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GALOIS REPRESENTATIONS WITH CONJECTURAL
CONNECTIONS TO ARITHMETIC COHOMOLOGY

AVNER ASH, DARRIN DOUD, and DAVID POLLACK

Abstract
In this paper we extend a conjecture of A. Ash and W. Sinnott relating niveau 1 Ga-
lois representations to the mod p cohomology of congruence subgroups ofSLn(Z)
to include Galois representations of higher niveau. We then present computational
evidence for our conjecture in the case n= 3 in the form of three-dimensional Ga-
lois representations which appear to correspond to cohomology eigenclasses as pre-
dicted by the conjecture. Our examples include Galois representations with nontrivial
weight and level, as well as irreducible three-dimensional representations that are in
no obvious way related to lower-dimensional representations. In addition, we prove
that certain symmetric square representations are actually attached to cohomology
eigenclasses predicted by the conjecture.

1. Introduction
In [22], J.-P. Serre published his conjecture (which had existed in some form since
1973) relating continuous odd absolutely irreducible Galois representationsρ :

GQ → GL2(F̄p) to the modp reductions of modular forms. He not only conjec-
tured that a relationship existed but also gave precise formulae describing where to
find the predicted modular forms.

In [4], Ash and Sinnott presented a conjecture giving a relationship between odd
niveau 1 Galois representations of arbitrary dimensionn and certain cohomology
groups of congruence subgroups of GLn(Z). In the two-dimensional case, this conjec-
ture is closely related to Serre’s conjecture. Ash and Sinnott presented computational
evidence for their conjecture in certain three-dimensional cases, primarily in the case
of three-dimensional level 1 reducible representations. In this paper we present ad-
ditional computational evidence for the conjecture, including cases with nontrivial
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weight, level, and nebentype. We also expand the conjecture to include representa-
tions of higher niveau and present computational evidence for this generalization. The
representations in Section7.2are particularly interesting—they are the first examples
in which a cohomology eigenclass seems to correspond to a native three-dimensional
Galois representation (i.e., a Galois representation that is in no obvious way related
to a one-dimensional or two-dimensional Galois representation).

There is no problem in finding many Galois representations to which the con-
jecture that we make applies. The challenge is in finding Galois representations for
which the predicted weights and levels allow computation of the associated cohomol-
ogy classes and their Hecke eigenvalues. Our verifications of the conjecture involve
finding representations that have fairly small weight and level and computing the pre-
dicted cohomology groups and the action of Hecke operators on these groups for
primes up to 47. We then compare the Hecke eigenvalues with the coefficients of the
characteristic polynomials of the images of Frobenius, and if they match, we claim to
have evidence for the conjecture. We present many examples of Galois representations
with weight and level small enough for us to work with, resulting in over 200 predic-
tions (counting each weight associated to a Galois representation by Conjecture3.1
separately). These examples are summarized in Tables 1 through 10, in which we de-
scribe Galois representations and give predicted weights, levels, and characters. For
all the examples listed in the tables, we have computed the homology groups (which
are naturally dual to the cohomology groups), and in all cases an eigenclass with the
correct eigenvalues up tò= 47 (̀ = 3 in Table 1) did exist in the predicted weight,
level, and character. Our examples include cases with niveau 1, 2, and 3, as well as
wildly ramified niveau 1 representations. We also call attention to Theorem4.1 and
the examples that follow it, in which the theory of symmetric squares is used toprove
a prediction of Conjecture3.1 for certain irreducible three-dimensional Galois repre-
sentations.

2. Definitions
Let p be a prime number, and letF̄p be an algebraic closure of the finite fieldFp with
p elements. By aGalois representationwe mean a continuous representation of the
absolute Galois groupGQ of Q to a matrix group GLn(F̄p). The representations with
which we work in this paper will always, in addition, be semisimple. We say that a
Galois representation is odd if the image of complex conjugation is a nonscalar matrix
and that it is even if the image of complex conjugation is a scalar.

For a given primeq, we denote a decomposition group atq in GQ by Gq. This
decomposition group then has a filtration by ramification subgroupsGq,i , with the
whole inertia group aboveq equal toGq,0. We often denote the inertia groupGp,0

at p by I p. We fix a Frobenius element Frobq for eachq, and we fix a complex
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conjugation Frob∞.
We denote the fundamental characters of niveaun in characteristicp (see [19])

by ψn,d, d = 1, . . . ,n, and we note that they are all Galois conjugates (overFp)
of ψn,1. In many cases we are interested in working with fundamental characters of
niveau 2 and 3, so for brevity we letψ = ψ2,1, ψ ′

= ψ2,2, and we letθ = ψ3,1,
θ ′

= ψ3,2, andθ ′′
= ψ3,3. Note that the cyclotomic characterω is equal toψ1,1.

2.1. Hecke operators
Let 00(N) be the subgroup of matrices in SLn(Z) whose first row is congruent to
(∗,0, . . . ,0) modulo N. Define SN to be the subsemigroup of integral matrices in
GLn(Q) satisfying the same congruence condition and having positive determinant
relatively prime toN.

Let H (N) denote theF̄p-algebra of double cosets00(N)\SN/00(N). Then
H (N) is a commutative algebra that acts on the cohomology and homology of
00(N) with coefficients in anyF̄p[SN]-module. When a double coset is acting on
cohomology or homology, we call it a Hecke operator. Clearly,H (N) contains all
double cosets of the form00(N)D(`, k)00(N), where` is a prime not dividingN,
0 ≤ k ≤ n, and

D(`, k) =



1
. . .

1
`

. . .

`


is the diagonal matrix with the firstn − k diagonal entries equal to 1 and the lastk
diagonal entries equal tò. When we consider the double coset generated byD(`, k)
as a Hecke operator, we call itT(`, k).

Definition 2.1
Let V be anH (pN)-module, and suppose thatv ∈ V is a simultaneous eigenvector
for all T(`, k) and thatT(`, k)v = a(`, k)v with a(`, k) ∈ F̄p for all ` 6 | pN prime
and all 0≤ k ≤ n. If

ρ : GQ → GLn(F̄p)

is a representation unramified outsidepN and

n∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk
= det

(
I − ρ(Frob̀ )X

)
for all ` 6 | pN, then we say thatρ is attached to v or thatv corresponds toρ.
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2.2. Level and nebentype
Let

ρ : GQ → GLn(F̄p)

be a continuous representation. We define a level and nebentype associated toρ ex-
actly as Serre does in [22].

For a fixed primeq 6= p, andi ≥ 0, let gi = |ρ(Gq,i )|. Note that this is a finite
integer since by continuity the image ofρ must be finite. LetM = F̄n

p be acted on by
GQ via ρ in the natural way, and define

nq =

∞∑
i =0

gi

g0
dim M/MGq,i .

The sum definingnq is then a finite sum since eventually theGq,i are trivial.

Definition 2.2
With ρ as above, define the level

N(ρ) =

∏
q 6=p

qnq .

Note that this product is also finite sinceρ is ramified at only finitely many primes,
andnq is zero ifρ is unramified atq.

In order to define the nebentype character, we again proceed exactly as Serre does
in [22]. We factor detρ = εωk, whereω is the cyclotomic character modulop, andε
is a characterGQ → F̄p unramified atp. By class field theory, we may then consider
ε as a Dirichlet character

ε :
(
Z/N(ρ)Z

)×
→ F̄×

p .

We then pull back the definition ofε to SN by definingε to be the composite character

SN →
(
Z/N(ρ)Z

)×
→ F̄×

p ,

where the first map takes a matrix inSN to its (1,1) entry, and we defineFε to be the
one-dimensional spacēFp with the action ofSN given byε.

For a GLn(Fp)-moduleV , we now define

V(ε) = V ⊗ Fε .

Letting00(N) act onV by reduction modulop, we see thatV(ε) is a00(N)-module.
In addition, sinceSpN acts onFε , we see thatV(ε) is also anSpN-module.

In specifying the nebentype, we often refer to the unique quadratic character
modulo p ramified only at a primeq > 3, and we denote this character by

εq : GQ → F×
p .
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We also refer to the characterε4, which is ramified only at 2 and cuts out the field
Q(

√
−1).

2.3. IrreducibleGLn(Fp)-modules
The natural generalization of the weight in Serre’s conjecture is an irreducible
GLn(Fp)-module. To see this, we note that the Eichler-Shimura theorem (see [23])
relates the space of modular forms of weightk to cohomology with coefficients in

Symg(C2)

with g = k − 2. Hence, an eigenformf of level N, nebentypeε, and weightk gives
rise to a collection of Hecke eigenvalues which, when reduced modulop, also occurs
in

H1(00(N),Vg(ε)
)
,

whereVg ∼= Symg(F̄2
p) is the space of two-variable homogeneous polynomials of

degree g over̄Fp with the natural action of SL2(F̄p). Ash and G. Stevens have shown
in [5] that any system of Hecke eigenvalues occurring in the cohomology of00(N)
with coefficients in some GLn(Fp)-module also occurs in the cohomology with co-
efficients in at least one irreducible GLn(Fp)-module occurring in a composition se-
ries of the original module. Hence, there is some irreducible GLn(Fp)-moduleW
such that the system of eigenvalues coming fromf also occurs inH1(00(N),W(ε)).
Given this fact, it is natural to ask which irreducible modules give rise to the system
of eigenvalues.

We may parameterize the complete set of irreducible GLn(Fp)-modules as in
[10].

Definition 2.3
We say that ann-tuple of integers(b1, . . . ,bn) is p-restricted if

0 ≤ bi − bi +1 ≤ p − 1, 1 ≤ i ≤ n − 1,

and
0 ≤ bn < p − 1.

PROPOSITION2.4
The set of irreducibleGLn(Fp)-modules is in one-to-one correspondence with the
collection of all p-restricted n-tuples.

The one-to-one correspondence in this proposition may be described explicitly
as follows: the moduleF(b1, . . . ,bn) corresponding to thep-restrictedn-tuple
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(b1, . . . ,bn) is the unique simple submodule of the dual Weyl moduleW(b1, . . . ,bn)

with highest weight(b1, . . . ,bn). Theorem8.1gives an explicit model for the module
F(b1,b2,b3) in the casen = 3, but for largern no general computational models are
known to the authors.

In dealing with Galois representations, it often becomes necessary to associate an
irreducible module to ann-tuple that is notp-restricted. We do this via the following
definition.

Definition 2.5
Let (a1, . . . ,an) be anyn-tuple of integers. Define

F(a1, . . . ,an)
′
= F(b1, . . . ,bn),

where(b1, . . . ,bn) is a p-restrictedn-tuple for which

ai ≡ bi (mod p − 1).

We note that in certain cases (namely, when someai ≡ ai +1 (mod p − 1)) the
moduleF(a1, . . . ,an)

′ may not be well defined. In this case we interpret any state-
ment concerningF(a1, . . . ,an)

′ to mean that the statement is true for some choice
of F(b1, . . . ,bn) as in the definition. For example, ifp = 5, a statement concern-
ing F(1,0,0)′ is true if the statement is true for eitherF(1,0,0) or F(5,4,0) (or
both). When dealing with modules defined by the prime notation, we say that a mod-
ule F(a1, . . . ,an)

′ is determined unambiguously if there is a uniquep-restricted se-
quence congruent to(a1, . . . ,an) modulo p − 1.

2.4. The strict parity condition
We modify slightly the statement of the strict parity condition in [4] for ease of expo-
sition, but our formulation is logically equivalent to that in [4].

Definition 2.6
Let V = F̄n

p be ann-dimensional space with the standard action of GLn(F̄p). A Levi

subgroup Lof GLn(F̄p) is the simultaneous stabilizer of a collectionD1, . . . , Dk of
subspaces such thatV =

⊕
i Di . If eachDi has a basis consisting of standard basis

vectors forV , thenL is called astandard Levi subgroup.

Example 2.7
The standard Levi subgroups of GL2(F̄p) are the subgroup of diagonal matrices and
the whole of GL2(F̄p).
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Example 2.8
The standard Levi subgroups of GL3(F̄p) are the subgroup of diagonal matrices, the
whole of GL3(F̄p), and the three subgroups∗ 0 0

0 ∗ ∗

0 ∗ ∗

 ,
∗ 0 ∗

0 ∗ 0
∗ 0 ∗

 ,
∗ ∗ 0

∗ ∗ 0
0 0 ∗

 .
Definition 2.9
Let ρ : GQ → GLn(F̄p) be a continuous representation. A standard Levi subgroup
L of GLn(F̄p) is said to beρ-minimal if L is minimal among all standard Levi sub-
groups that contain some conjugate of the image ofρ.

Definition 2.10
A semisimple continuous representationρ : GQ → GLn(F̄p) satisfies the strict parity
condition with Levi subgroupL if it has the following properties:
(1) L is ρ-minimal;
(2) the image of complex conjugation is conjugate insideL to a matrix

±

1
−1

. . .


with strictly alternating signs on the diagonal.

Example 2.11
Any odd irreducible two-dimensional (resp., three-dimensional) representation satis-
fies strict parity, withL = GL2(F̄p) (resp.,L = GL3(F̄p)).

Example 2.12
Let ρ be the direct sum of a two-dimensional odd irreducible representation and a
one-dimensional representation, with image contained inside

L =

∗ 0 0
0 ∗ ∗

0 ∗ ∗

 or L =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 .
Thenρ satisfies the strict parity condition, with Levi subgroupL.

Example 2.13
Let ρ be the direct sum of a two-dimensional even irreducible representation and a
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one-dimensional representation, with the image ofρ contained inside

L =

∗ ∗

∗

∗ ∗

 .
Thenρ satisfies strict parity with this Levi subgroup exactly whenρ is odd.

Remark 2.14
Note that any odd three-dimensional Galois representation is conjugate to a repre-
sentation that satisfies the strict parity condition for some standard Levi subgroup
L. More generally, ifρ is ann-dimensional representation where the number of+1
eigenvalues and the number of−1 eigenvalues of complex conjugation differ by at
most one, thenρ satisfies the strict parity condition for some standard Levi subgroup
L.

Definition 2.15
If ρ : GQ → GLn(F̄p) lands inside a Levi subgroupL, andσ : GQ → GLn(F̄p) is
another representation ofGQ, we say that

ρ ∼L σ

if there is a matrixM ∈ L such that

Mρ(g)M−1
= σ(g)

for all g ∈ GQ. If L = GLn(F̄p), then we may write

ρ ∼ σ.

2.5. Weights
We now begin to predict the weights (or irreducible modules) for which we expect
to find cohomology eigenclasses withρ attached. Following the example of Serre’s
conjecture, we expect these weights to be determined by the restriction ofρ to a
decomposition group atp, so we are interested in studying representations of the de-
composition groupGp. For convenience we denote the inertia groupGp,0 by I p and
the wild ramification groupGp,1 by Iw. We begin by considering simple representa-
tions ofGp.

LEMMA 2.16
Let V be a simple n-dimensionalF̄p[Gp]-module, with the action of Gp given by a
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representationρ : Gp → GL(V). Then we may choose a basis for V such that

ρ|I p =

ϕ1
. . .

ϕn

 ,
with the charactersϕ1, . . . , ϕn equal to some permutation ofψm

n,1, . . . , ψ
m
n,n for some

m ∈ Z.

Proof
This proof is almost identical to the proof in [13] for two-dimensional representations.
We first note thatρ has finite image, so that we may actually realize it over a finite
extension ofFp. Hence, we may find anFpm[Gp]-moduleV ′ such thatV = V ′

⊗ F̄p.
We note thatIw must act trivially onV ′ since the invariantsV ′ Iw are a nontrivialGp-
submodule of the simple moduleV ′ (since the image ofIw underρ is a p-group).
Hence, we may diagonalizeρ|I p. Since the Frobenius acts on the tame inertia aspth
powers, we see that the set of diagonal characters must be stable under takingpth
powers. Finally, sinceV is simple, the Frobenius must permute the diagonal charac-
ters transitively, resulting in the characterization given above.

Remark 2.17
Note that for a givenV , Lemma2.16yieldsn distinct values ofm modulo(pn

− 1).
If m0 is one of them, the others are congruent topm0, p2m0, . . . , pn−1m0 modulo
(pn

− 1).

Definition 2.18
Let V be a simpleGp-module, diagonalized as in Lemma2.16with some choice of
exponentm. If possible, writem as

m = a1 + a2p + · · · + an pn−1,

with 0 ≤ ai − an ≤ p − 1 for all i . Suppose that(b1, . . . ,bn) satisfiesbi ≥ bi +1 for
all i < n and is obtained by permuting the entries of(a1, . . . ,an). Then we say that
(b1, . . . ,bn) is derived from V. If the action ofGp on V is given by a representation
ρ, we say that then-tuple is derived fromρ.

