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ABSTRACT. Let K be a field of characteristicp ¥=Q.A subgroup G of the group H'(K)
of rank < higher derivations (» < oo) is Galois if G is the group of all d in H'(K) having a
given subfield A in its field of constants where K is finitely generated over h. We prove: G
is Galois if and only if it is the closed group (in the higher derivation topology) generated
over JC by a finite, abelian, independent normal iterative set F of higher derivations or
equivalently, if and only if it is a closed group generated by a normal subset possessing a
dual basis. If » < oo the higher derivation topology is discrete. M. Sweedler has shown
that, in this case, h is a Galois subfield if and only if K/h is finite modular and purely
inseparable. Also, the characterization of Galois groups for » < oo is closely related to the
Galois theory announced by Gerstenhaber and and Zaromp. In the case t = oo, a subfield
h is Galois if and only if K/h is regular. Among the applications made are the following:
(1) (\h(K'') is the separable algebraic closure of h in K, and (2) if K/h is algebraically
closed, K/h is regular if and only if K/h(Kf) is modular for n > 0.

I. Introduction. Let A' be a field having characteristic p ¥= 0 and let h be a
subfield over which K is finitely generated. This paper is concerned with two
related theories. §§I through IV are devoted to a characterization in terms of
abelian sets of generators of the group of all infinite higher derivations on K over
h. A subfield h of K is the field of constants of a set of infinite higher derivations
if and only if K/h is regular. These results are contained in Theorems 4.2,4.3, and
4.5. §§VI and VII are concerned with the corresponding theory in the case
[A': h] < oo. Again, the group of all higher derivations of rank / having a given
field of constants is characterized in terms of abelian sets of generators where
t > pavix/hy-i. The finite dimensional theory is similar to, though distinct from, a
theory due to Gerstenhaber and Zaromp [10]. Integration of the two theories
leads to a number of results connecting modularity, regularity and relative
algebraic closure. For example, if K/h is finitely generated then r\„h(K^) is the
separable algebraic closure of A in a' (Theorem 7.2). This extends a result of
Dieudonné [11, Proposition 14]. If, in addition, K/h is algebraically closed then
K/h is regular if and only if K/h(K'r) is modular for all n (Theorem 7.4).

II. Definitions and preliminary results. Throughout this paper, K will be a field
of characteristic p # 0. A rank t higher derivation on A is a sequence d

Presented to the Society, November 25, 1972; received by the editors August 16, 1972.
AMS (MOS) subject classifications (1970). Primary 12F10; Secondary 13B10, 16A72, 16A74.
Key words and phrases. Higher derivation, iterative higher derivation, dual basis, Galois group of

higher derivations, independent abelian sets of higher derivations.
(!) This work was supported by NSF GP33027X.

Copyright © 1974, American Mathematical Society
263

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



264 N. HEEREMA AND J. DEVENEY

= [d¡ | 0 < i < / + 1} of additive maps of A into A such that dr(ab)
= 2 [d¡(a)dj(b) \i +j = r} and i/0 is the identity map. The set H'(K)of all rank
/ higher derivations on A is a group with respect to the composition d ° e = /
where jÇ, = 2 {dme„ \ m + n = j} [1, Theorem 1, p. 33]. Note that the first
nonzero map (of subscript > 0) is a derivation. The field of constants of a subset
G C H'(K) is {a G A | d,(a) = 0,i > 0,(4) G G}. H¿(K) will denote the
group of all higher derivations on A whose field of constants contains the subfield
h.

From this point until §V we will consider infinite higher derivations (t = oo)
only.

The index i(d) of a nonzero higher derivation is either 1 or if d has the property
dq * 0 and dj « 0 if q *j, then i(d) = q. We call d in H°°(K) iterative of index
q, or simply iterative, if ('j)dq, = dqjdq^_^ for all /' and j < i, whereas dm = 0 if
q -f w. A complete description of iterative higher derivations has been given by
Zerla [3]. If d E Hx (A) has index q, and a is in A, then ad = e where **,, = a'dqi
and e, = 0 if q -f /. It is clear that ad is a higher derivation. The group generated
over k by a subset F of HX(K) is the subgroup generated by {a¿ \ a E K,d
EF).

Let <f G Hœ(K) and let A: be the field of constants of d. Then the dimension
of d is defined to be the transcendence degree of A over k (i.e., tr.d. (K/k)). A
higher derivation is normal if dx ̂  0. A set F = {da\a E K) of higher deriva-
tions is abelian if dfdf = dfdf for all a, /? G A, 0 < /,/ < oo. A set of nonzero
higher derivations on A is independent if the set of first nonzero maps of F with
subscript > 0 is independent over A. We will need the following.

