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Introduction. The outer Galois theory, started by Jacobson [8], has been
developed rather thoroughly [2; 3; 6; 12; 16]. The general Galois theory,
dealing with general groups of automorphisms (with some restrictions though),
has been established by Cartan [5] and Jacobson [9] in case of sfields.
The purpose of the present paper is to offer a similar theory for simple rings
with minimum condition(J). The same has been given in fact in Hochschild
[7] for simple algebras (finite over their centers). But the method breaks
down in the case of general simple rings, infinite over their centers, and a new
approach is necessary(2). The writer [14] has recently shown that if A is a
simple ring and C is a weakly normal (cf. §1 below) simple subring of A,
then the ^4-left-, C-right-module A is fully reducible, and he has applied
this fact, together with some methods in Dieudonné [6], to obtain a theorem
of extension for isomorphisms in simple rings. It turns out that this full
reducibility of A, with respect to the left-multiplication of A and the right-
multiplication of C, and some crossed product theorems, proved and used in
the older papers by Azumaya and the writer [3; 12; 13; 16], are appropriate
means for establishing the Galois theory(3) for simple rings. In fact, if A is in
particular a sfield, then A is clearly minimal (= irreducible) with respect to
any operator domain containing the left-multiplication ring of A, and this
fact underlies the Galois theory, as well as many other theories, for sfields.
It is replaced, when A is a simple ring, by our -4-C-full reducibility.

The first section of the present paper gives some preliminary, though
fundamental, lemmas on weakly normal simple subrings of a simple ring. In
§2 we introduce regular groups of automorphisms of a simple ring, which are
the class of automorphism groups employed in our Galois theory, and con-
sider their invariant systems. Conversely, we consider in §3 the group of
automorphisms leaving a subring, of a certain type, elementwise fixed. The
Galois theory follows then in §4. Although our method is rather different, we
follow there the pattern of the algebra case in Hochschild [7]. Our theory can
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(') A (non-nilpotent) simple ring with minimum condition will be called in the present

paper merely a simple ring, in a somewhat old-fashioned way.
(2) It is true that the method of combining "inner" and "outer" Galois theories applies, in

a sense, even in our general case. However, there the outer Galois theory should be that of a
certain subring other than the center. The relationship between the automorphisms of the whole
ring and such a subring is exactly what produces the difficulty in our general case.

(3) In the present paper the term "Galois theory" is taken in the strict sense as a theory
which deals with automorphism groups and their invariant systems.
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readily be transferred to the so-called complete primitive rings, and this fact
and some other remarks are given in §5.

1. Lemmas. By a ring we mean, throughout this paper, a ring with unit
element. By a subring we mean one which contains this unit element. We
shall deal only with those modules for which the unit element of our ring is
the identity operator. By a simple ring we shall mean a simple ring (with
unit element and) with minimum condition. Let A be such a ring, and r be
its minimal right-ideal, unique up to isomorphism. A is decomposed into a
direct sum A = riffir2ffi • • • ©r* of minimal right-ideals r< all isomorphic to
r, and the number k is the so-called capacity of A. Any right-module m of A
is a direct sum of (perhaps infinitely many) minimal submodules isomorphic
to r. By the .¿-(right-) rank [m:-i4]r of m we mean the number of minimal
components in such a decomposition (i.e., the A -length of m) divided by the
capacity k. For a left-module in we introduce its left-rank [m:A ]¡ in a similar
fashion. If m is a two-sided module and if it happens that [m:^4]r= [m:yl]¡,
then we shall denote the common value by [m:^4].

Consider a simple subring C of our simple ring A. Let Cr be the right-
multiplication ring of C upon A, and V%(Cr) be its commutator in the ab-
solute endomorphism ring ?I of A as module. Fa(Cr) is thus nothing but the
Cr-endomorphism ring of A. We have Fa(Fa(C,)) =Cr. Further, V%(Cr) nat-
urally contains the left-multiplication ring Ai of A (on A), since A¡ is the
commutator in 21 of the right-multiplication ring Ar and clearly Ar^>Cr.
And [V%iCr):A,]r=[VtiiCr):VniAT)]T=[A:C]ri*). Now, if V*(Cr) is gen-
erated over A i by a certain number of .4 ¡-semilinear endomorphisms of A,
then we say that C is weakly normal in A. (The notion was defined in [6; 14]
in a little different way, referring to r, but the two definitions are equivalent,
as we saw in [15].) For a nonzero A ¡-semilinear endomorphism y of A the
submodule y A ¡ (=A¡y) of SI is a minimal A ¡-two-sided module. The product
of two A ¡-semilinear endomorphisms of A is naturally again an A ¡-semilinear
endomorphism of A. Thus our V~n(Cr) is, when C is weakly normal, a direct
sum ^3° yA¡ with a certain family {7} of A ¡-semilinear endomorphisms 7
of A.

Another remark is that if here C is strongly normal in A in the sense that
Vfi(Cr) is generated over .¡4¡ by A ¡-semilinear module-automorphisms of A,
then V%(Cr) is generated over Ai by ring-automorphisms of A (which are
naturally A ¡-semilinear). For, if 7 is an A ¡-semilinear endomorphism of A and
0 is. the associated (ring-) automorphism of At, then (xy)y =yxly =yy7?l
(x, yGA), xi denoting the left-multiplication of x; or, if we consider 6 also as
an automorphism of A, then (xy)y = xeyy. In particular xy = xely. Suppose here
that 7 is a (module-) automorphism. Then ly must be a regular element of A,
since xy=xely vanishes for no xy±0 (i.e., for no x'y^O) (or, since xil'r = l for
some x such that xy = l). Thus (V)-^ = (l'l'A1x('l'1', and yil^T1 is the product

'  (4) Provided that we do not distinguish between two infinite ranks.
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of 6 and the inner automorphism of A induced by the regular element ly. So
yi=y(ty)rl is a ring-automorphism of A and 7i^4¡=7^4¡. Taking 71 for each
7, we have V%(Cr) = ^jYiAi, which proves the remark. Furthermore, the
relation Cr= Vu(V%(Cr)) = Fa( ^yiAi) shows that C is the invariant system
of the group generated by these (ring-) automorphisms 71 of A.