Remark 2.19
Note that not all values ofm have an expansion of the form given here. For example,
if p = 5, n = 3, m = 30, there is no expansion satisfying the above properties. It
is a simple exercise to see that every simple module has at least one derivedn-tuple
and that a given value ofm yields a uniquen-tuple if it yields any. Hence, a simple
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n-dimensionalGp-module may have at mostn n-tuples derived from it, but it can
have fewer.

Now let V be anyn-dimensionalGp-module, with the action ofGp given byρ :

Gp → GL(V). We may find a composition series

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V.

Let each composition factorVi /Vi −1 have dimensiondi , and setd0 = 0.
By diagonalizingρ on each simple composition factor, we may find a basis

(e1, . . . ,en) of V such thatρ is upper triangular, with diagonal characters

(ϕ1,1, . . . , ϕ1,d1, ϕ2,1, . . . , ϕ2,d2, . . . , ϕk,1, . . . , ϕk,dk),

where the firstd1 characters come from the action onV1/V0, the nextd2 from the
action onV2/V1, and so on. For each composition factor, choosemi such that for some
j , ψmi

di ,1
= ϕi, j , and such thatmi yields adi -tuple derived fromVi /Vi −1. Concatena-

ting thesedi -tuples gives us ann-tuple(a1, . . . ,an).
We wish to preserve the order of the integers in ourn-tuple which come from an

individual composition factor, so we make the following definition.

Definition 2.20
A permutationσ of the integers{1, . . . ,n} is compatiblewith the filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V

given above if for 0≤ s< k anda,b ∈ [1+
∑s

j =0 d j ,ds+1 +
∑s

j =0 d j ] with a < b,
we haveσ(a) < σ(b).

Definition 2.21
Let V be ann-dimensionalGp-module with chosen basis{e1, . . . ,en} with respect
to which the action ofGp is upper triangularized, and let(a1, . . . ,an) be ann-
tuple obtained as above. Ifσ is a permutation of the integers{1, . . . ,n} compati-
ble with the filtration above and such that the action ofGp with respect to the or-
dered basis{eσ(1), . . . ,eσ(n)} remains upper triangular, then we say that then-tuple
(aσ(1), . . . ,aσ(n)) is derived from V.

Remark 2.22
Note that there is at least one (and possibly more)n-tuple derived fromV , namely,
the originaln-tuple(a1, . . . ,an). In addition, even the choice of this originaln-tuple
is not unique, so that there usually are manyn-tuples derived from a givenV .
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Definition 2.23
Let ρ : GQ → GLn(F̄p) be a semisimple continuous representation, conjugated to
land in aρ-minimal standard Levi subgroupL. Let D1, . . . , Dk be the subspaces of
F̄n

p given in the definition ofL. Then we have representationsρi : GQ → GL(Di ),
which make eachDi into aGQ-module. LetGp be a decomposition group abovep,
and consider eachDi as aGp-module. Letdi = dim Di , and let(a1, . . . ,adi ) be a
di -tuple derived fromDi as above. If the standard basis elements ofF̄n

p which span
Di areejr , 1 ≤ r ≤ di , with jr < js for r < s, then setb jr = ar for r = 1, . . . ,di .
Doing this for eachDi produces ann-tuple(b1, . . . ,bn). Such ann-tuple is said to be
derived fromρ, with Levi subgroup L.

Remark 2.24
Note that the above discussion may (in many cases) be summarized more informally
as follows. Given a representationρ : GQ → GLn(F̄p) which lands inside aρ-
minimal standard Levi subgroupL, we may upper triangularize its restriction to in-
ertia by conjugating by an element ofL. This gives a sequence of characters of the
tame inertia group on the diagonal. Group these characters together into niveaud
collections. (Aniveau d collectionis set ofd characters, each a power of a differ-
ent fundamental character of niveaud with the same exponentm and all appearing
in the same “Levi block”.) For a given niveaud collection, write the exponentm as
a1 + a2p + · · · + ad pd−1, with 0 ≤ ai − ad ≤ p − 1 for all i , and let(b1, . . . ,bd)

be the ordered (decreasing)d-tuple with the same components as(a1, . . . ,ad). Then
construct ann-tuple (c1, . . . , cn) as follows: if thei th character in the niveaud col-
lection is in thekth diagonal position in the image ofρ, setck = bi . (Note that the
order of thebi should be preserved in then-tuple.) This procedure gives the same
derivedn-tuples as above, except when there is a combination of wild ramification
and multiple niveaud collections containing the same characters, in which case the
more complicated procedure described above is needed.

3. Conjecture

CONJECTURE3.1
Letρ : GQ → GLn(F̄p) be a continuous semisimple Galois representation. Suppose
that ρ satisfies the strict parity condition with Levi subgroup L. Let(a1, . . . ,an) be
an n-tuple derived fromρ with the Levi subgroup L, and let V= F(a1−(n−1),a2−

(n − 2), . . . ,an − 0)′. Further, let N = N(ρ) be the level ofρ, and letε = ε(ρ) be
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the nebentype character ofρ. Thenρ is attached to a cohomology eigenclass in

H∗
(
00(N),V(ε)

)
.

Remark 3.2
We note that in the case of two-dimensional Galois representations, we may take∗ to
be 0 or 1, and in fact, for irreducible two-dimensional representations, we may take∗

to be 1.
In the case of three-dimensional Galois representations, we may take∗ to be

at most 3, and for irreducible Galois representations (or sums of an even two-
dimensional representation with a one-dimensional representation) we may take∗ to
be equal to 3, as explained in [4]. As mentioned previously, any odd two-dimensional
or three-dimensional representation is conjugate to a representation that satisfies strict
parity for some standard Levi subgroupL.

In our computations we test the conjecture for three-dimensional representations
by computingH3. In cases whereρ is the sum of three characters or the sum of an
odd two-dimensional representation and a character, we are thus actually testing a
stronger assertion than Conjecture3.1, namely, that the cohomology class exists in
H3 (see, e.g., Tables 4 and9). We did not test anyρ that are sums of three characters
in this paper, but several examples of such may be found in [3] and [1]. In addition,
we do not present computational examples forp = 2 as this would involve rewriting
portions of our computer programs. In addition, forp = 2 and p = 3, our compu-
tational techniques (based on those in [1]) do not always compute the whole ofH3.
Nevertheless, we have no reason to doubt our conjecture for these primes. In partic-
ular, problems with the weight and nebentype that occur whenp = 2 or p = 3 for
Serre’s original conjecture involving classical modular forms modulop should not
occur for our conjecture, which involves modp cohomology.

Remark 3.3
Note that Conjecture3.1applies to Galois representations of arbitrary dimension, but
that we have no computational evidence for dimension higher than 3. Forthcoming
work of Ash with P. Gunnells and M. McConnell touches on the case of certain four-
dimensional representations.

Remark 3.4
Note that the conjecture makes no claim of predicting all possible weights that yield
an eigenclass withρ attached. In fact, we have three types of computational examples
in which additional weights (not predicted by the conjecture) do yield eigenclasses
that appear to haveρ attached.

The first type of additional weight occurs ifρ is attached to a quasi-cuspidal
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eigenclass (e.g., ifρ is either irreducible or reducible as a sum of an even two-
dimensional representation and a character). In this case, for certain weights, we may
define an extra weight as follows.

Definition 3.5
Let F(a,b, c) be an irreducible GLn(Fp)-module, witha − c < p− 2. Then we may
define

M = F(d,e, f ) =

{
F
(
p − 2 + c,b,a − (p − 2)

)
if a ≥ p − 2,

F
(
2(p − 2)+ c + 1,b + (p − 1),a + 1

)
if a < p − 2.

Then we say thatM is the extra weight associated toF(a,b, c).

Applying [10, Proposition 2.11], it is easy to see that ifF(d,e, f ) is the extra weight
associated toF(a,b, c), there is an exact sequence

0 → F(d,e, f ) → W(d,e, f ) → F(a,b, c) → 0.

Now, suppose thatρ is attached to a quasi-cuspidal homology eigenclass in weight
F(a,b, c). Examining the long exact homology sequence associated to this short ex-
act sequence, we find that a quasi-cuspidal eigenclassα in H3(00(N), F(a,b, c)(ε))
(in particular, any eigenclass corresponding to an irreducible Galois representation)
either is the image of an eigenclass inH3(00(N),W(d,e, f )(ε)) or has nonzero
imageβ in H2(00(N), F(d,e, f )(ε)). In the second case,β is an eigenclass, and
using Theorem3.10 and Lefschetz duality, we find that there is an eigenclassγ in
H3(00(N), F(d,e, f )(ε)) which has the same eigenvalues asα. Hence, for each
quasi-cuspidal eigenclass in an appropriate weight there are two possibilities: either
the eigenclass lifts to the dual Weyl module, or the eigenclass gives rise to another
eigenclass with the same eigenvalues in the extra weight. Our experimental evidence
supports the hypothesis that in all such cases a quasi-cuspidal eigenclass gives rise to
another eigenclass with the same eigenvalues in the extra weight.

The second class of additional weights which we have observed consists of
certain weights which would be predicted by our conjecture if we eliminated the
strict parity condition. These additional weights have been observed only for rep-
resentationsρ that are either the sum of three characters or the sum of an odd two-
dimensional representation and a character. These additional weights seem to occur
fairly rarely and sporadically and may be related to the occurrence of eigenclasses in
H2 which haveρ attached. A full investigation of them would require new computa-
tional techniques, beyond those developed in this paper.

The third class of additional weights consists of extra weights associated to
weights that would be predicted by our conjecture but for the strict parity condi-



534 ASH, DOUD, and POLLACK

tion. As in the second case, these additional weights occur only rarely, and only for
reducibleρ.

Before beginning to present computational evidence for Conjecture3.1, we begin by
proving several facts about the conjecture.

THEOREM 3.6
If Conjecture3.1 is true for a representationρ, then it is true for the representation
ρ ⊗ ωs, whereω is the cyclotomic character modulo p.

Proof
First, note that twisting byωs does not affect the predicted level or nebentype in any
way. Denote the level ofρ by N and the nebentype ofρ by ε.

If ρ has niveau 1, then this is just [4, Proposition 2.6].
For higher niveau representations, we note that twisting byωs changes the value

of m coming from a niveaud character bys(1+ p+· · ·+ pd−1); hence, it changes all
the values ofai arising fromm by s. Following this change through the permutations
involved in deriving ann-tuple, we find that twisting a representationρ by ωs adds
s to each element of a derivedn-tuple. This change is then reflected in the predicted
weight, and we have that the set of predicted weights forρ ⊗ ωs is precisely the set
of twists by dets of the predicted weights ofρ.

Finally, if an eigenclassv shows up in weightV and hasρ attached, then we may
considerv as lying in cohomology with weightV ⊗dets, and we see easily (as in [4])
that in this new cohomology groupv hasρ ⊗ ωs attached. Hence, ifρ is attached to
a cohomology class in each of the weights predicted by Conjecture3.1, thenρ ⊗ ωs

satisfies the conjecture as well.

We now note that there is a correspondence between systems of Hecke eigenvalues
arising from modular forms and systems of eigenvalues arising from arithmetic coho-
mology in characteristicp, similar to that given by the Eichler-Shimura isomorphism
in characteristic zero. In particular, we note that by [6, Proposition 2.5], forp > 3,
any system of Hecke eigenvalues comes from the modp reduction of an eigenform
of level N, nebentypeε, and weightk = g + 2 if and only if it comes from a Hecke
eigenclass inH1(00(N),Vg(F̄p)(ε)), whereVg(F̄p) is thegth symmetric power of
the standard representation of GL2(Fp).

THEOREM 3.7
If p > 3, Serre’s conjecture implies Conjecture3.1for n = 2.
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Proof
For a complete description of Serre’s conjecture, including Serre’s prediction of the
weight, see [22] or [13].

There are two cases: whereρ is niveau 1 and whereρ is niveau 2. In either case
we note that the level and nebentype predicted by Serre’s conjecture are identical to
those predicted by Conjecture3.1, so that we need only deal with the weight.

Suppose thatρ : GQ → GL2(F̄p) is odd, semisimple, and has niveau 1. Ifρ is
reducible, Conjecture3.1 is true (see [4, Proposition 2.7]), so we may assume thatρ

is irreducible. Ifρ is tamely ramified, we have

ρ|I p ∼

(
ωa1

ωa2

)
,

with 0 ≤ a1,a2 ≤ p − 2. Conjecture3.1predicts a weight ofF(a1 − 1,a2)
′.

If a2 < a1, then

ρ ⊗ ω−a2|I p ∼

(
ωa1−a2

ω0

)
,

and Serre’s conjecture claims thatρ⊗ω−a2 corresponds to a modular form of weight
1 + a1 − a2 or (via [6, Proposition 2.5]) thatρ ⊗ ω−a2 corresponds to a cohomology
class with coefficients inF(a1 − a2 − 1,0). Twisting byωa2 (which corresponds to
twisting the weight by deta2), we find thatρ corresponds to a cohomology class with
coefficients inF(a1 − 1,a2), exactly as predicted by Conjecture3.1.

If a2 ≥ a1, then

ρ ⊗ ωp−1−a2|I p ∼

(
ωp−1+a1−a2

ω0

)
,

and by Serre’s conjecture (together with [6, Proposition 2.5]),ρ ⊗ ωp−1−a2 corre-
sponds to a cohomology class with coefficients inF(p− 2+ a1 − a2,0). Twisting by
ωa2 as before, we find thatρ has weightF(a1−1+ (p−1),a2), exactly as predicted.

Now if ρ is wildly ramified atp, then

ρ|I p ∼

(
ωβ ∗

ωα

)
,

with 0 ≤ α ≤ p − 2 and 1≤ β ≤ p − 1, and Conjecture3.1 predicts a weight of
F(β − 1, α)′. Before applying Serre’s conjecture, we twistρ byω−α to obtain

ρ ⊗ ω−α
∼

(
ωβ−α

∗

ω0

)
.

Applying Serre’s conjecture to this representation, we find that it has weight
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(1) 1 + (β − α) (i.e., F(β − α − 1,0)) if β > α + 1,
(2) 2 (i.e.,F(0,0)) if β = α + 1 andρ ⊗ ω−α is peu ramifíee,
(3) p + 1 (i.e.,F(p − 1,0)) if β = α + 1 andρ ⊗ ω−α is très ramifíee,
(4) 1 + (β − α)+ (p − 1) (i.e., F(β − α + (p − 1)− 1,0) if β ≤ α.

Twisting each of these weights by detα, we find thatρ corresponds to a cohomol-
ogy class in weightF(β − 1, α)′ in every case. (Note that whenβ − 1 ≤ α we may
add p − 1 toβ − 1 to obtain ap-restricted pair.)

This proves the theorem in the case whenρ has niveau 1.
Suppose that

ρ|I p ∼

(
ψm

ψ ′m

)
,

wherem = a + bp, and 0< a − b ≤ p − 1. (Note that ifa = b, we are really in
niveau 1.) For simplicity we use the fact thatψ andψ ′ have orderp2

− 1 to reduce
to the case where 0< m < p2

− 1, so thatb < p − 1. The weight predicted by
Conjecture3.1 is thenF(a − 1,b)′.

Now,

ρ ⊗ ω−b
∼L

(
ψa−b

ψ ′a−b

)
,

so that by Serre’s conjectureρ ⊗ ω−b corresponds to a cohomology class with co-
efficients inF(a − b − 1,0). Twisting byωb, we see thatρ then corresponds to a
cohomology class with coefficients inF(a − 1,b), exactly as predicted.

Hence, Serre’s conjecture implies Conjecture3.1for n = 2.

We now prove a partial converse to Theorem3.7, which shows that in certain cases
Conjecture3.1 is actually equivalent to Serre’s conjecture.

THEOREM 3.8
Assume Conjecture3.1. Let p > 3, and letρ : GQ → GL2(F̄p) be a semisimple
continuous odd Galois representation. If each weight predicted by Conjecture3.1 is
defined unambiguously, then Serre’s conjecture is true forρ.

Proof
We may clearly assume thatρ : GQ → GL2(F̄p) is irreducible since Serre’s conjec-
ture says nothing about reducible representations.

First, note thatρ cannot be attached to any class inH0 since, according to [2,
Theorem 4.1.4], any class inH0 is a twist of a punctual class, and a punctual class
corresponds to a reducible representation by [2, Lemma 4.1.2].

Conjecture3.1 implies thatρ is attached to an eigenclass inH1(00(N),V(ε)),
where N, V , and ε are as predicted in the conjecture. We note that the level and
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nebentype predicted by Conjecture 3.1 are exactly the same as those predicted by
Serre’s conjecture.

