GALOIS REPRESENTATIONS FOR HILBERT MODULAR FORMS

D. BLASIUS AND J. ROGAWSKI

Introduction. It is a basic problem of number theory to classify algebraic extensions of a number field F. For extensions with abelian Galois group, this is accomplished by class field theory. The main theorem of class field theory provides a canonical isomorphism between the Galois group $Gal(F^{ab}/F)$, where F^{ab} is of the maximal extension of F with abelian Galois group, and the group $\pi_0(C_F)$ of generalized ideal classes. Although the nonabelian case of this theory remains largely undeveloped, the conjectures of Langlands provide a framework. A key step in this approach is to dualize, thereby viewing the isomorphism of class field theory as a correspondence between the (continuous) complex, one-dimensional representations of $Gal(F^{ab}/F)$ and $\pi_0(C_F)$. Furthermore, L-series are attached to representations of both groups and Artin's reciprocity law asserts that these L-series coincide under the correspondence. The complex onedimensional representations of $\pi_0(C_F)$ are of finite order and correspond to automorphic forms of a special type on GL_1 , namely, to those whose infinity type is of finite order.

Let A_F be the adele ring of F. The considerations above lead to a more general problem: for all n > 1, to identify the L-functions of automorphic forms on $GL_n(\mathbf{A}_F)$ of arithmetic type at infinity (cf. [BRn]) with L-functions attached to n-dimensional motivic Galois representations. By a motivic representation we mean one which occurs as a subrepresentation of the (étale) cohomology of a smooth proper variety defined over F. All complex Galois representations with finite image are motivic, as are certain λ -adic representations with infinite image. Here we recall that a λ adic representation is a continuous representation of $Gal(\overline{F}/F)$ on a finitedimensional vector space over a finite extension of \mathbf{Q}_{l} . Even for n=1, this program goes beyond class field theory, because the one-dimensional motivic λ -adic representations may have infinite order (e.g., the representations provided by the Shimura-Taniyama theory of abelian varieties with complex multiplication). In this case, such a representation is Hodge-Tate [F] and hence, by a theorem of Tate, is locally algebraic. It is therefore associated to an algebraic Hecke character with the same L-function.

Observe that our problem consists of two parts. On the one hand, given a Galois representation ρ , one wants to construct an associated automorphic form $\pi(\rho)$. If n=2 and ρ is a complex representation with solvable

Received by the editors November 14, 1988 and, in revised form, February 27, 1989. 1980 Mathematics Subject Classification (1985 Revision). Primary 12A70.

The first-named author partially supported by a grant from the NSF and an AMS fellowship. The second-named author partially supported by a grant from the NSF and a Sloan fellowship.

image, the existence of $\pi(\rho)$ is due to Langlands (as completed by Tunnell). However, not much is known beyond this. On the other hand, given an automorphic form π of arithmetic type, one seeks $\rho(\pi)$. For n > 2, little progress has been made. The case n = 2 has been much studied over the last three decades (see [B] for a survey of results). The purpose of this note is to give a motivic construction of $\rho(\pi)$ when n = 2, F is totally real, and π is of holomorphic discrete series type at infinity.

To describe our result, let π be a cuspidal automorphic representation of $GL_2(\mathbf{A}_F)$ such that for each infinite place v, π_v is a discrete series representation of weight k_v and central character $t \to t^{-w}$, where w is an integer independent of v (we normalize so that the lowest discrete series has weight 2). Then π corresponds to a holomorphic Hilbert modular newform of weight (k_v) .

THEOREM 1. Suppose the k_v and w are all congruent modulo 2. Then there exists a number field $T \subset \mathbb{C}$ and a collection $\rho(\pi) = \{\rho_{\lambda}\}$, where for each l-adic completion T_{λ} of T, ρ_{λ} is a continuous representation of $Gal(\overline{F}/F)$ in $GL_2(T_{\lambda})$ such that

$$(*) L_v(s, \rho_{\lambda}) = L_v(s, \pi)$$

for all finite places v prime to l of F at which π_v is unramified. Furthermore, the system $\rho(\pi)$ is motivic, in the sense given above.