Although our main concern in our Galois theory will be the strongly
normal case, the general weakly normal case is in a sense more natural and
we shall continue in this section dealing with general weakly normal subrings.
Now, a statement equivalent to the following lemma was proved in [14].
However, since it is rather fundamental in our theory, we shall repeat its
proof very briefly in a fashion adapted to our present formulation.

Lemma 1.1. If A is a simple ring and C a weakly normal simple subring,
A is fully reducible as A-left-, C-right-module, that is, as AiCr-module, and is in
fact a direct sum of minimal A iCr-modules which are mutually A i-semilinearly
and Cr-linearly isomorphic.

Proof. Let m be a minimal A ¡Cr-submodule of A. Let 7 be an A ¡-semilinear
endomorphism of A contained in V%(Cr). my is also an ^4¡Cr-module. In fact
u—>uy (w(Em) gives an A ¡-semilinear and Cr-linear mapping of m onto m7.
Since m is yl¡Cr-minimal, the same is the case for my and the mapping is an
(A¡-semilinear and Cr-linear) isomorphism, unless m"l'=0. The sum of all
submodules m*, 7 running over all A ¡-semilinear endomorphisms of A in
V%(Cr) (or, over our family {7} only), is a (nonzero) Fa(CV)Cr-module. On
the other hand, A is homogeneously fully reducible with respect to Cr, in
the sense that it is a direct sum of mutually isomorphic minimal tVmodules.
It follows (cf. [14]) that A is Fa(Cr)Cr-minimal. Thus our sum ^my coin-
cides with A, which proves the lemma.

Consider a second simple subring B of A which contains C: A^B^C.
We have:

Lemma 1.2. B is weakly normal in A together with C.

Proof. V%(Br) is an A ¡-two-sided submodule of Fa(Cr) = J^0 y A ¡, and is
thus, by the general theory of fully reducible modules, a direct sum of sub-
modules (A ¡-two-sided) isomorphic to some of y A ¡. Such a submodule has a
form bA ¡, with an A ¡-semilinear endomorphism b of A.

Lemma 1.3. Let A, C be as in Lemma 1.1, and, as in Lemma 1.2, let B be a
second (necessarily weakly normal) simple subring of A which contains C. Let ß
be an isomorphism of B into A over C (i.e., leaving C elementwise fixed). Sup-
pose that the commutator rings Va(B), V~A(Bß) of B, Bß in A are simple. Then
ß can be extended to an automorphism of A.

Proof (cf. [14]). Bß is also a simple subring of A containing C, and it is,
therefore, weakly normal in A too. Applying Lemma 1.1 to B and Bß, in
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place of C, we have

(1) A = tti © n2 © • • ■ © n„ = ñi © ïï2 © • • • © ñ~„

where the n¡, are mutually A ¡-semilinearly and 2$r-linearly isomorphic minimal
;4¡.B,-modules and the ñ„ are mutually A ¡-semilinearly and .Bf-linearly iso-
morphic minimal A iBBr- mod ules.

On the other hand, since B and Bß are isomorphic simple rings, minimal
jBr-(i.e., 5-right-) submodules of A are (B-Bß, ß)-semilinearly isomorphic
to minimal .Bf-submodules of A ; in fact, the same is the case with any
minimal 5-right- and .B^-right-modules. Hence there exists certainly a non-
zero (B-Bß, /3)-semilinear endomorphism of A. Let 9W be the totality of
elements in 21 which are (Br-BB, j3)-semilinear endomorphisms of A. Thus
ÜJf^O. It is contained in Vn(Cr), as ß is the identity on C. 3D? is, further, Ar
two-sided allowable. Thus 30Í is an A ¡-two-sided submodule of Fa(Cr), and
as such is a direct sum 2Z° uAi, where the u are A ¡-semilinear. Thus each u
is A ¡-semilinear and (Br-BB, /3)-semilinear. There exists, hence, at least one
nonzero A ¡-semilinear and (Br-B^, /3)-semilinear endomorphism of A. It
follows, by the theorem of composition series, that one of the np is ^¡-semi-
linearly and (Br-Bß, /3)-semilinearly isomorphic to one of the n4. Then any
of rtj, is isomorphic to any of ñg in the same sense (with, perhaps, a different
automorphism of Ai). It follows then in particular that n = ñ in (1).

Va(B)t= v~Ar(Pr) is the A¡.ZAendomorphism ring of A. Since A is fully
reducible with respect to A¡Br (and the length ra is finite), Va(B)t is a semi-
simple ring (with minimum condition). The same is the case with Va(Bs).
Now we use, for the first time, our assumption that Va(B), VA(Bß) are simple.
Then VA(B)r, VÄ(Bß)r are simple, which implies that tti, rt2, • • ■ , n„ are
mutually A ¡¿Aisomorphic (not only semilinearly but properly) and
tti, ÏÏ2, • • • , ñ„ are mutually A ¡5f-isomorphic. On extending an A ¡-semilinear
and (Br-Br, /3)-semilinear isomorphism of tti and Hi, say, we may readily ob-
tain an A ¡-semilinear and (Br-B,, ß) -semilinear module-automorphism of
A, say u. It induces a ring-automorphism a of A according to the relation
u»aa = (uaY (u, aGA) (i.e., a"=p_1ap); observe that Ar= Vn(A¡). This a is
an extension of ß, and the lemma is thus proved.

Remark. When B is a weakly normal simple subring of a simple ring A,
Va(B) is automatically semisimple as the endomorphism ring of a fully re-
ducible module, as was observed in our proof. Hence, we need, in Lemma 1.3,
simply to assume that VaÍB) is directly indecomposable, or merely simple
modulo radical, and similarly for FA-S3); then they are automatically
simple.