If ρ is tamely ramified and has niveau 1, then we have

ρ|I p ∼

(
ωa

ωb

)
,

and we may further conjugateρ so that 0≤ b ≤ a < p − 1. The weights pre-
dicted by Conjecture3.1 are thenF(a − 1,b)′ and (permuting the diagonal charac-
ters) F(b − 1,a)′. These are defined unambiguously exactly whena 6= b + 1. For
a > b + 1, we have thatF(a − 1,b) embeds inVa−1+bp, so Conjecture3.1predicts
thatρ is attached to a cohomology eigenclass in weightVa−1+bp since any system
of eigenvalues occurring in a submodule occurs in the containing module (see [4]).
This implies (by [6, Proposition 2.5]) thatρ is attached to an eigenform of weight
1+a+bp, which is exactly the weight predicted by Serre’s conjecture. Fora = b = 0,
the predicted weights for Conjecture3.1and Serre’s conjecture are bothF(p − 2,0).
Fora = b 6= 0, Conjecture3.1predicts a weight ofF(a−1+ p−1,b), while Serre’s
conjecture predicts a weight ofVb−1+pa. Using [10, Table 1] (specifically, the last
line, asb 6= 0), we see thatF(a − 1+ p − 1,b) is a subquotient ofVb−1+pa. Hence,
we are finished if we can show that the system of eigenvalues corresponding toρ in
weightF(a− 1+ p− 1,b) also shows up in weightVb−1+pa. Lemma3.9shows that
for GL2, systems of eigenvalues of eigenclasses that are not twists of punctual classes
are inherited from subquotients, so that we are finished.

For a tamely ramified niveau 2 representation, the proof is essentially identical—
one of the weights predicted in Conjecture3.1 embeds in the module corresponding
to the weight predicted by Serre’s conjecture.

If ρ is wildly ramified, then we have

ρ =

(
ωα ∗

ωβ

)
.

Conjecture3.1then predicts a weight ofF(α−1, β)′, which is unambiguously defined
as long asα 6≡ β + 1 (mod p − 1).

In order to apply Serre’s conjecture, we normalize so that 1≤ α ≤ p − 1 and
0 ≤ β ≤ p − 2.

If α > β andα 6= β + 1, then Serre’s conjecture predicts a weight ofVα−1+βp,
which containsF(α − 1, β) as a submodule; hence we are finished, as before.

If α ≤ β, then Serre’s conjecture predicts a weight of 1+ β + pα, and we
haveF(α− 1, β)′ = F(α− 1+ p− 1, β). Using [10, Table 1] as before, we find that
F(α−1+p−1, β) is a subquotient ofVβ−1+pα, which is the module corresponding to
the weight predicted by Serre’s conjecture. Hence, by Lemma3.9, we are finished.
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LEMMA 3.9
If α is an eigenclass in H1(00(N), A), where A is a subquotient of aGL2(F)-module
B,α is not a twist of a punctual eigenclass, and p> 3, then there is an eigenclass in
H1(00(N), B) with the same eigenvalues asα.

Proof
Let T ⊂ S ⊂ B, with S/T ∼= A, and examine the long exact cohomology sequence
arising from the short exact sequence

0 → T → S → A → 0.

Note that sincep > 3, H2(00(N), T) = 0, so that the eigenclassα must come from
a classσ in H1(00(N), S). By [5], we may replaceσ by an eigenclass having the
same eigenvalues asα (calling the new classσ again). The long exact cohomology
sequence arising from the short exact sequence

0 → S → B → B/S → 0

then shows thatσ goes to a nonzero classβ in H1(00(N), B) since it cannot come
from H0(00(N), B/S) (as it is not a twist of a punctual class). Clearly,β has the
same eigenvalues asσ .

THEOREM 3.10
Assume thatρ : GQ → GLn(F̄p) is attached to an eigenclassα in H i (00(N),V(ε)),
where N,ε, and V are the level, the nebentype, and a weight predicted forρ. Then
ρ∨

=
tρ−1 is attached to a cohomology classβ in H i (00(N),W(ε−1)), where

W = V∗
⊗ det−(n−1) is a twist of the contragredient V∗ of V . Further, the level,

the nebentype, and a weight predicted forρ∨ are N,ε−1, and W.

Proof
The proof that there is aβ in the indicated cohomology group withρ∨ attached is
exactly the same as the proof of [4, Proposition 2.8]. Forρ of niveau 1, Ash and
Sinnott also prove that the invariants ofρ∨ are as above. The level and nebentype
computations remain the same regardless of the niveau of the representation, so we
need only show thatW is a predicted weight forρ∨.

We show that if(b1, . . . ,bn) is a derivedn-tuple for ρ, then (−bn, . . . ,−b1)

is a derivedn-tuple forρ∨. Then, since(F(α1, . . . , αn)
′)∗ = F(−αn, . . . ,−α1)

′, it
follows that if V is a predicted weight forρ, thenW is a predicted weight forρ∨.

It is an easy exercise to reduce the question to simple representations ofGp.
Suppose thatρ is a simple representation ofGp, with then-tuple(b1, . . . ,bn) derived
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from it. Then there must be some exponentm such that

ρ|I p =

ϕ1
. . .

ϕn

 ,
where(ϕ1, . . . , ϕn) is some permutation ofψm

n,1, . . . , ψ
m
n,n. Then−m is an exponent

associated toρ∨ in the same way, as is any multiple of−m by a power ofp. Now
m = a1 + a2p + · · · + an pn−1, where theai are some permutation of the decreasing
n-tuple(b1, . . . ,bn), with 0 ≤ ai − an ≤ p− 1. Letak be the largest of theai , which
is equal tob1. Then−pn−1−km is congruent (modulo(pn

− 1)) to

−ak+1 − · · · − an pn−2−k
− a1pn−1−k

− · · · − ak pn−1,

with 0 ≤ ai − ak ≤ p − 1, so that(−bn, . . . ,−b1) is easily seen to be ann-tuple
associated withρ∨.

3.1. Heuristic for the niveau n case
For the most part, we have derived our conjecture using Serre’s conjecture as a model.
We can provide a suggestive heuristic for one feature of our conjecture: the weight of
a niveaun representation into GLn(F̄p).

Let ρ : GQ → GLn(F̄p) be given such that

ρ|I p ∼

ϕ1
. . .

ϕn

 ,
where theϕi are powers of a fundamental character of niveaun and are conjugate to
each other.

Let us suppose thatρ lifts to a p-adic representation2 unramified at almost all
primes. Further, suppose that2 comes from a motiveM with good reduction atp,
which would conjecturally be the case were2 attached to an automorphic represen-
tationπ of cohomological type of levelN prime to p (cf. [9]). Then2 is crystalline.
So by analogy it is reasonable to assume thatρ is “crystalline” in the sense of [14],
that is, that it corresponds to a filtered Frobenius module forFp.

Now writeϕ1 = ψa1+a2 p+···+an pn−1
, with 0 ≤ ai ≤ p−1. By [14, Theorem 0.8],

there is indeed a unique filtered Frobenius module8 overFp which corresponds to
a representation ofGQp into GLn(Fp) whose restriction toI p is equivalent toρ|I p.
This is our motivation for choosing theai in the given range.

Assuming again that2 and M exist, the Hodge numbers ofM would be the
same as the Hodge-Tate numbers of2|GQp

, and these in turn would be the same as
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the jumps in the filtration of the filtered Frobenius module associated to2|GQp
. If we

take the latter to be the same as the jumps in8, they area1, . . . ,an.
Now, suppose we are in the generic case; that is, suppose that|ai − a j | > 1

for i 6= j . Let {b1, . . . ,bn} = {a1, . . . ,an}, with b1 > b2 > · · · > bn. Assuming
the general picture of L. Clozel (following R. Langlands) of the relationship between
automorphic representations and motives, as found in [9], especially Chapters 3 and 4,
the motiveM predicts the existence of an automorphic representationπ attached toM
such thatπ∞ ⊗ W has(g, K )-cohomology, whereW is the irreducible representation
of GLn(C) with highest weight(b1 − (n − 1),b2 − (n − 2), . . . ,bn).

By analogy, we conjecture thatρ will be attached to a cohomology class with
weight V = F(b1 − (n − 1),b2 − (n − 2), . . . ,bn). After all, ρ is the reduction of
2 modulo p, andW mod p (or, more precisely, the reduction modulop of a model
for W overZp) hasV as a composition factor. If we now require our conjecture to be
closed under twisting by powers ofω, a simple exercise yields the weights predicted
by Conjecture3.1 for niveaun, dimensionn, in the generic case. By “continuity” we
extend the heuristic to the nongeneric case.

4. Symmetric squares
Using work of Ash and P. Tiep [7], who proved that certain Galois representations
are in fact attached to cohomology eigenclasses, we are able to verify certain special
cases of Conjecture3.1.

THEOREM 4.1
Let σ : GQ → GL2(Fp) be a continuous irreducible odd Galois representation
ramified only at p. Assume that Serre’s conjecture is true forσ , and let k be the weight
predicted by Serre’s conjecture. Then if2< k < (p+3)/2 andSym2 σ is irreducible,
Sym2 σ is attached to a cohomology eigenclass in weight F(2(k − 2), k − 2,0), and
this weight is predicted by Conjecture3.1.

Proof
By [6, Proposition 2.5], we see thatσ is attached to a cohomology eigenclass in
H1(SL2(Z),Uh(F̄p)), whereh = k − 2 andUh(F̄p) = Symh(F̄2

p), with the standard

action of GL2(F̄p) on F̄2
p. Then, by [7, Corollary 5.3], Sym2 σ is attached to a coho-

mology eigenclass inH3(SL3(Z), F(2h, h,0)). Hence, we need only show that the
weight F(2h, h,0) is predicted by Conjecture3.1.

If σ has niveau 1, this is trivial since we must have

σ |I p ∼

(
ωk−1

∗

1

)
,
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so that

Sym2 σ |I p ∼

ω2(k−1)
∗ ∗

ωk−1
∗

1

 .
If σ has niveau 2, then we must have

σ |I p ∼

(
ψk−1

ψ ′k−1

)
,

with 1 ≤ k − 1 ≤ (p − 1)/2, so that

Sym2 σ |I p ∼

ψ2(k−1)

ωk−1

ψ ′2(k−1)

 ,
with 2 ≤ 2(k − 1) ≤ p − 1. Clearly, a predicted weight for this representation is
F(2(k − 2), k − 2,0).

Example 4.2
Let K be a totally complexS4-extension ofQ, such that the quartic subfield ofK has
discriminantp3, wherep is a prime congruent to 5 mod 8 (for examples of such fields,
see [11]). The unique three-dimensional irreducible unimodular modp representa-
tion of S4 gives rise to an irreducible unimodular representationρ : GQ → GL3(Fp)

which is ramified only atp. This representation is (up to a twist by a power of the
cyclotomic character) the symmetric square of a two-dimensional irreducible repre-
sentationσ : GQ → GL2(F̄p) with projective image isomorphic toS4 and image
of order 96 (see [20]). Serre’s conjecture is true forσ sinceσ has a lift to a two-
dimensional irreducible complex Galois representation with solvable image to which
we apply the theorem of Langlands and J. Tunnell [24]. Hence,σ is modular and so,
by theε-conjecture, Serre’s conjecture holds forσ (see [11] for more details). One
easily checks thatσ has niveau 1 and that the weight predicted by Serre’s conjecture
for σ is (p + 3)/4, so that Theorem4.1 applies. Hence, at least one of the weights
predicted forρ by Conjecture3.1 yields an eigenclass withρ attached. In fact, this
weight isF((p − 5)/2, (p − 5)/4,0)⊗ det3(p−1)/4.

Example 4.3
Let K be a totally complexS4-extension ofQ such that the quartic subfield ofK has
discriminant−p, wherep is a prime congruent to 3 mod 8. Letρ be the unimodular
irreducible three-dimensional Galois representation associated toK as above. Again,
there is a two-dimensional irreducible representationσ : GQ → GL2(Fp), with
projective image isomorphic toS4, such thatσ is ramified only atp (see [20]; this time
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the image ofσ has order 48) and (again up to a twist by a power of the cyclotomic
character)ρ is the symmetric square ofσ . (Note that up to twisting, the symmetric
square depends only on the projectivization of a representation.) One checks easily
that Serre’s conjecture predicts a weight of(p + 1)/2 for σ (againσ has niveau 1)
and that (just as above) Serre’s conjecture is true forσ . Hence, one of the weights
predicted by Conjecture3.1does in fact contain an eigenclass withρ attached. In this
case, the weight isF(p − 3, (p − 3)/2,0)⊗ det(p−1)/2.

Example 4.4
Let K be a complexS4-extension ofQ with K ramified at only one primep, with
p congruent to 3 modulo 8, and with ramification index atp equal to 4 (for ex-
amples of such extensions, see [11]). Let ρ be the unique unimodular irreducible
three-dimensional modp Galois representation with image isomorphic toS4 and such
that the fixed field of the kernel ofρ is K . Then, up to twisting,ρ is the symmetric
square of a representationσ : GQ → GL2(Fp) with image isomorphic tõS4 (i.e.,
isomorphic to GL2(F3)). In this case,σ has niveau 2, Serre’s conjecture is true for
σ and its twists, and a twist ofσ has weight(p + 5)/4 (see [11]), so that Theo-
rem4.1applies. Hence, one of the weights predicted forρ gives a cohomology group
that contains an eigenclass predicted forρ. In this case, the weight that works is
F((p − 3)/2, (p − 3)/4,0)⊗ det(3p−5)/4.

5. Niveau 1 representations

5.1. Reducible representations in level 1
In [4] Ash and Sinnott dealt extensively with reducible representations ramified at
only one prime. Each of their examples was a direct sum of an even two-dimensional
representation with a one-dimensional representation, and they included cases where
the two-dimensional representation had image isomorphic to a dihedral group or pro-
jective image isomorphic toA4. They did not give examples in which the projective
image was isomorphic toS4 or A5.

We recall their construction from [4].
Let σ : GQ → GL2(F̄p) be an irreducible representation with the following

properties:
(1) σ is unramified outsidep;
(2) the image ofσ has order relatively prime top;
(3) σ(Frob∞) is central, where Frob∞ is a complex conjugation inGQ;
(4) σ(Gp,0) has order dividingp − 1.
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Then, choosing integersj andk appropriately, we find that the representationρ =

(σ ⊗ω j )⊕ωk is three-dimensional and odd, and by adjustingj andk, we may adjust
the predicted weight ofρ to some extent. In particular, we need to choosej andk
to have opposite parity ifσ(Frob∞) = 1 and the same parity ifσ(Frob∞) = −1. In
addition, we choosej andk to give the simplest possible weight.

The reducibility of these representations makes it possible to reduce the weight
to calculable levels; however, in the examples that we consider here the weight is still
quite high. Hence, rather than being able to calculate many Hecke eigenvalues, we
found it impractical to calculate more eigenvalues than those at 2 and 3, due to time
constraints.

We begin by specifying the fixed field of the kernel of the projective image ofσ ,
which is a totally real number field.

5.1.1. Representations of type A4

In [4] Ash and Sinnott presented several examples of reducible Galois representa-
tions that are sums of one-dimensional characters with even two-dimensional repre-
sentations having projective image isomorphic toA4. Using the same computational
techniques as in [1], we have been able to find otherA4-extensions for which we can
compute the predicted quasi-cuspidal homology classes. These examples are given in
Table1.

We begin with a quartic polynomialf that has four real roots and whose splitting
field K is anA4-extension ofQ ramified only at one primep. We know (by [4, Lemma
4.1]) thatK sits inside anÂ4-extensionK̂ of Q, with K̂/Q ramified only atp. In fact,
there are two possibilities for̂K ; following [4], we take K̂ to be the one that has
ramification index 3 atp. Let K4 be the quartic extension ofQ defined byf . We note
thatK4 must be contained in an octic subextensionK8 of K̂ , with K8/K4 unramified
at all finite primes. SinceK8 hasK̂ as its Galois closure, we may determine whether
K̂ is totally real or totally complex by comparing the two-ranks of the class group and
the narrow class group ofK4. For instance, whenp = 1009, the class number ofK4

is two, and the narrow class group is cyclic of order four. Thus, the two class groups
have the same two-rank, sôK must be real (sinceK8 and all its conjugates must be
real). If K̂ is totally real, we write its sign as 1; otherwise its sign is−1.

Now Â4 has a unique two-dimensional irreducible unimodular modp represen-
tationσ : GQ → GL2(Fp). We see easily thatσ |I p = ωd

⊕ω−d with d = (p−1)/3.

We now takeρ = (σ ⊗ ω j ) ⊕ ωk with j = 2d andk = 1 if the sign ofK̂ is 1, and
k = 2 otherwise. We note thatρ satisfies the conditions of the construction of [4] and
has a predicted weight ofF((p − 1)/3− 2,0,0) if k = 1 andF((p − 1)/3− 2,1,0)
if k = 2.