For $F=\mathbf{Q}$, Theorem 1 was obtained by Deligne [D] in 1969. For totally real number fields, the existence of $\rho(\pi)$ and its applications have been considered by several authors. The example of modular forms associated to Hecke characters of CM quadratic extensions of F suggests that the k_v must be congruent mod 2 if $\rho(\pi)$ exists. When $[F:\mathbf{Q}]$ is odd or π is discrete series at some finite place, the existence of $\rho(\pi)$, which is based on the work of Langlands and Shimura, has been known for several years $[\mathbf{O},\mathbf{RT}]$. Recall that in these cases, $\rho(\pi)$ is realized in the étale cohomology of a fiber system of abelian varieties over a Shimura curve associated to a quaternion algebra B which is unramified at only one infinite place. This limits the method when $[F:\mathbf{Q}]$ is even, because B must then be ramified at an odd number of finite places.

A representation ρ_{λ} satisfying (*) was constructed by Wiles [W] under the assumption that π_v is ordinary with respect to all v dividing l. R. Taylor [T] recently proved the existence of $\rho(\pi)$ without providing a motivic realization for it. In fact, Taylor shows, using work of Carayol [C], that (*) holds for all finite places v, i.e., $\rho(\pi)$ satisfies the Langlands correspondence everywhere locally. The works of Wiles and Taylor rely upon congruences between modular forms. In contrast, our construction gives a direct (but noncanonical) realization of $\rho(\pi)$ in the étale cohomology of a fiber system of abelian varieties defined over F. This provides additional information. For example, the ρ_{λ} are Hodge-Tate, by the work of Faltings [F]. One can in fact show that $\rho(\pi)$ is a Grothendieck motive over $\overline{\mathbf{Q}}$. Moreover, it will be applicable to self-dual cohomological cuspidal representations on $GL_n(\mathbf{A}_F)$ when the theory of the stable trace formula for unitary groups is developed for n > 3.

To explain our construction, let E/F be a quadratic CM extension and let U(m) denote the quasi-split unitary group in m variables relative to E/F. Fix an infinite place w of F. By Landherr's theorem, there exists a unitary group $U^w(2n,1)$ which has signature (2n,1) at w, is compact at the remaining infinite places, and is quasi-split at all finite places. The main point is the following: we can expect to find the l-adic representations associated to the L-function of the base change to $GL_{2n}(A_E)$ of certain cuspidal representations of U(2n) in the étale cohomology of local systems on a Shimura variety associated to $U^w(2n,1)$. This would follow from the (conjectural) theories of endoscopy and the Hasse-Weil zeta function of the Shimura varieties attached to $U^w(2n,1)$. We carry this out below for n=1 by applying the theory recently developed in [M]. This theory uses work of Arthur, Kottwitz, Larsen, and Rapoport, as well as the results of [R₁]. Theorem 1 follows because of the close connection between GL_2 and U(2).

- 1. Reduction to U(1,1). Let E be a quadratic extension of F and let π_E be the base change of π to $GL_2(\mathbf{A}_E)$.
- 1.1. Let X be a family of quadratic CM extensions E/F such that each finite place of F splits in at least one member of X. Suppose that for each $E/F \in X$, there exists a system $\rho(\pi_E) = \{\rho_{\lambda}\}$ of representations of $\operatorname{Gal}(\overline{F}/E)$ satisfying (*) at (1) almost all places and (2) each finite place v prime to l of E of relative degree one over F such that $(\pi_E)_v$ is unramified. Then $\rho(\pi)$ as in Theorem 1 exists.

This follows from [BRn], §4.2-4.3. If $\rho(\pi_E)$ is motivic for one E/F, then $\rho(\pi)$ is motivic. In fact, if $\rho(\pi_E)$ occurs $H^*(X)$ for a variety X over E, then $\operatorname{Ind}_F^E(\rho(\pi_E))$ occurs in $H^*(\operatorname{Res}_{E/F}(X))$. Since $\rho(\pi_E)$ is invariant under the conjugation for E/F, $\rho(\pi)$ occurs in $\operatorname{Ind}_F^E(\rho(\pi_E))$ and hence is motivic. We obtain below a family $\rho(\pi_E)$ for every E.

Henceforth, we assume, without loss of generality, that π_E is cuspidal.