Also in connection with Lemma 1.3, we have:

Lemma 1.4. Let B be a weakly normal simple subring of a simple ring A and
let the commutator VaÍB) in A be simple (or merely simple modulo radical);
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then B is strongly normal and the Br-endomorphism ring V%(Br) of A is gen-
erated over A i by (ring-) automorphisms of A, and B is the invariant system, in
A, of the group generated by those automorphisms of A.

Proof. The A ¡5r-module A is homogeneously fully reducible. Let y be an
arbitrary nonzero A ¡-semilinear endomorphism of A contained in V%(Br) and
let 0 be the associated automorphism of ¿¡. Consider a minimal ¿¡_Br-sub-
module m of A such that nVs^O. Then y gives, as in Lemma 1.1, an A ¡-semi-
linear and 5r-linear isomorphism of m and my, with 0 as its associated auto-
morphism of A i. Since A is homogeneously fully reducible with respect to
AiBr, we may extend this isomorphism to an A ¡-semilinear and ¿Alinear
module-automorphism of A, say v, associated with the automorphism 0 of
A i. v and v~l are in Vn(Br), since they are ¿Alinear. Thus v~ly is in V%(Br)
and it is .¿¡-linear (and ¿Alinear). Thus v~lyG V%(Br)r\Ar= Va(B)t, and
yGvV~A(B)T. Since Va(B) is a simple ring, it is generated by its regular ele-
ments. For a regular element a in Va(B), vaT is naturally an (A¡-semilinear)
module-automorphism of A. Since this is the case with every A ¡-semilinear
endomorphism y in V<&(Br), it follows that V%(Br) (= ^L7-¿¡) has an ¿¡-basis
consisting of ¿¡-semilinear module-automorphisms of A. Now our lemma
follows from our remark concerning strongly normal subrings.

We have further:
Lemma 1.5. Let A, C be as in Lemma 1.1, and let V%(Cr) = ^7¿¡ with

A i-semilinear y. Let a be an automorphism of A over C. Then a belongs to the
same automorphism-class in A as the automorphism associated with one of
7, considered as an automorphism of A rather than of A¡.

Proof. Since a leaves C elementwise fixed, aGV%(Cr) and a¿¡CFa(Cr).
So aAi(=A¡a) is a minimal ¿¡-two-sided submodule of Fa(Cr). As such, it is
(A ¡-two-sided) isomorphic to a 7¿. ¡. If 0 is the automorphism of A ¡ associated
with 7, and if we consider it as an automorphism of A, then a belongs to the
same automorphism-class in A as 0. Or, what amounts to the same, if we
consider a as an automorphism of ¿¡, then it belongs to the same auto-
morphism-class, in A i, as the automorphism 0 of A ¡. For, if a corresponds to
7ÖI (aGA) in an isomorphism of a¿¡ and 7¿¡, then a is regular, since aA¡
=¿¡a is mapped onto 7¿¡=¿¡7 whence(5) a¡¿¡=¿¡, A¡af =A¡, i.e., Ata¡
=Ai, and x¡a=axf corresponds to xiyai=yxelai=yaiar1x¡ai as well as to

yaix", whence xf=ai1x"ai (xGA).
The following special case is well known (cf. [l]):

Corollary. Let A be a simple ring and Z be its center. If T is a simple
subring of A containing Z and finite over Z, then every automorphism of A leav-
ing the commutator C=Va(T) of T in A elementwise fixed is an inner auto-
morphism.

(6) Naturally either one of a¡A¡ = Ai, A¡a¡ = Ai is enough.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1952] GALOIS THEORY OF SIMPLE RINGS 281

For, Cr = Vat(Pt) = V%(TrAi). TrA¡ is a simple ring; observe that the
direct product TrX.Ai over Zr = Zi is simple and TrAi is homomorphic,
whence isomorphic, to it. It follows that Fa(Cr) = TrA¡. Here the elements of
Tr are A ¡-linear endomorphisms of A, that is, A ¡-semilinear endomorphisms of
A associated with the identity automorphism. Now the corollary follows
from our lemma.

2. Regular groups of automorphisms. Let A be a simple ring. With a
group $ of (ring-) automorphisms of A, denote by T® the ring generated by
all regular elements in A which effect inner automorphisms of A contained
in <I>. We introduce the following:

Definition. A group <I? of automorphisms of A is called complete if $
contains all inner automorphisms of A induced by the regular elements of 7$.

With any group i> of automorphisms of A, which is not necessarily com-
plete, the group generated by <!> and the totality of inner automorphisms
of A induced by the regular elements of T& is a complete group and is in fact
the smallest complete group containing i>. The totality of automorphisms
of A leaving a certain subset of A elementwise fixed forms always a complete
group. Further, if U is any subring of A containing 7$, the group generated
by <ï> and all inner automorphisms induced by U is complete.

Definition. If <3? is complete, if the ring 7$ is a simple ring finite over the
center Z of A, and if, moreover, the (invariant) subgroup $o of <!> consisting
of all inner automorphisms of A contained in <i> (which is also the totality
of inner automorphisms of A induced by the regular elements of 7$ since $
is assumed to be complete) has a finite index (í>:í>o) in <£, then we say that
<$ is a regular group of automorphisms of A and (i^o) [Tl^rZ] is its reduced
order.

Regular groups are the class of groups of automorphisms with which we
want to develop our Galois theory. Needless to say, if A is in particular a
sfield, then the requirement that 7$ be a simple ring is automatically satis-
fied and our condition amounts to the completeness plus the finiteness of
(*:*„) [T*:Z].

We begin with the following lemma.

Lemma 2.1. Let <3? be regular. The ring $¿¡ (=¿¡"i>)(6) generated by $ and
the left-multiplication ring A ¡ (in 21) û a simple ring.