For each of the examples in Table1, we have calculated the interior homology of
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Table 1. Reducible representations of typeA4

Polynomial Sign p k Weight
x4

− 2x3
− 13x2

− 9x + 4 −1 163 2 F(52,1,0)
x4

− x3
− 16x2

+ 3x + 1 1 277 1 F(90,0,0)
x4

− x3
− 10x2

+ 3x + 20 −1 349 2 F(114,1,0)
x4

− x3
− 13x2

+ 12x + 16 −1 397 2 F(130,1,0)
x4

− 2x3
− 19x2

+ 29x + 1 −1 547 2 F(180,1,0)
x4

− 2x3
− 31x2

− 51x − 4 1 607 1 F(200,0,0)
x4

− 2x3
− 39x2

+ x + 125 1 1009 1 F(334,0,0)
x4

− 2x3
− 51x2

+ 100x + 83 1 1399 1 F(464,0,0)
x4

− 2x3
− 51x2

+ 32x + 192 1 1699 1 F(564,0,0)
x4

− 2x3
− 37x2

+ 10x + 29 1 1777 1 F(590,0,0)
x4

− 2x3
− 43x2

+ 127x − 55 1 1951 1 F(648,0,0)

SL3(Z) in the given weight using the techniques described in [1] and found it to be
one-dimensional. We have also calculated the Hecke eigenvalues at 2 and 3 and found
that they exactly match the values predicted from the characteristic polynomial of the
image of Frobenius underρ by Conjecture3.1.

5.1.2. Representations of type S4

Totally realS4-extensions ramified at only one prime can have two types of ramifica-
tion; either the ramification index is 2, or the ramification index is 4. For our purposes,
the extensions with ramification index 4 are better (since they yield lower weights),
although they are more difficult to find. They can, however, be found by application
of explicit class field theory, and many such examples are known. Only the two below
yield predicted weights that are feasible for computation.

Example 5.1
Let K be the splitting field of the polynomialx4

−x3
−1017x2

+9665x+60608. Then
K is a totally realS4-extension ofQ, ramified only atp = 2713, with ramification
indexe = 4. Let S̃4 be the central extension ofS4 by Z/2Z which is isomorphic to
GL2(F3). ThenK embeds in añS4-extensionK̃ of Q (by [4, Lemma 4.1]), andK̃/K
must further ramify atp (as described in [11]), so that inK̃ , p = 2713 hase = 8. We
need to determine whether̃K is totally real or totally complex. To do this, we note
that S̃4 has three conjugacy classes of subgroups of order 6 and that each subgroup
of order 12 contains exactly one subgroup of order 6 from each conjugacy class.
In terms of field extensions then, each subfield ofK̃ of degree 4 has exactly three
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quadratic extensions lying iñK . Hence, ifK̃ is totally real, the degree 4 subfieldK4

of K must have a Klein four extension contained insideK̃ , hence ramified only atp
(in particular, not ramified at infinity). Such an extension would lie inside the ray class
field of K4 modulopm (wherep is the unique prime ofK4 lying over p). However,
the two-part of the ray class group ofK4 modulopm is cyclic for everym (see [17]).
Hence,K̃ must be totally complex.

Now, we letσ be the two-dimensional representationσ : GQ → GL2(F̄p), with
image isomorphic tõS4 and kernel equal toGK̃ , chosen such that

σ |I p =

(
ω3(p−1)/8

ω(p−1)/8

)
=

(
ω3(339)

ω339

)
.

Taking j = −339,k = 1 (with the same parity sinceσ(Frob∞) = −1), we see that
ρ = (σ ⊗ ω j )⊕ ωk has

ρ|I p ∼L

ω678

ω1

ω0

 ,
where we take

L =

∗ ∗

∗

∗ ∗

 .
Then the weight predicted by Conjecture3.1is F(678− 2,1− 1,0)′ = F(676,0,0),
the level is 1, and the nebentype is trivial. Computations using the techniques of [1]
show that the interior cohomology is in fact one-dimensional. The Hecke eigenvalues
at 2 and 3 correspond exactly toσ , as predicted by Conjecture3.1.

A similar construction can be performed with the splitting fieldK of the polynomial
x4

− 6668x3
+ 16598046x2

− 18278822428x + 7514424150025, which is a totally
real S4-extension ofQ ramified only atp = 3137. In this case,̃K is totally real, and
the predicted weight isF(782,0,0). Again, the homology is one-dimensional and
the eigenvalues at 2 matchρ. The image of the Frobenius at 3 is of order 8, however,
and presents some difficulty. We have determinedσ (and hence alsoρ) by a local
condition atp, namely, its restriction to inertia atI p. Determining the Frobenius at 3 is
a local condition at 3, and combining these two determinations

(
in order to determine

Tr(ρ(Frob3))
)

is a global problem that involves calculations in a large number field.
We thus have not distinguished between two possibilities for eigenvalues at 3 which
would correspond toρ. One of these possibilities does in fact occur in the predicted
cohomology.
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5.1.3. Representations of type A5

Ash and Sinnott’s construction works best withA5-extensions if the ramification in-
dex of the unique ramified prime is as large as possible. However, totally realA5-
extensions ofQ ramified at only one prime with ramification index 5 are quite diffi-
cult to find. D. Doud thanks S. Harding for showing him the second example below
with p = 3821.

Example 5.2
Let K be the splitting field of the polynomialf = x5

−7402x3
−3701x2

+14804x+

11103. ThenK is a totally real Galois extension ofQ, with Galois groupA5, ramified
only at p = 3701.K must lie inside an extension̂K of Q with Galois groupÂ5 (the
unique nonsplit central extension ofA5 by Z/2Z). In fact, K lies inside two such
extensions, one in which primes abovep ramify further, and one in which primes
abovep do not ramify further.

Let K̂ be anÂ5-extension ofQ containingK , in which p has ramification index
5. LetH be a subgroup of̂A5 of order 20. Using the computer algebra system Magma,
one can see thatH has a quotient group that is cyclic of order 4. Hence, the degree
6 subextension ofK must have a cyclic quartic extension contained inK̂ which is
unramified at all finite primes.

A defining polynomial for the degree 6 subextension ofK may be found as the
minimal polynomial of the element

α1α2 + α2α3 + α3α4 + α4α5 + α5α1,

whereαi , 1 ≤ i ≤ 5, are the roots off . Using PARI/GP (see [18]) to compute the
ideal class group and the narrow class group, we find that both are cyclic of order 4.
Hence, the only possible cyclic quartic extension of the degree 6 subfield ofK which
is unramified at all finite primes is also unramified at infinity, so thatK̂ is totally real.

Now Â5 has two two-dimensional modp representations. Call themσ andσ ′.
On inertia atp = 3701, we may chooseσ andσ ′ such that

σ |I p ∼

(
ω3(p−1)/5

ω2(p−1)/5

)
and σ ′

|I p ∼

(
ω(p−1)/5

ω−(p−1)/5

)
.

If we letρ = (σ⊗ω−2(p−1)/5)⊕ω, thenρ is an odd three-dimensional representation,
and if it is conjugated to land inside

L =

∗ ∗

∗

∗ ∗

 ,
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then it satisfies strict parity. We then have

ρ|I p ∼L

ω(p−1)/5

ω

1

 ,
giving a predicted weight ofF((p − 1)/5 − 2,0,0) = F(738,0,0). We may cal-
culate the quasi-cuspidal homology in this weight and find that it is one-dimensional
and has the appropriate eigenvalues at 2 and 3 to correspond toρ. In this case, there
is an ambiguity similar to that in the preceding example, in that we have not deter-
mined which of the two conjugacy classes of order 5 contains the Frobenius at 2. The
computed eigenvalues at 2 are in fact one of the two possible pairs of values.

A similar calculation may be carried out for theA5-extension defined by the poly-
nomial x5

− 3821x3
− 3821x2

+ 3821x + 3821 and ramified only atp = 3821. In
this caseK̂ is again totally real. Hence, as above, we get a predicted weight forρ of
F((p − 1)/5 − 2,0,0) = F(762,0,0). Calculating the quasi-cuspidal homology in
this weight yields a one-dimensional space, which has appropriate eigenvalues at 2
and 3 to correspond toρ, with the ambiguity that we have not determined the conju-
gacy class of elements of order 10 (resp., 5) containing the Frobenius at 2 (resp., 3),
just as in the previous examples.

5.2. Reducible representations in higher level
With the introduction of levels higher than one, we gain immensely in reducing the
weight of the representations that we can find. In particular, we find that we can ac-
tually compute “companion forms,” or classes with different weights, attached to the
same representation. These offer important examples of Conjecture3.1.

We work out one interesting example in full detail and describe others in a table
format.

Example 5.3
Let K be theS3-extension ofQ given as the splitting field of the polynomialx3

−x2
−

3x + 1. ThenK is ramified only atp = 37 (with ramification index 2) and atq = 2
(with ramification index 3). SinceS3 has a two-dimensional mod 37 representation,
we obtain a two-dimensional Galois representationσ : GQ → GL2(F37), with the
fixed field of the kernel ofσ equal toK . Let ω be the cyclotomic character modulo
37, and letρ = σ ⊕ ω. We note thatσ is an even representation sinceK is totally
real, so we want to conjugateρ to land inside the Levi subgroup

L =

∗ ∗

∗

∗ ∗

 .
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Table 2

Eigenvalues 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

a(`,1) * 2 5 6 10 13 17 19 23 29 31 1 3 6 9
a(`,2) * 24 22 15 26 17 13 35 8 29 31 1 27 6 25

Now insideL, the image of complex conjugation is conjugate to the matrix1
−1

1

 ,
so thatρ satisfies strict parity.

One sees easily that the level ofρ is equal to the level ofσ , which is 22 (since the
ramification at 2 is tame and the image of inertia at 2 underσ does not fix a subspace).
The nebentype ofρ is trivial since the determinant is justω19. Finally, if we examine
the restriction ofρ to inertia at 37, we find that

ρ|I37 ∼L

ω18

ω1

ω0

 .
Thus, the weight predicted by Conjecture3.1 is F(18− 2,1 − 1,0)′ = F(16,0,0).
When we compute the cohomology in this weight, in level 4 with trivial nebentype,
we obtain a fifteen-dimensional space containing a one-dimensional eigenspace with
eigenvalues given by Table 2.

We now compute the trace Tr(ρ(Frob̀ )) andT2(ρ(Frob̀ )) (the sum of products
of pairs of eigenvalues) for̀ between 2 and 47. To do this, we note that the charac-
teristic polynomial ofρ(Frob̀ ) is

det
(
I − xρ(Frob̀ )

)
= det

(
I − xσ(Frob̀ )

)(
1 − xω(Frob̀ )

)
=
(
1 − Tr(σ (Frob̀ ))x + det(σ (Frob̀ ))x2)(1 − `x)

= 1 −
(

Tr(σ (Frob̀ ))+ `
)
x

+
(

det(σ (Frob̀ ))+ Tr(σ (Frob̀ ))`
)
x2

− det
(
σ(Frob̀ )

)
`x3,

so that the trace ofρ(Frob̀ ) is Tr(σ (Frob̀ ))+` andT2(ρ(Frob̀ )) = det(σ (Frob̀ ))+
Tr(σ (Frob̀ ))`. Using PARI/GP, we may calculate these two values for` from 2 to 47
(excluding the ramified primes 2 and 37), and we find that they exactly match the
values ofa(`,1) and`a(`,2) calculated above.
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Other reducible examples are easily computed just as above. In each row of Table3,
we give a polynomial whose splitting fieldK is a totally real Galois extension of
Q with Galois groupG, such thatG has a unique two-dimensional representationσ

modulo p. We also give the predicted weight(s), level, and nebentype of the coho-
mology classes corresponding toρ = σ ⊕ ω. Several examples have more than one
predicted weight, coming from multiple orderings of the diagonal characters. Such
predictions actually occur in all of these examples, but most are too large for us to
calculate and hence do not appear in this table. For all of the examples in this ta-
ble, all Hecke eigenvalues up tò= 47 coincide exactly with the coefficients of the
characteristic polynomial of the image of Frobenius, as predicted by Conjecture3.1.

We may also apply Conjecture3.1 to reducible representations that are the sum
of an odd two-dimensional representation and a character. In order to satisfy strict
parity, such a representation must land inside a Levi subgroup of the form

L =

∗

∗ ∗

∗ ∗

 or L =

∗ ∗

∗ ∗

∗

 .
For each such three-dimensionalρ, we thus have four predicted weights, two from
each choice of Levi subgroup. In Table 4, for each example we give a polynomialf
that has Galois groupG = S3 or D4, together with a primep and the ramification
index of p in the splitting fieldK of f . If we let σ be the unique two-dimensional
mod p Galois representation arising fromK , andρ = σ ⊕ ω0, we also give the
level N and nebentypeε associated toρ, and the set of predicted weights arising from
Conjecture3.1. In this case we are able to compute with all the predicted weights, and
we find that in every case an eigenclass with the correct eigenvalues (up to` = 47)
appears in every predicted weight.

The last examples in the table, in whichσ has image isomorphic toD4 (the
dihedral group with 8 elements), are interesting in that fewer than four weights are
predicted. In these cases the four predicted weights are not distinct, so that the total
number of weights in which we expect to find eigenvalues withρ attached is less than
four. For instance, in the last example in Table 4, in whichp = 5, the image of inertia
at 5 is contained in the center ofD4, so that the restriction ofσ to inertia at 5 has
diagonal charactersω2 andω2. The coincidence of these diagonal characters results
in the fact that only two distinct weights are predicted.

5.3. Irreducible representations in higher level
In order to find irreducible three-dimensional Galois representations, it is necessary
to find Galois groups that have irreducible three-dimensional modp representations.
For p larger than 3 this is easily done: the groupsA4, S4, and A5 all have three-
dimensional irreducible modp representations. We thus concentrate primarily on rep-
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Table 3. Reducible higher-level niveau 1 examples (even
two-dimensional plusω1)

Polynomial G p Weight(s) Level ε

x3
− x2

− 3x + 1 S3 37 F(16,0,0) 4 1
x3

− x2
− 4x + 2 S3 79 F(37,0,0) 4 ε4

x3
− x2

− 5x − 1 S3 101 F(48,0,0) 4 1
x3

− x2
− 4x + 1 S3 107 F(51,0,0) 3 ε3

x3
− x2

− 5x + 4 S3 67 F(31,0,0) 7 ε7

x3
− 5x − 1 S3 43 F(19,0,0) 11 ε11

S3 11 F(3,0,0) 43 ε43

x3
− 7x − 5 S3 41 F(18,0,0) 17 ε17

17 F(6,0,0) 41 ε41

x3
− x2

− 6x + 5 S3 5 F(0,0,0) 157 ε157

x3
− 7x − 1 S3 5 F(0,0,0) 269 ε269

x3
− x2

− 9x + 8 S3 7 F(8,6,2), F(6,6,4) 53 ε53

x4
− x3

− 3x2
+ x + 1 D4 5 F(0,0,0), F(6,4,2) 29 ε29

29 F(12,0,0) 5 ε5

x4
− x3

− 5x2
+ 2x + 4 D4 5 F(0,0,0), F(6,4,2) 89 ε89

89 F(42,0,0) 5 ε5

x4
− 2x3

− 4x2
+ 5x + 5 D4 5 F(0,0,0), F(6,4,2) 101 ε101

101 F(48,0,0) 5 ε5

x4
− x3

− 7x2
+ 3x + 9 D4 5 F(0,0,0) 181 ε181

181 F(88,0,0) 5 ε5

x4
− 2x3

− 4x2
+ 5x + 2 D4 17 F(6,0,0) 53 ε53

53 F(24,0,0) 17 ε17

x4
− x3

− 6x2
+ 8x − 1 D4 13 F(4,0,0) 61 ε61

61 F(28,0,0) 13 ε13

x4
− x3

− 5x2
+ x + 1 D4 13 F(4,0,0) 53 ε53

53 F(24,0,0) 13 ε13
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Table 4. Reducible higher-level niveau 1 examples (odd
two-dimensional plusω0)

Galois representation Weights
p = 7, e = 3 N = 19,ε = ε19 F(2,1,0), F(4,3,2)
G = S3 x3

