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GALOIS REPRESENTATIONS FOR HILBERT MODULAR FORMS

D. BLASIUS AND J. ROGAWSKI

Introduction. It is a basic problem of number theory to classify alge-
braic extensions of a number field F. For extensions with abelian Ga-
lois group, this is accomplished by class field theory. The main theorem
of class field theory provides a canonical isomorphism between the Ga-
lois group Gal(F4/F), where F? is of the maximal extension of F with
abelian Galois group, and the group 7ny(Cr) of generalized ideal classes.
Although the nonabelian case of this theory remains largely undeveloped,
the conjectures of Langlands provide a framework. A key step in this ap-
proach is to dualize, thereby viewing the isomorphism of class field theory
as a correspondence between the (continuous) complex, one-dimensional
representations of Gal(F4/F) and no(Cr). Furthermore, L-series are at-
tached to representations of both groups and Artin’s reciprocity law asserts
that these L-series coincide under the correspondence. The complex one-
dimensional representations of 7o(Cr) are of finite order and correspond
to automorphic forms of a special type on GL;, namely, to those whose
infinity type is of finite order.

Let Ar be the adele ring of F. The considerations above lead to a
more general problem: for all n > 1, to identify the L-functions of auto-
morphic forms on GL,(Ar) of arithmetic type at infinity (cf. [BRn]) with
L-functions attached to n-dimensional motivic Galois representations. By
a motivic representation we mean one which occurs as a subrepresenta-
tion of the (étale) cohomology of a smooth proper variety defined over F.
All complex Galois representations with finite image are motivic, as are
certain A-adic representations with infinite image. Here we recall that a A-
adic representation is a continuous representation of Gal(F/F) on a finite-
dimensional vector space over a finite extension of Q,. Even for n = 1,
this program goes beyond class field theory, because the one-dimensional
motivic A-adic representations may have infinite order (e.g., the represen-
tations provided by the Shimura-Taniyama theory of abelian varieties with
complex multiplication). In this case, such a representation is Hodge-Tate
[F] and hence, by a theorem of Tate, is locally algebraic. It is therefore
associated to an algebraic Hecke character with the same L-function.

Observe that our problem consists of two parts. On the one hand, given
a Galois representation p, one wants to construct an associated automor-
phic form n(p). If n = 2 and p is a complex representation with solvable
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image, the existence of n(p) is due to Langlands (as completed by Tun-
nell). However, not much is known beyond this. On the other hand, given
an automorphic form z of arithmetic type, one seeks p(n). For n > 2,
little progress has been made. The case n = 2 has been much studied over
the last three decades (see [B] for a survey of results). The purpose of this
note is to give a motivic construction of p(n) when n = 2, F is totally real,
and 7 is of holomorphic discrete series type at infinity.

To describe our result, let 7 be a cuspidal automorphic representation
of GL(Af) such that for each infinite place v, m, is a discrete series
representation of weight k, and central character ¢t — =%, where w is an
integer independent of v (we normalize so that the lowest discrete series
has weight 2). Then 7 corresponds to a holomorphic Hilbert modular
newform of weight (k,).

THEOREM 1. Suppose the k, and w are all congruent modulo 2. Then
there exists a number field T C C and a collection p(n) = {p;}, where
Jor each l-adic completion T, of T, p; is a continuous representation of
Gal(F/F) in GLy(T,) such that

(*) Ly(s, pl) = LU(S,ﬂ)

Jor all finite places v prime to [ of F at which r, is unramified. Furthermore,
the system p(m) is motivic, in the sense given above.

For F = Q, Theorem 1 was obtained by Deligne [D] in 1969. For totally
real number fields, the existence of p(n) and its applications have been
considered by several authors. The example of modular forms associated
to Hecke characters of CM quadratic extensions of F suggests that the
k, must be congruent mod 2 if p(x) exists. When [F: Q] is odd or = is
discrete series at some finite place, the existence of p(x), which is based
on the work of Langlands and Shimura, has been known for several years
[O, RT]. Recall that in these cases, p(n) is realized in the étale cohomology
of a fiber system of abelian varieties over a Shimura curve associated to a
quaternion algebra B which is unramified at only one infinite place. This
limits the method when [F: Q] is even, because B must then be ramified
at an odd number of finite places.

