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1. What is Galois theory?
Originally, the equation Y2 + 1 = 0 had no solution. Then the two solutions

i and — i were created. But there is absolutely no way to tell who is / and who
is —i.' That is Galois Theory.

Thus, Galois Theory tells you how far we cannot distinguish between the
roots of an equation. This is codified in the Galois Group.

2. Galois groups
More precisely, consider an equation

Yn + axY"-x +... + an=0

and let ai , ... , a„ be its roots, which are assumed to be distinct. By definition,
the Galois Group G of this equation consists of those permutations of the roots
which preserve all relations between them. Equivalently, G is the set of all those
permutations a of the symbols {1,2,...,«} such that (t>(aa^, ... , a.a(n)) =
0 for every «-variable polynomial (j> for which (j>(a\, ... , an) — 0. The co-
efficients of <f> are supposed to be in a field K which contains the coefficients
a\, ... ,an of the given polynomial

f = f(Y) = Y" + alY"-l+--- + an.

We call G the Galois Group of / over K and denote it by Galy(/, K) or
Gal(/, K). This is Galois' original concrete definition.

According to the modern abstract definition, the Galois Group of a normal
extension L of a field K is defined to be the group of all AT-automorphisms
of L and is denoted by Gal(L, K). Note that a normal extension L of a
field K is a field obtained by adjoining to K all the roots of a bunch of uni-
variate polynomials with coefficients in K. To relate the two definitions, let
L = K(ax, ... , a„) and note that we get an isomorphism of Gal(L, K) onto
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Gal(/, K) by sending any t € Gal(L, K) to that a e Gal(/, K) for which
T(a,) = a„(,-) for 1 < i < n .

3. Permutation groups
The above concrete definition brings out the close connection between group

theory and theory of equations. To wit, the Galois Group Gal(/, K) is now a
subgroup of Sn where, as usual, Sn denotes the symmetric group of degree « ,
i.e., the group of all permutations of n symbols; note that the order of Sn is
«!. Quite generally, a subgroup of S„ is called a (permutation) group of degree
«. Here the use of the word degree is meant to remind us that potentially it
comes from an equation of degree « . To convert this potentiality into actuality,
in various situations, constitutes Inverse Galois Theory. To further bring out
the parallelism between group theory and the theory of equations, we note that.

(1) / is irreducible iff" Gal(/, K) is transitive.
Here, a permutation group G "acting"2 on the set Q = {1, 2, ... , «} is transi-
tive if for all i, j in Q, there exists a e G such that a(i) = j. Likewise, G is
2-transitive (or doubly transitive) if for all /' ̂  i' and j ^ / in Q, there exists
o € G such that a(i) = j and a(i') = j'. Quite generally, G is l-transitive
for a positive integer / < « , if for all pairwise distinct elements i\,ii,... , U
in Q and pairwise distinct elements j\, h, ..., j¡ in Q, there exists a e G
such that o(ie) = je for 1 < e < t. This brings us to MTR, i.e., the method of

4. Throwing away roots
Assuming / to be irreducible in K[Y], let us "throw away" a root of /, say

a i, and get

A = A(Y) = ,/(F) > = Y"-1 + bxY"-2 + ■■■ + V. eK(ai)[Y].(Y -ai)
In continuation of (1), we see that.

(2) / and f\ are irreducible in K[Y] and K(ai)[Y] respectively iff
Gal(/, K) is 2-transitive.

It may be noted that, assuming / to be irreducible, it does not matter which
root of / we throw away; for instance, the irreducibility of f\ in Zsf(ai)[T]
and, up to isomorphism, the Galois group Gal(/i, K(a¡)) are independent of
which root we call e*i .

Likewise, by throwing away 5 roots of f0 = f we get

f' = f¿Y)={Y-ai)...(Y-as)
= Y"- + d{ Y"-S~l +... + dn.s€ K{ax,..., as)[Y]

and then:
(3) fs is irreducible in K{ax, ... , as)[Y] for 0 < s < I iff Gal(/, K) is

/-transitive.

5. Classification theorems
Now you would have thought that you could (easily or possibly) construct a

polynomial / = f0, say of degree 20, such that fa, A, ... , f<> are irreducible
2Self-advice: Don't be so scared of the term "acting." It is simply the modern substitute for

"permuting."
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whereas fi0 is reducible. But No! And that is the surprise of the century. You
cannot!! So says the CT, i.e., the recently established Classification Theorem of
Finite Simple Groups, which was a magnificent piece of "team work". According
to the staggering statistics as reported by Coach Gorenstein [G3], the CT took
30 years (1950-1980), 100 authors, 500 papers, and 15000 pages! Yet several
hundred more pages are required to prove the implications

CT =*- CDT =* CTT => CQT =» CFT =» CST

where CDT (resp: CTT, CQT, CFT, and CST) stands for the Classification
Theorem of Doubly (resp: Triply, Quadruply, Fivefold, and Sixfold) transitive
permutation groups.3 Promising to come back to CDT to CFT in a moment,
let us state CST. It simply says that the symmetric group S„ for « > 6 and
the alternating group A„ for « > 8 are the only sixfold transitive groups!! Vis-
a-vis equations, what we are saying is that if / is an irreducible polynomial
of degree n > 1 such that A,A,A,A and f$ are irreducible then so are
A, A, ■■■ , fn-3 -4

To take a first shot at CT, in addition to permutation groups, we should also
consider groups of matrices over the (Galois) Field GF{q) of q elements where
q is a power of a prime. So let

GL(w, q) = the general linear group of degree m over GF(#)
= the group of all nonsingular mbym matrices

with entries in GF(q).

Here the multiplicative group GF{q)* comes in two ways. Firstly, thinking of
scalar matrices, GF{q)* becomes a normal subgroup (and, in fact, the center) of
GL(«i, q). Secondly, taking determinants we get a surjective homomorphism
GL(m, q) —► GF(^)*. This motivates the definitions

PGL(w, q) = the projective general linear group of degree m
over GF(q)

= GL(m,q)/GF(qy
and

SL(w, q) = the special linear group of degree m over GF{q)
= ker Gh(m,q)^GF{q)*.

Combining these two roles of GF(q)* we get

PSL(m, q) = the projective special linear group of degree m
over GF(q)

= SL(w,í)/(SL(w,í)nGF(?)*).
3This is an expanded version of a lecture given at Walter Feit's 60lh birthday conference in Ox-

ford, England. In addition to Walter Feit, the audience included the group theorists Peter Cameron,
Michael Collins, Sandy Green, Graham Higman, Peter Neumann, Ron Solomon, and John Thomp-
son; my talking group theory in this meet of topnotch group theorists was like carrying coal to
Newcastle, or bringing holy water to the Ganges!!

4Self-Challenge = challenge to the extollers of high school algebra: prove that by high school
algebra if you can! Of course we can simply decree CT be high school algebra!!
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In group theory parlance5

Lm{q) = the linear group of degree m over GF(q)
= PSL(m, q).

In yet another notation

An(q) = Ln+l(q) = ?SL(n + l,q).
With these preliminaries,
CT essentially says that A„ and A„(q) are the only (finite) simple groups.
Here we have to exclude "small" cases; namely, from the alternating group

An exclude n < 4, and from An(q) exclude « = 1 and q < 3 (we define An(q)
only for n > 1 ). Moreover, "essentially" means that with An(q) we have to
include its relatives and incarnations, to be discussed later. Finally, in addition
to these infinite families, there are 26 "sporadics", again to be discussed later.6

6. Brief thirty year history
First, in the fifties, there was the fundamental work of Brauer [B] and Cheval-

ley [Ch]. In 1962 this was followed by the path-breaking odd order paper of
Feit and Thompson [FT]. Then came the large team coached by Gorenstein
[G4]. At any rate, we are meeting here to felicitate our friend Walter Feit on
the occasion of his forthcoming sixtieth birthday.7

7. Primitive groups
As another example of the parallelism between group theory and theory of

equations, let us note that a permutation group G is said to be primitive if
it is transitive, and the one-point stabilizer G\ of G is a maximal subgroup
of G. Here we are assuming G to be a subgroup of the symmetric group
S„ acting on {1,2,...,«}, and then by definition, G\ = G n Sn-\ with
Sn-i = {a € Sn : cr(l) = 1}. Just as it did not matter which root of the
irreducible equation we threw away, so in the present situation, if G is transitive
then we may replace Gi by any G,\ = {a e G : a(i) = i}, which is called the
stabilizer of / in G. Clearly.

(4) If / is irreducible and G = Gal(/, K) then G, = Gal(/,, K{ax)).
Moreover;
(5) Gal(/, K) is primitive iff / is irreducible and there is no field between

K and K{ax).
Not to get completely lost in group theory, let us revert to algebraic geometry

by talking about

8. Fundamental groups
In my 1957 paper on "Coverings of Algebraic Curves" in the American Jour-

nal [A3], I considered the algebraic fundamental group nA(C) of a nonsingular
5In learning group theory, I am following the traditional Indian method: memorize things by

heart and the meaning will eventually be revealed to you. Moreover, every subject has its lingo.
Thus GL, SL and PSL are the Tom, Dick, and Harry of group theory.

6Does the number 26 vindicate the spread of the English language which has exactly that many
letters?

7My fondest memory of Walter is that in 1957, when we were both at Cornell, we decided to go
on a diet together and the one who lost more weight was to get a quarter. At the end of one month,
Walter gained one pound and I gained two. Who lost and who won?
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curve C. Here C is allowed to be "open", i.e., it may consist of a projec-
tive algebraic curve minus a finite number of points. We assume that C is
irreducible and defined over an algebraically closed ground field k . By 714(C)
we mean the family of Galois groups Ga\(L/k(C)) as L varies over all finite
normal extensions of the function field k(C) of C such that no point of C
(equivalently, no valuation of k(C)/k having center on C ) is ramified in L.