− x2
+ 5x − 6 F(6,3,0), F(10,7,4)

p = 7, e = 3 N = 47,ε = ε47 F(2,1,0), F(4,3,2)
G = S3 x3

− x2
− 2x − 27 F(6,3,0), F(10,7,4)

p = 7, e = 3 N = 59,ε = ε59 F(2,1,0), F(4,3,2)
G = S3 x3

− x2
+ 5x + 8 F(6,3,0), F(10,7,4)

p = 7, e = 3 N = 59,ε = ε59 F(2,1,0), F(4,3,2)
G = S3 x3

− x2
− 9x + 36 F(6,3,0), F(10,7,4)

p = 7, e = 3 N = 59,ε = ε59 F(2,1,0), F(4,3,2)
G = S3 x3

− x2
− 2x − 20 F(6,3,0), F(10,7,4)

p = 19,e = 3 N = 3, ε = ε3 F(10,5,0), F(16,11,6)
G = S3 x3

− x2
− 6x − 12 F(22,11,0), F(34,23,12)

p = 13,e = 3 N = 43,ε = ε43 F(6,3,0), F(10,7,4)
G = S3 x3

− x2
− 17x + 38 F(14,7,0), F(22,15,8)

p = 3, e = 2 N = 13,ε = ε13 F(2,1,1), F(1,1,0)
G = D4 x4

+ x2
− 3 F(0,0,0)

p = 3, e = 2 N = 37,ε = ε37 F(2,1,1), F(1,1,0)
G = D4 x4

+ 5x2
− 3 F(0,0,0)

p = 3, e = 2 N = 61,ε = ε61 F(2,1,1), F(1,1,0)
G = D4 x4

− 7x2
− 3 F(0,0,0)

p = 3, e = 2 N = 73,ε = ε73 F(2,1,1), F(1,1,0)
G = D4 x4

+ 34x2
− 3 F(0,0,0)

p = 5, e = 2 N = 39,ε = ε3ε13 F(6,5,2)
G = D4 x4

− x3
− 8x − 1 F(4,1,0)
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Table 5

Triple Weight
(2(p − 1)/3, (p − 1)/3,0) F(2(p − 4)/3, (p − 4)/3,0)
((p − 1)/3,0,2(p − 1)/3) F(2(p − 4)/3, (p − 4)/3,0)⊗ det2(p−1)/3

(0,2(p − 1)/3, (p − 1)/3) F(2(p − 4)/3, (p − 4)/3,0)⊗ det(p−1)/3

((p − 1)/3,2(p − 1)/3,0) F(2(2p − 5)/3, (2p − 5)/3,0)
(2(p − 1)/3,0, (p − 1)/3) F(2(2p − 5)/3, (2p − 5)/3,0)⊗ det(p−1)/3

(0, (p − 1)/3,2(p − 1)/3) F(2(2p − 5)/3, (2p − 5)/3,0)⊗ det2(p−1)/3

resentations (up to a twist) whose images are isomorphic to one of these groups. Of
course, we deal only with odd representations. For all the irreducible niveau 1 rep-
resentations presented in this section, the three-dimensional Galois representation is
a symmetric square of an odd two-dimensional representation; hence the correspon-
dences presented here are not native three-dimensional phenomena.

5.3.1. Representations of type A4

Suppose thatp is a prime congruent to 1 mod 3 and thatK is a totally complex
A4-extension ramified atp, with ramification index 3. There may be other rami-
fied primes, which would then contribute to the level. SinceA4 has an irreducible
3-dimensional modp representation, we obtain an irreducible three-dimensional rep-
resentationρ : GQ → GL3(Fp). We observe that the restriction ofρ to inertia atp
is

ρ|I p =

ωa

ωb

ωc

 ,
where(a,b, c) is some permutation of(2(p − 1)/3, (p − 1)/3,0). The six permu-
tations of(2(p − 1)/3, (p − 1)/3,0) then give six predicted weights forρ. The six
weights are displayed in Table5.

Hence, we expect to find three cohomology eigenclasses, each with one ofρ,
ρ ⊗ ω(p−1)/3, andρ ⊗ ω2(p−1)/3 attached, in each of the two weightsF(2(p −

4)/3, (p − 4)/3,0) and F(2(2p − 5)/3, (2p − 5)/3,0). In fact, however, since
ρ ⊗ ω(p−1)/3

∼ ρ, the three eigenclasses may coincide, and there may actually be
only one such eigenclass in each weight. In practice, in order to compute the coho-
mology associated to a representation as above, we often have to twist by a character
that is unramified atp in order to reduce the level. We illustrate with an example.

Example 5.4
Let K be the splitting field of the polynomialx4

−x3
+5x2

−4x+3, which is ramified



GALOIS REPRESENTATIONS AND COHOMOLOGY 553

Table 6. Irreducible higher level niveau 1 examples

Galois representation Predicted weights

p = 7, e = 3 N = 13,ε = ε13 F(2,1,0), F(4,3,2), F(6,5,4)
G = A4, χ = ε13 x4

− x3
+ 5x2

− 4x + 3 F(6,3,0), F(8,5,2), F(10,7,4)
p = 7, e = 3 N = 29,ε = ε29 F(2,1,0), F(4,3,2), F(6,5,4)
G = A4, χ = ε29 x4

− x3
+ 5x2

− 6x + 7 F(6,3,0), F(8,5,2), F(10,7,4)
p = 7, e = 3 N = 26, ε = 1 F(2,1,0), F(4,3,2), F(6,5,4)
G = A4, χ = 1 x4

− 2x3
+ 2x2

+ 2 F(6,3,0), F(8,5,2), F(10,7,4)
p = 13,e = 3 N = 5, ε = ε5 F(6,3,0), F(10,7,4), F(14,11,8)
G = A4, χ = ε5 x4

− x3
− 3x + 4 F(14,7,0), F(18,11,4), F(22,15,8)

p = 13,e = 3 N = 52, ε = 1 F(6,3,0), F(10,7,4), F(14,11,8)
G = A4, χ = 1 x4

− x3
− 3x + 4 F(14,7,0), F(18,11,4), F(22,15,8)

p = 19,e = 3 N = 7, ε = ε7 F(10,5,0), F(16,11,6), F(22,17,12)
G = A4, χ = ε7 x4

+ 3x2
− 7x + 4 F(22,11,0), F(28,17,6), F(34,23,12)

p = 19,e = 3 N = 11,ε = ε11 F(10,5,0), F(16,11,6), F(22,17,12)
G = A4, χ = ε11 x4

+ 15x2
− 11x + 81 F(22,11,0), F(28,17,6), F(34,23,12)

p = 7, e = 3 N = 53,ε = ε53 F(2,1,0), F(4,3,2), F(6,5,4)
G = S4, χ = 1 x4

− x3
+ 4x2

+ 1 F(6,3,0), F(8,5,2), F(10,7,4)
p = 13,e = 4 N = 19,ε = ε19 F(7,5,3), F(13,8,6), F(16,14,9)
G = S4, χ = 1 x4

− x3
+ 2x2

+ 4x − 88 F(16,8,3), F(19,14,6), F(25,17,9)
p = 7, e = 3 N = 73,ε = ε73 F(2,1,0), F(4,3,2), F(6,5,4)
G = A5, χ = ε73 x5

− 5x3
− x2

+ 9x + 7 F(6,3,0), F(8,5,2), F(10,7,4)

at p = 7 (with e = 3) and at 13 (withe = 2). The predicted weights areF(2,1,0) and
F(6,3,0). The level ofρ is 132, and the nebentype is trivial. Unfortunately, this level
is too large for us to use in computations. However,ρ⊗ε13 is easily seen to have level
13 and nebentypeε13. Thus, we predict the existence of cohomology eigenclasses in
weightsF(2,1,0) andF(6,3,0), level 13, and nebentypeε13, which are attached to
ρ ⊗ ε. Direct computation shows that these eigenclasses do in fact exist and that the
eigenvalues match, at least up to` = 47.

Other A4-extensions that give rise to computable cohomology classes are shown in
Table6. Each example in this table gives a polynomialf with Galois groupG. The
prime p is given, together with its ramification indexe in the splitting field of f .
WhenG equalsA4, ρ is the twist by the characterχ of the unique irreducible three-
dimensional modp representation ofGQ cutting out the splitting field off . The level
N, nebentypeε, and predicted weights forρ are indicated in the table. In all cases, we
have computationally verified the existence of an eigenclass in the predicted weight,
level, and character, with the correct eigenvalues (up to` = 47) to haveρ attached.
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5.3.2. Representations of type S4

For p > 3, S4 has two absolutely irreducible three-dimensional representations de-
fined overFp. Hence, by finding extensionsK/Q with Galois groupS4, we may
easily construct irreducible three-dimensional Galois representations that have image
isomorphic toS4. Two such examples are given in Table6. Here the format is as in
the A4 case, except that we takeρ to be the unique irreducible three-dimensional
representation ofGQ cutting out the splitting field off and taking transpositions to
elements of trace 1. In both of these cases, the twisting characterχ is trivial.

5.3.3. Representations of type A5

The groupA5 has two three-dimensional irreducible representations defined overF̄p,
for each p > 5. By composing these representations with the projectionGQ →

Gal(K/Q), whereK is a field with Galois groupA5, we obtain irreducible three-
dimensional Galois representations with image isomorphic toA5. We give one exam-
ple in Table6, which we now explain in detail.

Example 5.5
Let K be the splitting field of the polynomialx5

−5x3
−x2

+9x+7. Then Gal(K/Q)
is isomorphic toA5, andK is ramified only atp = 7 (with ramification index 3) and
at 73 (with ramification index 2). Letρ1 andρ′

1 be the two characteristic 7 Galois
representations alluded to above. Then it is easy to see thatρ1 andρ′

1 are Galois
conjugates of each other over the fieldF7. The trace of bothρ1 andρ′

1 on a generator
of inertia at 73 is−1, so that both representations have level 732 and trivial nebentype.
This level is too large for us to work with, so we twist both representations by the
characterχ = ε73 to obtainρ = ρ1 ⊗ ε73 andρ′

= ρ′

1 ⊗ ε73. Nowρ andρ′ have level
73 and nebentypeε73.

Just as in Example5.4, the restriction ofρ (and ofρ′) to inertia at 7 has diagonal
charactersω0, ω2, andω4. Hence, the predicted weights are the same as in those
examples, namely,F(2,1,0)⊗ deta andF(6,3,0)⊗ deta with a = 0,2,4.

Computing the cohomology in each of these six weights with level 73 and neben-
typeε73, we find that there is a unique eigenspace with the correct eigenvalues to cor-
respond toρ, and a unique eigenspace with the correct eigenvalues to correspond to
ρ′ (at least up tò = 47). As expected, these eigenspaces are defined overF72 rather
than overF7, and they are Galois conjugates of each other overF7.

5.3.4. Wildly ramified representations
In addition to the preceding representations, we are able to calculate cohomology
classes corresponding to irreducible three-dimensional representationsρ : GQ →

GL3(F̄p) which are wildly ramified atp. We have two types of examples of such
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representations, those having imageA5, which are wildly ramified at 5, and those
having image PSL2(F7), which are wildly ramified at 7.

We begin our study of the typeA5 representations by noting that there is a unique
(up to isomorphism) injective homomorphism fromA5 to GL3(F5), with image gen-
erated by the three matrices1 1 0

1 1
1

 ,
4 2 2

1 2
4

 ,
4 1 4

0 4 1
2 4 2

 ,
of orders 5, 2, and 3, respectively. The fields from which we obtain our Galois repre-
sentations have inertia group at 5 of order 5 or 10.

In the case of representations with inertia group of order 10, we choose our rep-
resentation so that the image of inertia is generated by the first two matrices above.
With this choice of Galois representation, it is clear that we have

ρ|I p ∼

ω2
∗ ∗

ω0
∗

ω2

 .
Hence, we obtain a triple of(2,0,2) yielding a predicted weight of

F(0,−1,2)′ = F(4,3,2) = F(2,1,0)⊗ det2.

In order to keep the level to a manageable size, we work with a twist ofρ by a
character unramified atp (so that the weight is not affected). Letε be the product
of the charactersεq, whereq runs through the set of primes at whichρ is ramified
with ramification index 2. Then each primeq at whichρ has ramification index 2
contributes a factor ofq to the level ofρ ⊗ ε, and each primeq at whichρ has
ramification index 3 contributes a factor ofq2 to the level ofρ ⊗ ε. The nebentype of
ρ ⊗ ε is easily seen to beε.

We have one example in which the inertia group has order 5. In this case we
choose the representation so that the image of inertia is generated by the first matrix
above. It is then clear that

ρ|I p ∼

1 ∗ ∗

1 ∗

1

 ,
yielding a predicted weight ofF(−2,−1,0)′ = F(6,3,0). The level of this repre-
sentation is 34 (note that 3 is wildly ramified), and the nebentype is trivial. For all of
these examples, we have found that the predicted eigenclass does exist in the given
weight, level, and character and has the correct eigenvalues (at least up to` = 47) to
haveρ attached.
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Table 7. Wildly ramified Galois representations in niveau 1

Polynomial G p Weight Level ε

x5
+ 5x3

− 10x2
− 45 A5 5 F(4,3,2) 13 ε13

x5
+ 5x3

− 10x2
− 1 A5 5 F(4,3,2) 31 ε31

x5
+ 5x3

− 10x2
+ 5 A5 5 F(4,3,2) 37 ε37

x5
+ 5x3

− 10x2
+ 9 A5 5 F(4,3,2) 41 ε41

x5
+ 5x3

− 10x2
+ 20 A5 5 F(4,3,2) 22

· 13 ε13
x5

+ 25x2
− 75 A5 5 F(6,3,0) 34 1

x7
− 7x5

− 7x4
− 7x3

− 7x2
− 7 PSL2(F7) 7 F(6,5,4) 17 ε17

x7
+ 14x6

+ 14x5
− 14x4

+ 35 PSL2(F7) 7 F(8,5,2) 52 1
x7

− 21x3
+ 7x − 27 PSL2(F7) 7 F(6,5,4) 47 ε47

x7
− 7x5

− 28x2
+ 7x + 4 PSL2(F7) 7 F(8,5,2) 26 1

x7
− 7x5

− 21x4
− 49x3

− 21x2
+ 1 PSL2(F7) 7 F(8,5,2) 26 1

x7
− 14x4

+ 42x2
− 21x − 9 PSL2(F7) 7 F(6,5,4) 34 1

x7
+ 7x5

− 7x4
− 49x3

− 98x − 107 PSL2(F7) 7 F(6,5,4) 112 1

We have also found Galois representations with image isomorphic to PSL2(F7)

which have low enough level that we can compute the predicted cohomology classes.
The image of the representation is generated by the three matrices1 1 0

0 1 1
0 0 1

 ,
2 3 3

0 1 3
0 0 4

 ,
1 0 0

2 6 0
4 0 6

 ,
of orders 7, 3, and 2, respectively. The image of inertia at 7 under the representations
that we examine always has order 21 and may be chosen to be the subgroup generated
by the first two matrices above. Hence, on inertia, we have

ρ|I7 ∼

ω2
∗ ∗

ω0
∗

ω4

 or ρ|I7 ∼

ω4
∗ ∗

ω0
∗

ω2

 .
In order to distinguish between these two possibilities, we use the action of tame

ramification on wild ramification. LetK be our PSL2(F7)-extension, and letKp be
its localization at a prime above 7. ThenKp/Qp is a degree 21 extension, which is
totally ramified. Denote its Galois (inertia) group byG0 and its higher ramification
subgroups byG1,G2, . . . . Clearly, there is a uniquei ≥ 1 such thatGi /Gi +1 is
nontrivial, sinceG1 is simple. By [21], for a ∈ G0/G1 andb ∈ G j /G j +1, we have

θ j (aba−1) = θ0(a)
j θ j (t),

whereθ j : G j /G j +1 → U ( j )
K /U ( j +1)

K is the injective homomorphism sendingσ to
σ(π)/π , whereπ is a uniformizer ofKp.
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If we considerθ0 as a map intoF×
p , then we see (by [19]) that θ0 = ω2. We

identify Gi /Gi +1 ∼= Gi with its image underθi . Then we have

sts−1
= tω

2i (s).

However, we see easily (by matrix multiplication) thatsts−1
= t2, so thatω2i (s) = 2,

and we have

ρ|I7 ∼

ω2i
∗ ∗

1 ∗

ω4i

 .
Finally, analysis of the ramification groups shows that if the discriminant of the

degree 7 subfield ofK is exactly divisible by 78, then i = 1, and if it is exactly
divisible by 710, theni = 2.

Clearly, if i = 1, we get a predicted weight ofF(0,−1,4)′ = F(6,5,4), and
if i = 2, we get a predicted weight ofF(2,−1,2)′ = F(8,5,2). The level and
nebentype are easily calculated, and in the case of odd primesq that have inertia
group of order 2, we twist byεq to lower the level fromq2 to q.

Table7 contains information on the wildly ramified Galois representations we
have studied. Each line of the table gives a polynomial whose Galois closure is a
G-extension ofQ (whereG = A5 or PSL2(F7)), as well as the weight, level, and
nebentype predicted by Conjecture3.1for the appropriate twist ofρ. In each case the
representation for which the invariants were computed is actuallyρ⊗ε, whereε is the
indicated nebentype (as described above, this lowers the level to a manageable size).
In every example an eigenclass with the correct eigenvalues (up to` = 47) occurs in
the predicted cohomology group.