(2.1) [2, Theorem 1]. Let B be a /»-basis for A and let /: Z X B -» A be an
arbitrary function. There is a unique (d¡) E HX(K) such that for each b E B
indi E Z,d¡(b) = f(i,b).

(2.2) [8, p. 436]. Let id,) E HX(K) and a G A. Then dip(ap) = (d,(a))p and
if p and./ are relatively prime, then dj(ap) = 0.

As a simple corollary of (2.2) we have dj(ap") = 0 if p" tj. The following
theorem can be found in the literature; however a proof is given here for
convenience. A field A is a regular extension of a subfield k if K/k is separable
and k is algebraically closed in A [5].

(2.3) Theorem. Let k be the field of constants of a set of higher derivations on K.
Then K is regular over k.

Proof. We show first that K is separable over k, i.e., Kp and k are linearly
disjoint over kp. Suppose there exists [zx,.. ,,z„) C k, independent over kp and
dependent over Kp. Then there exists a relation of minimal length among
[zx,... ,z„} over Kp, 2 {apz, | 1 < / < s) = 0 (possibly renumbering) a, G A,
a, #0, 1 < i < s. Without loss of generality we may assume af = 1 and
a2 G &. Then there exists a map in some higher derivation (d,) such that
dj(a2) # 0. Thus 4,(2 {a/*, | 1 < i < s}) - K(a2)]'z2 + • • • + [dj(as)]pz,
= 0, which yields a nonzero relation of shorter length, a contradiction. Thus A
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GALOIS THEORY FOR FIELDS K/k 265

is separable over tc. Suppose 9 £ K, and 9 is separable algebraic over k. Let
(d¡) £ 77™(K). For a given integer r > 0 we choose s so that r < p'. Since 0 is
separable algebraic over k, k(9) = k(9p'). Since p* > r, ¿,(0>') = • • • = rff(0>')
= 0, and hence k(9) = tc^') is contained in the field of constants of (d¡)r¡„x.
Since r and (d¡) were arbitrary, 9 is in &. Hence k is algebraically closed in K.

(2.4) Theorem [7, Theorem 15, p. 384]. Let K be afield obtained by adjoining a
finite number of elements toh.If K/h preserves p-independence, then a subset T of K
is a separating transcendency basis for K/h if and only if it is a relative p-basis for
K/h.

III. Separating transcendency bases and higher derivations.

(3.1) Lemma. Let [k„ | 1 < n < oo} and h be subfields of K where kj Q k, if
j > ». Then if kn and h are linearly disjoint for all n, C\{k„ | 1 < n < oo} and h are
linearly disjoint.

Proof. By [4, Lemma 1.62, p. 57] there exists a unique minimal extension A: of
D [k„ I 1 < ti < oo} such that Tc and h are linearly disjoint. Since k„ and h are
linearly disjoint for all n, k Q kn for all n, and hence k = D {kn | 1 < n < oo}.

Throughout the rest of this paper h will be a subfield of K such that K is finitely
generated over h.

(3.2) Theorem. Let F — {</"),...,d^">} be an abelian set of one-dimensional
higher derivations in K over h, and let their field of constants be k. Then

(1) tr.d. (K/k) < n;
(2) If Fis independent, then tr.d. (K/k) = n.

Proof. (1) We use induction on ti. If ti = 1, the result holds since dw is one-
dimensional. Let /c„_| be the field of constants of {<7(1),... ,c7("-1)} and kn the field
of constants of ¿W. Then tr.d. (K/k„_x) < n - 1, tr.d. (K/kn) = 1, and k
= fe„_, n k„. All we need to show is tr.d. (K„_x/k) < 1. It will suffice to show
that any subset of k„_x which is algebraically independent over k remains
algebraically independent over k„. We will prove the stronger condition that k„_x
and k„ are linearly disjoint. Consider the chain {knJ \ 1 < » < oo} of subfields of
K where knJ = {x E K\ ¿<">(x) = • • • = <#Lx(x) = 0}. Note that n{knJ | 1
< » < oo} = k„ and &** C kni by (2.2). We claim /c„, and kn_x are linearly
disjoint for all », 1 < » < oo. Since K£\ C &„„ we have k^ C knJ, and hence
tv„_i is purely inseparable over knJ fl tc„_|. Since {</(l),.. .,d(">} is abelian,
{d^\kiij,... ,d^"-,'\kñj) is a set of higher derivations on knji, and has field of
constants kni n /cn_,. Thus by (2.4), knJ is separable over knJ n An_,, and hence
knj and 7c„_i are linearly disjoint [6, Theorem 21, p. 197]. By (3.1), k„ and tcb_,
are linearly disjoint, and (1) follows.