A representation p; satisfying (x) was constructed by Wiles [W] un-
der the assumption that x, is ordinary with respect to all v dividing /.
R. Taylor [T] recently proved the existence of p(z) without providing a
motivic realization for it. In fact, Taylor shows, using work of Carayol
[C], that (%) holds for all finite places v, i.e., p(«) satisfies the Langlands
correspondence everywhere locally. The works of Wiles and Taylor rely
upon congruences between modular forms. In contrast, our construction
gives a direct (but noncanonical) realization of p(x) in the étale cohomol-
ogy of a fiber system of abelian varieties defined over F. This provides
additional information. For example, the p; are Hodge-Tate, by the work
of Faltings [F]. One can in fact show that p(n) is a Grothendieck motive
over Q. Moreover, it will be applicable to self-dual cohomological cuspidal
representations on GL,(Ar) when the theory of the stable trace formula
for unitary groups is developed for n > 3.
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To explain our construction, let E/F be a quadratic CM extension and
let U(m) denote the quasi-split unitary group in m variables relative to
E/F. Fix an infinite place w of F. By Landherr’s theorem, there exists a
unitary group U%(2n, 1) which has signature (27, 1) at w, is compact at the
remaining infinite places, and is quasi-split at all finite places. The main
point is the following: we can expect to find the /-adic representations
associated to the L-function of the base change to GL,,(Ag) of certain
cuspidal representations of U(2r) in the étale cohomology of local systems
on a Shimura variety associated to U%(2n, 1). This would follow from the
(conjectural) theories of endoscopy and the Hasse-Weil zeta function of
the Shimura varieties attached to U%(2n,1). We carry this out below for
n = 1 by applying the theory recently developed in [M]. This theory uses
work of Arthur, Kottwitz, Larsen, and Rapoport, as well as the results of
[R;]. Theorem 1 follows because of the close connection between GL, and
U(2).

1. Reduction to U(1,1). Let E be a quadratic extension of F and let g
be the base change of 7 to GL,(Ag).

1.1. Let X be a family of quadratic CM extensions E/F such that each
finite place of F splits in at least one member of X. Suppose that for
each E/F € X, there exists a system p(ng) = {p;} of representations of
Gal(F /E) satisfying () at (1) almost all places and (2) each finite place v
prime to / of E of relative degree one over F such that (ng), is unramified.
Then p(=m) as in Theorem 1 exists.

This follows from [BRn], §4.2-4.3. If p(ng) is motivic for one E/F,
then p(x) is motivic. In fact, if p(ng) occurs H*(X) for a variety X over
E, then Indf(p(m;)) occurs in H*(Resg/p(X)). Since p(ng) is invariant
under the conjugation for E/F, p(r) occurs in Ind%(p(ng)) and hence is
motivic. We obtain below a family p(ng) for every E.

Henceforth, we assume, without loss of generality, that ng is cuspidal.

1.2. Let U = U(2) and let ¥ denote the base change map for automor-
phic representations from U(Ar) to GLy(Ag) [R,].

There exists a cuspidal representation n’ of U(AF) such that:

(a) for all infinite places v, 7, is a discrete series representation.

(b) w(n') = ng ® n for some algebraic Hecke character 5 of E.

In fact, let u be a Hecke character of E whose restriction to F is the
character of order two wg/r associated to E/F by class field theory. Let
&(m) be the representation n*(a(g)), where n* is the contragredient of n
and o is the conjugation of E over F. By [R;], Theorem 11.4.1, if 7 is
cuspidal on GL,(Ag) and ¢(n) = 7, then either 7 or 7@ u lies in the image
of y. Note that &(ng ® ) = ng ® n if o Ngjp = x(n)~! o Ng/p, where
x(m) is the central character of #. The existence of n’ follows easily.