6. Niveau 2 representations

6.1. Reducible representations in higher level
Each line of Table8 gives a polynomial with splitting field a totally realS3-extension
K of Q. In each case we defineσ to be the unique two-dimensional Galois repre-
sentationσ : GQ → GL2(F̄p) which cuts outK , and we note thatσ is niveau 2.
Letting ρ = σ ⊕ ωk, wherek is indicated in the table, Conjecture3.1 predicts two
possible weights corresponding toρ, as indicated in the table. We have checked that
for each row of Table8, the cohomology in the given weights, level, and nebentype
does contain an eigenclass with the correct eigenvalues to correspond toρ, at least up
to ` = 47.

Table9 contains examples of Galois representations, each of which is the sum
of an odd irreducible two-dimensional Galois representation and the trivial character.
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Table 8. Reducible niveau 2 representationsσ ⊕ ωk with σ even

Fixed field of ker(σ ) G k p Weights Level ε

x3
− x2

− 8x + 7 S3 1 5 F(5,4,1) F(4,4,2) 73 ε73
3 5 F(4,2,2) F(5,2,1) 73 ε73

x3
− x2

− 7x + 2 S3 5 11 F(5,4,3) F(22,14,6) 13 ε13
7 11 F(15,6,3) F(12,6,6) 13 ε13
9 11 F(15,8,3) F(12,8,6) 13 ε13

11 11 F(15,10,3) F(12,10,6) 13 ε13
13 11 F(15,12,3) F(12,12,6) 13 ε13

x3
− 11x − 11 S3 5 11 F(5,4,3) F(22,14,6) 17 ε17

7 11 F(15,6,3) F(12,6,6) 17 ε17
9 11 F(15,8,3) F(12,8,6) 17 ε17

11 11 F(15,10,3) F(12,10,6) 17 ε17
13 11 F(15,12,3) F(12,12,6) 17 ε17

In each example a polynomial is given that has Galois groupG. For all but the last
two examples, we letσ be the unique two-dimensional modp representation ofG,
and in all cases we takeρ to beσ ⊕ 1. The ramification indexe of p, and the level
N and nebentypeε of ρ, are indicated. For each such representation, Conjecture3.1
predicts four weights (two of the predicted weights are the same in thep = 3 cases),
as indicated in the table, and in all cases we have been able to check that the predicted
eigenvalues exist in the cohomology in all of the predicted weights. We explain the
last two examples in Table9 in detail in Example6.1.

Example 6.1
Let K be the splitting field of the polynomialf = x5

− 19x2
+ 38x − 95. ThenK

is a totally complexD5-extension ofQ, ramified only at 7 (with ramification index 2
and residual degree 1) and 19 (with ramification index 5 and residual degree 2).

The groupD5 has two irreducible two-dimensional representations overF19—
we denote the corresponding Galois representations byσ andσ ′. Let ρ (resp.,ρ′) be
the direct sum ofσ (resp.,σ ′) with the trivial character. Then bothρ andρ′ are easily
seen to have level 7 and nebentypeε7.

We may conjugate each ofρ andρ′ to land in either of the standard Levi sub-
groups

L =

∗ ∗

∗ ∗

∗

 or L ′
=

∗

∗ ∗

∗ ∗

 ,
and each representation satisfies strict parity with Levi subgroupL (or L ′), asσ and
σ ′ are both odd.
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Table 9. Reducible niveau 2 representationsσ ⊕ ω0 with σ odd

Galois representation Predicted weights
p = 5, e = 3 N = 7, ε = ε3 F(1,0,0), F(4,1,0)
G = S3 x3

− x2
+ 2x − 3 F(2,2,1), F(6,5,2)

p = 5, e = 3 N = 43,ε = ε3 F(1,0,0), F(4,1,0)
G = S3 x3

− x2
+ 2x + 12 F(2,2,1), F(6,5,2)

p = 5, e = 3 N = 47,ε = ε3 F(1,0,0), F(4,1,0)
G = S3 x3

+ 5x − 5 F(2,2,1), F(6,5,2)
p = 5, e = 3 N = 67,ε = ε3 F(1,0,0), F(4,1,0)
G = S3 x3

− x2
+ 7x + 2 F(2,2,1), F(6,5,2)

p = 5, e = 3 N = 83,ε = ε3 F(1,0,0), F(4,1,0)
G = S3 x3

− 10x − 15 F(2,2,1), F(6,5,2)
p = 5, e = 3 N = 83,ε = ε3 F(1,0,0), F(4,1,0)
G = S3 x3

− x2
+ 7x − 8 F(2,2,1), F(6,5,2)

p = 5, e = 3 N = 83,ε = ε3 F(1,0,0), F(4,1,0)
G = S3 x3

− x2
− 3x − 8 F(2,2,1), F(6,5,2)

p = 17,e = 3 N = 3, ε = ε3 F(9,4,0), F(20,9,0)
G = S3 x3

− x2
+ 6x − 12 F(14,10,5), F(30,21,10)

p = 17,e = 3 N = 7, ε = ε7 F(9,4,0), F(20,9,0)
G = S3 x3

− x2
+ 6x + 5 F(14,10,5), F(30,21,10)

p = 3, e = 4 N = 7, ε = ε7 F(1,0,0), F(2,2,1)
G = D4 x4

− 3x2
− 3 F(2,1,0)

p = 3, e = 4 N = 19,ε = ε19 F(1,0,0), F(2,2,1)
G = D4 x4

− 30x2
− 3 F(2,1,0)

p = 3, e = 4 N = 31,ε = ε31 F(1,0,0), F(2,2,1)
G = D4 x4

+ 9x2
− 3 F(2,1,0)

p = 3, e = 4 N = 43,ε = ε43 F(1,0,0), F(2,2,1)
G = D4 x4

− 318x2
− 3 F(2,1,0)

p = 7, e = 4 N = 11,ε = ε11 F(3,0,0), F(6,3,0)
G = D4 x4

− 7x2
− 7 F(4,4,1), F(10,7,4)

p = 19,e = 5 N = 7, ε = ε7 F(13,2,0), F(20,13,0)
G = D5 x5

− 19x2
+ 38x − 95 F(16,14,3), F(34,21,14)

p = 19,e = 5 N = 7, ε = ε7 F(9,6,0), F(24,9,0)
G = D5 x5

− 19x2
+ 38x − 95 F(16,10,7), F(34,25,10)
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Both ρ andρ′ have niveau 2, but they differ on restriction to inertia at 19. We
chooseρ (possibly swappingσ andσ ′) such that

ρ|I19 ∼L

 ψ72

ψ ′72

ω0

 ,
while ρ′ has diagonal charactersψ144, ψ ′144

, ω0.
Since 72= 15 + 3 ∗ 19, we get a predicted weight ofF(15 − 2,3 − 1,0)′ =

F(13,2,0) for ρ. In addition, we may also conjugateρ insideL, so that the diagonal
characters on inertia areψ288, ψ ′288, andω0. Since 288= 22+14∗19, we also predict
a weight ofF(20,13,0) for ρ. Finally, we may conjugateρ to land insideL ′, yielding
predicted weights ofF(16,14,3) andF(34,21,14). In a similar fashion, we predict
four weights forρ′, namely,F(9,6,0), F(16,10,7), F(24,9,0), andF(34,25,10).

In order to test whether the representationsρ andρ′ are attached to Hecke eigen-
classes with these weights, we need to compute the characteristic polynomials of the
images of Frobenius elements underρ andρ′. There is a subtlety introduced here by
the fact thatD5 has two conjugacy classes of order 5. On one of these classes,ρ has
trace 5 andρ′ has trace 15, while on the other class these traces are reversed. We must
determine which class contains each Frobenius element of order 5.

Supposeτ ∈ GQ restricts to an element of order 5 in Gal(K/Q). Then there is
some elementη ∈ I19 such thatτ ≡ η moduloGK . So

Tr
(
ρ(τ)

)
= Tr

(
ρ(η)

)
= ψ72(η)+ ψ ′72

(η)+ 1.

Let P be the unique prime ofK lying over p = 19, and letπ be a uniformizer
of P. Thenζ = ψ72(η) ≡ η(π)/π (mod P) is a fifth root of unity in the residue
field F of P (which has order 192). Note that there are two possible images ofζ in F ,
depending on our choice of fundamental characterψ . We may, however, computeζ+

ζ p, which is in the prime field and is independent of this choice. These calculations are
easily performed using PARI/GP sinceK is only of degree 10 overQ. A convenient
uniformizer to use is a rootα of the polynomialf defined above.

We find, for instance, that Tr(ρ(Frob2)) = 5, giving predicted Hecke eigenvalues
a(2,1) = 5 anda(2,2) = 12 for the classes attached toρ, and eigenvaluesa(2,1) =

15 anda(2,2) = 17 for the classes attached toρ′.
We have computed the Hecke eigenvalues (forl ≤ 47) for cohomology classes

with each of the 8 weights that arose above, and in each case we have found that the
eigenvalues are exactly as predicted.

6.2. Irreducible representations in higher level
In niveau 2 we again obtain several irreducible representations that are symmetric
squares of odd two-dimensional representations, but we also obtain one set of exam-



GALOIS REPRESENTATIONS AND COHOMOLOGY 561

ples that are not. We begin by describing an example of the former type of represen-
tation.

Example 6.2
Let p = 5, and letK be the splitting field of the polynomialf = x4

+ x2
− x + 2.

Then K has Galois groupS4 and is ramified only at 5 (with ramification index 3)
and at 73 (with ramification index 2). In fact, since the discriminant off is 5273, the
quadratic subfield ofK is ramified at 73, so the inertia group at 73 must be generated
by a transposition. If we letρ be the unique irreducible three-dimensional mod 5
representation ofGQ cutting outK and taking transpositions to elements of trace 1,
we easily determine that the level ofρ is 73 and that its nebentype isε73. The weights
predicted forρ by Conjecture3.1are calculated by noting that

ρ|I5 ∼

ψ8

ψ ′8

ω0

 ,
with 8 = 3 + 1 ∗ 5, so that we have a predicted weight ofF(3 − 2,1 − 1,0)′ =

F(1,0,0)′. We may also write

ρ|I5 ∼

ψ8

ω0

ψ ′8

 or ρ|I5 ∼

ω0

ψ8

ψ ′8

 ,
yielding predicted weights ofF(3−2,0−1,1)′ = F(5,3,1) andF(0−2,3−1,1)′ =

F(2,2,1)′.
In addition, we note thatψ ′8

= ψ16, so we can permute the two characters of
niveau 2 and write

ρ|I5 ∼

ψ16

ψ ′16

ω0

 ,
with 16 = 1 + 3 ∗ 5 = 6 + 2 ∗ 5, so that we have a predicted weight ofF(6 − 2,2 −

1,0)′ = F(4,1,0). We may also write

ρ|I5 ∼

ψ16

ω0

ψ ′16

 or ρ|I5 ∼

ω0

ψ16

ψ ′16

 ,
yielding predicted weights ofF(6−2,0−1,2)′ = F(4,3,2) andF(0−2,6−1,2)′ =

F(6,5,2).
Calculating the cohomology in all six of these weights, we find eigenclasses with

the correct Hecke eigenvalues to correspond toρ (at least for primes up to 47). This
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Table 10. Irreducible niveau 2 representations

Galois representation Predicted weights

p = 5, e = 3 N = 73,ε = ε73 F(1,0,0), F(5,3,1), F(2,2,1)
G = S4, χ = 1 x4

+ x2
− x + 2 F(4,1,0), F(4,3,2), F(6,5,2)

p = 5, e = 3 N = 144,ε = 1 F(1,0,0), F(5,3,1), F(2,2,1)
G = S4, χ = 1 x4

− 2x3
− 8x + 4 F(4,1,0), F(4,3,2), F(6,5,2)

p = 7, e = 4 N = 67,ε = ε67 F(6,3,3), F(12,8,4), F(7,7,4)
G = S4, χ = 1 x4

− 56x + 112 F(9,6,3), F(3,2,1), F(7,4,1)
p = 11,e = 3 N = 17,ε = ε17 F(5,2,0), F(15,9,3), F(8,6,3)
G = S4, χ = 1 x4

− x3
+ 3x + 2 F(12,5,0), F(12,9,6), F(18,13,6)

p = 5, e = 3 N = 89,ε = ε89 F(1,0,0), F(5,3,1), F(2,2,1)
G = A5, χ = ε89 x5

− 2x3
− x2

− 6x − 11 F(4,1,0), F(4,3,2), F(6,5,2)
p = 5, e = 3 N = 151,ε = ε151 F(1,0,0), F(5,3,1), F(2,2,1)
G = A5, χ = ε151 x5

− 3x3
− x2

+ x − 3 F(4,1,0), F(4,3,2), F(6,5,2)
p = 5, e = 3 N = 157,ε = ε157 F(1,0,0), F(5,3,1), F(2,2,1)
G = A5, χ = ε157 x5

+ 7x3
− x2

− 9x + 7 F(4,1,0), F(4,3,2), F(6,5,2)

yields a family of six “companion forms” of different weights, all of which seem to
correspond toρ.

Other examples of irreducible niveau 2 representations with image isomorphic toS4,
as well as examples with image isomorphic toA5 (where the representation is the
twist by χ of the unique irreducible three-dimensional mod 5 representation having
imageA5 and cutting out the splitting field off ), are given in Table10, in the same
format as the examples in Table6. In addition, examples with image of order 54 are
given in [12]. These last examples havep = 5, level N = 83, with quadratic neben-
type, and cannot be the symmetric square of any two-dimensional representation.

7. Niveau 3 representations
We have two examples of odd niveau 3 representations, both of which support Con-
jecture3.1. It is easy to see that a niveau 3 representation must be irreducible and
that it cannot be the symmetric square of a two-dimensional representation. Our first
example is induced from a one-dimensional representation of a subgroup of index 3
in GQ, and the second has image isomorphic to PSL2(F7) in GL3(F̄11) but is in no
obvious way related to any representation of dimension less than 3.

7.1. An induced representation
Let f = x3

+ 2x − 1. The Galois group off is S3. Let K be the splitting field off ,
and letK3 = Q(α), whereα is a root of f . ThenK3 is ramified only at 59. Using
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PARI/GP, we may calculate the ray class group ofK3 modulo 7 and find that it is
cyclic of order 9. If we letL be the ray class field ofK3 modulo 7, then the existence
of L implies the existence of a characterχ : GK3 → µ9 ⊂ F73 of order 9, ramified
only at primes above 7. If we now set

ρ = Ind
GQ
GK3

χ,

thenρ : GQ → GL3(F̄7)must be irreducible since it has niveau 3 (as the ramification
index at 7 is divisible by 9). Note that there are six choices ofχ since there are six
primitive ninth roots of unity inµ9. Until we make a choice, everything we state is
true for any choice ofχ and hence for anyρ induced fromχ .

If we let M be the Galois closure ofL, we see thatM contains the composite
field K L, which is abelian of degree 9 overK , and in fact,M is generated by the
conjugates ofK L overQ. We see from this that no element of Gal(M/K ) has order
more than 9. Note thatρ factors throughG = Gal(M/Q), so in particular, the image
of inertia at 7 underρ must be of order 9 (since inertia fixesK ). In fact, it is easy to
see that the factorization ofρ throughG is a faithful representation ofG.

Now let

GQ =

2⋃
i =0

gi GK3,

where thegi are coset representatives ofGK3 in GQ, and forg ∈ GQ, note that

Tr
(
ρ(g)

)
=

2∑
i =0

χ0(ggi ),

where

χ0(x) =

{
0 if x 6∈ GK3,

χ(x) if x ∈ GK3.

Using this description ofρ, we may calculate values of Tr(ρ(g)) in terms ofχ for
variousg, given that we know the order ofπ(g), whereπ : GQ → S3 is the natural
projection onto the Galois group ofK . Let g′

∈ GK3 be a conjugate by somegi of g
if such a conjugate exists; forπ(g) of order 2,ρ(g) has traceχ(g′), and forπ(g) of
order 3,ρ(g) has trace zero (since no conjugate ofg is in GK3).