Now assume {d^\... ,d^} is independent. Since we have n independent
derivations in K over k and K is separably generated over A:, it follows that
tr.d. (K/k) > n [6, Corollary, p. 179], and hence tr.d. (K/k) = n.
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266 N. HEEREMA AND J. DEVENEY

(3.3) Definition. Let F = {</('),... ,dW) be an abelian set of one-dimensional
higher derivations in A over h. Let the first nonzero map of d<>) be d¡¡'\ Then a
subset S — [xx,... ,xn) of A will be called a dual base for (</(1),... ,d^} if

(1) flffo) = 1. 1 < ¿ < »,
(2) dPixj) = 0, 1 <5<oo,/#/

In view of (2.4) and (3.2) a dual basis is necessarily a separating transcendency
basis for A over the field of constants k of F.

(3.4) Theorem. Le/ F = {rf(1),... ,d^} be an abelian set of one-dimensional
iterative higher derivations on K/h. F is independent if and only if F has a dual basis.

Proof. Assume F independent. Let k0 be the field of constants of [d^,...,
d<»-'>}. Then, by (3.2), tr.d. (A/*o) = n - 1. If d$ ^ = 0, then [d^,.. .,<#»}
are independent derivations on K/k0 and it would follow that tr.d. (K/k0) > n.
Thus rfW 1^ is a nonzero derivation on k0 whose pth power is zero and there is an
x„ E ¿0 such that d^(x„) = 1. Let A:, be the field of constants of á(n) and
consider F— {d(2>|ikl,...,«iw|*1}. Since F is abelian F is an abelian set of
iterative higher derivations on kx. If 2 {o¡d^\kt\i — I,.. .,n - l;a, E kx) = 0
then 2 fa4,°!*,<«,)I» = 1,...,«- 1} = 0 and hence 2 {a»4?) I ' = I,...,«
— 1} = 0 since A is separable algebraic over kx(x„). Thus F is independent and
by the induction hypothesis, has a dual basis xx, ..., x„_x. The set {xx,..., x„} is
then a dual basis for F.

IV. The Galois correspondence.
(4.1) Definition. Let G be a subgroup of HX(K). The sequence {G,} defined by

G, = G and. G, = {(</,) E G \ dx = d2 = ••• = dj.x = 0} for 2 <j < oo is
called the higher derivation series of G.

It is easily verified that each term in the higher derivation series is a normal
subgroup of G and fl {G, | j > 0} = {e} where e is the identity of G. Using the
higher derivation series as a basis of open neighborhoods at e we make G a
topological group. Let Hc denote the closure of a subgroup H of G. Given
d E HX(K) of index q, v(d) = e = {e\, | 0 < i < oo) where e(,+1)l = d,, and
e, = 0 if (q + 1) O, it is clear that v(d) is a higher derivation. The i>closure v(F)
of a set f in //°°(A) is {v'(d) \ d E F,i > 0) where v°id) = d. We recall the
basic assumption that A is a finitely generated extension of the subfield h. A
subgroup of H¡¡°(K) with field of constants k will be called Galois if G is the
group of all higher derivations which contain k in their field of constants.

(4.2) Theorem. A subgroup G of Hhx(K) is Galois if and only if G is the closure,
(v(F))c, of the subgroup generated over K by v(F), where F is a finite abelian normal
independent set of one-dimensional iterative higher derivations in Hkx(K). If
G = (v(F)Y has field of constants k, then tr.d. (A/Â:) = \F\.

Proof. Suppose G is Galois with field of constants k. Let S = fo,... ,*„} be
a separating transcendency basis for A over k, and let P be a p-basis for k. Since
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GALOIS THEORY FOR FIELDS K/k 267

A' is a separable extension of A;, P U S is ap-basis for K. Using (2.1) we describe
a set F = (c7(1),... ,c7w} of iterative higher derivations [3, Theorem 2] by the
conditions

(i) d}'\x) = 0 if x E S and/ > 1 or x E P and/ > 0,
(ii) dfKxj) = «„ for 1 < /,/ < t».