In case C is the (affine) line L¿ over k, or more generally if C = Lk r =
the line Lk minus r points k\, ... ,kr (with k¡ ^ Xj in k for 1 < i < j < r )
then this amounts to considering Gal(.F, k(X)) where

F = F{X, Y) = Y" + MX)Y"-1 +■■■ + <t>n{X)
is a bivariate polynomial with coefficients <t>\(X), ... , (f>n(X) in k[X] suchthat
F is unramified at all (finite) values of X other than k\, ... , Xr, i.e., such that
for every À in k different from X\, ... , Xr we have

F(X + X!Y) = f[(Y-r1^(X))
;=1

with n['\X) m the (formal) power series ring /c[[X|]. We may call F an
unramified covering of Lk > r.

For any group G, let 67, denote the family of finite homomorphic images
of G. Let &r be the free group on r generators, and let Jr be the family of
all finite groups generated by r generators, and note that then Jr = «^ • By
the Riemann Existence Theorem etc., we see that if k = the field of complex
numbers C, then for any (irreducible) nonsingular curve C over k we have
nA(C) = 7i\(C)h where, as usual, n\(C) denotes the (topological) fundamental
group of C; see Serre [SI]. Hence in particular nA(Lc,r) = Ti\(Lc,r)h, ar,d
clearly n\(Lc,r) — &r • Therefore 7i^(Lc,r) = Jr-

By taking r = 0 or 1 in the last equation, we get nA(Lc) - Jo - {1} and
Ka (Lc , 1 ) = J\ — the family of all finite cyclic groups. These two facts can also
be proved purely algebraically, by the genus formula due to Hurwitz-Riemann-
Zeuthen; see Serre [S2]. The said genus formula actually shows that

nA(Lk) = J0 = {1}
and

7r^(Li.il) = /1[charrc]*
= the family of all finite cyclic groups with order

nondivisible by char k,

where char k is the characteristic of k and where for any (irreducible) non-
singular curve C over any algebraically closed field k we define

nA(C)= the globally tame fundamental group of C
= the family of all the members of nA(C) whose order is

nondivisible by char k

and for any nonnegative integer m and any family of finite groups / we put

J[m]* = the family of all the members of J whose order is nondivisible by m.
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9. Quasi ¿»-groups
Given any prime number p we put

Q(p) = the family of all quasi p-groups,
where by a quasi p-group we mean a finite group which is generated by all of
its p-Sylow subgroups, and for any finite group G we put
p(G) = the (normal) subgroup of G generated by all of its p-Sylow subgroups
and for any family of finite groups J we put

J(p) = the family of all finite groups G such that G/p(G) e J
and we note that then Jo(p) — Q(p) and for every nonnegative integer r we
have

JAP) = JrlpTip)
= the family of all finite groups G such that G/p(G) is generated

by r generators
and

{p(G) : G e Jr(p)} = Q(P).

10. Conjectures
For any algebraically closed field k of characteristic p ^ 0, in the above

cited 1957 paper, I conjectured that nA(Lkr) = nA(LCtr)(p), i.e., equivalently,

General Conjecture. For every nonnegative integer r we have nA(Lkr) = Jr(p) ■
Hence in particular
Quasigroup Conjecture.  nA(Lk) = Q(p).

Now a (finite) simple group whose order is divisible by p is obviously a quasi
p-group, and therefore QC (= the Quasigroup Conjecture) subsumes the

Simple Group Conjecture.  nA(Lk) contains every simple group whose order is
divisible by p.

In particular

Alternating Group Conjecture. For every integer « > p we have A„ 6 nA(Lk)
except when p = 2 < n < 5 .

Here, as usual, An denotes the alternating group of degree n , i.e., the group
of all even permutations on n symbols, and we note that the order of An is
«!/2 or 1 according as « > 1 or « = 1. As proved by Galois, An is a simple
group for every « > 4, and hence AGC (= the Alternating Group Conjecture)
is a special case of SGC (= the Simple Group Conjecture) except when (p, n) =
(3,4); in this exceptional case, An is obviously a quasi /Jrgroup and so we can
directly fall back upon QC. The symmetric group S„ of degree « is obviously
a quasi 2-group for every « , and hence QC subsumes the
Even Prime Symmetric Group Conjecture. If p = 2 then for every integer « > 2
we have Sn e nA(Lk).

To match up with EPSGC (— the Even Prime Symmetric Group Conjec-
ture), let us divide AGC into EPAGC and OPAGC, i.e., into the following two
conjectures respectively.
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Even Prime Alternating Group Conjecture. If p = 2 then for every integer « > 2
except when 2 < « < 5 we have A„ e nA(Lk).

Odd Prime Alternating Group Conjecture. If p > 2 then for every integer « > p
we have An € nA(Lk).

11. Again some history
Let 0 ^ a e k = an algebraically closed field of characteristic p ^ 0, and let

n, s, t be positive integers such that t £ 0(p). Now in support of the above
conjectures, in the above cited 1957 paper, I had written down the following
two examples of unramified coverings of Lk :

Fn = Yn- aXsY' + 1    with « = p + t

and

Fn = Y" - aY' + Xs with t < « = 0(p) and GCD(«, /) = 1 and s = 0(t)

and had suggested that their Galois groups Gn = Gal(F„, k(X)) and G„ =
Gal(F„ , k(X)) should be calculated.

Now, after a gap of thirty years, with Serre's encouragement and with the
help of CT, I can calculate these Galois groups, and the answers are as follows.

(I)
(1.1) If t= l,then C7„ = PSL(2,Jp) = PSL(2, n- 1).
(1.2) If t = 2 and p = 7, then G„ = PSL(2, 8) = PSL(2, n - 1).
(1.3) If t = 2 and p ¿ 7, then Gn = An .
(1.4) If t > 2 and p ± 2, then G„ = An .
(1.5) If p = 2, then G„ = Sn .

(II)
(11.1) If 1 < t < 4 and p ¿ 2, then G„ = A„ .
(11.2) If 1 < t < « - 3 and p ¿ 2, then Gn = A„ .
(11.3) If 1 < t = n - 3 and /> ̂  2 and 11 / p # 23, then G„ = ^„ .
(11.4) If 1 < t < 4 < « and /? = 2, then (/„ = A„ or S« .
(11.5) If 1 < t < n - 3 and p = 2, then Gn = A„ or £„ .
Actually, Fn is a slight generalization of the original equation

Fn = Yn-XY'+l   with n=p + t

written down in the 1957 paper. This equation Fn was discovered by tak-
ing a section of a surface extracted from my 1955 paper "Ramification of Al-
gebraic Functions" in the American Journal [Al], which was the second part
of my Ph.D. Thesis written under the able guidance of Oscar Zariski. In the
1956 paper in the Annals of Mathematics [A2], which was the first part of my
Ph.D Thesis, I proved resolution of singularities of algebraic surfaces in nonzero
characteristic. In the 1955 American Journal paper, I was showing why Jung's
method of surface resolution in the complex case does not generalize to nonzero
characteristic, because the local fundamental group, above a normal crossing of
the branch locus, in the former case is abelian whereas in the latter case it can



GALOIS THEORY ON THE LINE IN NONZERO CHARACTERISTIC 75

even be unsolvable. It was a surface constructed for this purpose whose section
I took in the 1957 paper.

Although the second equation Fn is also a slight generalization of an equation
occuring in the 1957 paper but, amusingly, it got rediscovered in 1989 as a
variation of the first equation Fn .

Now (1.1) was originally proved by Serre and when he told me about it in
September 1988, that is what started off my calculations after a thirty year
freeze! As a slight generalization of (1.1), in the case of í = 1,1 can also
calculate the Galois group G„,q = G&\(Fnq, k(X)) of the unramified covering
of Lk given by

Fn¡q = Yn-aX-sY'+\    with n = q + t,

where q is any positive power of p, and it turns out that

(HI)
(III.l) If t = 1 , then Gn,q = PSL(2, q) = PSL(2, « - 1).
Again, F„, q is a slight generalization of the equation

Fn,q = Yn-XYl + 1    with « = q + t,

which also occurs in the 1957 paper. Note that then

F n = -** n ,p-

12. Using MRT
Applying MRT (= method of removing tame ramification through cyclic com-

positums = so called Abhyankar's Lemma) to the one-point stabilizer of Fn+\
we get the monic polynomial of degree « in F with coefficients in k(X) given
by

F¿ = h(Y)(Y + by-aX-sY'   with 0 ¿ b e k,
where h(Y) is the monic polynomial of degree n—p in Y with coefficients in
k given by

,       _ (Y + n + l)n+l~P - Yn+l-P

{   ' (n + \)2

and we let G'n = Gal(F„', k(X)). As an immediate consequence of (I) we now
get

(IV)
Assuming that « + 1 ^ 0(p), in the following cases F„' gives an unramified

covering of Lk with the indicated Galois group.
(IVJ) If « + 1 - p = t > 2 ¿ p and b = t and s = 0(p - 1) and s = 0(t),

then G'n = An .
(IV.2) If n + 1 -p = t » 2 and p ¿ 7 and b = t and 5 = 0(p - 1), then

G'n=An.
(IV.3) If n = p + 1 and p > 5, then t can be chosen so that 1 < / < £±±

and GCDQ? + I, t) - 1, and for any such t, upon assuming b = jj-¡ and
5 = 0(t(p + 1 - t)), we have G'n = An .

(IV.4) If n + 1 -p = t and p = 2 and b = t and s = 0(0 , then G'„ = Sn .
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13. Unramified coverings
We have the following four corollaries of calculations (I) through (IV).
In Calculations (I) through (IV), we use a lot of Ramification Theory, or,

equivalently, CS (= Cycle Structure). In addition to CS + MTR + MRT, in
the proofs of Calculations (I) to (IV) we also use CT. In our original version
of these proofs, the use of CT was heavy. Gradually the use of CT decreased,
but could not be removed completely. However, by traversing a delicate path
through calculations (I) through (IV), we have arranged a proof of the First and
the Second Corollaries independent of CT.

First Corollary. OPAGC is true. Equivalently, for any « > p > 2, there exists
an unramified covering of the affine line in characteristic p whose Galois group
is the alternating group An of degree n .

Second Corollary. EPSGC is true. Equivalently, for any « > p = 2, there exists
an unramified covering of the affine line in characteristic p whose Galois group
is the symmetric group Sn of degree n .