In fact, we may go even further and compute the values ofχ(g′) using class field
theory. Class field theory shows the existence of an isomorphism between the ray
class groupJ of K3 modulo 7 and the groupµ9 of ninth roots of unity. We fix this
isomorphism by setting the image of the idealp above 2 inK3 with inertial degree 1 to
have imageχ(Frobp) = ζ9, where Frobp is a Frobenius abovep (note thatp has order
9 in the ray class group). Given any ideal ofK3, we may then compute its image inJ
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Table 11

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

O(Frobp) 18 9 9 * 18 6 9 9 18 3 18 18 3 2 18
O(π(Frobp)) 2 3 3 * 2 2 1 3 2 3 2 2 3 2 2
χ(Frob′

p) ζ9 * * * ζ 5
9 ζ 6

9 ζ9 * ζ9 * ζ 2
9 ζ 7

9 * 1 ζ9

Tr(ρ(Frobp)) ζ9 0 0 * ζ 5
9 ζ 6

9 0 0 ζ9 0 ζ 2
9 ζ 7

9 0 1 ζ9

in terms of the image of the ideal above 2 and hence find the image of any Frobenius
element underχ . The ray class computations are easily done using PARI/GP since
the degree ofK3 is only 3.

Using these techniques, we find the values in Table 11.
The only value that has not yet been explained is the trace of Frobenius at 17.

This trace is zero since 17 splits completely inK (hence also inK3). Hence, there are
three distinct conjugates Frobgi

17 of Frob17, all in GK3, and their images underχ are
ζ9, ζ 4

9 , andζ 7
9 , so that the trace ofρ(Frob17) is zero.

Direct computation in the ray class group shows that ifp ≤ 47 is a rational
prime with π(Frobp) having order 2, andg is any Frobenius element forp, then
χ(g2) = χ(g′)2. Since this is true for any conjugate ofg2, we have Tr(ρ(g2)) =

3χ(g′)2 = 3 Tr(ρ(g))2. Using this fact, a simple computation (using Magma) shows
that the eigenvalues ofρ(g) must beξ , ξ , and−ξ , whereξ = Tr(ρ(g)). Hence, the
characteristic polynomial det(1 − ρ(g)X) is equal to

1 − ξX − ξ2X2
+ ξ3X3.

In particular, we use the fact that detρ(g) = −ξ3
= −(Tr ρ(g))3.

We now compute the level and character ofρ. The prime 59 has ramification in-
dex 2 in the fixed field ofρ, and ifg is a generator of inertia at 59, thenπ(g) has order
2 (since 59 has ramification index 2 inK ). In addition,χ(g′)must be simultaneously
a ninth root and a square root of 1, hence equal to 1. Then Tr(ρ(g)) = χ(g′) = 1,
so the three eigenvalues ofg are 1, 1, and−1, and the level ofρ must be 59, with
nebentypeε59.

Finally, we calculate the predicted weights forρ. These weights in fact depend
on the choice ofχ . We recall that the fundamental characters of niveau 3 are denoted
by θ , θ ′, andθ ′′. Since 7 has ramification index 9 inM , we know thatρ must have
niveau 3. In fact, we have that either

ρ|I7 ∼

θ38

θ ′38

θ ′′38

 or ρ|I7 ∼

θ76

θ ′76

θ ′′76

 .
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Note that
detρ = ω38ε59 = ω2ε59

in the first case, while
detρ = ω76ε59 = ω4ε59

in the second. Thus, in order to obtain the first case, we chooseχ (and henceζ9 =

χ(Frob2)) such that

−ζ 3
9 = − Tr

(
ρ(Frob2)

)3
= det

(
ρ(Frob2)

)
= ω2(Frob2)ε59(Frob2) = −4,

and in order to get the second, we chooseχ (and henceζ9) such that−ζ 3
9 = −2.

Note that each of the two possibilities comes from three choices ofχ . Hence, we
should expect three eigenclasses in each predicted weight—one for each choice ofχ .

Considering the first case,m = 38 = 3 + 5 ∗ 7 + 0 ∗ 72, so we get a triple
(a,b, c) = (5,3,0), yielding predicted weight

F(5 − 2,3 − 1,0) = F(3,2,0).

We may also permute the characters on the diagonal, which has the effect of multi-
plying m by 7 or 72 modulo 73 − 1, yielding predicted triples and weights as follows.

For 7∗ m = 266= 7 + 9 ∗ 7 + 4 ∗ 72, we get predicted weight

F(9 − 2,7 − 1,4) = F(3,2,0)⊗ det4.

For 49∗ m ≡ 152= 5 + 7 ∗ 7 + 2 ∗ 72, we get predicted weight

F(7 − 2,5 − 1,2) = F(3,2,0)⊗ det2.

We may similarly calculate weights for the second possibility and find the fol-
lowing predicted weights:

F(3,1,0)⊗ det1, F(3,1,0)⊗ det3, and F(3,1,0)⊗ det5.

Computations show that cohomology classes with the correct eigenvalues (up to
` = 47) exist in all of these weights. In each weight there is a triple of eigenclasses,
defined overF73 and conjugate overF7, each corresponding to a choice ofχ as above.

7.2. A representation with imagePSL2(F7)

We begin by noting that the irreducible polynomialf1 = x7
−11x5

−22x4
+33x2

+

33x + 11 has Galois group PSL2(F7), as reported by both PARI/GP and Magma. If
L = Q(α), whereα is a root of f , we find that the discriminant ofL is 116312.
Since 11 is tamely ramified, we may conclude that the ramification index of 11 in the
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Table 12. Character table of PSL2(F7)

Class 1 2 3 4 5 6
Size 1 21 56 42 24 24

Order 1 2 3 4 7 7
χ1 1 1 1 1 1 1
χ2 3 −1 0 1 α ᾱ

χ3 3 −1 0 1 ᾱ α

χ4 6 2 0 0 −1 −1
χ5 7 −1 1 −1 0 0
χ6 8 0 −1 0 1 1

splitting field K of f is e = 7. Using the main result of [8], we see easily that the
ramification index of 31 inK is 2.

The character table of PSL2(F7) is given in Table12, whereα = (−1 +
√

−7)/2
andᾱ = (−1 −

√
−7)/2. OverF̄11, we have thatα andᾱ are equal to 4 and 6, with

the order depending on our choice of
√

−7.
The existence of the PSL2(F7)-extensionK gives rise to two irreducible three-

dimensional Galois representations defined overF̄11. The image of inertia at 11 under
both representations has order 7, so they are both niveau 3. We chooseσ to be the
representation which, when restricted to inertia at 11, has diagonal charactersθ190,
θ ′190, andθ ′′190, and we chooseσ ′ to be the other (with diagonal characters on inertia
equal toθ570, θ ′570

, θ ′′570).
We note that the level ofσ (and ofσ ′) is 312 since the elements of order 2 are

mapped to matrices of trace−1. This level is too large for convenient calculation, so
we investigateρ = σ ⊗ ε31 andρ′

= σ ′
⊗ ε31, which are easily seen to have level 31

and nebentypeε31.
In order to calculate the predicted eigenvalues of the image of a Frobenius ele-

ment of order 7 underρ, we need to distinguish between the two conjugacy classes of
order 7 in PSL2(F7). In order to do this, we use a method similar to that used in Ex-
ample6.1. In this case, the method needs to be modified slightly since we are dealing
with much larger fields.

We begin by using Magma to determine the Galois groupG ∼= PSL2(F7) of f
as a permutation group acting on the roots off . We note that each root off is a
uniformizer for all primes lying above 11 inK (since 11 is tamely ramified, and all
the ramification occurs inL/Q). Let α be a root of f , and letτ be an element of
order 7 inG. Then we easily compute a complex approximation toβ = τ(α)/α. If
P is the prime ofK lying over 11 and having inertia group generated byτ , then the
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image ofβ in the residue field ofP is a Galois conjugate of the primitive seventh
root of unity θ190(τ ). Hence, the trace ofσ(τ) is equal toβ + β11

+ β121 modP.
We actually compute a complex approximation toγ = β + β2

+ β4, which is equal
to this trace moduloP. Knowing that this trace is congruent to either 4 or 6 modulo
P, we computeδ1 = γ − 4, andδ2 = γ − 6. Exactly one ofδ1 andδ2 should lie in
P. We note that ifK8 is the unique degree 8 subfield ofK fixed by 〈τ 〉 (so thatK8

is the decomposition field ofP), then there is a unique degree 1 primep in K8, and
P lies overp. Hence, we may determine whetherδi lies inP by determining whether
the norm ofδi (from K to K8) lies inp. We compute a complex approximation to this
norm (and all of its Galois conjugates) and then easily find a complex approximation
to the minimal polynomial of this norm. This polynomial should have rational integer
coefficients, so after examining the polynomial to see that this is true to many decimal
places, we round off. We then calculate the valuation of the norm ofδi at the unique
degree 1 prime inK8 (using PARI/GP). For our choice ofτ , we find thatδ1 /∈ p, while
δ2 ∈ p. Hence, Tr(σ (τ )) = 6. Then, using similar techniques, we determine thatτ is
a Frobenius element for the prime 7, but not for the primes 2, 13, or 23. Hence, for
example, we predict that

Tr
(
ρ(Frob2)

)
= Tr

(
σ(Frob2)

)
ε31(Frob2) = 4 · (1) = 4

and
Tr
(
ρ(Frob13)

)
= Tr

(
σ(Frob13)

)
ε31(Frob13) = 4 · (−1) = 7.

Returning to our study ofρ, we have

ρ|I p ∼

θ190

θ ′190

θ ′′190

 .
Note thatm = 190 = 3 + 6 ∗ 11 + 1 ∗ 112. Hence, one weight predicted by the
conjecture forρ is F(6−2,3−1,1)′ = F(4,2,1) = F(3,1,0)⊗det1. We may also
takem = 11·190 orm = 112

·190, which yield predicted weights ofF(6,6,0)⊗det5

and F(8,3,0) ⊗ det2. Computing the cohomology in weightF(3,1,0) ⊗ det1, we
find a one-dimensional eigenspace with the eigenvalues indicated in Table13. These
eigenvalues are exactly what Conjecture3.1predicts, in order forρ to be attached to
this eigenclass. The same system of eigenvalues (up to` = 47) also occurs in the
other two weights predicted forρ.

Similarly, the predicted weights forρ′ are F(6,0,0) ⊗ det7, F(3,2,0) ⊗ det6,
and F(8,5,0) ⊗ det8. Each of these weights yields an eigenclass with the correct
eigenvalues to haveρ′ attached (at least for̀≤ 47).
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Table 13. Orders ofρ(Frob̀ ) and eigenvalues in weightF(4,2,1)

` 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

O(ρ(Fr`)) 7 3 4 7 * 7 4 4 7 3 * 2 3 3 3

a(`,1) 4 0 1 6 0 7 10 1 7 0 * 1 0 0 0
a(`,2) 3 0 9 10 0 3 2 7 6 0 * 8 0 0 0

8. Computational techniques
We now give an overview of our methods for computing the various Hecke eigen-
classes on which we have reported in this paper. We begin by noting that we do not,
in fact, do any direct calculations of cohomology. Instead we compute with homology,
exploiting the natural duality, as in [7, Section 3].

Let p andN be positive integers withp prime, and letV be a representation of the
semigroup generated bySpN and00(N). Then we wish to calculateH3(00(N),V)
along with the action of various Hecke operators. The groupsH3 are easier to calcu-
late thanH1 or H2 since the virtual homological dimension of SL3(Z) is 3 (see [1]).
In addition, one can show that for many classes of three-dimensional Galois represen-
tations, if the representation is attached to any homology class, then it is attached to a
class inH3 (cf. [4]).

By Shapiro’s lemma,

H3
(
00(N),V

)
∼= H3

(
SL3(Z), IndSL3(Z)

00(N)
V
)
,

and by [5, Lemma 1.1.4] this isomorphism is compatible with the action of the Hecke
operators away frompN. This reduces our problem to computing the homology of the
full group SL3(Z) as long as we are willing to consider sufficiently general weights.

The broad outline of our calculations follows that of [1]. In particular, we first
use a slight modification of their [1, Theorem 1] to identifyH3(SL3(Z),V) with the
subspace of allv ∈ V such that
(1) v · d = v for all diagonal (but not necessarily scalar) matricesd ∈ SL3(Z);
(2) v · z = −v for all monomial matrices of order 2 in SL3(Z);
(3) v + v · h + v · (h2) = 0,
where

h =

 0 −1 0
1 −1 0
0 0 1

 .
We refer to conditions 1 and 2 as thesemi-invariant conditionand to condition 3 as the
h-condition. Given a sufficiently concrete realization ofV , computing the subspace
satisfying these conditions is simply an exercise in linear algebra. In Section8.2.2we
discuss some optimizations we have employed in carrying out the calculation. Once
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we have this subspace in hand, we then use [1, Lemma 3] to compute the actions of
various Hecke operators with respect to a basis of this space.

The main difference between our calculations and those in [1] is our use of
more general coefficient modules. We describe below our construction of the mod-
ules IndSL3(Z)

00(N)
F(a,b, c) for a p-reduced triple(a,b, c). Another significant differ-

ence is a sharp increase in efficiency and hence in the complexity of the calculations
we can tackle. This increase is due partly to better algorithms (as described below)
and partly to having the entire calculation done using C++ code rather than relying on
Mathematica.

8.1. Models for weights
We have performed our calculations with a variety of weight modules. Our basic
strategy has been to build more complicated weights up from simpler ones. In this
subsection we describe the GL3(Fp)-modules with which we have worked, giving in
particular a model forF(a,b, c) for a generalp-reduced triple(a,b, c). Details of the
implementation of these representations and of the process of inducing from00(N)
are left to Section8.2.

To begin, we view̄F3
p as the standard 3-dimensional (right)F̄p[GL3(Fp)]-module

on whichSpN acts via reduction modulop. Then Symg(F̄3
p) is the space of homoge-

neous polynomials over̄Fp of total degreeg in three variablesx, y, z. An elementm
of GL3(Fp) acts onf ∈ Symg(F̄3

p) by

f (x) · m = f (mx),

wherex is the column vectort (x, y, z). Note that fora ≤ p − 1, the representation
Syma(F̄3

p) is irreducible and is in fact isomorphic toF(a,0,0) = W(a,0,0). Note
also that this action is the contragredient of the standard action used in the statement
of the conjecture, as required by the duality between homology and cohomology.

Next we look at the moduleF(a,b,0) for p-restricted(a,b,0).

THEOREM 8.1
Let (a,b,0) be a p-restricted triple. Then theGL3(Fp)-submodule ofSyma(F̄3

p) ⊗

Symb(F̄3
p) generated by

v =

b∑
i =0

(−1)i
(

b
i

)
(xa−i yi

⊗ xi yb−i )

is isomorphic to F(a,b,0).

Proof
Recall that for any nonincreasing triple(α, β, γ ) of integers, bothW(α, β, γ ) and
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F(α, β, γ ) are modules over GL3(F̄p) and not just over GL3(Fp). We prove that
the GL3(F̄p)-module generated byv is isomorphic toF(a,b,0). Since(a,b,0) is
assumed to bep-restricted,F(a,b,0) remains irreducible when viewed as a repre-
sentation of GL3(Fp). We may then conclude that the GL3(Fp)-module generated by
v is isomorphic toF(a,b,0).

Since we are now looking at representations of GL3 of an algebraically closed
field, we may employ the theory of highest weights in representations of algebraic
groups (cf. [15, Section 31]). In particular, if we work with respect to the standard
diagonal torus and the upper triangular Borel, we note that the nonincreasing triples
(n1,n2,n3) correspond to the dominant weights t1 0 0

0 t2 0
0 0 t3

 7→ tn1
1 tn2

2 tn3
3 .

ThenF(n1,n2,n3) is the unique irreducible representation of GL3(F̄p) with highest
weight(n1,n2,n3).

Now, Young’s rule (see [16, p. 129]) gives us thatW(a,0,0)⊗ W(b,0,0) has a
filtration

W0 ⊃ W1 ⊃ · · · ⊃ Wb+1 = 0,

with the quotientsWi /Wi +1 isomorphic to the modules

W(a + b,0,0), . . . ,W(a + b − i, i,0), . . . ,W(a,b,0)

in the given order (so thatW(a+b,0,0) is a quotient andW(a,b,0) is a submodule).
Since(a,b,0) is p-restricted, eachW(a+b− i, i,0) is irreducible ifa+b− i ≤ p−2
or a + b − 2i = p − 1, and otherwise hasF(a + b − i, i,0) and F(p − 2, i,a +

b − i − p + 2) as composition factors (see [10, Proposition 2.11]). We see then that
F(a,b,0) appears only once as a composition factor ofW(a,0,0)⊗ W(b,0,0) and
that it appears as a submodule and not just a subquotient.

It follows thatW(a,0,0) ⊗ W(b,0,0) has a unique highest weight vectorw of
weight(a,b,0) and that the GL3(F̄p)-module generated by this vector is isomorphic
to F(a,b,0). The lemma below shows thatv is such a vector, and hence the GL3(F̄p)-
module generated byv is isomorphic toF(a,b,0).