Elementary calculations show F to be abelian. Each rfO is one-dimensional since
k(xx,...,x¡,.. .,x„) is contained in its field of constants. Thus F is a finite
abelian normal independent set of one-dimensional iterative higher derivations in
G. We claim that (v(F))c = G.

Let (d¡) be in G and have first nonzero map d, with d,(x¡) = a¡, i = 1, ..., n.
The first nonzero map of g = TJ {a,v'_1(c7(/)) | » = 1,... ,t¡} is g, and g, = d,
since d, being a derivation is completely determined by [d,(x¡) \ i = 1,... ,71} and
gi(x¡) = d,(x¡). Thus g-1 o d is in G(+1. It follows by iteration of this process that,
if d is in G and r is any integer, there is a g E (v(F)) such that g¡ = d¡ for » < r
or, equivalently, (v(F)) = G mod (7,. Hence (v(F))c = G.

Conversely, suppose G = (¿J(F))C for F as in the theorem. Let {xx,... ,xn} be
a dual basis for F and let A: be the field of constants of F. Since [xx,..., xn) is a
separating transcendency basis for A/A; the above approximation process can be
applied to show that (v(F))c = Hk°°(K).

(4.3) Theorem. Let K = h(xx,... ,xn). There exists a unique minimal extension
k of h in K such that K/k is regular, k is a subfield of each field kx, K 2 kx 2 h,
K/kx regular and is the field of constants of ^(K).

Proof. It suffices to show for k, K 2 k 2 h, where K is regular over k, that A;
is the field of constants of a set of higher derivations in K over h. Let [xx,... ,x„}
be a separating transcendency basis for K over k, and let F be as constructed
in (4.2). Let A;, be the field of constants of F. Then k¡ 2 A;. But by (3.2),
tr.d. (K/kx ) = n, and since k is algebraically closed in K, kx = A;.

Thus if we set R = {G Q HX(K) \ G is the closed subgroup generated over K
by v(F) where F is as in (4.2)} and S = {A; | K is regular and finitely generated
over k), then the maps g: R -* S, given by g(G) = field of constants of G, and
/: S -* R, given by f(k) = Hkx(K), are inverse bijections.

(4.4) Definition. A subfield A; of À' over which K is finitely generated will be
called Galois if K is regular over A;. A subgroup G of HX(K) with field of
constants k will be called Galois if A' is finitely generated over k and G
= Hf(K).

Let G be a Galois subgroup of HK(K). Then a set F of generators for G as in
Theorem (4.2) will be called a standard generating set.

(4.5) Theorem. Let h be a Galois subfield of K and let k be an intermediate field.
The following are equivalent.

(1) k is a Galois subfield of K.
(2) There exists {í7(,), ... ,d^"'} a standard set of generators for Hhx(K) such that
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268 N. HEEREMA AND J. DEVENEY

{i/(,).¿W}, t < n, has field of constants k. The set {¿O.d^} is a standard
set of generators for Hk°°(K).

(3) k is algebraically closed in K and every d in Hhx(k) can be extended to K.

Proof. Assume (1). Note that k is regular over h. Let 5 be a p-basis for h; let
Tx = {xx,...,x,} be a separating transcendency basis for K over k, and let
T2 = {x,+x,... ,x„) be a separating transcendency basis for A: over h. Then
7^ U T2 U S is a p-basis for K and 7^ U T2 is a separating transcendency basis
for K over h. Let {¿/<'\ ... ,</<">} be as in (4.2). Then {</<'>,... ,¿<">} is a standard
set of generators for Hhx(K) and {dW>,... ,¿7(<)} is a standard set of generators for
Hk°°(K). Note that {¿/('+1)|*,... ,¿WU is a standard set of generators for 77"(A:).

Obviously (2) implies (1) and (2) implies (3). Assume (3). It suffices to show K
is separable over k. Let [xx,... ,xs) be a separating transcendency basis for k
over h, and let {</(l\... ,<7(,)} be a standard generating set for Hh°°(k). Then
{d\]\ ... ,d®} is a basis for Den/Ac), the space of all derivations on k over h. Since
these derivations can be extended to K it follows that every derivation on k
extends to A". Thus by [6, Theorem 18, p. 184], K is separable over A;, and hence
regular over A;.

Dropping the algebraically closed assumptions of Theorem (4.5) we have the
following.

(4.6) Theorem. Let K/h be finitely generated and separable and let k be an
intermediate field. Then K/k is separable if and only if every d in Hh°°(k) extends to
H?(K).

