of degree /?).
There are /? + 1 such distinct morphisms <î> (with E' fixed) corresponding to
the p + 1 distinct subgroups of order p of the p-division points on E'. By
dualizing back to E%E' it is easy to show (or use the modular scheme
argument of Lemma 2.1) that these give the p + 1 desired covers ramified
over the image of the fixed points of0(E') in E'/0(E').

Now we must show that the cases (2.10)(b), (c), and (d) correspond,
respectively to (2.17)(b), (c), and (d). Since the three cases are very similar we
consider only (2.17)(d) except to say that: in case (2.17)(b), Eß/0(Eß) is
uniformized by <3"(z; u, e2vi^<¿); in case (2.17)(c), Eß/0(Eß) is uniformized
by <3>3(z; u>, e2m/3<o), and; in case (2.17)(d), Ea/0(Ea) is uniformized by
<$2(z; co, iu).

When co, = 1/2, co2 = //2, multiplication by 1 fixes the cosets of 0 and
(1 + /)/2 and, permutes the cosets of 1/2 and i/2 in C/(2co„ 2x0^. Thus, if
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Ea ■$> Fa is a degree p morphism, the branch points of the induced morphism
Ea/9(Ea)2>Ea/9(Ea) are the 3 points representing the images of 0 and
(1 + i)/2 and the point which is the image of both 1/2 and i/2. Using
arguments very similar to the above (case (2.17)(a)), we find: the group of the
Galois closure of the function field extension given by <p is isomorphic to a
group G(A,p) where A is the cyclic subgroup of order 4 of (Z/(p))*. We
easily conclude that the branch cycles for the cover given by ç are as in
(2.10)(d_).

Let a E Z/(p) such that a2 + 1 = 0 modulo (p). Such an a exists since
p = 1 modulo (4). On the other hand, we have need to make a distinction
between ö and the complex number i. The ^-division points on Ea are a group
77 isomorphic to Z/(p) x Z/(p). With this isomorphism the action of / (as
an element of 9(Ea) restricted to 77) is given by: (a, b) -» ( - b, a) for
(a, b) E 77. In order to create a diagram such as (2.16) in the situation of
(2.17)(d) we need only find a subgroup G(0) of 77 of order p such that G(0) is
invariant under the action of 9(E). Each such distinct subgroup gives a
distinct cover of P1 with branching of type (2.10)(d). We obtain two such
distinct subgroups by considering: G,(0), the group generated by (1, 5) E 77,
and; Gj°\ the group generated by (ä, 1) E 77. From these we obtain: two
covers Yx -» P1 and Y2 -> P1, each with 3 branch points (which we may select
to be any three places on P1) and each with a description of the branch cycles
of type (2.10)(d). We will conclude the lemma if we show that there are only
two nonequivalent descriptions of branch cycles satisfying (2.10)(d). When
this is done, we conclude that the covers Yx -» P1 and Y2 -» P1 give all the
covers of P1 with branch cycles as in (2.10)(d).

The branch cycles a(l), a(2), a(3) of (2.10)(d) are o(l) - ("¿^ft, a(2) -
(*£ b<?)> o"(3) - (*g *(f) where ä2 + 1 = 0 modulo (p). By conjugating by an
element of G((Z/(p))*,p) we may assume that 6(1) = 0 and 6(2) = 1 (as we
did in the case (2.17)(a)). Using the condition that o(l) • o(2) ■ a(3) = Id we
have only the two possibilities: o(2) = (g ¡), o(3) - (g f), or; cr(2) = (~g ¡),
*(3) - ("g "t).   D

Consider the Galois group of the Galois closure of the function field
extension C(E/9(E))/C(E'/9(E')) (as in (2.16) and (2.17)(a)) where 9(E)
= 9(E') = {±Id}. We have already noted in the proof of Lemma 2.1 that
this group is isomorphic to G(A,p) where A is generated by (~¿ ?). Lemma
2.2 shows that there exists (E, E'; $, F) as in (2.17)(a) so that:

(2.21) G(f\eJ9(Ê))/F(E'/9(E'))) ~G((Z/ (p))*,p).
Lemma 2.2. There exists a 4-tuple (E, £"; $, F) as in (2.17)(a) with: E' =

P/G(0) where G(0) is generated by a p-division point p E E, and; [F(p):
F] - (P ~ l)/2 where F(p) is the field obtained by adjoining inhomogeneous
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coordinates o/p to F. In particulat\Jrpmthe addition formula of (2.19) we find
that F (the Galois closure F in F(E/0(E))) is F(p) ana*(2.21) holds.

Proof. From [0, p. 108] we have a modular interpretation of the
isomorphism classes of pairs (E, p) where E is an elliptic curve and p is a
p-division point on E. Such pairs are, in fact, in one-one correspondence with
the points of the Poincaré upper half plane %, modulo the action of the
group

r,(p) = {(J    bd)e SL(2, Z)/(±Id)|a »¿31 mod(p),

(2.22) 1
ande = Omod(p) >.

The space %/Tx(p) can be compactified. The resulting object has the
structure of a projective curve defined over Q, which we denote by Xx(p). Let
A'o(p) be the modular curve of level p. Then, there are canonical covering
morphisms Xx(p) -^ A'qQ?) -4P1 (defined over some finite extension P' of Q)
such that: degi// = (p - l)/2; \¡/ maps a pair (E, p) to the pair (E, G(0))
where G(0) is the group generated by p, and, y maps (E, G(0)) to the point of
%/SL(2, Z) corresponding to the isomorphism class of the elliptic curve E.

From Hubert's irreducibility theorem (see discussion prior to §2.A) there
exists a Q-valued point q of P1 such that there is a place p' of Xx(p) of degree
equal to deg(y ° \¡/) over F'(q). Suppose p' corresponds to (E, p) and p" (the
place of A'o(p) below p') corresponds to (E, G(0)). Let P - F'(p"). Then E
and E/ G(0) are defined over P, and the conclusion of the lemma follows.   □

Let o(l),..., o(r) E G(Â,p) be a description of the branch cycles of a
genus zero cover of P1 of prime degree p where A is a subgroup of (Z/(/?))*.
Let A be a subgroup of (Z/(/?))* containing A.

Theorem 2.2. For the data <$ = (o(l),..., o(r): G(A,p)) (as in Definition
2.3) there exists a solution to the general Schur problem corresponding to the
data^.

Proof. From Lemma 2.1 we have only to show that for each of the
members of the list (2.17)(a), (b), (c), (d), one of the covers E/0(E)
¥*E'/0(E') of the collection satisfies condition (2.21) for some field F.
Then, if P is the algebraic closure of F in F(E/0(E)) (the Galois closure of
F(E/0(E))/F(E'/0(E'))), we have G(F/F) is isomorphic to the quotient
of (Z/(/?))* by Â. Let F' be the fixed field of A in P. Then, if we extend P to
F', we conclude that (E/0(E), cp, F') is a solution of the Schur problem for
the data ^D.

We use the notation of Lemma 2.2. Our task is to show that the coordinates
of ap-division point generating G(0) generates an extension of F of degree
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(p - 1)/2. For the case (2.17)(a) it follows from Lemma 2.2 that
(E/9(E), y, F) can be chosen so that this is so. For th^e other cases this
follows from the theory of complex multiplication [Sh & T, p. 135] or [Sw-D].
In fact, in cases (2.17)(b) and (c) we take F = Q(V—3 ), and in case (2.17)(d)
we take F = Q(i). Our result here is essentially equivalent to that part of the
theory of complex multiplication which describes the abelian extensions of
the fields Q(V^I ) and Q(i).   ¡J

Remark 2.2. Let M be a finite quotient of the additive group Z © Z. Let A
be a subgroup of Aut(M). Consider the semidirect product G (A, M) = A
X ^ M where multiplication of (ax, mx) and (a2, m-f) is given by:

(ax, mx) * (a2, m2) = (ax • a2, (mx)a2 + m2).