Proof (cf. [12; 13]). Let «So and Tq be as above, and denote 7"<¡, simply
by T. Then í>0¿¡ = 7,r¿¡, and this is a simple ring (isomorphic to the direct
product TrXAiover Zr=Zi). Letpi,p2, • • • , p„ (g = ($:$i)) be a representa-
tive system of $/$o- Then

<bAt = pi$0Ai © P2*o^¡ © ■ • ■  © Pg^oAl

= piTrAt © p27At¡ © • • • © P„TrAi.
(•) Here í>^4¡ (resp. A&) means (not the mere product but) the product-module.
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The summations are necessarily direct, because pi, Pt, • • • , p„ all belong to
different automorphism-classes of (A and) A ¡ and, therefore, the A ¡-two-sided
modules piTrA ¡, p2TrA ¡, • • • , pgTTA ¡ have no isomorphic composition residue-
modules. From this last it follows also that every A ¡-two-sided submodule of
$¿1 is a (direct) sum of some submodules of piTrA¡. In particular, a two-sided
ideal a of $¿¡ has this property. If ay^O, then a contains a certain nonzero
element in one PiTrA¡. Observing that TrAi is simple, we see readily that
a=4>¿¡. The minimum condition in $A¡ is clear; it even satisfies the ¿¡-
(right-, or left-) minimum condition.

Let 7 = 7(4") be the invariant system in A of our regular automorphism
group $, that is, the totality of elements in A left invariant by <&. Then
Ir=ATr\V%(<&) = Fa(í>¿¡), where 2Í denotes, as in §1, the absolute endo-
morphism ring of A as module. Since <i)¿¡ is a simple ring, as we have just
seen, A is homogeneously fully reducible and of finite length with respect to
$¿ i and therefore 7r is a simple ring, and so is I. Another consequence of the
simplicity of <í)¿¡ is

(3) Vn(Ir) = <S>Ah

(2) shows then that 7 is weakly normal in A ; in fact, it is strongly normal.
Further, [¿ :7]r(= [¿r:7r]r) = [Fa(7r) : V*(Ar)]r = [<í»¿¡:¿¡]rand this is equal
to g[TrAl:Al}r=g[T:Z}.

Theorem 1. Let $ be a regular group of automorphisms of a simple ring A,
and 7 = 7(<i>) be its invariant system. Then I is a simple ring and A has an in-
dependent right- (resp. left-) basis over I consisting of as many terms as the re-
duced order ($>:$i) \T/P'.Z\ of <$. i> exhausts the automorphisms of A leaving I
elementwise fixed. The commutator Va(I) of I in A coincides with T=T$.

Proof. The first half has been seen; observe that [A :l]t=g[T:Z] too,
by symmetry. To prove the second half, let a be an automorphism of A over
I. By Lemma 1.5, together with (3) (and (2)), we see that a has a form
p,</>0-(an inner automorphism of A) ((poG$o)- This inner automorphism of A
must leave 7 elementwise fixed, since a, p,-, and <po do, and is then induced by
an element in Va(I). Here, as asserted in our theorem,

(4) Va(D = t(= r«),

since VaXD —Arr\V%(Ir) =ATr\^Ai = Tr; observe that the sum ^2piArA¡
is, as (2), direct and that the product ¿r¿¡ in 21 is direct over Zr=Z¡. Thus
our inner automorphism belongs to $0. Hence aGp&o, and a belongs to i>.

Now, the invariant system, in A, of i>0 is nothing but the commutator
Va(T) of 7*= 7$. Put 5= Va(T). As a special case of our theorem (applied
to $o instead of $), and as is well known, 5 is a simple ring and

(5) [A:S](= [¿:5]r= [A:S],) = [T:Z\.
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The following theorem is of particular significance in the special case U=T
(whence R = S):

Theorem 2. Let 3> be a regular group of automorphisms of a simple ring A
and $0 be its (invariant) subgroup of inner automorphisms. Let U be a simple
subring containing T( = T$) and finite over the center Z of A. Assume that U is
setwise invariant under $>, that is, LT*=U. Then $/$0 is an outer group of auto-
morphisms of the commutator R= Va(U). Its invariant system IP\R in R is a
simple ring, [R:IC^R\ =(i>:ti>o), and $/&0 exhausts the automorphisms of R
over IC\R. The product-module RI (resp. IR) is a ring and coincides indeed with
S=VA(T).

Proof. Since RÇZS, clearly $0 induces on ¿? the identity automorphism.
Suppose that (pG$ induces an inner automorphism on ¿?, induced by an ele-
ment a of R. Denote by a the inner automorphism of A induced by this
element a. Then (pa~l is an automorphism of A leaving R elementwise in-
variant. As such, it is an inner automorphism of A, by the corollary to
Lemma 1.5. Then <p must be an inner automorphism of A too; <pG$o- Thus
<l?/$o is an outer group of automorphisms of ¿c.

$/$o is in particular a regular automorphism group of ¿?. Its invariant
system in ¿? is evidently the intersection 7A\¿? of R and the invariant system
7 in ¿ of <ï>. On applying Theorem 1 to ¿? and i>/i>0 (instead of A and $)
we see that [¿?:7A¿?]r = [¿?:7/A¿?]¡ = (í>:í>0) and í>/í>0 exhausts all auto-
morphisms of ¿? leaving 7A¿? elementwise fixed.

Clearly V~a(T) =S contains both 7 and ¿?, hence ¿?7. Let (wi, w2, • • ■ , wg)
(g = ($:$i)) be an independent right-basis of ¿? over Ii^R (which exists by
the outer special case of Theorem 1). Then the matrix.

,   pi       pi pi,
[Wl WZ      ■    ■    •     Wg    I

(Wi       Wt   • ■ ■ w„ )

is regular, where pi, p2, • • • , pg form, as in (2), a representative system of
i'/'ï'o. For, if (xi, Xz, • ■ • , Xg) is a vector in R such that (xi, x2, ■ • • ,' xg)
iwj<) =0, then X¿xú""' = 0 for every element y in R (=wi(7n¿?) ©w2(7Pi¿c)
© • • • ®Wg(ir\R)). But pi, p2, • • • , pg are right-independent over the left-
multiplication ring of ¿? (on R), again by the special case A =R of the direct-
ness of (2). Hence necessarily Xi=x2= • • • =x„=0, which proves that our
matrix is regular. Then w\, Wz, ■ ■ • , wg are right-independent over 7 too.
For, if WiOi +w2a2+ • • • +waas=0 with a¡GI, then w0liai + w2Ha2+ • ■ ■ +w°gial!
= 0 for every i — 1, 2, ■ ■ ■ , g, that is, (w^')(aj)=0. Hence ai=a2= • ■ ■ =a„
= 0 necessarily. Thus ¿?7 = Wi7©w27© • • • @w0I and [¿?7:7]r=g. But
[S:/]r=g too, according to the special case R = S of the already established
part of our theorem. So S = RI. Similarly we have S = IR.
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Our theorem is somewhat complicated. But it reveals how the invariant
system 7 of a regular group is situated in ¿. In particular, it shows how 7 is
related to ¿? which is (the commutator of U and is) of purely inner char-
acter in A, while IC\R is of purely outer character in R. We repeat that the
case U = T (whence ¿? = S) is of particular significance, whereas if [¿:Z]<»,
then we may take A itself as U letting thus ¿? be the center Z of A.