Proof. Assume k/h separable. Let S be a p-basis for h, Tx a separating
transcendency basis for k/h and T2 a separating transcendency basis for K/k.
Theorem (2.2), the fact that Tx U S is a p-basis for tc, and the fact that
Tx U T2 U S is a p-basis for K/h together imply that every element of Hh°°(k)
extends to Hhx(K). To prove the converse one notes that every derivation on k
over h is the first nonzero map dx of a higher derivation on k over h. This follows
from the fact that a p-basis for k over A is a separating transcendency basis for k
over h, ap-basis for h extends to ap-basis for k and (3.1). Thus every din DerA(A;)
extends to K. As in the proof of (4.5) it follows that À7A: is separable.

V. Higher derivations of finite rank; preliminaries. The following result on
derivations will be used. K D k will always be fields of characteristic p # 0.

(5.1) Theorem [10, p. 1011]. Let px, ..., p„ be commuting derivations in K with
field of constants k. If they are linearly independent over k, then

(1) they are independent over K;
(2) [K: k] > p";
(3) equality holds if and only if the k-space V0 spanned by px, ..., p„ is closed

under the formation of pth powers.
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(5.2) Proposition. Let F = [px,... ,p„) be derivations on A. The following are
equivalent.

(a) F is abelian, independent (over A), and has the property pf = 0, 1 < i < n.
(b) A = k(xx, ...,x„) where k is the field of constants of F and p,(xj) = 8,j,

1 < i,j < n. The set [xx,..., x„) is a p-basis for K/k.

Proof. Assume (a). We use induction on n. If n = 1, [A: k] = p by (5.1). Since
pf = 0, there is an xx in A for which px (xx ) = 1 [3, Lemma 4, p. 408]. Assume
the result for n - 1, n > 1. From (5.1), [A: k] = /»". Let kx be the field of
constants of (p,,... ,p„-X} and let [yx,... ,^B-i) be a /»-basis for K/kx for which
P/(^i) = $,;, 0 < /,/ < n - 1. Since {px,..., p„) is abelian p„(kx ) C kx and since
[A: kx] < p", p„ \k< ¥= 0 by (5.1). Hence there is an element x„ in kx such that
p„(x„) = 1. Since xn E kx, pj(xn) = 0, j < n. Also, A:, = k(x„) by (5.1). By
commutativity of the p„ p„(y¡) is in kx, for y = 1, ...,«- 1. Thus, pB(jy)
= 2 fe< I ' = \,...,p- 2,a, E k). Note that since pp = 0, a^x = 0. Then
z = 2 [o¡-\x'Ji I í = 1, ...,p- 1} has the property p„(z) = p„(yj). Choose
Xj = yj - z. Since z G kx, we have p,-(jcy-) = 8,j, 1 < i,/ < n.

Assume (b). Clearly F is independent. The field of constants k, of p, is
A: (*],..., x¡:,..., xn ). Thus y E A is a polynomial in x, over A;, of degree < p and
p,'' = 0. One easily verifies that p,pj = pjp,. The set {xx,...,xn) being p-
independent [6, Corollary 4, p. 183] is a/»-basis for K/k.

The abelian condition in part (a) of (5.2) is essential. A finite independent set
of derivations, {px,... ,p„}, on A such that pf = 0, 1 < / < n, need not be
abelian. For given distinct subfields kx, k2 of A such that [A: k¡] = p and K/k, is
purely inseparable, there are independent derivations px, p2 for which pf = 0 and
which have A;, and k2 as respective field of constants. If pxp2 = p2px it would
follow that [A: kx n A:2] = p2. A counterexample to this conclusion is easily
constructed.

(5.3) Definition. A relative /»-base for A over k as in (2.4) will be called a dual
/»-base with respect to [px,..., p„}.

Using (5.2) we have the following. A finite-dimensional subspace of the K-
space Der(A) of derivations on A is Galois if and only if it is generated over A
by a set (p],... ,p„) of commuting independent derivations such that pf = 0,
1 < i < n. This is precisely the type of charaterization which will be established
for higher derivations.

Let d = (d¡) be a higher derivation of finite rank t. For 1 < s < t, the s-
section of d is the higher derivation e = (d¡\ i = 0,... ,s). The j-section of a set
of higher derivations is the set of s-sections. For d ¥= 0 in H'(K), with first
nonzero map dr we define p(d) = min{i | p' - r > t}.