Third Corollary. Unramified coverings of the affine line in characteristic p with
a few more Galois groups have been constructed.

Definition-Remark. By the minimal index of a finite group G we mean the
smallest number d such that G has a subgroup of index d which does not
contain any nonidentity normal subgroup of G .8 Now QC is obviously equiv-
alent to saying that for every integer d > p the following is true.

QC(d ). Every quasi p-group of minimal index d belongs to nA(Lk), i.e., occurs
as the Galois group of an unramified covering of the affine line in characteristic
P-

Therefore it is interesting to point out that as a corollary of the above results
we have the following:

Fourth Corollary. QC (p + 1 ) is true for every p which is not a Mersenne prime9
and which is different from 11 and 23. More generally, if G is a quasi p-group
containing a subgroup H of index p + 1 such that H does not contain any
nonidentity normal subgroup of G, and if p is not a Mesenne prime and p is
different from 11 and 23, then there exists an unramified covering of the affine
line in characteristic p having G as the Galois group.

The proofs of the above four Corollaries and the four claims (I) to (IV) will
be completely given in this paper with the exception that the proof of claim (1.2)

8 In other words, we are minimizing the index over subgroups of G which do not contain any
minimal normal subgroups of G, where we recall that a minimal normal subgroup of a group G
is a nonidentity normal subgroup N of G such that TV does not contain any nonidentity normal
subgroup of G other than N itself.

9A Mersenne prime is a prime p of the form p = 2^ — 1 for some positive integer p . Note that
then fi is necessarily prime, because otherwise by factoring ¡i = ß'ß" with ¡i' > 1 and fi" > 1 ,
we would get a factorization 2" - 1 = /'/" with /' = 2f' - 1 > 1  and /" = 1 + 2^' + 2^' + • • • +
2¿¿V'-i) > j _
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will be completed in my forthcoming paper [A7]. In connection with (II.4), it
may be noted that the case of p = 11 or 23 is still open.10

14. History of a pilgrimage
When I said that "Now...I can calculate these Galois groups", what I really

meant was that, from September 1988 to August 1989, I undertook a pilgrim-
age (physical as well as mental) ' ' to seek the help of lots of mathematicians,
and then I simply collated the help so obtained. In chronological order, these
mathematicians were. Serre (oh yes, very much Serre), Kantor, Feit, Cameron,
Sathaye, Eakin, Stennerson, Gorenstein, O'Nan, Mulay, and Neumann.

The pilgrimage started when in September and October of 1988, Serre sent
me one after another four long letters briefly saying that

"/« your 1957 paper you suggested that the Galois group of F„ should be
calculated. I can now prove that for t = 1 it is PSL(2, p). Can you calculate it
for other values of t ? Also, the conjectures in your paper include AGC Can you
now prove AGCT

Fortunately, in his last letter, Serre added a sentence saying that "my e-mail
is...."

15. Multiply transitive groups
Having already commented on the significance of transitivity for Galois the-

ory, before proceeding further with calculations of Galois groups, let us give a
brief review of multiply transitive groups.

So let G be a permutation group, say of degree «, i.e., let G act on fi =
{1, 2,...,«}. In analogy with the concept of transitivity introduced in §3, we
say that G is X-antitransitive (or Â-fold antitransitive) for a positive integer
X < «, if for all pairwise distinct elements i\,ii,... ,ix in ß we have that
the identity is the only member of G which keeps them fixed.12 Moreover,
for positive integers / < X < n, we say that G is (/, X)-transitive if G is /-
transitive and A-antitransitive; we may express this by simply saying that G is
(/,A).13 Finally, G is sharply I-transitive means G is (/,/). Now if G is
/-transitive, with / > 1, then the one-point stabilizer of G is obviously (/ - 1 )-
transitive as a permutation group of degree « - 1, acting on the "remaining"
« - 1 elements; conversely, if G is transitive and its one-point stabilizer is
(/ - 1)-transitive then G is /-transitive. Similarly, if G is A-antitransitive,
with X > 1, then the one-point stabilizer of G is (X - 1 )-antitransitive as a
permutation group of degree « - 1, acting on the "remaining" « - 1 elements;
conversely, if G is transitive and its one-point stabilizer is (/- 1)-antitransitive
then G is /-antitransitive. Thus, to classify all (/, X) groups, we can make
induction and each time increase /, X, and « by one. So we start with (1, 1).

By definition, G is regular means G is (1,1). Now the classification of
(1,1) groups is either obvious or impossible.   Obvious because it is so easy

10As will become apparent later, the reason for this, as well as for the exclusion of these values
of p from the Fourth Corollary, is the existence of the "Mathieu Groups".

1 ' mental = e-mail + s-mail. s-mail = snail mail = usual mail.
12That is, if er e G is such that a(ie) = ie for 1 < e < X then we must have a = 1 .
13Note that if G is /-transitive and m-antitransitive for positive integers I <n and m < n ,

then automatically I < m . Also note that if G is /-transitive for some positive integer I < n
then G is /'-transitive for every positive integer /' < /. Likewise, if G is A-antitransitive for a
positive integer X then G is A'-antitransitive for every positive integer X' > X with X' < n .
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to define what is ( 1, 1 ). Indeed, the usual proof of the usual theorem which
says that every finite group is a permutation group, amounts to representing
the given group as a regular permutation group.14 Hence impossible because it
would amount to classifying all finite groups.

G is Frobenius means G is (1,2) but not (1, 1). A prototype of a Frobe-
nius group is the group of all affine linear transformations ax + b with a, b
in a finite field, or more generally in a finite near-field. Zassenhaus [Z2], in his
1936 Thesis written under Artin, proved that the converse is true for (2, 2)
groups.

Zassenhaus' Theorem. G is (2, 2) o G = AGLNF(1, *F) for some finite near-
field *¥.

Here, by AGLNF( 1, 4*) we are denoting the group of all affine linear trans-
formations of degree 1 over the near-field *¥, where "near-field" is a generaliza-
tion of "field" obtained by weakening the distributive law. Namely, a near-field
is an additive abelian group *F in which the nonzero elements form a multi-
plicative group such that for all o,è,c in T we have a(b + c) = ab + ac.
Thus we are not assuming the other distributive law (b + c)a = ba + bc which is
not a consequence of the first distributive law because the multiplication is not
required to be commutative. It can easily be seen that, as in the case of a field,
the number of elements in any finite near-field is a power of a prime number.
By an affine linear transformation of degree 1 over the near-field *P we mean
a map *F —> 4* given by x t-> ax + b with a, b in *P and a ^ 0. It can easily
be seen that distinct (a, b) give distinct maps *F —► *F. A proof of Zassen-
haus' Theorem is given in 9.10 on page 424 of volume III of Huppert-Blackburn
[HB].15 In the proof of this Theorem, as well as in the proofs of various other
theorems on multitransitive groups, an important role is played by the following
Theorem of Frobenius (1901) [Fr] for a proof of which we refer to 8.2 on page
496 of volume I of Huppert-Blackburn [HB].

Frobenius' Theorem. A Frobenius group G always has a (1,1) normal sub-
group. More precisely, the subset of G consisting of the identity together with
those elements a which fix no letter (i.e., a(i) ^ i for i = 1,2,...,«) forms
a regular normal subgroup of G.

In the notation AGLNF( 1, *F), the letters NF are meant to remind us of
a near-field. In case *P = a field <J>, we may write AGL( 1, <P) instead of
AGLNFil.'F).

To put the notation AGL( 1, O) in proper perspective, first we remark that
for a field <1> and a positive integer m the groups GL(w, O), PGL(m, <P),
SL(m,<P), and PSL(«z,<D) are defined by replacing GF(q) by O in §5.16
Note that Z(GL(ra, <t>)) = the set of all scalar matrices, and Z(SL(m ,<!>)) =
SL(m, 3>) n Z(GL(w, O)), where the center of any group Y is denoted by

14By making G act on itself by right or left (but not both) multiplication.
15Although Dickson found all finite near-fields, it was left to Zassenhaus to prove that there

were no more. E. H. Moore [Mo] of the newly opened University of Chicago classified finite fields,
around 1895, and then, around 1905, his students Wedderburn [W] and Dickson [D2] studied skew
fields and near-fields respectively.

16Writing q for GF(^) is justified because for any prime power q , up to isomorphism, there
is exactly one field with q elements.



GALOIS THEORY ON THE LINE IN NONZERO CHARACTERISTIC 79

Z(T), i.e., Z(T) is the normal subgroup of Y given by putting Z(F) - {a G
r : ab — ba for all b G Y} . Now a nonsingular m by w matrix a G GL(m, í>)
corresponds to the bijection Q>m —> <Pm which sends any 1 by m matrix
£ € 3>m to the matrix product £,a G Om . In this manner, the group GL(w, G>),
and hence also the subgroup SL(w, G>), may be regarded as a permutation
group on <J>m . Let ¿P(<f>m) be the (m - 1 )-dimensional projective space over
O, where we think of â°(Q>m) as the set of all one-dimensional subspaces of
Om . Now the bijection Om —> <$>m corresponding to any a G GL(w, O) clearly
induces a bijection ^(Om) -► 9°(<^n)\ moreover, if a* G GL(m,0) dif-
fers from a by a scalar matrix, then a and a* induce the same bijection
9°(<bm) -» &>(<S>m). Thus the group PGL(w, O), and hence also the sub-
group PSL(«z, <P), becomes a permutation group on 3P(<bm). Members of
PGL(«j , 4>) are called projective transformations of ^(<Pm). Note that for any
y G PGL(w, O) and f g ¿^(<Dm) we have y(Q g ^(<Dm).