In connection with our theorem we may also note that every auto-
morphism of R over If~\R is (in <!>, or, more precisely, in í/^o, and therefore,
evidently) extended to an automorphism of S=RI = IR over I, and indeed
in a unique manner. Further, [5:7] =g= [R:IC\R] and

(6) [5:7(A7c](= [S:l][l:I/A R]) = [R:I r\ R][l:I C\ R].

For, (6) is certainly true if we restrict ourselves either to right- or to left-
ranks. But 7P\¿? is the invariant system, in A, of the (regular) group gen-
erated by <£ and the inner automorphisms effected by U. Hence [A :Ii~}R]r
= [A:ir\R]i and therefore [S:7n¿?]r= pSr/iAR],, since [A:S]r=[A:S]i.
Similarly  [l:ir>R]r=[l:ir\R]i.

3. Subrings with simple commutators. In connection with Theorem 1,
as well as Lemmas 1.3 and 1.4, we are led to consider simple subrings of A
whose commutators, in ¿, are also simple.

Theorem 3. Let B be a simple subring of a simple ring A such that [A :B]r
< oo. 7/ the commutator Va(B) of B in A is simple, then the group $ of all auto-
morphisms of A over B is regular. If (and only if) B is weakly normal in A,
the invariant system I of $ coincides with B.

Proof. Set T= Va(B). The subgroup $0 of all inner automorphisms of A
contained in <i> is clearly the totality of inner automorphisms induced by the
regular elements of T, and thus T = T$. Here T is simple, by assumption.
Moreover, [T:Z] = [7\.¿¡:¿¡], since the product ¿r¿¡ is direct over Zr*=Zi.
Here TrAlCV%(Br) and [Fa(¿3r):¿¡]r= [V*(Br): V*(Ar)]r= [Ar:Br]r
= [¿:¿?]r< 00. Thus [7":Z]< ». Further, if pu p2, ■ ■ ■ are representatives
of «E/^o, then they all belong to different automorphism-classes and thus
are right-independent over A ¡, by the argument used in proving the direct-
ness of (2). The relation [V%.(Br) :¿¡]r< » shows then also that (<ï):(ï)o) < °°.
Thus <3> is regular.

The second half of the theorem, which is in fact far deeper than the first
half, follows from Lemma 1.4 (the "only if" part being clear from Theorem 1).

Given a regular group <P of automorphisms, Theorems 1 and 3 suffice to
establish 1-1 Galois correspondence between regular subgroups of <3? and
simple subrings, containing the invariant system 7 of <£, with simple com-
mutators. However, postponing the statement until the next section, we con-
sider the case where a subring B is not known to contain the invariant system
of a regular group and is not known to be weakly normal.
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Theorem 4. Let B be a simple subring of a simple ring A such that [A :B]T
< » and the commutator T= Va(B) is simple. Let 4> be the group of auto-
morphisms of A over B, and let U be a simple subring of A containing T and
finite over the center Z of A (or, what is the same, [U: T]r < » ) such that 77* = U,
and put R=Va(U). Let Wbe the invariant system in R of <£. Then the ring gen-
erated by W and B coincides with the invariant system of $ in A.

(Observe that $ induces an outer automorphism group on R as in Theorem
2, and thus our theorem reduces, in a sense, the problem of the invariant
system to purely outer and purely inner situations. Again the case U = T
(whence R=S (= Va(T))) is of importance.)

Proof. The group $1 generated by i> and the totality of inner auto-
morphisms of A induced by the regular elements of U is a regular auto-
morphism group. Its invariant system in A is nothing but W. Now, let Q
be the subring of A generated by B and W. Since B, WQVa(T), we have
QQVa(T) and VA(Q)^T. On the other hand, VA(Q)^VA(B) =T. Hence
VÁQ) =P and this is simple. As Q^W and W is weakly (in fact, strongly)
normal in A, Qis weakly normal in A, because of Lemma 1.2. By Theorem
3, Q is then the invariant system of a certain regular automorphism group of
A. This group is, however, clearly our i\ and the theorem is proved.

4. Galois theory.

Theorem 5. Let $ be a regular automorphism group of a simple ring A, and
7 = 7(4) be its invariant system. Then there is a 1-1 dual correspondence be-
tween regular subgroups of <!> and simple subrings of A containing I and pos-
sessing simple(7) commutators in A, in the usual sense of Galois theory.

Proof. Theorems 1, 3, applied to subgroups and subrings, give the desired
Galois correspondence.

Theorem 6. Let A, €>, I be as in Theorem 5. If B, Bß are two (not neces-
sarily distinct) simple subrings of A containing I and possessing simple
commutators, and if there exists an isomorphism ß of B and Bß leaving I element-
wise fixed, then the isomorphism ß can be extended to an automorphism of A
which is necessarily contained in 4>.