Observation. Ford E H'(K),p(d) is the exponent of K over the field of constants
ofd.
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270 N. HEEREMA AND J. DEVENEY

Proof. Letp(<7) = s. If dr(x) # 0 but d>, = 0 for 0 < t < r, then d^»r(x^n)
= (dAx))^" # 0. However dj(xP') = 0,/ > 0, by the remark following (2.2).

We call d E H'(K) iterative if d is the rth section of an iterative higher
derivation in HX(K). A finite rank iterative d is normal if for some/ > 0, i(d)
»s [(/pJ] + 1> where [t/pJ] is the greatest integer less than or equal to t/pJ. A
normal higher derivation d has minimal index for a given p(d). A finite set F of
nonzero higher derivations on K is said to be independent if the set of first
nonzero maps of F (of subscript > 1) is independent over K.

In the next proof we will use the fact that if d is iterative and has index q then
the restriction of d to the field of constants of its first nonzero map is an iterative
higher derivation having index pq (assuming pq < rank d).

VI. The finite rank Galois correspondence.

(6.1) Theorem. Let F = {»/(1),... ,d^) be an abelian set of independent iterative
members of H'(K) and let k be the field of constants of F.  Then [K: k]
= pPidl»)+...+p(d<'\

Proof is by induction on p(F) = max{p(¿<'>) | d^ E F). If p(F) = 1, each
</*') has but one nonzero map with positive subscript and (5.1) applies A
counterexample to this conclusion is easily constructed, that if d = (d¡) is
iterative of index q then (dqpi)p — 0.)

Hence assume the result holds forp(F) =/ - 1 or less, and consider the case
p(F) = j. Let {jC|,... ,x„) be a dual basis with respect to the set of first nonzero
maps of F, and let kx be their field of constants. Then [K: kx] = p" by (5.1).

By the abelian condition dj'\kx) C A;, for all »" and/ Hence F \k is an abelian
set of iterative higher derivations. Also, if d¡p is the first nonzero map of d^ then,
if pi,- < t we have, by (2.2), d$(xf) = (d^(x))p. Thus dj/,\ is the first nonzero
map of <7(i)|t1. Let F = [d(b+x)\ki,... d^n)\ki} be the nonzero elements of F|tl. By
the above remarks d^(xf) = 8Uj for b < »',/ < n. It follows that Fis independ-
ent over A:, and [x^.x,... ,x%} is ap-basis for kx/k2, k2 being the field of constants
of the first nonzero maps of F. By induction,

[*,: A:] =* p*dW)-i+---+pVi")r-\

= /,/Kd(")-i+---+/>C("))-i

and

[K: k] = [Ä-: kx][kx;k] - p**»»••••**">>.

(6.2) Corollary. If d = (d¡) is a nonzero finite iterative higher derivation in K with
field of constants k, then [K: k] = p*-d>. If y is any element of K such that
dm(y) * 0, then K = k(y).
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Proof.

<Wv-(j""WW) » id,w(y))p^ * 0,

hence [k(y): A:] > pM and thus A = k(y).
Let F = [dw,... ,dw} be a set of rank / higher derivations on A. {xx,... ,x„}

is a dual basis for F if both of the following are true.
(1) A = k(xx,... ,x„), k the field of constants of F.
(2) d(p(x,) = 1, where </<'> is the first nonzero map of ¿(,) and all other maps

in F with nonzero subscript take x, into zero.

(6.3) Theorem. Let F = {¿z<'\ .. .,</<">} be a subset ofH'(K). The following are
equivalent.

(a) F is an abelian set of independent iterative higher derivations.
(b) F has a dual basis {xx,...,x„).

If [xx,... ,x„) is a dual basis, then A = k(xx) ®k • • • ®k k(xn), k, = k(xx,...,
x,,.. .,xn) is the field of constants of d^'\ Also, x, is purely inseparable over k of
exponent p(d^).

Proof. Assume (a). We use induction on n. If n = 1, the result follows from [3,
Theorem 2]. Hence assume the result holds for n - 1, and let kx be the field of
constants of dw. Then F = {¿(2)|*,,... ,d^\kt) is an abelian set of iterative
higher derivations on kx with field of constants A:. Let {yx,... ,y„) be a dual basis
with respect to the first nonzero maps, {d^}, of F. Then A = *:,(>>,). If
aidQ\ + • • • + a„d£\ = 0, then since d^iyx) = 0, i > 2, we have a2d™
+ ••• + andW = 0. Thus F is also independent, and in particular d^\kt ¥= 0,
2 <j < n. Let {x2,...,xa} be a dual basis for F. Note that djx>ix¡) = 0,
1 < j < t, 2 < i < n. Now let A:2 be the field of constants of {rf<2>,... ,</(">}.
Then as above dM \ki is nonzero with field of constants k and dM |*2 ̂  0. Hence
there exists xx in A:2 such that d^(xx) = 1 and d¡X)(xx) = 0, j =£ rx. Then
{xx,... ,xn) is a dual basis for F.