Now the affine general linear group AGL(ra, O) of degree m over O may
be introduced as the semidirect product <Pm xi GL(m, <I>) of 4>m by GL(w, <î>)
with the obvious action of GL(«z, O) on <Pm , where we recall that a group T
is said to be the (internal) semidirect product of a normal subgroup 0 by a
subgroup A provided Y = 6A and 6 n A = 1, and we note that in this case
A acts on O by conjugation. Concretely, AGL(m, <I>) may be regarded as the
set of all m by m + 1 matrices whose entries are in the <P and whose m by
m piece is nonsingular; in other words, we think of AGL(w, í>) as the set of
all pairs (a, ß) with a G GL(m, O) and ß G <Pm, where multiplication is
defined by (a, ß)(a', ß') = (aa', ßa' + ß') .ll To (a, ß)e AGL(m, <D) there
corresponds the bijection <Pm —► <S>m which sends every £ G <Pm to ¿¡a + ß G
<E>m .18 Thus AGL(w, O) also becomes a permutation group on C>m . Members
of AGL(m, í>) are called affine transformations of 3>m .19

To make another example of a semidirect product, let Aut O be the group
of all automorphisms of the field O. For every matrix y with entries in O
and for every g G Aut O, let ys be the matrix obtained by applying g to each
entry of y. This gives an action of Aut O on GL(w, <I>). The semidirect prod-
uct GL(m, <P) » Aut O is denoted by YL(m, <P) and members of YL(m, <3>)
are called semilinear transformations of <Pm . A member of YL(m, O) may
be thought of as a pair (g, a) with g G Aut O and a G GL(«i, O), and the
corresponding bijection <S>m —> <Pm sends every £ g G>w to ¿fae <I>W . The
multiplication in TL(m, O) is given by (g, a)(g', a') = (gg', a8' a'). Thus

l7This is an example of an "external" semidirect product. For further elucidation see Suzuki
[Su2], Huppert-Blackburn [HB], and Wielandt [Wi]. A lot of the group theory background, required
in this paper, I learned in the last two years from these nice books. I highly recommend them. It
may be noted that a Frobenius group G is the semidirect product of the Frobenius kernel of G by
a Frobenius complement of G, where by the Frobenius kernel of G we mean the (1,1) normal
subgroup of G , and by a Frobenius complement of G we mean a 1-point stabilizer of G .

18In the above case of m = 1 , this reduces to x i-» ax + b by taking x =Z e&, 0/a = n€
<P , and b = ß e <P .

''Transformations, or substitutions, of the type x' = ax + by + c and y' = a'x + b'y + c' are
familiar to us from high school. By adding "points at infinity" to the ordinary plane we get the
projective plane. To distinguish between the ordinary plane and the projective plane, the ordinary
plane is called the affine plane and the above transformations are called affine transformations of
the plane 4>2 . To know that they can be redefined in terms of semidirect products should help to
make this notion friendly.
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YL(m, O), which may be called the semilinear group of degree m over <I>, acts
on Om . With this action we can form the semidirect product AYL(m, <I>) =
Om » YL(m, <t>) and call it the affine semilinear group of degree m over
O. A member of ArL(m, O) is called an £#«e semilinear transformation
of Om and it may be represented as a triple (g, a, ß) with g G Aut O,
a G GL(m, O), /? G <Pm ; the corresponding bijection <$>m -* <5>m sends ev-
ery i G <Pm to c¡8a + ß G O"1, and the multiplication in ATL(m, O) is given
by (g,a, ß)(g', a', ß') = (gg', a«'a', 0*'a' + £'). Thus AYL(m, <D) is a
permutation group on í>m , and in a natural manner we have

SL(m, <D) <GL(m, <D) <YL(m, <D) < ATL(m, O)
and

GL(w, <D) < AGL(m, <D) < ArL(m,<P),
where < and < denote subgroup and normal subgroup respectively.

To construct one more example of a semidirect product, we note that the
action of Aut<I> on GL(m, O) obviously induces an action of Aut<I> on the
factor group PGL(m, 4>). With this induced action we form the semidirect
product P T L(m, <I>) = PGL(w, <E>) x Aut O and call it the projective semilinear
group of degree m over O. A member of PTL(m, O) is called a projective
semilinear transformation of ¿P(®m) and it may be represented by a pair (y, g)
with y G PGL(w, <I>) and g G Aut O; the corresponding bijection 3° (<Pm) —»
^(Om) sends every Ç G ̂ (<Dm) to y(Cg) G ̂ (fl)m) where C^ G ̂ («D™) is
given by C? = {£8 '■ £ G C} • Thus PTL(w, O) becomes a permutation group
on ^(<I)m), and in a natural manner we have

PSL(m, <D) < PGL(m, <D) < PYL(m, O).
Although we have spoken of SL(w, <P), GL(m, 4>), YL(m, O), AGL(w, O),

ATL(m, O) as permutation groups on 3>m , and PSL(«j, <I>), PGL(w, <t>),
PYL(m, O) as permutation groups on 3°($>m), this is relevant mainly when
<P = GF(<?) for some prime power q and in that case we may write SL(w, q),
GL(m,q), YL(m,q), AGL(m,q), AYL(m,q), PSL(w, q), PGL(m, q),
and FYL(m,q) for SL(m,í>), GL(w,<D), YL(m,<&), AGL(m,0),
ATL(«z, O), PSL(m, Í»), PGL(m, <P), and PTL(«i, O) respectively.

Henceforth by a permutation group we shall again mean a permutation group
on a finite set.

16. Zassenhaus groups
Having talked about (1,1), (1,2), and (2, 2) groups, let us now discuss

(2, 3) groups which are not (2,2). Basically they fall into the following three
classes.

(i) A Feit group is defined to be a (2, 3) group which is not (2, 2) but has a
(1,1) normal subgroup. As a prototype we have the group ATL(1, 2P) where
p is a prime number. This consists of all transformations jc h-» ax8 + b with
0/í¡£ GF(2") and b e GF(2P) and g G Aut GF(2"). Now |GF(2")| = 2P
and |AutGF(2^)| =p where | | denotes cardinality. Thus ArL(l,2^) isa
permutation group of degree 2" and order 2P(2P - \)p .

(ii) A sharp Zassenhaus group is defined to be a (3, 3) group; such a group
is clearly a (2,3) group; moreover, it is a (2, 2) group only when its degree
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is 3 and in that case it is simply S3. The Fundamental Theorem of Projective
Geometry says that, on the projective line over a field O, any three points can
be sent to any other three points by one and only one projective transformation.
In case, <S> = GF(<7), where q is a prime power,20 this amounts to saying that
the group PGL(2, q) is a (3, 3) group, where we regard PGL(2, q) as a
permutation group of degree q + 1 ;21 it is easily seen that PGL(2, q) has no
(1, 1) normal subgroup; clearly the order of PGL(2, q) is (q + l)q(q - 1) .22
It can be shown that, if q is an even power of an odd prime, PTL(2, q)
has exactly one 3-transitive subgroup, which we denote by PML(2, q), such
that PML(2, q) # PGL(2, q) and PSL(2, q) is a subgroup of PML(2, q) of
index 2. Now PML(2, q) is also a (3,3) group, where we again regard it
as a permutation group of degree 9+ 1 ; it is easily seen that PML(2, q) has
no (1, 1) normal subgroup provided q > 4 ; clearly the order of PML(2, q) is
(q +1 )q(q - 1 ) ; we call PML(2, q) the projective mock linear group of degree 2
over GF(q). For further discussion about PML(2, q) see page 163 of volume
III of Huppert-Blackburn [HB] where it is denoted by M(q).

(iii) A strict Zassenhaus group is defined to be a (2, 3) group which is neither
(2, 2) nor (3, 3) and does not have any (1,1) normal subgroup.23 It can
easily be seen that, for any odd prime power q, the group PSL(2, q) is a strict
Zassenhaus group of degree q + 1. To find the order of this group, we might
as well start by calculating the order of GL(w, q) for any positive integer m
and any prime power q which need not be odd. Now the number of ways of
choosing the first column of an element of GL(m, q) equals | GF(^)m| - 1 =
qm - 1. The number of multiples of the first column is q and hence, having
chosen the first column, the number of ways of choosing the second column
equals |GF(<7)m| - |GF(^)| = qm - q. More generally, the first i columns
generate an /-dimensional vector space over GF(q) and hence, having chosen
the first / columns, the number of ways of choosing the (/ + l)th columns
equals | GF(q)m\ - | GF(q)l\ = qm - ql. Therefore

I GL(m , 0)| = (qm - l)(qm -q)...(q-- q^).

Consequently

I AGL(w, q)\ = I GF(q)m\\ GL(m, q)\ = qm(qm - \)(qm -q)...(qm- qm~l).

Now I GF(<5r)*| = q - 1, where GF(q)* is the multiplicative group of nonzero
elements of GF(q), and we have obvious exact sequences of finite groups 1 —>
SL(m, q) -► GL(w, q) -» GF(q)* -* 1  and  1 -+ GF(q)* -» GL(m, q) -►

20That is q is a positive integral power of a prime number. Clearly then q is an odd prime
power or an even prime power according as the corresponding prime number is even or odd. When
q is an odd prime power, it can be an even power of an odd prime or an odd power of an odd
prime.

21 PGL(2, q) acts on the projective line over G¥(q) which has q + 1 points on it, out of which
q are at "finite distance" and one is the point at "infinity".

22Obviously the order of any (/, /) group of degree n is n(n - 1) ••■(«-/+ 1).
23In Gorenstein's book [Gl] every (2, 3) group which is not (2, 2) is called a Zassenhaus

group. In Huppert and Blackburn's book [HB] every (2, 3) group which is not (2, 2) and does
not have any (1,1) normal subgroup is called a Zassenhaus group. We are calling the groups
mentioned in (i) Feit groups because they were completely characterized by Feit [F] in 1960.
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PGL(«î , q) -» 1, and hence
|PGL(m, q)\ = \SL(m,q)\ = \GL(m, q)\/(q - 1)

= (qm-\){qm-q)---(qm-qm'2)qm-X.

Let
Z„ = the cyclic group of order v where v is either a positive

integer or oo.
Now clearly

Aut GF(q) = Z^ where q = p^ with p = char Ac
and hence

|TL(m, i)|/| GL(m , q)\ = | ArL(m, q)\/\ AGL(m, q)\
= \PYL(m,q)\/PGL(m,q)\ = ß.