Proof. Immediate from Lemma 1.3.
Thus we have been able to establish for A, <£ the two main features in

Galois theory, i.e., the Galois correspondence and the extension of iso-
morphisms over the invariant system. Next consider a simple subring B of
A, with simple commutator, containing 7 = 7(i>) and consider the subgroup
^ of 4> corresponding to B in the sense of Galois correspondence; thus ^ is
the group of all automorphisms (necessarily contained in 41) of A over B.
Then ^ is a normal subgroup of $ if and only if ¿J* =B. The invariant sys-

(7) Or, simple modulo radical. Cf. §1 or §4, (ii).
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tern in B of the automorphism group Qfö of B is then exactly 7. However,
we are interested in a little more general situation and want to obtain a condi-
tion in order that 7 be the invariant system in B of A/ty, where A is the
totality of elements of <ï> which leave B setwise invariant(8). We begin with
the following lemma.

Lemma 4.1. Let A, $, 7 be as in Theorem 5. Let B be a simple subring of A
containing I and possessing a simple commutator D = Va (B). Let A be the totality
of elements of $> which map B into itself i*), and let V be the ring generated by
all the regular elements of A which induce inner automorphisms of A belonging
to A(10). If VT(D) = TC\ VA(D) is contained in V(n), and if the product, in A,
of the centers Y, Zt of D and T is semisimple, then V is semisimple too.

Proof. Put Ao = A/Ai»o. V is nothing but the subring of A generated by the
regular elements inducing the elements of A0. Now A0 leaves B, hence D
= Va(B), setwise fixed. Let T be the totality of elements of A0 which induce

on D inner automorphisms (of D). Thus Y is nothing but the totality of ele-
ments of A0 leaving the center Y of D elementwise fixed; observe that, since
[D: Y] (^ [D:Z] :S [2":Z]) < », every automorphism of D leaving Y ele-
mentwise fixed is inner. Thus Ao/T is an automorphism group of Y. It leaves
Z elementwise fixed. Since [F:Z](^ [¿?:Z]) < », (A0:r) is finite. Let
ßi, ßt, ■ • -, /3m be a representative system of A0/T, and bi, b2, • • • , bm be the
regular elements of T (in fact, of V) inducing ßi, ß2, ■ ■ ■ , ßm. Since for each
pair i, j we have bib¡ = bkVxiD)D with some k,

(7) biVr(D)D + bzVTiD)D + ■■ ■ + bmVTiD)D

is a ring. In fact, it coincides with ring V because of our assumption Fr(¿?)
Ç V. Since ßi, ßt, ■ ■ ■ , ßm induce automorphisms of D all in different auto-
morphism-classes, the minimal ¿)-two-sided modules biD, bzD, ■ ■ • , bmD are
all nonisomorphic. Hence no two of biVTiD)D, bzVriD)D, • • • , bmVriD)D
have isomorphic composition residue-modules. Thus the sum (7) must
be direct and,  moreover,  any ¿?-two-sided  submodule of the sum,   i.e.,
V, is a sum of submodules of the summands. In particular this
last is the case for any two-sided ideal of V. It follows readily that if N
is the radical of VTiD)D, then bxN®b2N® ■ ■ ■ ®bmN is the radical of V;
by the way,   VtÍD)D iQT) and   V are finite algebras over Z, say.  Here
VtÍD) = VtÍZtD) and VTiD)D = VTiZTD)ZTD. Since YQT, ZTY is com-
mutative (and finite over Z). Suppose now, as was stated in the lemma, that
ZTY is semisimple (hence is a direct sum of a finite number of mutually

(8) In other words, A is the normalizor of * in <i>.
(9) Then they map B onto itself isomorphically; observe that [^4 :ß]< ».
(10) Thus V is nothing but T'a-
(u) Instead of assuming this, we may assume that {yC\VT(D))D is semisimple, as our

proof will show.
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orthogonal fields). Then ZTD is a semisimple algebra over Z, say; it is in
fact the direct product ZtYXD over Y. Then VTiZTD) is also a semisimple
algebra and sois VtÍZtD)ZtD, too, ZTY being their common center (cf. [17]
e.g.). Hence Ar = 0 and V is semisimple, as was observed above, which proves
the lemma.

Now we have:

Theorem 7. Let A, &, I be as in Theorem 5. Let B be a simple subring of
A containing I and possessing a simple commutator in A. Let A be the totality
of elements of $ which map B into itself. Assume that T'a contains T$
í\Va(Va(B))(12). In order that the invariant system of A in B coincide with I
it is necessary and sufficient that i> be the smallest complete group of auto-
morphisms of A containing A.

Proof. Suppose that the last condition is satisfied. Then the invariant
system of A in ¿ coincides with that of <f>, that is, 7. Furthermore, the in-
variant system of A in B is 7.

Suppose conversely that the invariant system of A in ¿J coincides with 7.
Then the invariant system of A in the center Y of the (simple) commutator
D = VaÍB) of B is clearly IC\ Y. On the other hand, YQD = VA(B) £ VA(I).
Hence IC\ Y is contained in the center Zi =IC\ Va(I) of 7. Thus ZiC\ Y (con-
tains, hence) coincides with the invariant system IC\ F of A in Y. Therefore
Y is (finite and) separable over Z¡C\ Y; for the finiteness observe that
(Z : 7 AZ)^(<I> :$„)<», (F:Z)<».

On the other hand, ZTC\ Y= VA(T)C\Tr\ F= VAiT)r\Y = Sr\Y^m Y
^±ZiC\Y, where Zr denotes, as in Lemma 4.1, the center of F =7$ and S is
VaÍT). Hence Y is (finite and) separable over Zt<^\Y too. Then the direct
product ZtX Y over ZyP\ Y is semisimple, and so is the product ZtY in A.
Hence, if we denote 7\ by V, as in Lemma 4.1, then F is semisimple, by the
same lemma.

Thus, the smallest complete group containing A has the following prop-
erty which is very close to regularity: it is complete, its subgroup of inner
automorphisms has a finite index, and the ring V, generated by the regular
elements inducing the inner automorphisms in it, is semisimple (and finite
over Z, naturally), instead of being simple. However, as we shall observe
in the next section, the last two statements in Theorem 1, in particular, are
valid also for such a group. Now, on the other hand, the invariant system of
A in A is 7; observe that A contains all automorphisms of A over B and there-

C2) This condition is very awkward, but it is automatically satisfied in case A is finite
over Z; see §5, ¡v. Further, the sufficiency assertion in our theorem is independent of this
assumption.