We show that if i’ satisfies (a), then a compatible motivic system p(n’)
exists such that L, (s, p(n')) = L,(s, w(n')) for (1) almost all places and
(2) each finite place v of E prime to / of relative degree one over F such
that w(n'), is unramified. We may then take p(znz) = p(n')®#n~! to prove
Theorem 1 as in (1.1).
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2. Endoscopy. Let G = U(3) and let H = U x U(1). We denote by
oy the endoscopic transfer map for automorphic L-packets from H to G.
Extend n’ to an automorphic representation "’ of H by projection on the
first factor and let IT” denote the L-packet on G corresponding to n” via
on. Since ng is cuspidal, it follows from [R;], Theorem 13.3.2, that I1”
is cuspidal. Futhermore, for each infinite place v, (I1”), is an L-packet of
discrete series representations of G.

Let G' = U%¥(2,1). We now apply the analogue for the pair (G, G’)
of the Jacquet-Langlands correspondence: there exists an L-packet IT' on
G'(AF) such that (IT'),, = (IT"),, for all finite v and for v = w [R;, Corollary
14.4.2].

3. /-adic representations. Let G” be the unitary similitude group asso-
ciated to G'. Let I = @®II, be a cuspidal L-packet on G”. Let Il,, =
®v|oo I1, and assume that I, is of discrete series type with algebraic cen-
tral character. Note that if v|oo and v # w, then II, consists of a single
representation because G is compact. The cardinality of II, and hence
that of Il is 3. Let I, be the finite part of IT and let 7, € I1;. Let d(ty)
be the number of elements 7o, € Il such that 7., ® 7, occurs in the space
of cusp forms.

If the restriction of Il to G’ is the transfer from G of an L-packet in the
image of ¢y, we call Il endoscopic. If I1 is not endoscopic then d(7,) =3
for all 7,. If IT is endoscopic, then d(ty) is equal to 1 or 2. It may vary
within Il and there is a simple locally-defined formula for d(z) [BRo,
R;].

We now extend IT' to an L-packet IT on G” with algebraic central char-
acter. The center of G”(AF) is isomorphic to A} and G”(Ar) = ALG'(AF).
We obtain an extension IT by extending the central character of IT' to an
algebraic Hecke character of A. By a main result from [M], there is a
compatible system p(ts) = {p;} of A-adic representations of Gal(F/F)
associated to 7, of dimension d(7;). Let x(t7s) be the central character
of 74. If d(ts) = 2, then p; ® x(77)~! is unramified at almost all places
v, including all finite primes v of relative degree 1 over F such that n, is
unramified. For such v, we have

Ly(s, p2® x(t7)™") = Lu(s, y(n))

(cf. [BRo, Theorem 1.9.1]). Reduction 1.2 follows, provided that we use
the following lemma.

LEMMA. There exists a choice of cuspidal representation nt' of U(AFr) as
in §1.2 such that d(ty) = 2 for some 1, € I1;.

Since y(n’) is cuspidal, the formula for d(t,) is given in terms of a
function &: I1; — {£1} which is defined locally: &(zs) = Ile(zy) (product
over the finite places) [R,]. More precisely, there is a sign &(nl) = +1
depending only on n/,, such that d(t,) = 1 if &(1s) = &(n,) and d(ty) = 2
if e(ty) # &(nl,). If II; contains more than one element, then ¢ maps
onto {+1} and the Lemma is obvious. But if IT, consists of a single
representation 7, then &(77) = 1 and we must show that there exists a
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choice of n’ such that ¢(n/,)) = —1. We can replace n’ by a twist 7’ ® y
where y is a character of U(1,1). Identify y with a character of U(1)
and suppose that .. (e'?) = /"9, By [R], §13.3, if |n| is sufficiently large,
g(nl)=-1.
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