- 1.2. Let U=U(2) and let ψ denote the base change map for automorphic representations from $U(\mathbf{A}_F)$ to $GL_2(\mathbf{A}_E)$ [\mathbf{R}_1]. There exists a cuspidal representation π' of $U(\mathbf{A}_F)$ such that:
 - (a) for all infinite places v, π'_v is a discrete series representation.
- (b) $\psi(\pi') = \pi_E \otimes \eta$ for some algebraic Hecke character η of E. In fact, let μ be a Hecke character of E whose restriction to F is the character of order two $\omega_{E/F}$ associated to E/F by class field theory. Let $\varepsilon(\pi)$ be the representation $\pi^*(\sigma(g))$, where π^* is the contragredient of π and σ is the conjugation of E over F. By $[\mathbf{R}_1]$, Theorem 11.4.1, if π is cuspidal on $GL_2(\mathbf{A}_E)$ and $\varepsilon(\pi) = \pi$, then either π or $\pi \otimes \mu$ lies in the image of ψ . Note that $\varepsilon(\pi_E \otimes \eta) = \pi_E \otimes \eta$ if $\eta \circ N_{E/F} = \chi(\pi)^{-1} \circ N_{E/F}$, where $\chi(\pi)$ is the central character of π . The existence of π' follows easily.

We show that if π' satisfies (a), then a compatible motivic system $\rho(\pi')$ exists such that $L_v(s, \rho(\pi')) = L_v(s, \psi(\pi'))$ for (1) almost all places and (2) each finite place v of E prime to l of relative degree one over F such that $\psi(\pi')_v$ is unramified. We may then take $\rho(\pi_E) = \rho(\pi') \otimes \eta^{-1}$ to prove Theorem 1 as in (1.1).

2. Endoscopy. Let G = U(3) and let $H = U \times U(1)$. We denote by φ_H the endoscopic transfer map for automorphic L-packets from H to G. Extend π' to an automorphic representation π'' of H by projection on the first factor and let Π'' denote the L-packet on G corresponding to π'' via φ_H . Since π_E is cuspidal, it follows from $[\mathbf{R}_1]$, Theorem 13.3.2, that Π'' is cuspidal. Futhermore, for each infinite place v, $(\Pi'')_v$ is an L-packet of discrete series representations of G.

Let $G' = U^w(2,1)$. We now apply the analogue for the pair (G,G') of the Jacquet-Langlands correspondence: there exists an L-packet Π' on $G'(\mathbf{A}_F)$ such that $(\Pi')_v = (\Pi'')_v$ for all finite v and for v = w [\mathbf{R}_1 , Corollary 14.4.2].

3. l-adic representations. Let G'' be the unitary similitude group associated to G'. Let $\Pi = \bigotimes \Pi_v$ be a cuspidal L-packet on G''. Let $\Pi_\infty = \bigotimes_{v \mid \infty} \Pi_v$ and assume that Π_w is of discrete series type with algebraic central character. Note that if $v \mid \infty$ and $v \neq w$, then Π_v consists of a single representation because G''_v is compact. The cardinality of Π_w and hence that of Π_∞ is 3. Let Π_f be the finite part of Π and let $\tau_f \in \Pi_f$. Let $d(\tau_f)$ be the number of elements $\tau_\infty \in \Pi_\infty$ such that $\tau_\infty \otimes \tau_f$ occurs in the space of cusp forms.

If the restriction of Π to G' is the transfer from G of an L-packet in the image of φ_H , we call Π endoscopic. If Π is not endoscopic then $d(\tau_f) = 3$ for all τ_f . If Π is endoscopic, then $d(\tau_f)$ is equal to 1 or 2. It may vary within Π_f and there is a simple locally-defined formula for $d(\tau_f)$ [BRo, \mathbf{R}_2].