Assume (b). Clearly F is independent. By [3, Lemma 5, p. 410] each higher
derivation of Fis iterative. One easily verifies d^dp) = d^dp.

Noting that dU)(k(xj)) C k(xj), i > 0, and d^(xj) = 1 we conclude that
d^i\(x) is an (iterative) higher derivation a.ndp(d^) = p(dW\k(xj)). Thus [kix¡):
k] = pr&\ Since A = kixx,... ,xn) and [A: A:] = p/V®»-•■■*&) by Theorem
6.1, it follows that A = k(xx) ®k • • • ®* k(xn). Also kixx,.. .,ft¡,.. .,xn) Q kj,
the constant field of dU\ and since [A: k(xx,... ,Xj,... ,x„)] = [A: kj] we have
Kj = K[XX, . ..,Xj, . . . ,X„).

It is shown in Jacobson [6, p. 195] that if A = kixx) ®k • • • ®k kixn) and x, is
purely inseparable over k then [xx,... ,x„) is a dual basis.

If d has index q, and a is in A, then ad = e where eqi = a'dqi and e} = 0 if
q 1j. It is clear that ad is a higher derivation. The group generated over A by a
subset F of H'(K) is the subgroup generated by {ad \ a E k,d E F}.
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Given d E H'(K) of index q, v(d) = e £ H'(K) where <?(,+iv = dni for
(q + l)i < t and e, = 0 if (<? + 1) t j,j < t. Clearly v(d) is a higher derivation.
The v closure ¡7(F) of a set Fin H'(K) is F U {v'(d) \d E F,i > 1}. A subgroup
G of H'(K) with field of constants A;, [K: k] < oo, will be called Galois if G is
the group of all higher derivations in H'(K) which contain A; in their fields of
constants.

(6.4) Theorem. A subgroup G of H'(K) is Galois if and only if G is generated over
K by v(F) where Fis a finite abelian normal independent iterative subset of H'(K).
If G is Galois with field of constants k, and is generated by v(F) where F
= {í/(,), ... ,dW] as above, if [xx,.. .,xn) is a dual basis for F, then K = k(xx)
®t ' * " ®k k(x„), x¡ is purely inseparable of degree piW(,)) over k and hence
[K:k] =^(1>)+-+^<">).

Proof. Suppose G is Galois with field of constants k. Sweedler has shown [9]
that K = k(xx) ®k • • • <8>k k(x„), the x¡ purely inseparable over A:. Let F
= {¿/(1),... ,d^} be a set of higher derivations having [xx,... ,x„} as a dual
basis. By the remark following the definition of normality and by (6.3) we can
assume that Fis an abelian iterative independent normal subset of G. Let (»7(F))
be the subgroup of G generated over K by v(F). We claim (0(F)) = G.

Let d be in G. We will prove d E (v(F)) by descending induction on the
subscript of the first nonzero map of d = (d¡). Suppose d to be in Gr
= {d E G | dx = • • • = 4-1 = 0}. Then dr is a derivation and is completely
determined by d,(x¡) = <*> / = 1, ..., ti. By the observation following the
definition of p(d), Xj has exponent tti, = p(d^) over k¡ and hence over k in view
of Theorem 6.3. If a¡ ¥= 0 then r > i(dU)) since </U) is normal. Otherwise we
would have rpm> < t and drpmj(xf) = dr(xj)'r' # 0 whereas xf is in k. Let
e — II {vr~i{-d{J)>,(ajdV') | aj ¥= 0}. The first nonzero map of e is er and er = dr
Thus, d o e~x is in Gr+X. If r = t we have G, C (v(F)) and, for r < t, Gr
C Gr+,(»7(F)). It follows that G = (v(F)).

Conversely, suppose G is generated by »7(F) where Fis a finite abelian normal
independent iterative subset of H'(K). Then by (6.3), if {xx,.. .,xn) is a dual
basis for F, K = k(xx) ®k • • • ®k k(x„), and since F is normal, F must be
precisely as above; hence G is Galois. The remaining assertions of the theorem
are contained in (6.3).