Note that A is naturally embedded in G (A, M). We use a right action as
being more natural than the historical left action. Note that A is naturally
embedded in G (A, M) by a E A -» (a, Id) EG (A, M).

The group G (A, M) has a transitive permutation representation T(A, M)
on the elements of M given by: (a, m) sends m' E M to (m')a + m. This
representation is primitive precisely when there does not exist a group 77 with
A Ç H Ç G (A, M). If the representation is imprimitive, any such 77 is a
semidirect product of A and a subgroup M' of M which is invariant under the
action of A.

This can be generalized still further to consider groups M which are finite
quotients of Z" for some integer n. All of these groups are especially
interesting in relation to the general Schur problem and the extension of
constants problem as they correspond to analogues of the theory of complex
multiplication involving abelian varieties of dimension greater than 1.   □

3. Determination of arithmetic monodromy from branch cycles. This section
consists of a conjecture and a discussion of the compatibility of the results of
§2 with this conjecture. We return to the notations of §1.B, except that
initially our discussion is over the field C.

Let y -5» P1 be a connected cover of nonsingular projective curves and let
o(l),..., o(r) E S„ (n = deg(<jp)) be a description of the branch cycles of
this cover (§1.A). Assume also that ramification provides rigidifying data (§1.B)
for the cover y-^P1. From the proposition of §1.B this condition may be
checked combinatorially from the data given by a(l),..., o(r). Therefore, if
y'-^P1 is any other cover having o(l),..., o(r) as a description of its
branch cycles, then

(3.1) ramification provides rigidifying data for Y' -» P1.
Let ^(0(1),..., o(r)) = ??(&) be the collection of equivalence classes of

pairs consisting of: an isomorphism class of covers  Y'2+P1 having a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



160 MICHAEL FRIED

description of its branch cycles given by o(l),..., o(r), and, an ordering
p\,..., p'm of the collection of points of Y' lying over the branch points of cp'.
We say two pairs are equivalent under the conditions given by expression
(1.5). The construction of [Fr, 1, §4] shows that *$(o) has the structure of a
complex manifold.

For the cover Y -h> P1 let p,,..., pm be a fixed ordering of the points of Y
lying over the branch points of cp.

Definition 3.1. The Ramification Parameter Space 3)Ram = ^(Y, cp;
p,,..., pm) is the (unique) connected component of ^(<r) containing the
pair{y-^P'; p„ . . . , pm). There is a natural map from ^(Y, cp;
p,,..., pm) to the Hurwitz Parameter Space 9(Y, cp) given by projection of
the pairs {Y'Xpx ; p\,...,p'm) onto the first coordinate (i.e., Y' -^P1). We
denote this canonical map by ip(Y, cp): ̂ (Y, cp; p„ ..., pm) -» ^(Y, cp).

In addition, the technique of [Fr, 1, §4] shows that there is a complex
manifold 5Ram(y, cp; p„ ..., pm) and a canonical diagram

^m(Y,9;Pi,---,K)
<t>Ram _ .   pri

(3.2) -* V(Y, tp; p„ . . ., pm) X P1 ^9(Y, tp; p„ . .., pm)
pr2
\p.

such that
(a) for p E <3>( Y, cp; p„ ..., pm) the fiber 5£am of pr, ° $Ram, is

presented as a cover of P1 by restriction of pr2 ° O*8™ and,
(b) the cover S£am -» P1 represents the isomorphism class of

^(y,cp)(p)EiP(y,cp).