We now extend Π' to an L-packet Π on G'' with algebraic central character. The center of $G''(\mathbf{A}_F)$ is isomorphic to \mathbf{A}_E^* and $G''(\mathbf{A}_F) = \mathbf{A}_E^*G'(\mathbf{A}_F)$. We obtain an extension Π by extending the central character of Π' to an algebraic Hecke character of \mathbf{A}_E^* . By a main result from [M], there is a compatible system $\rho(\tau_f) = \{\rho_\lambda\}$ of λ -adic representations of $\operatorname{Gal}(\overline{F}/F)$ associated to τ_f of dimension $d(\tau_f)$. Let $\chi(\tau_f)$ be the central character of τ_f . If $d(\tau_f) = 2$, then $\rho_\lambda \otimes \chi(\tau_f)^{-1}$ is unramified at almost all places v, including all finite primes v of relative degree 1 over F such that π'_v is unramified. For such v, we have

$$L_v(s, \rho_\lambda \otimes \chi(\tau_f)^{-1}) = L_v(s, \psi(\pi'))$$

(cf. [BRo, Theorem 1.9.1]). Reduction 1.2 follows, provided that we use the following lemma.

LEMMA. There exists a choice of cuspidal representation π' of $U(\mathbf{A}_F)$ as in §1.2 such that $d(\tau_f) = 2$ for some $\tau_f \in \Pi_f$.

Since $\psi(\pi')$ is cuspidal, the formula for $d(\tau_f)$ is given in terms of a function $\varepsilon\colon \Pi_f\to \{\pm 1\}$ which is defined locally: $\varepsilon(\tau_f)=\Pi\varepsilon(\tau_v)$ (product over the finite places) $[\mathbf{R}_2]$. More precisely, there is a sign $\varepsilon(\pi''_\infty)=\pm 1$ depending only on π'_∞ such that $d(\tau_f)=1$ if $\varepsilon(\tau_f)=\varepsilon(\pi''_\infty)$ and $d(\tau_f)=2$ if $\varepsilon(\tau_f)\neq\varepsilon(\pi''_\infty)$. If Π_f contains more than one element, then ε maps onto $\{\pm 1\}$ and the Lemma is obvious. But if Π_f consists of a single representation τ_f , then $\varepsilon(\tau_f)=1$ and we must show that there exists a

choice of π' such that $\varepsilon(\pi''_{\infty}) = -1$. We can replace π' by a twist $\pi' \otimes \psi$ where ψ is a character of U(1,1). Identify ψ with a character of U(1) and suppose that $\psi_{\infty}(e^{i\theta}) = e^{in\theta}$. By $[\mathbf{R}_1]$, §13.3, if |n| is sufficiently large, $\varepsilon(\pi''_{\infty}) = -1$.

REFERENCES

- [B] D. Blasius, Galois representations and automorphic forms, Proc. Conf. on Automorphic Forms, Shimura Varieties, and L-Functions (L. Clozel and J.Milne, eds.), Ann Arbor, 1988.
- [BRn] D. Blasius and D. Ramakrishnan, Maass forms and Galois representations, Proc. Conf. on Galois Groups and Related Topics, MSRI, March, 1987 (to appear).
- [BRo] D. Blasius and J. Rogawski, Tate cycles and quotients of the two-ball, to appear in [M].
- [C] H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), 409-468.
- [D] P. Deligne, Formes modulaires et représentations l-adiques, Séminaire Bourbaki 355 (Février 1969), SLN 179, Springer-Verlag, New York, pp. 139-172.
 - [F] G. Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299.
- [M] Proceedings of a Conference on Shimura Varieties, Centre de recherches mathématiques, Université de Montréal, 1988 (in preparation).
- [O] M. Ohta, On the zeta-function of an abelian scheme over the Shimura curve, Japan J. Math. 9 (1983), 1-26.
- [R₁] J. Rogawski, Automorphic representations of unitary groups in three variables, Annals of Math. Studies (to appear).
 - $[\mathbf{R}_2]$ _____, article in $[\mathbf{M}]$.
- [RT] J. Rogawski and J. Tunnell, On Artin L-functions associated to Hilbert modular forms of weight one, Invent. Math. 74 (1983), 1-42.
 - [T] R. Taylor, On Galois representations associated to Hilbert modular forms, Preprint.
 - [W] A. Wiles, On ordinary λ -adic representations associated to modular forms, Preprint.

Department of Mathematics, University of California, Los Angeles, California 90024

Current address (D. Blasius): Department of Mathematics, Baruch College, New York, New York 10010