This assumption maybe replaced by the requirement that (TaíA Va(Va{B)) Va{B) be semi-
simple, which is automatically the case certainly when A (or 7$) is a sfield; cf. footnote 11.
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fore the invariant system of A in ¿ is in any event contained in B. Our smal-
lest complete group containing A has also the invariant system I in A. On
assuming the above mentioned (as yet unverified) generalization of the ex-
haustion statement of Theorem 1, we see then that it is the totality of auto-
morphisms of A over 7 and is thus nothing but Cf>, which proves the theorem.

Remark. Since the completion of A turns out to be identical with <£ and
therefore regular, the ring F=7a is, in case of Theorem 7, nothing but
T=T$ and, in particular, simple. The "reason" for this is that, in the nota-
tions of the proof of Lemma 4.1, A0 is big enough so that a simple component
in the semisimple ring VriD)D is carried to any other simple component by
one of ßi, ßz, • • ■ , ßm, making thus (7), which is V, simple (in spite of the
fact that VriD)D may not be simple). Observe also that we did not assume
the semisimplicity of VtÍD)D (nor of ZTY), but proved it.

5. Supplementary remarks, (i) Semi-regular groups. In our proof of
Theorem 7 we were led to consider a generalization of regularity for auto-
morphism groups. Thus we want to call an automorphism group "3? of a simple
ring A semi-regular if <£ is complete, ('ï'ii'o) < », and if the ring 7$ is semi-
simple and finite over Z, the center of A. In fact, some of our results con-
cerning regular groups remain valid for semi-regular groups. Let, namely,
$ be semi-regular, and consider í>¿¡. A modification of our proof of Lemma
2.1 shows that <í>¿¡ is a semisimple ring, with minimum condition; consider
either the radicals of T=T$ and (I>¿¡ or the lattices of two-sided ideals in T
and $¿¡. The invariant system 7 = 7(<i)) of $ is then a semisimple ring, with
minimum condition, too, and (3) and (4) remain valid. If we define, as we
in fact did in [14], the weak normality for arbitrary, not necessarily simple,
subrings of A in exactly the same manner as we did for simple rings, in §1,
then Lemma 1.5 is true for any such arbitrary weakly normal subring C of
A. (Its corollary is the case for any semisimple (or, more generally, uni-serial,
for instance) subring ¿"finite over Z.) Taking this into account, we see readily
that <ï>, a semi-regular automorphism group of A, exhausts the automorphisms
of A over 7 = 7(<i,). The last statement of Theorem 1 remains true too. It is
also possible to obtain some statements which may be considered as a gen-
eralization of our rank relation, but they are rather complicated and clumsy.
(An exact transfer of the rank relation can be made if the TrA ¡-submodules of
A corresponding to different simple subrings of (semisimple) 7V¿¡ all have
equal ranks with regard to respective simple subrings of TrAi iT=T¿), and
this is in fact the case which has been considered in [13] under a general
setting that A be T,A¡-"regular.") Also the first statement of Theorem 2 is
true for a semi-regular group <£, and in fact for a semisimple U. In dealing
with semi-regular automorphism groups, we have naturally to consider not
only simple, but semisimple subrings of A, so the present supplementary
remark (i) is closely related to the latter part of the succeeding remark (ii).

(ii)  The condition of simple commutators. We considered, in our Galois
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theory, those subrings of A whose commutators in A are simple. In general,
there are simple subrings of A containing the invariant system 7 of a regular
group <!> whose commutators are not simple and which in fact are not invari-
ant systems of automorphism groups; see [18] or [7, p. 298]. We note how-
ever that if in particular «Êo =í> or =1, i.e., if $ is either an inner or an outer
automorphism group, then the condition is satisfied automatically, that is,
every simple subring of A containing 7 has a simple commutator and is the
invariant system of the corresponding subgroup of $>.

As we observed in a remark in connection with Lemma 1.3, a superfluous
weakening of the requirement can be made by demanding that the com-
mutator be simple modulo radical. In regard to (Lemma 1.3 and) Theorem 6,
it is also possible to weaken the condition somewhat in a more essential
manner by assuming, for instance, that the commutator is semisimple and
the capacities of its simple components are all equal, together with some
further requirements in connection with <!>. However, the condition is needed
more definitely in regard to (Lemma 1.4 and) the Galois correspondence; cf.
the example of Teichmüller alluded to above.

(iii) The condition of simple commutators (continued). It might be of some
interest and use to observe that instead of demanding directly the simpleness
of the commutator Va(B) of B, where B is a subring of A containing the
invariant system 7 = 7(<i>) of a regular automorphism group <ï>, we may
demand that the commutator Va(RB) of the product (or, of the ring gen-
erated by R, B) be simple, where R is any subring of 5= Va(T^). For, since
VA(R)^ Va(S) =n = Va(I)^Va(B), we have VA(RB) = VA(B).

(iv) Algebra case. In the case where our simple ring A is finite over its
center Z, every automorphism of A leaving Z elementwise fixed is inner, and
the Galois theory of A is, roughly speaking, a combination of the theory of
inner automorphisms of A and the Galois theory of the (commutative) field
Z (see Hochschild [7]; cf. also Baer [4]). In fact, our Uin Theorem 2 may be
chosen to be A itself (in case [A :Z] < » ), giving R = Z. Thus the theorem and
a remark which accompanied it, at the end of §2, show that if 7 is the in-
variant system of a regular automorphism group, Z7 is simple, [Z:ZC\l\ is
finite, and the product ZI is direct over ZC\I, showing that 7 is regular in the
sense of [7, Definition 2.3]. So, our Theorems 1, 2, together with the accom-
panying remark, generalize [7, Theorem 2.1]. On the other hand, (if [A:Z]
< » and) if ZB is simple, then the commutator Va(B) is simple too. Thus an
almost regular subring B in the sense of [7, Definition 2.3] is nothing but a
simple subring with simple commutator, and our Theorems 3, 4 form a gen-
eralization of [7, Theorem 2.2]. (We could also apply our above remark
(iii) to R =Z.) Needless to say, our Theorem 6 specializes to [7, Theorem 2.4]
in case of an algebra A. Further, our Theorem 7 generalizes Theorem 2.5 in
[7]. Indeed, our side condition T^/A Va(Va(B))C.Ta is automatically satisfied
in case   [¿:Z]<».  Observe, to see this, that   Va(Va(B)) =ZB  (in case
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[A : Z] < » ). Taking a ¿J-basis of ZB consisting of elements of Z and observing
that Tç,= VA(I) (IQB) we see readily that T^ZB = Z'T^B), and this
last product is contained in TA since both Z and T<pC\B(= Vb(I)) are con-
tained in TA We note also that our Theorem 7 improves [7, Theorem 2.4] in
the algebra case by showing that the assumption of the simpleness of 7
•(center of B) -Z (=LPC in the notation of [7]) is rather unnecessary.