Although the results of Theorem (6.4) are similar to those of [10, Theorem 4,
p. 1013], Theorem (6.4) does not follow from Theorem 4 since one cannot
determine a priori that F is a standard set of generations.

Supposep" < t < p"+1. If we set 77 = {G Q H'(K) \ G is generated over tf by
»7(F) where F is as in (6.4)} and 3(={k\ [K: k] < co, AT+I Ç k and K/k is
modular}, then the maps g: <=¥ -* J( given by g(G) = field of constants of G and
/: 3(~* <=¥given by/(/c) = Hk(K) are inverse bijections.

Using (6.3) we can state Theorem (6.4) in part as follows.
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(6.5) Theorem. A subgroup of G of H'(K) is Galois if and only if G is generated
over A by v(F) where F is a finite normal subset of G possessing a dual basis.

VII. Regularity vs. modularity.
(7.1) Theorem. Let K/h be finitely generated. If K/h is separable then K/h(K^")

is modular for all n > 0. If K/h is regular, h = H {«(A'") | » > 1}.

Proof. Let {xx,...,xs} be a separating transcendency basis for K/h. Let
[d^,... ,</(i)} be the standard generating set of Hhx(K) having {xx, ...,*,} as
dual basis. If F = {d^ | 1 < / < s) where á») = {<#'> | 0 <j < p") and *.
= {x E K | âPix) = 0,1 < / < s, 1 < j < /»"} then A is modular over kH
[9, Theorem 1, p. 403]. By (2.2), «ÍAO C k„. By choice of (xx,...,x,),
k(K^)(xx,...,xs) = K. Thus [A: A:(A>"+1)] < p*«*. By (6.1), [A: *„] =
/»(»+')J. Thus A;fl = A;(AO.

If K/k is regular, k is the field of constants of Hkx(K). Hence A: =
n{A;(A>")l« > I}-

(7.2) Theorem. // K/h is finitely generated then D {«(A'O | n > 1} « fAe
separable algebraic closure of h in A.

Proof. Let A = h(xx,..., x„). If xx, ..., x, is a transcendency basis for A/A
then for some n > 0, xf+x, ..., xj? are separable algebraic over h(xx,.. .,xr). It
follows that «(A^)/« is separable. If x in A is separable algebraic over h then x
is in h(Kp") for all n since jc is both separable and purely inseparable over h(Kp").
Thus h„ the separable algebraic closure of h in A, is in H {«(AO \ n > 1}. Let Ä
be the algebraic closure of « in A. As above h\Kpm)/h is separable for some w.
Hence Ä(A^)/Ä is regular and, by (7.1), h = nfA^A^))"") | n > 1} or
Ä = D {Ä(A>") | n > 1}. Thus D [h(KP") \n> 1} Ç h. Finally, since for some n,
h(Kr")/h is separable, n{n(Ai") | « > 1}/« is separable algebraic. Hence h,
= n{A(AOI«> O-

(7.3) Corollary. Let K/h be finitely generated. If K/h is separable then
D {«(A^) \ n > 1} is the algebraic closure of h in A.

(7.4) Theorem. Let K/h be finitely generated. If h is algebraically closed in A then
K/h is regular if and only if A//t(A^) is modular for all n > 0.

Proof. Assume

K/htff) modular for n > 0. Then Kp and h(Kr") are linearly disjoint for all
n and hence, by (3.1), Kp and D{fl(A''") | n > 1} are linearly disjoint. Since K/h
is algebraically closed hp = « n K" and « = n{«(A"") | « > 1} by (7.2). Thus
A is separable over h. The converse is part of Theorem (7.1).

In §IV we established that for any subfield h for which K/h is finitely generated
there is a unique minimal intermediate field «* such that K/h* is regular. The fact
that h* need not be the algebraic closure of A in A is illustrated by the following
example.
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(7.5) Example [7, §10, p. 391]. Let F be a perfect field and let z, y, u be
algebraically independent over P. If h = P(yp,up) and K = P(z,yp,y + zu)
then K/h is algebraically closed but K is not separable over h. Thus h* = K.

Conjecture, tr.d. (h*/h) < 1 in general.

From the same reference we have the following.

(7.6) Corollary. Assume K/h finitely generated. If tr.d. (h/P) < 1 where P is the
maximal perfect subfield of h, then the regular closure h* of h in K is the algebraic
closure of h in K.

Proof. [7, Theorem 9(b), p. 378] and [7, Theorem 15, p. 384].
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