Let SL(w, q)* be the group of all m by m scalar matrices whose entries are in
GF(q) and whose determinant is 1. Then SL(«j,<?)* is isomorphic to the group
of all mth roots of 1 in GF(q) and hence |SL(m, q)*\ = GCD(ra, q - 1).
Also we have an obvious exact sequence of finite groups 1 —► SL(m, q)* —►
SL(m, q) -» PSL(w, q) -» 1 and hence

| PSL(m, q)\ = | SL(m, # )|/ GCD(w, tf - 1)
= |PGL(w, <7)|/GCD(m, q- 1).

So in particular
|PSL(2,<7)| = (<7+l)<7(</-l)/2   or   (q + \)q(q - \)

according as q is odd or even i.e., according as q - 1 is or is not divisible by
2. If q is even then we cannot divide q - 1 by 2, and so we do the best
we can; namely, assuming q to be a square of a proper odd power24 of 2, in
the expression (q + \)q(q - l)/2 we replace (q - l)/2 by (q{l2 - 1) to get the
expression (q+\)q(qxl2-\), and now to get rid of the fractional power we write
q in place of q1/2 . For every q which is a proper odd power of 2, the resulting
expression (q2 + l)q2(q - 1) is the order of a certain strict Zassenhaus group
Sz(<7) of degree q2 + 1 ; this group Sz(#) is isomorphic25 to a certain subgroup
of GL(4, q) and, since it was discovered by Suzuki [Sul] in 1962, it is called
the Suzuki group over GF(^). We may think of Sz(<?) as ersatz PSL(2, q2) ;
we have just given a heuristic reason for its existence and a mnemonic device
for remembering its order; to recapitulate

| Sz(<?)| = (q2 + l)q2(q - 1)   if q is any odd power of 2.
As hinted in the above order formula, the definition of the Suzuki group Sz(q)
can be extended so as to include the case of q — 2 ; in this case we still get a
2-transitive permutation group of degree q2 + 1 and of the above order, which
is however not a strict Zassenhaus group; indeed, as a permutation group, Sz(2)
is isomorphic to the (2,2) group AGL(1, 5).

The following theorem of Zassenhaus [ZI], Feit [F], and Suzuki [Sul] says
that the above examples of (2, 3) groups which are not (2, 2) are exhaustive;
for a proof see 1.1 and 11.16 on pages 161 and 286 of volume III of Huppert-
Blackburn [HB].

24That is with an odd exponent > 1 .
25 Not as a permutation group.
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Zassenhaus-Feit-Suzuki Theorem. For a permutation group G we have the fol-
lowing.

(1) G is Feit &G = ATL(1, 2") for some prime p.
(2) G is sharp Zassenhaus <=> G = PGL(2, q) for some prime power q, or

G = PML(2, q) for some even power q of an odd prime.
(3) G is strict Zassenhaus ■«• G — PSL(2, q) for some odd prime power q,

or G = Sz(q) for some proper odd power q of 2.
Moreover, this gives an exhaustive and mutually exclusive listing of (2, 3) groups
which are not (2,2), with the proviso that the group PSL(2, 2) = 53 is included
in item (2) even though it is a (2,2) group in addition to being a (3,3), and
hence a (2,3), group.

17. More about classification theorems
By analyzing the Suzuki group Sz(q), a certain analogous 2-transitive permu-

tation group R\(q) of degree ^3+l, for every odd power q of 3, was discovered
by Ree [R] in 1964; although R\(q) is 2-transitive, it is not 3-antitransitive; the
group R\(q) is defined in terms of some 7 by 7 matrices over GF(^) and is
called the Ree group over GF(^) ; the order of Ri(q) is given by

\Ri(q)\ — (q3 + l)q3(q - l)   if ^ is any odd power of 3.
For every odd power q of 2, in terms of certain matrices over GF(q), Ree
defined a group Ri(q) which is also called the Ree group over GF(q) ; the
order is now given by

1*2(9)1 = ql2(q6 + 1)(<74 - 1)(<73 + 1)(9 - 1)

if q is any odd power of 2. All the Suzuki groups and all the Ree groups turn
out to be a simple groups except: Sz(2) is solvable; i?i(3) is isomorphic to
PTL(2, 8) and hence the simple group PSL(2, 8) may be regarded as a nor-
mal subgroup of Ri(3) of index 3 and then PSL(2, 8) is the unique minimal
normal subgroup of R\(3); the commutator subgroup Ri(2)' of Ä2(2) is a
(normal) subgroup of Ri(2) of index 2, and the said commutator subgroup
Ri(2)' is actually a simple group called the Tits group. Thus we have the fol-
lowing three infinite families of finite simple groups deduced from matrices over
GF(q).
Suzuki and Ree groups. Sz(<?) for every proper odd power q of 2. R\(q) for
every proper odd power q of 3. Ri(q) for every proper odd power q of 2,
together with the commutator subgroup Ri(2)'.

Just before Suzuki and Ree found these groups, Steinberg [St], in 1959, dis-
covered that some known groups together with some further ones suggested by
them could be organized into four other infinite families of finite simple groups
which are defined in terms of matrices over GF(<72) and which are now labeled
as follows.

Steinberg groups. 2An(q), 2Dn(q), 3D4(q), and 2E6(q). Here « is any pos-
itive integer and q is any prime power except: in case of 2An(q) exclude
(«, q) = (1, 2), (1, 3), (2, 2), and in case of 2D„(q) exclude « = 1.

These 3 + 4 = 7 families are the "twisted incarnations" of the original nine
infinite families of "relatives" of An(q). These nine infinite families of finite
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simple groups defined in terms of matrices over GF(q) were systematized by
Chevalley [Ch] in 1955, and they are labeled as follows.26

Chevalley groups. A„(q), Bn(q), C„(q), Dn(q), E6(q), E7(q), E%(q), F4(q),
and G2(q). Again here « is any positive integer and q is any prime power
except: in case of A„(q) exclude («, q) = (1, 2), (1, 3) ; in case of Bn(q)
and C„(q) exclude («, q) = (1, 2), (1, 3), (2, 2) ; in case of D„(q) exclude
n < 4; and in case of G2(q) exclude q = 2.

Thus we have 7 + 9 = 16 infinite families of finite simple groups defined
in terms of matrices over finite fields. It may be noted that, just as the group
A„(q) = PSL(« + 1, q) is obtained by projectivizing the special linear group
SL(« + 1, q), the group C„(q) = PSp(2«, q) is obtained by projectivizing
the "symplectic group" Sp(2«, q), and the groups Bn(q) = PQ(2« + 1, q)
and Dn(q) = PQ+(2«, q) are obtained by projectivizing the "commutator
groups" Q(2« + I, q) and Q+(2n,q) of the "orthogonal groups"
0(2n + l,q) and 0+(2«,<7) respectively. The groups An(q), B„(q), C„(q),
Dn(q) are collectively called "classical groups", and the remaining Chevalley
groups E(,(q), E-¡(q), E$(q), F4(q), G2(q) are collectively called "exceptional
groups."

Likewise, amongst the Steinberg groups, the group 2An(q) = PSU(« + 1, q)
is obtained by projectivizing the "special unitary group" SU(« + 1, q), and the
group 2Dn(q) — PQ~(2«, q) is obtained by projectivizing the "commutator
group" Q,~(2n,q) of the "orthogonal group" 0~(2n,q). The Suzuki and
Ree groups have the alternative labels Sz(q) = 2B2(q), R\(q) = 2G2(q), and
Ri{q) = 2F4(q) ■ The groups 2An(q), 2B2(q), 2Dn(q), 3D4(q) may collectively
be called the "twisted classical groups", and the groups 2E(,(q), 2F4((q), 2G2(q)
may collectively be called the "twisted exceptional groups."

Now the projective mock linear group PML(2, q) may also be called the
premathieu linear group of degree 2 over GF(q). The reason for this nomen-
clature is that, around 1865, Mathieu [Mat] found a transitive extension of
PML(2, 9) which is denoted by M\\. By a transitive extension of a permu-
tation group of degree « we mean a transitive permutation group of degree
« + 1 having the given group as a one-point stabilizer. Note that Mn is a
(4, 4) group of degree 11 and hence its order is 11 • 10 • 9 • 8. Mathieu also
found a transitive extension of M\\ which we denote by M\2. Clearly M\2
is a (5, 5) group of degree 12 and hence its order is 12- 11 • 10-9-8. The
permutation groups Mn and M\2 are called Mathieu groups of degree 11 and
12 respectively. It can be shown that Mx2 has a noninner automorphism a of
order 2 suchthat a(Mn) is 3-transitive of degree 12. The permutation group
a(M\\) may be regarded as an incarnation of the Mathieu group Mu and we
may denote it by M\ \ . To recapitulate

|Af12| = 12- 11 - 10 • 9 • 8        and        \Mn\ = \MU\ = 11 • 10 • 9 • 8.
To introduce the remaining three groups discovered by Mathieu, let us first

note that for any positive integer m and any prime power q we have |GF(^)m|

26When q = a prime p , many of these were already studied by Jordan [Jl] in the last century.
For general q, some of them were discussed by Dickson [Dl] at the turn of the century. Likewise
the first two families of Steinberg groups were already known to Jordan and Dickson, while the last
two were independently found by Tits.
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= qm and hence for the corresponding (m — 1 )-dimensional projective space
we have

^(GF^m = (qm - \)l(q - 1) = q"1'1 + qm~2 + • •• + q + 1.