In [Fr, 2] the following topics are considered:
(i) the minimal field of definition of the diagram of (3.2) and related

diagrams (generalizing the results of [Fr, 1, §5]);
(ii) finding explicit embeddings of the diagram (3.2) into projective spaces,

and,
(iii) computing explicitly the degree of the étale morphism \}/(Y, cp).
For p E ^(y, cp; p„ ..., pra) = <3> let Bv be the subset of points p E ^m

such that p lies over a branch point of the cover of (3.3)(b). For example, if p
corresponds to { y, cp; p„ ..., pm) then Bp consists of the points p„ ..., pm.
It is easy to establish that Upeg*»-^, = ^(y»<p;Pi»---» Pm) has a natural
structure of a complex manifold and there is a natural étale morphism

(3-4) <$>(Y,r,px,...,pm)^<$(Y,<p).
For each integer i, i — 1,... ,m let 'S?, be the connected component of
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®(y, <p; px,..., pm) containing p¡ in the fiber over the point corresponding
to (Y,<p) in <$(Y,<p).

For the rest of the discussion we renumber p„ ..., pm to be compatible
with the numbering in §1.B. That is, we list these points as P(i,j), j —
1,..., n(i) and / = 1,..., r where p(i,j) lies over the branch point u(i) of
the cover Y^P1. With this renumbering we label 6&,. by ®„(/t) where
P(/, k) = p,..

The Hurwitz Parameter Space has a natural morphism to an open subset of
F

9(Y, <p) ̂ >F   where«: (y^P1)(3.5) l '
-» {the unordered collection of branch points of <p'}.

Thus we have a map
a o AR,m

(3.6) %iW    ->   F   for all p(l, k).
From the methods of [Fr, 1, §5] it is easy to show that the pair ("S^/,*),
a ° ARam) is defined over some finite extension of Q.
_ Definition 3.2. The field ofmoduli of (%(/,*>, a ° ARai5) is the fixed field in
Q of the subgroup 77 of G(Q/Q) consisting of a E G(Q/Q) such that: the
conjugate (ffi^w, (a ° ARa J") of C$p(W, a ° ARa J under o is isomorphic to
(®o(/.*)> a ° ^Ram)- That is, there exists y„, an analytic isomorphism, fitting in
a commutative diagram:

7„:«Sft»-►.«

(3'7) (« • ARamrRanJ

Let Aw.*) be the/7¿>« ofmoduli of (®p(a), a ° ARam).
Let p' E ^(y, <p) correspond to a cover y'-^P1 where this cover is

defined over a field K'. Let P(/, k)x,..., P(l, k), E <ftp(W be the points of
®p(/,*) tying over P'» and let Kv(lk)(P(l, k)) be the field generated over
K' ■ /<£(/*) by the inhomogeneous coordinates of the points
P(l,k)x,'...,P(l,k)r

Arithmetic form of Riemann's existence theorem (Conjectural). Consider the
field extension of K' given by:

r

H (Km)(P(i- O) • W('"> 2)) • • • Kd¡MÚ)(P(i, «(/)))) = M,.i—i

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



162 MICHAEL FRIED

Then, if K' is the algebraic closure of K' in K'(Y') (the Galois closure of
K'(Y)/K'(PX)), the field K' is contained in a cyclotomic extension ofMp..

In fact, the methods used in the branch cycle argument in [Fr, 1, §5, proof
of Theorem 5.1] give a reasonable prediction for a cyclotomic field L such
that L-Mp. = K'.

We comment quickly on thé case given by (a(l), a (2), a (3), a (4)) = a as in
(2.10)(a). In this case the proof of Lemma 2.2 is equivalent to the statement
that $ (Y, cp; p„ ..., pm) has one connected component which we denote by
$. In addition the morphism <® ̂9(Y, cp) is of degree (p - l)/2.
Lemma 2.1 amounts, in this case, to the proof that the conjectured form of
Riemann's existence theorem holds (although there are some substantial
details to check to make this precise) in the strong form that K' = M„..

In [Fr, 1, §6] there is an example to show that the field of moduli of a cover
is not necessarily a field of definition of the cover (although it is contained in
every field of definition of the cover).
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