(v) Sfield case. Concerning the case of a sfield A, we merely mention the
following facts. Firstly, and methodologically, A is trivially minimal (hence
homogeneously fully reducible) with respect to any operator domain con-
taining .¿¡, say. Secondly, and with respect to the results formulated, every
subring possesses a simple (in fact, sfield) commutator, and 7^, is, again
trivially, a simple ring (in fact a sfield) for any automorphism group $.

(vi) Complete primitive rings. Our theory can easily be extended to the
case of a complete primitive ring (cf. [6; 10; 11; 16]; they were called closed
irreducible in [ll; 16]). It is in fact possible to transfer our arguments step
by step to this case. However, without doing so, let us observe that Galois
theory of such a ring, with respect to a regular automorphism group (of
finite reduced order), can be reduced to that of a simple ring. Let, namely, A
be a (right-) complete primitive ring, and $ be a regular automorphism
group of A, defined exactly in the same manner as in §2. Thus 7* is a simple
ring finite over the center Z of A. We consider

(8) f>Ar =  piTiAr + PzTiAr +  • • •  + PSTlAr

(rather than <l?¿¡), where T=T^ and pi, p2, • • • , p„ form a representative
system of «fc/iv Here T¡Ar (^^7"¡X¿r over Zi=Zr) is a complete primitive
ring too. Let j be the (unique) smallest two-sided ideal of A. Minimal
¿r-two-sided modules pijr, pz%r, • • • , pgh are all mutually nonisomorphic,
the proof being similar to the one in [16, Lemma 7]. Hence no two of the
¿r-two-sided modules pi7Ar, PtTih, ■ * • , PgPih have mutually isomorphic
composition residue-modules. A fortiori, they have no mutually isomorphic
composition residue-modules as 7V4r-two-sided modules. Here Ti\r is the
smallest two-sided ideal of ¿"¡¿r, and it follows that the automorphisms of
T¡Ar induced by pi, p2, • • • , p„ all belong to different automorphism-classes
(of TiAr). By [16, Theorem 14] our <i)¿r is a primitive ring with minimal
right- (or left-) ideals, the directness of the summation in (8) being immediate.
Let n be a minimal right-ideal of $Ar, and denote by 9<c the absolute endo-
morphism ring of n. Then n is a direct sum of a finite number of faithful
minimal 7"¡¿r-(right-) modules, as is seen from the proof of Theorem 14 in
[16]. Also, n is a direct sum of a finite number of faithful minimal ¿,-modules.
Thus the ¿r-endomorphism ring Vw(Ar) of n is a simple ring (with minimum
condition). Further(13), V<R(V<m(Ar)) =Ar. For each pG& we havep~1Vyt(Ar)p

C3) Here, and in the following, A„ *, T, are all considered as operator domains of (the
*/4r-module) n.
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= Fgi(¿r), since p~lArp=Ar, and each p induces thus an automorphism of
Fsn(¿r). By [16, Theorem 5] it is readily seen that pi, p2, • • • , pg induce
automorphisms of F?¡(¿r) all belonging to distinct automorphism-classes of
Vn(Ar). TrVgi(Ar) (^¿TrXzrVm(Ar)) is a simple ring and

(9) PlTrVxiAr)  + PtTrV3l(Ar)  +   ■■■   + p0TrV9l(Ar)

is also a simple ring, as we readily see, either as above or as in Lemma 2.1
(together with the directness of the sum) ; for the ring property of (9) ob-
serve that FsR(¿r)27,¡ (^^¿r) and thus $oQTrT¡QTrVm(Ar). n is, hence,
decomposed into a direct sum of (perhaps infinitely many) submodules
minimal with respect to (9). Let

(10) n = ■ • ■ © n„ © • • •

be such a decomposition of n. All n„ are isomorphic with respect to (9), and
a fortiori with respect to Vw(Ar). Let [t^} be a system of matric unit endo-
morphisms of n with respect to this homogeneous decomposition (10). The
eM„ are in ¿r (= Vvt(Vyi(Ar))). They also commute with every element of
(9) and thus are invariant under <ï>. Then €n¿r€n is setwise invariant under
«I», and $ can be considered as its automorphism group. Now euAren is a
simple ring (with minimum condition), since rii (and in fact every n„) is a
direct sum of a finite number of minimal Fsrc(¿r)-modules, and $> is regular as
its automorphism group, as we see readily. The Galois theory of A with
respect to <£ can now be reduced to that of the simple ring «u¿r€ii, with re-
spect to <!>; the argument is parallel with [16, §7].

(vii) Regular groups of infinite reduced orders. The first step in generalizing
our theory to an automorphism group of infinite reduced order (in the natural
sense) is to allow either ($:$o) or (T$:Z) to be infinite and to restrict the
other to be finite. Each case produces difficulties. With respect to the first,
Jacobson has recently established an elegant infinite outer Galois theory
($0 = 1) for a sfield A. The writer has collaborated with him in extending the
theory to the case $0^1 under more restrictions than (T$:Z)< ». But the
last result still seems indecisive.

The writer is grateful to G. Hochschild who has suggested certain neces-
sary revisions.
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