So in particular |^>(GF(4)3)| = 21 and hence PSL(3,4), which acts on
^S(GF(4)3), is a permutation group of degree 21 ; it can easily be seen that
it is 2-transitive but not 3-transitive; by the above order formula we also get

| PSL(3, 4)| = (43 - 1)(43 - 4)42/GCD(3, 3) = 21 • 20 • 48.
Mathieu obtained a transitive extension M22 of PSL(3, 4), a transitive ex-
tension A/23 of M22, and a transitive extension M24 of A/23 • Clearly M22
is a 3-transitive but not 4-transitive permutation group of degree 22, A/23 is
a 4-transitive but not 5-transitive permutation of degree 23, and M24 is a 5-
transitive but not 6-transitive permutation group of degree 24. These groups
are called Mathieu groups of degree 22, 23, 24 respectively, and obviously their
orders are27 \M22\ = 22 • 21 • 20 • 48 ; \M23\ = 23 • 22 • 21 • 20 • 48, and
I A/241 = 24 • 23 • 22 • 21 • 20 • 48. Note the striking similarity between the
numbers (2, 9) occuring in the "parent group" PML(2, 9) of Mn and Mn ,
and the numbers (3, 4) occuring in the "parent group" PSL(3, 4) of M22,
A/23 ; and A/24 • All of the five Mathieu groups A/n , M\2 , M22, A/23 > and
A/24 turn out to be simple groups. One hundred years after their discovery,
during 1965 to 1975, twenty-one other finite simple sporadic groups, i.e., those
which do not naturally fit in any infinite family, were discovered by various
people; the largest of the 21 + 5 = 26 sporadic groups is called the monster and
its order is

246 • 320 • 59 • 76 • 112 • 133 • 17 • 19 • 23 • 29 • 31 • 41 • 47 • 59 • 71 ;

for details see Gorenstein [Gl]. We are now ready to state, of course without
proof, the Classification Theorem of Finite Simple Groups.28

CT. The following is a complete list affinité simple groups.
( 1 ) The cyclic group Zp for every prime p.
(2) The alternating group An for every integer « > 5.
(3) The sixteen infinite families of "matrix" groups mentioned above.29
(4) The twenty-six sporadics including the five Mathieus.

Just as PSL(»i, q) is the typical example of a finite simple group, so
PGL(2, q) is the quintessential example of a 3-transitive permutation group.
As obvious variations of this, additional 3-transitive permutation groups are ob-
tained by taking into account all the groups between PGL(2, q) and PTL(2, q)
for every prime power q, and all the groups between PML(2, q) and PTL(2, q)
for every even power q of an odd prime; both these types have degree q + 1.
All these arise out of the fact that, by a projective transformation, any 3 points
of a projective line can be sent to any other 3. Going to higher dimensions, by

27For a transitive permutation group G of degree n we clearly have |G| = n|(?i| where G\ is
a one-point stabilizer of G.

28See Gorenstein [G2] or Aschbacher [As]. At least one part of this extremely long proof, namely
Mason's paper on quasi-thin groups [Mas], is still to see the light of day!

29I am using the more friendly term "matrix groups" instead of the awe inspiring "Lie type
groups."
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a projective transformation, any 4 points of a projective plane can be sent to
any other 4, and any 5 points of a projective 3-space can be sent to any other
5, and so on. This would give rise to 4-transitives, 5-transitives, and so on.
But there is a flaw. 3 collinear points in a projective plane, or in a projective
3-space, cannot be sent to 3 noncollinear points. 4 coplanar points in a projec-
tive 3-space cannot be sent to 4 noncoplanar points. And so on. Thus, because
of questions of linear independence, for every integer m > 1 and every prime
power q, the group PGL(«i, q), instead of being (m + 1 )-transitive, is only
2-transitive, unless every line contains only 2 distinct points, in which case it
would be 3-transitive. Well, for q = 2, a line should contain only 2 points. But
even that is so only in the affine case because then we don't have the point at
infinity. Thus, it is not PGL(m, 2) which is 3-transitive, but AGL(«i, 2). We
can see that AGL(«î, 2) is, however, not 4-transitive unless m = 2 in which
case we actually have AGL(2, 2) = S4.

Now
AGL(w, 2) = GF(2)W x GL(m, 2) = 2m ■ Lm(2),

where a dot stands for the semidirect product symbol x , and 2m stands for
(Z2)w , i.e., for the direct product Z2xZ2x ■■• xZ2 of m copies of Z2. By
the order formula we have

|L4(2)| = (24 - 1)(24 - 2)(24 - 4)(24 - 8) = 8!/2 = \AS\.
Hence, by the philosophical principle that two finite simple groups of equal order
are usually isomorphic, we expect that L4(2) as As where « stands for isomor-
phism, and this can, in fact, be easily proved. Note that L4(2) = GL(4, 2)
is a 1-point stabilizer of AGL(4, 2) and hence in this incarnation A% is only
2-transitive;30 let us denote this incarnation by A% .31 In a natural manner, A-]
may be regarded as a subgroup of A% and then it turns out that the image of
A-/ under the said isomorphism is also only 2-transitive; let us denote the said
image by Aj ?2 The corresponding subgroup of 24 • A% = AGL(4, 2) may be
denoted by 24 • A-¡ ; this is a 3-transitive but not 4-transitive permutation group
of degree 24 and order 23 • 7! ,33

As a consequence of CT, it can be shown that there are no more 3-transitive
permutation groups other than those we have already listed. In other words
we have the following detailed version of CTT, i.e., the Classification Theo-
rem of Triply Transitive Permutation Groups; this theorem was compiled from
conversations with Cameron, Neumann, and O'Nan.
CTT or Refined Fundamental Theorem of Projective Geometry. The following is
a complete list of 3-transitive permutation groups.

(1) For every prime power   q,   each group  between   PGL(2,#)   and
PTL(2, q) is a 3-transitive permutation group of degree q + 1, and we

30By taking the stabilizer at the origin, GL(m, q) becomes the 1-point stabilizer of AGL(m, q)
for every integer m > 1 and every prime power q . Likewise, by taking the stabilizer at the point
at infinity, AGL(1, q) may be regarded as the 1-point stabilizer of PGL(2, q) for every prime
power q.

31That is, as a permutation group, A% = GL(4, 2) = PGL(4, 2) c Si5 .
32In other words, A1 is the image of A-¡ under some injective group homomorphism A-¡ —»

/lg = GL(4, 2) C Si 5, and A1 is a 2-transitive but not 3-transitive permutation group of degree
15.

33 As^permutation groups, A-¡ and 24'A7 are independent of the injective group homomorphism
A7 —» Ag we choose for defining A-,.
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have |PGL(2, q)\ = |PTL(2, q)\/ß = (q + \)q(q - 1) where q = p>*
with p = char GF(q). Among these, PGL(2, 3) and PTL(2, 4) are
the only groups which are 4-transitive, and for them we actually have
PGL(2, 3) = S4 and PTL(2, 4) = S5.

(2) For every even power q of an odd prime, each group between PML(2, q)
and P r L(2, q) is a 3-transitive but not 4-transitive permutation group of
degree   q + 1,   and we have   |PML(2,^)|   =   |PTL(2, q)\/p   -
(q + \)q(q - 1) where q - pß with p = char GF(a).

(3) For every integer m > 1, the group AGL(m, 2) ¿sa 3-transitive permu-
tation group of degree 2m and order 2m(2m-\)(2m-2)---(2m-2m~l).
This is 4-transitive only for m = 2, and in that case we actually have
AGL(2, 2) = S4.

(4) The group 24 • A-¡ is a 3-transitive but not 4-transitive permutation group
of degree 24 and order 24-7!, and as a permutation group it is a subgroup
o/24.ig = AGL(4,2). _

(5) The reincarnated Mathieu group Mn is a 3-transitive but not 4-transitive
permutation group of degree 12 and order 11-10-9-8= 12-11-10-6.

(6) The Mathieu group M22 and its automorphism group Aut M22 are
3-transitive but not 4-transitive permutation groups of degree 22 with
| A/221 = |Aut A/22I/2 = 22 • 21 • 20 • 48.

(7) The Mathieu groups M\\ and A/23 are 4-transitive but not ^-transitive
permutation groups of degree 11 and 23 and order 11 • 10-9-8 and
23 • 22 - 21 • 20 • 48 respectively.

(8) The Mathieu groups Mx2 and M24 are ^-transitive but not (¡-transitive
permutation groups of degree 12 and 24 and order 12-11 -10-9-8 and
24 - 23 • 22 • 21 • 20 • 48 respectively.

(9) For every integer « > 5, the alternating group An is an (n-2)-transitive
but not (n- l)-transitive permutation group of degree n and order «!/2.

(10) For every integer n>3, the symmetric group S„ is an n-transitive but
not (n + \)-transitive permutation group of degree n and order «!.

The above formulation of CTT obviously subsumes CQT, CFT, and CST. In
turn the CTT is of course subsumed under the CDT which is given by Cameron
[C] and Kantor [K2] and which, in addition to heavily using the CT, is based
on the previous work of Curtis-Kantor-Seitz [CKS], O'Nan [O], and others.
The following weaker version of CDT, dealing mainly with the degrees of 2-
transitive permutation groups which are not 3-transitive, was communicated to
me by Cameron.

Weak CDT. Concerning the degrees of 2-transitive permutation groups we have
the following.

( 1 ) For every integer m > 1 and every prime power q, each group between
PSL(ra, q) and PTL(m, q) is a 2-transitive permutation group of de-
gree |^(GF(a)m)| = (qm - \)/(q - 1). Out of these, only the groups
listed in items (1) and (2) of CTT are 3-transitive. In case of m > 2,
for each group between PSL(m, q) and PYL(m, q), by considering
the action on "hyperplanes" in ¿P(GF(q)m), we get a second represen-
tation as a 2-transitive but not 3-transitive permutation group of degree
(qm-l)/(q-l).
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(2) For every integer m > 2, the group Sp(2m, 2) has 2-transitive but not
3-transitive permutation representations of degrees 22m~x + 2m_1  and
y2m—\ _2m— 1

(3) For every prime power q = p11 > 2 with prime p, each group be-
tween PSU(3, q) and its automorphism group Aut PSU(3, q) has a 2-
transitive but not 3-transitive permutation representation of degree q3+l,
and moreover PSU(3,a) is a normal subgroup of index
[GCD(3, q + l)]2fi in Aut PSU(3, q) ,34

(4) For every proper odd power q = 2^ of 2, each group between the Suzuki
group Sz(q) and its automorphism group Aut Sz(q) has a 2-transitive
but not 3-transitive permutation group of degree q2 + 1, and moreover
Sz(fl) ¿j a normal subgroup of index p in Aut Sz(a).