LEMMA 8.2
The vector

v =

b∑
i =0

(−1)i
(

b
i

)
(xa−i yi

⊗ xi yb−i )

in Syma(F̄3
p)⊗ Symb(F̄3

p) is a highest weight vector of weight(a,b,0). Here “high-
est” refers to the usual lexicographic ordering of the weights.
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Proof
It is clear thatv is a weight vector of weight(a,b,0). We need only show that the
images ofv under the operators

g1 =

 1 0 0
1 1 0
0 0 1

 , g2 =

 1 0 0
0 1 0
0 1 1

 , g3 =

 1 0 0
0 1 0
1 0 1


are all equal tov plus something in the spanS of vectors of weight strictly less than
(a,b,0). Clearly,v ·g2 andv ·g3 are both equal tov moduloS. Forv ·g1, we calculate

v · g1 =

b∑
i =0

(−1)i
(

b
i

)
xa−i (x + y)i ⊗ xi (x + y)(b−i )

=

b∑
i =0

(−1)i
(

b
i

) i∑
k=0

b−i∑
j =0

(
i
k

)(
b − i

j

)
xa−i +kyi −k

⊗ xi + j yb−i − j

=

a∑
u=a−b

b∑
v=a−u

( v∑
i =a−u

(−1)i
(

b
i

)(
i

u − a + i

)(
b − i
v − i

))
· xuya−u

⊗ xvyb−v.

Settingα = i −(a−u), expanding the binomial coefficients, and canceling equal
terms, the inner sum becomes

±

u+v−a∑
α=0

(−1)α
b!

(b − v)!(u + v − a − α)!α!(a − u)!

= ±
b!

(b − v)!(a − u)!

u+v−a∑
α=0

(−1)α
1

α!(u + v − a − α)!

= ±
b!

(b − v)!(a − u)!(u + v − a)!

u+v−a∑
α=0

(−1)α
(

u + v − a
α

)
,

which is zero ifu + v > a. Thus, the only termsxuya−u
⊗ xvyb−v that appear in

v · g1 with nonzero coefficient haveu + v = a. It is now easy to see thatv · g1 is in
fact exactly equal tov.

For arbitraryp-restricted(a,b, c), we note thatF(a,b, c) ∼= F(a−c,b−c,0)⊗detc.
In practice, we did all of our calculations withF(a − c,b − c,0) and simply scaled
by detc at the end.

We have also made use of representations of the form Syma(F̄3
p) ⊗ Symb(F̄3

p),

Syma(F̄3
p)⊗ Symb(F̄3

p)
∗ and subquotients of Syma(F̄3

p) for a larger thanp − 1. By
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keeping track of the irreducible constituents of these representations, we were some-
times able to show that certain systems of Hecke eigenvalues come from a specific
irreducible module (see [12] for more details).

8.2. Implementation
The implementation of our algorithms has two very distinct parts. On the one hand,
we need to do calculations involving various GL3(Z/pNZ)-modulesV . This includes
the basic vector space operations as well as multiplying an element inV by an element
of GL3(Z/pNZ). Further, we need to identify a basis ofV and be able to decompose
elements ofV with respect to that basis. For efficiency reasons it is also important
to be able to determine the coefficient of a given basis element in some productv · g
without computing all ofv · g.

On the other hand, we need to carry out various higher-level computations, such
as finding the solutions to theh-condition above in order to compute homology with
coefficients inV . These calculations can be described in terms of the basic operations
of the previous paragraph without any specific knowledge about the moduleV . We
have made use of object-oriented programming techniques to keep these two compu-
tational issues strictly separated. This allows us to switch from computing with one
module to computing with another without having to rewrite any of the code describ-
ing the higher-level algorithms.

8.2.1. Coefficient modules
We now look at a few of the implementation details behind some of our coefficient
modules. As we stated above, the basic building block for all of our representations
is Symg(F̄3

p), the space of homogeneous polynomials of degree g in three variables.
The monomials form a natural basis of this space, and it is a simple matter to compute
the coefficient of any given monomial in a productv · g. We have optimized this code
to work especially well when many ofg’s entries are zero. This is the case for the
elementh above as well as for many of the matrices arising in our Hecke operator
calculations. The representations Syma(F̄3

p) ⊗ Symb(F̄3
p) again have natural bases

coming from the monomial bases of Syma(F̄3
p) and Symb(F̄3

p), and all operations on
the tensor product can be carried out in terms of those on each factor. We denote by
Bab = {wi } this basis of Syma(F̄3

p)⊗Symb(F̄3
p), and we let〈·, ·〉 be the bilinear form

with 〈wi , w j 〉 = δi j .
The subspaceF(a,b,0) of Syma

⊗ Symb does not come equipped with a canon-
ical basis. For ease of computation we choose a basis in which each basis vector has a
distinguished leading term. In other words, we choose a basis{vi } such that for each
i there is an elementwi ∈ Bab with 〈wi , vi 〉 = 1 and〈wi , v j 〉 = 0 for j 6= i . We then
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let 〈·, ·〉F be the bilinear form with〈vi , v j 〉F = δi j . Then forv ∈ F(a,b,0), we have

〈v j , v〉F = 〈w j , v〉,

and so we can compute coordinates with respect to this basis ofF(a,b,0) in terms of
those with respect to the basisBab.

The final step in obtaining our general weights is to induce a representationW
from 00(N) to SL3(Z). TheW we use are of the formF(a,b,0) ⊗ ε for someε a
character of(Z/NZ)×. We viewV = IndSL3(Z)

00(N)
W as the space of functions

V =
{

f : SL3(Z) → W : f (xg) = f (x) · g for g ∈ 00(N)
}

with SL3(Z) acting by left translation.
We let {r i } be a set of representatives for SL3(Z)/00(N), and we let{wa} be a

basis forW. We again choose a bilinear form〈, 〉 on W with 〈wa, wb〉 = δab. Then
we defineφr i ,wa : SL3(Z) → W by

φr i ,wa(x) =

{
wa · r −1

i x if x ∈ r i00(N),

0 otherwise.

It is clear that the functionsφr i ,wa comprise a basis ofV .
In order to express the action of SL3(Z) on V with respect to this basis, we need

to introduce a bit of notation. Forx ∈ SL3(Z), let {x} be the unique representativer i

in x00(N). Then

(φr i ,wa g)(x) = φr i ,wa(gx)

=

{
wa · r −1

i gx if gx ∈ r i00(N),

0 otherwise

=

{
wa · r −1

i g{g−1r i }{g−1r i }
−1x if x ∈ g−1r i00(N),

0 otherwise

=

∑
b

〈
wa · r −1

i g{g−1r i }, wb
〉
φ{g−1r i },wb

(x).

Note that in order to compute the actions of Hecke operators onH3(SL3(Z),V),
we also need to know how elements of

S =
{
m ∈ M3(Z) : det(m) is positive and prime topN

}
act onV . Let6 be the semigroup generated by00(N) andSpN. ThenS = SL3(Z)6
and 00(N) = SL3(Z) ∩ 6. (This is part of what it means for the Hecke pair
(00(N),6) to be compatible with(SL3(Z), S).) Thus, if m ∈ S, we havem = ns



574 ASH, DOUD, and POLLACK

for somen ∈ SL3(Z) ands ∈ 6. Moreover,n is determined modulo00(N) and so
the coset representative{n} depends only onm. If we extend our notation to write
{m} = {n}, the formula above for the action ofg onφr i ,wa makes sense for anyg ∈ S.
This action ofSon V described by the formula induces the correct action ofH (pN)
on H3(SL3(Z),V) (i.e., the one compatible with the action onH3(00(N),W)).

Ther i may be chosen so that each is congruent to the identity modulop, which
greatly speeds up some of the calculations. Note that SL3(Z)/00(N) ∼= P2(Z/N) and
so is easy to work with. Also, note that our formula shows at once how to compute
the coefficients of a basis elementφr j ,wb in v · g for v ∈ V andg ∈ S.

8.2.2. Finding homology
Now we move on to the general algorithms we have used to compute the homology of
SL3(Z) with coefficients in some representationV . While this is a simple exercise in
linear algebra, we have found it useful to tailor certain optimizations to our situation
to allow us to work with larger examples. A typical instance of finding the solutions to
theh-condition, for example, involves finding the kernel of a 700000×30000 matrix.
These optimizations have been largely heuristic. We make no claim of having optimal
algorithms.

Let V be a6-module of dimensiond, with basis{vi }, and let〈·, ·〉 be the bilinear
form with 〈vi , v j 〉 = δi j . Let K be the 24-element group of monomial matrices in
SL3(Z). Then forp > 3, the space of semi-invariants inV is the image of the operator

P =

∑
g∈K

ε(g)g,

whereε(g) is the sign of the permutation on three letters induced byg. Our com-
putations do not include examples for whichp = 2, and for p = 3 only a minor
adjustment is needed. Computing the action ofP on eachvi is not computationally
intensive since we have specially optimized all of our coefficient modules with regard
to the operation of monomial matrices. We then use column reduction to find a basis
for V · P. We note that the dimensiondsemi of V · P is approximatelyd/24.

The more serious stage of the calculation is finding the solutions of theh-
condition on V · P. We describe our algorithm for finding the solutions of the
h-condition on anyc-dimensional subspaceW of V · P with basis{bi }. We are
looking for the nullspace of the (d × c)-matrix M = (mi j ), where mi j =

〈vi ,b j · (1 + h + h2)〉 is the coordinate ofvi in b j · (1 + h + h2). Simply comput-
ing this matrix and performing Gaussian elimination would theoretically allow us to
find the nullspace but is hopelessly inefficient in both space and time. Although the
matrix M is quite sparse, it becomes much denser as the elimination proceeds. Since
we work with very larged (d on the order of 7× 105 is not uncommon), we would
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rapidly run out of memory. We touch on four optimizations we have made to speed
up the calculation and to reduce the memory requirements.

First, we note that the rows ofM are highly redundant as there are at most about
1/24th as many columns as rows. We exploit this by computing the rows ofM one
at a time and only storing those that yield new information about the kernel. Recall
that we have set up our coefficient modules so that we can individually compute the
entries〈vi ,b j · (1 + h + h2)〉 in the i th row of M without having to compute all of
b j · (1 + h + h2). We discuss below another optimization that makes this separate
computation especially efficient. As we find a new rowR, we continue our elimination
process by subtracting fromR the appropriate multiples of all the previously stored
rows. If we are left with a nonzero row, we append it to our stored matrix, which
remains in row-echelon form. If we are left with the zero row, thenR did not add any
constraints on the kernel ofM and we may discard it and move on to the next row.
This guarantees that we never waste space by storing redundant rows and caps the
maximum number of rows we will ever store atc ≤ dsemi ≈ d/24. We denote byE
the matrix that we are building up row by row in this process.

Our second optimization is motivated by the fact that most of the information
about the kernel ofM can be obtained fromM ’s early rows. At each stage in our
calculation, we clearly have kerM ⊂ kerE. SinceE is in row-echelon form, we can
immediately read off the dimension of kerE. In practice, we find that the dimension
of kerE drops below 1 or 2 percent ofdsemi after we run through as few as one fifth
or so of the rows ofM . Once this happens, we pause our calculation and compute (a
basis for) the kernel ofE, which is relatively easy to do sinceE is already in row-
echelon form. We have now reduced our problem to finding the kernel of 1+ h + h2

not on W but on the much smaller space kerE. We then start the algorithm over,
replacingW by kerE. Our new choice ofW guarantees that the initial rows of the
new matrixM will all be zero, and so we can resume our calculation with the row
at which we had paused. It is crucial here that we have not computedM all at once
and thus do not have to make any time-consuming adjustments to account for our
new basis. Indeed, it is now much easier to compute the newM , as it has far fewer
columns. In practice the calculation very rapidly proceeds through the remaining rows
of M and then computes the kernel of the newE, which is equal to the kernel ofM .
Our choice of a cutoff on the dimension of kerE is entirely heuristic, and we adjust
it based on the size ofV .

Both of the optimizations above rely on the efficiency of the calculation of the
coefficients〈vi , v · (1 + h + h2)〉 of eachvi in v · (1 + h + h2) for v ∈ V . Although
our modules allow for the calculation of〈vi , v · g〉 for anyv andg without computing
all of v · g, there is still a great deal of work duplicated if we separately perform this
calculation for all of thevi . For our calculations of the Hecke operators (see below)



576 ASH, DOUD, and POLLACK

this is not necessary, but as described above, we must do this in the casesg = h
andg = h2. We have optimized for this by storing some of the common pieces of
these calculations. For example, whenV = IndSL3(Z)

00(N)
W, we begin by computing

and storing the entire matrices describing the actions ofh andh2 on W, and also the
permutations induced byh andh2 on P2(Z/N). Since the dimension ofW is small
compared to the dimension ofV (even whenN = 2, the dimension ofV is 7 times
that ofW), this calculation is not terribly costly in space or time. These stored tables
can then be used to compute the action ofh andh2 on elements ofV very quickly. We
have implemented similar strategies whenV is not induced but is the tensor product
of two smaller representations.

Finally, we have increased our available memory by making use of disk space
and swapping pieces of our matrix in and out of memory. This requires minor modi-
fications to the reduction algorithm described above in order to reduce the number of
disk swaps. In particular, we carry out our row reduction on several (1000) new rows
at once. In the end, this does not have a dramatic effect on run time, but it slashes the
amount of RAM required.

8.2.3. Computing the Hecke action
Our computation of the action of the Hecke operators closely mirrors that in [1], and
we refer the reader to [1, Sections 3 and 8] for a discussion of modular symbols and
a description of the action of Hecke operators on homology. We just summarize by
noting that forv ∈ V satisfying the semi-invariant condition and theh-condition, we
have

T(l , k)v =

∑
i, j

v · Mi j Bi ,

where
00(N)D(l , k)00(N) =

∐
i

00(N)Bi ,

the Mi j are unimodular, and the modular symbol[B−1
i ] is homologous to

∑
j [Mi j ].

We have not recomputed the matricesMi j but have used the files generated in the
course of the calculations in [1].

If { fl } is a basis for the semi-invariants inV satisfying theh-condition, then we
know a priori that

∑
i j fk · Mi j Bi is a linear combination

∑
l akl fl of the fl . We wish

to obtain the numbersakl . To do this efficiently, we use the same trick we employed
in our choice of basis forF(a,b,0) and adjust our basis{ fl } such that for eachl there
is a basis vectorvl of V such that〈vl , fm〉 = δlm. Thenakl is the sum overi and j
of 〈vl , fk · Mi j Bi 〉. As we have discussed, we are able to compute these coefficients
directly. This is vastly superior to computing all offk · Mi j Bi since the dimension
of the homology space is only a tiny fraction of the dimension ofV . This technique
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was used in [1], although it could not be implemented as efficiently there due to the
reliance on Mathematica’s multivariate polynomial routines.

A final optimization uses the fact that the Hecke operators we are dealing with all
commute and so preserve each other’s eigenspaces. The ultimate goal of our calcula-
tion is to identify simultaneous eigenvectorsv of theT(l , k) attached to given Galois
representations, that is, withT(l , k)v = α(l , k) for some prescribedα(l , k). If we
compute the entire matrix for the action ofT(2,1) (which is very easy sinceT(2,1)
involves only 13Mi j terms, whereasT(47,1) involves 55923 such terms) and find
a single eigenvectorv with eigenvalueα(2,1), we need only compute the image of
the otherT(l , k) onv and not on the whole homology space. Moreover, we know that
v is an eigenvector of eachT(l , k), and so we only need to compute asinglecoeffi-
cient 〈v`, T(l , k)〉 in order to determine the eigenvalue. This gives an extraordinary
reduction in the time required to make the calculation. For example, we find that the
dimension of the homology space at level00(11), weightF(22,11)(ε11), andp = 19
is 31. We are interested in a single eigenvector in this space. In order to compute the
entire matrix of a Hecke operator, we would need to find 312

= 961 coefficients of
basis vectors. Instead, we reduce this to a single coefficient, giving nearly a thousand-
fold increase in performance. We point out that this technique was not needed in [1]
as the homology spaces dealt with there were much smaller.

8.2.4. Reliability
Whenever relying on a large amount of computer calculation, one hopes for a number
of consistency checks on the data. Our first check is that two entirely independent
programs were written to carry out the calculations on several different computers by
two different authors and both programs yielded identical data where compared. The
programming was done in C and C++ and compiled with gcc running on a Sparc Ultra
5, a Pentium II under Linux, and a Pentium III under Linux. We also compared our
data to some of the data obtained in [1] and [4] and found everything to be consistent.

Other checks include the fact that, whenever tested, the operatorsT(l , k) on a
given homology space all commuted and that (again when tested) the Hecke oper-
ators all did preserve the space of semi-invariants inV satisfying theh-condition.
Perhaps more compelling is the fact that our data meshes exactly with the Galois
representations we have studied. While the correspondence is only conjectural, the
agreement we observed very strongly suggests the validity of our calculations.
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