(5) For every odd power q = 3^ of 3, each group between the Ree group
R\(q) and its automorphism group AutR\(q) has a representation as a
2-transitive but not 3-transitive permutation group of degree a3 + 1, and
moreover R\(q) is a normal subgroup of index p. in Aut R\(q).

(6) The group PSL(2, 11) has two distinct 2-transitive but not 3-transitive
permutation representations of degree ll.35

(7) The alternating group Aj has two distinct 2-transitive but not 3-transitive
permutation representations of degree 15; both are equivalent to isomor-
phisms A-/ —> A-] C Si 5 .

(8) The "Higman-Sims"sporadic group HS has two different 2-transitive but
not 3-transitive permutation representations of degree 176.

(9) The "third Conway" sporadic group C03 has a 2-transitive but not 3-
transitive permutation representation of degree 276.

The above items (I) to (9) contain a complete list of 2-transitive but not 3-
transitive permutation groups having a nonabelian minimal normal subgroup.
The degree of a 2-transitive but not 3-transitive permutation group G having
an abelian minimal normal subgroup is necessarily some power pm of some
prime p ; the said minimal normal subgroup is isomorphic to (Zp)m and a 1-
point stabilizer of the group G itself is isomorphic to a subgroup of GL(«i, p) ;
moreover, in the case m = 1 we must have G = AGL( 1, p), whereas, in
the case m = a prime number and p = 2 we must have G — AGL(1, 2m)
or ATL(1, 2m), and finally, in the case m = 2 and p = 3 we must have
G = AGL(1, 9) or ATL(1, 9) or AML(1, 9) or AGL(2, 3) or ASL(2, 3),
where we have put AML(1, 9) = the l-point stabilizer of PML(2, 9),36 and
ASL(2, 3) = (GF(3))2 x SL(2, 3).

In connection with the above statement, we note the following Theorem of
Burnside which is really the starting point of the classification of 2-transitive
permutation groups. Although most modern proofs of this make use of Frobe-

34A centerless group G , i.e., a group G whose center is the identity, may be identified with its
inner automorphism group and hence may be regarded as a normal subgroup of its automorphism
group Aut G.

35Two permutation representations G —> S„ and G -» Sni of a (finite) group G are equivalent
if they differ by an isomorphism S„ -* Sni induced by a bijection between the underlying sets of
S„ and S„i ; note that then automatically n = n'. Two representations are distinct if they are not
equivalent.

36In other words, AML( 1,9) is the 2-point stabilizer of the Mathieu group M\ t .
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nius' Theorem (1901) [Fr],37 it is clear that Burnside's original proof did not,
since it is already given as Theorem IX on page 192 of the first edition of [Bu]
published in 1897. In the second edition of [Bu] published in 1911, it occurs
as Theorem XIII on page 202, and there Burnside gives two proofs of it, one
using Frobenius and the other without.38 Thus Burnside gives an "elementary"
proof of the following Theorem without using "character theory."39

Burnside's Theorem. A 2-transitive permutation group has a unique minimal
normal subgroup. The said subgroup is either an elementary abelian group40 or
a nonabelian simple group.

As a consequence of CTT and Weak CDT, and in view of a simple numerical
lemma, we have the following.

Special CDT. Given any prime p and any positive integer p, concerning 2-
transitive but not 3-transitive permutation groups of degree q +1, where q = pß,
we have the following. If p — 1 and p is a Mersenne prime, then PSL(2, p),
AGL( 1, p + 1 ) and A Y L( 1, p + 1 ) are the only such groups. If p = 1 but p
is not a Mersenne prime, then PSL(2, p) is the only such group, except that for
p = 2 this group is "accidentally" 3-transitive because it coincides with S3. If
p > 1 then, in addition to the relevant groups listed in items (1), (3), (4), (5) of
Weak CDT, the only other such groups are the groups AGL( 1,9), A Y L( 1, 9),
AML(1, 9), AGL(2, 3), and ASL(2, 3), which occur when (p,p) = (3,2),
and the group AGL(1, q + 1) which occurs when q + 1 is a Fermât prime.41

Here is the said
Simple Numerical Lemma. Given any primes p and n and any positive integers
p and u, such that p^ + 1 = nu, we have the following. If p > 2, then p = 1
and n — 2 and u = a prime number, and so p must be a Mersenne prime. If
p = 2 and u > 1, then p = 3 and n = 3 and u = 2. If p = 2 and u = 1,
then p= a power of 2, and so n must be a Fermât prime.

To see this, first suppose that p > 2 ; now p is odd and hence p*1 + 1 is
even and hence n = 2; since p is odd, we have p = 1(4) or p = 3(4) and
hence p2 = 1(4), and therefore if p is even then 2" = pf + 1 = 2(4) and this
would imply u = 1  which would be absurd; on the other hand, if p is odd
then 2" = pi1 + 1 = (p + l)(pA_1 -pß~2 -I-hi) where the second parenthesis
contains an odd number of odd terms and hence its value is odd, but since that
value divides 2", it must be 1, and this gives p11 + 1 = p + 1 which implies

37 For Frobenius' Theorem there is no "character free" proof. As examples of modern proofs of
Burnside's Theorem which seem to use Frobenius' Theorem, see 12.4 on page 32 of Wielandt [Wi]
and 7.12 on page 233 of volume III of Huppert-Blackburn [HB].

38In Burnside's classical style of writing, Theorem x means Theorem x together with the
discussion around it. In other words, although everything is proved, only some of the conclusions
are called theorems. This "classical" style is quite different from the so called "Landau Style" of
Satz-Beweis-Bemerkung. In the classical style, you first discuss things and then suddenly say that
you have proved such and such; in other words, the proof precedes the statement of a theorem.

39And certainly without using CT!
40A group is elementary abelian if it is isomorphic to (Zp)m for some positive integer m and

some prime p .
41A Fermât prime is a prime of the form 2f + 1 for some positive integer /x . It follows then

that n must be a power of 2 , because otherwise p = h'/j." where p.' is even and ß" > 1 is odd
and this would give the nontrivial factorization 2" + 1 = (2^ + l)(2*V'-i) - 2"'(""-2> + • ■ • + 1).



90 S. S. ABHYANKAR

p = 1.  Next suppose that p = 2 and u > 1 ; now n must be odd, and if
u is also odd then 2** = nu - 1 = (n - l)(7t"_1 + 7rM_2 +-hi) where the
second parenthesis consists of u positive odd terms and hence its value is an
odd number > u and, since it divides 2^, it must be 1 which is absurd; on
the other hand, if u is even then 2^ = nu - 1 = (nul2 - l)(nu/2 + 1) and hence
nu/2 _ i an(j nu/2 _|_ j are botjj p0wers 0f 2 whose difference is 2 and therefore
they must be equal to 2 and 4, and this gives p = 3 and it = 3 and u = 2.
Finally, if /j = 2 and u = 1, then by the last footnote we see that p must be
a power of 2, and n must be a Fermât prime.

Here is another consequence of CDT.

Uniqueness Theorem for Transitive Extensions. Any two transitive extensions
of a transitive permutation group are isomorphic as permutation groups, with
only one exception.42 The exception is that PSL(2, 7) and ATL(1, 8) have
a common l-point stabilizer, note that both these are 2-transitive but not 3-
transitive permutation groups of degree 8.

As an immediate corollary of the above theorem we have the following.

Uniqueness Theorem for Transitive Extensions of 2-Transitive Groups. Any two
transitive extensions of a 2-transitive permutation group are isomorphic as permu-
tation groups. In particular, the Mathieu groups A/u , M\2, M22, A/23, and M24
are the unique transitive extensions of PML(2, 9), M\ \, PSL(3, 4), M22, and
A/23 respectively.

To end this review of group theory, we note that by the rank of a transitive
permutation group is meant the number of orbits of its l-point stabilizer; the
lengths of these orbits, excluding the obvious one point orbit, are called sub-
degrees of the group; so the number of subdegrees is one less than the rank,
and the sum of the subdegrees is one less than the degree. Thus a 2-transitive
group is simply a transitive group of rank 2. Now CT has also been used by
Kantor-Liebler [KL], Liebeck [L], and others, to give CR3 = classification of
transitive groups of rank 3, which although much longer than CDT, should be
quite useful for Galois theory. Here is an amusing sample from CR3 which
does not use CT and which can be found in Kantor [Kl].

Sample from CR3. For any integer n > 1 and any prime power q, the groups
PSp(2«, q) and 0(2n +1, q) are the only transitive permutation groups of rank
3 whose subdegrees are q(q2n~2 - l)/(q - 1) and q2n~l. A rank 3 transitive
permutation group G with subdegrees q(q + l)2 and q4 for a prime power
q > 1, is a subgroup of Aut PSL(4, q) ; moreover, if q > 2 then G contains
PSL(4,fl).

18.  A TYPE OF DERIVATIVE

To continue with the calculation of Galois groups, let me explain how to
throw away a root a = a.\ of a polynomial

42If we don't assume the given group to be transitive, then there are numerous exceptions.
For example every finite group, in its standard representation as a regular permutation group, is
a transitive extension of the identity group. Since for increasing /, there are fewer and fewer
/-transitive permutation groups, it follows that "most" transitive permutation groups have no tran-
sitive extensions.
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n

f = f(Y) = Yn + alY"-l + --- + an = ll(Y-ai)
i=\

by using a type of derivative. Now the coefficients a\, ... , an belong to a field
K, and we want to find the polynomial

A = A(Y) = t^t = Y"-1 + bx Y"-2 + ■■■ + />„_, 6 K(a)[Y].(Y -a)

To this end, first recall the three basic transformations of equations described in
any old book. For instance, we may quote the following three relevant articles (=
sections) from Burnside-Panton's 1904 book on the theory of equations [BP].43

Art 31. To multiply the roots by a given quantity. For any u ?¿ 0, the polynomial
g = g(Y) whose roots are u times the roots of / is given by

g(Y) = unf (-) =Yn+Cl Y"'1 + ■ ■ ■ + c„ = f[(Y - ua¡)

with Cj = u'üj.

Art 32. To reciprocate the roots. In case a, ^ 0 for 1 < / < «, i.e., in case
an t¿ 0, the polynomial g = g(Y) whose roots are the reciprocals of the roots
of / is given by

^>=!MFH(1+ûiy+--'+a"y")=n(1'-(;,))-
Art 33. To decrease the roots by a given quantity. For any u, the polynomial
g = g (Y) whose roots are -u plus the roots of / is given by

n

g(Y) = f(Y + u) = Y"+clY"-1 + --- + cn = ll(Y-(al-u))
i=i

with c\ = a\ + nu, ... , cn = f(u).
Now in the first and the third cases provided u G K, and in the second case

without any proviso, we have g(Y) e K[Y] and, assuming the roots a\, ... , a„
to be pairwise distinct, we have Gal(g, K) = Gal(/, K) as permutation groups,
and so for Galois theory purposes we may conveniently modify / by one or
more of these three transformations.

For example, sometimes it may be easier to compute the polynomial g\(Y)
obtained by decreasing the roots of f\ by a. In view of what we have just
said, we get Gal(gi, K(a)) = Gal(/i, K(a)) and hence, assuming / to be
irreducible in K[Y], for the one-point stabilizer G\ of G = Gal(/, K) we get
C7, = Gal(¿r,, K(a)).

43 For the last forty years I had happily assumed that this Burnside of the theory of equations
[BP] was the same as the Burnside of the theory of groups of finite order [Bu]. To my dismay,
at the Oxford Conference in April 1990, Peter Neumann told me that, although both were named
William and both obtained a D.Sc. from Dublin around 1890, the equations Burnside was William
Snow whereas the group theory Burnside was simply William. Strangely, I first learnt group theory
from William Snow's book on the theory of equations.
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Clearly g\ can also be obtained by first decreasing the roots of / by a to
get the polynomial g — g(Y) = f(Y + a), and then throwing away the root
Y = 0 of g ; this gives g\(Y) — g(Y)/Y, and now remembering that f(a) = 0
we get

f(Y + a)-f(a)
Si(Y) = ---.

According to the calculus definition, by taking the "limit" of the RHS as Y
tends to 0, we get f'(a). This motivates the following definition according to
which g\ turns out to be the twisted Y-derivative of f at a.

Definition. For any polynomial 8 = 0(Y) in an indeterminate Y with coeffi-
cients in a field L and for any element ß in L, we call (8(Y + ß) - 6(ß))/Y
the twisted Y-derivative of 6 at ß .

For a moment let us denote the twisted y-derivative of 8 at ß by 8'. Then
clearly 8' = d'(Y) is a polynomial in Y with coefficients in L, and if 6 e L
then 6' = 0, whereas: if 6 £ L then 8' ^ 0 and the F-degree of 8' is 1 less
than the y-degree of 8, and the two polynomials 8 and 8' have the same
leading coefficient, and hence in particular, if 8 is monic then so in 8'.

Next we note that this is L-linear because for any ô = ô(Y) e L[Y] and
X, p € L we have

(u + ,eY = wr + ß) + ,wryi)-um-*Kf) _u, + „„,
However, the usual product rule is to be replaced by a twisted product rule
because by the standard trick of adding and subtracting the same quantity we
get

5(Y + ß)8(Y + ß) - Ô(Y + ß)8(ß)
(SO)' = Y

a(Y + ß)8(ß)-o(ß)8(ß)
Y

= ô*8' + â'8t

where ô* is the Y-translation of ô by ß and 0" is the evaluation of 8 at ß,
i.e., ô* = S*(Y) = ô(Y + ß) and 0» = <?(£).

Finally, for any positive integer m we have the power rule

(Ym)' = F""' + mßYm~2 + ■■■+ (m\ßiYm-i-1 + ■■■ + mßm~l

and, in case char L ^ 0, for any power q of charL we have the prime power
rule (Y9)' = Yq~x and combining this with the product rule, we get the power
product rule

[Yqd(Y)]' = (Y + ß)98'(Y) + Yq~l8(ß).

The reason for explicitly mentioning Y in all this is that there may be other
indeterminates present; for instance, if y/ = y/(X, Y) is a polynomial in inde-
terminates X and Y, and ß is an element in a field which contains X as well
as all the coefficients of y/ , then the twisted y-derivative of y at ß is given
by (y/(X,Y)-y/(X,ß))/Y.

Reverting to the original situation by taking ß = a and L = K(a) in the
above set-up, we conclude with the following.
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Summary about the twisted derivative. If / = f(Y) is a nonconstant monic
irreducible polynomial in an indeterminate Y with coefficients in a field K
such that / has no multiple root in any overfield of K, and if a is a root
of / in some overfield of K, then by letting f' = f'(Y) to be the twisted
y-derivative of / at a we have that the Galois group Gal(/', K(a)) is the
one-point stabilizer of the Galois group Gal(/\ K).

Now without assuming / to be irreducible and without any precondition
about multiple roots, suppose the degree of / is « > 2 and suppose for every
root a of f(Y) in a splitting field of K we have that the twisted y-derivative
of f(Y) at a is irreducible in K(a)[Y], then f(Y) must be devoid of multiple
roots; namely, if f(Y) = Y["=l(Y - a,) and a\ = a2 and f'(Y) is the twisted
y-derivative of f(Y) at a = a\, then f'(Y) is reducible in K(a)[Y] because
its degree is « - 1 > 1 and it has (Y - a2) as a factor in K(a)[Y]. Thus we
have the following.
Twisted Derivative Criterion. If f(Y) is a nonconstant monic polynomial of
degree > 2 in an indeterminate Y with coefficients in a field K such that for
every root a of f(Y) in a splitting field of K we have that the twisted Y-
derivative of f(Y) at a is irreducible in K(a)[Y], then f(Y) has no multiple
roots in any overfield of K.

19. Cycle lemma
As another tool for calculating Galois groups, let us make note of a "cycle

lemma".
Let K be a field and consider a monic polynomial

/ =/(y) = y + a,y-1 + ■ • • + a„ = JJ(y - a,-)
1=1

of degree « in an indeterminate Y with coefficients a\, ... ,a„ in K having
pairwise distinct roots a\, ... , a„ in some overfield of K. Now by conve-
niently enlarging the said overfield and moving it by a ^-isomorphism, it can
be construed to contain any preassigned overfield K* of K, and this gives us
the following obvious but basic principle of computational Galois theory.

Basic Extension Principle. For any given overfield K* of K, the Galois group
Gal(/, K*), as a permutation group of degree n, acting on the roots {a\, ... ,
a„}, may be regarded as a subgroup of the Galois group Gal(/, K).

Given any overfield K* of K and any factorization
m

f(Y) = J]ej(Y)   where e¡(Y) = Yn< + anYn'~l +■■■ + ajnj
;=i

with ají, ... , üjnj in K* we can relabel the roots a\, ... , a„ as an, ... ,
ai,n,,..., am\,... , amnm so that

«j

e]=ej(Y) = \\(Y-aji)   for 1 < j < m
i=i

and we can identify the direct product Sn¡ x ■ ■■ x S„m , where Snj is the sym-
metric group acting on aji, ... , o.jn¡, with a subgroup of the symmetric group
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Sn acting on a,, ... , a„ . As a second obvious but basic principle we then have
the following.

Basic Projection Principle. For the Galois group Gal(/, K*) c S„ we have
Gal(/, K*) c S„t x ■ ■ ■ x S„m , and for 1 < j < m, the Galois group Gal(/, K*)
maps onto the Galois group GsX(e}■, K*) c Snj under the natural projection
Sni x • ■ • x o„m —» Snj.

Recall that a v-cycle is a permutation a, say in Sn, such that for some v dis-
tinct elements ai{, ..., aiv in {ai, ..., a„} we have er(a;i ) = a,2, ..., a(aiv_x)
= a,„, ff(a,J = a,-, and a(a¡) = ay for all j £ {l'i,... , /„} . Now if e\(Y) is
irreducible in A"*[y] and if either «1 is prime or Gal(^i, K*) is cyclic, then
clearly Gal(e°i, K*) contains an «1-cycle Ti, and by the Projection Principle
Ti is the projection of some x e Gal(/, K*), and if also | Gal(e,, K*)\ and
«1 are coprime for 2 < j < m then upon letting p to be the product of
I Gal(i?2, K*)\, ... , I Gal(<?m, K*)\ we see that ^ e Gal(/, K*) is an /ij-cycle.
Therefore in view of the Extension Principle we get the following.

Cycle Prelemma. If |Gal(e,-, K*)\ and n\  are coprime for 2 < j < m, and
e\(Y) is irreducible in K*[Y], and either n\ is prime or G&\(e\,K*) is cyclic,
then Gal(/, K) contains an n\-cycle.

To convert the Cycle Prelemma into the Cycle Lemma, let v be a (real
discrete) valuation44 of K, i.e., v is a map of K onto the set of all integers
together with the symbol 00 such that for all a, b in K we have v(a) = 00 o
a = 0, and v(ab) = v(a) + v(b), and v(a + b) > min(<;(a), v(b)). Recall that
{a e K : v(a) > 0} is called the valuation ring of v , and this ring modulo the
unique maximal ideal {a e K : v(a) > 0} in it is called the residue field of
v . Also recall that v is said to be trivial on a subfield k of K, or v is said
to be a valuation of K/k, if v(a) = 0 for all 0 ^ a e k. Let £ be a finite
algebraic field extension of K and let v\, ... , Vf, be the extensions of v to
K , i.e., V\, ... ,vh are those valuations of K whose valuation rings intersected
with K give the valuation ring of v ; we may also say that v splits in K into
V\, ... ,vh. By r(iij : v) we denote the reduced ramification exponent45 of v¡
over v, i.e., f(v¡ : v) is the unique positive integer such that for all a e K
we have Vj(a) = r(v¡ : v)v(a). By d(Vj : v) we denote the residue degree of
Vj over v , i.e., d(Vj : v) is the field degree of the residue field of û, over the
residue field of v . Note that if either K/K is separable, or v is trivial over a
subfield k of K suchthat K/k is finitely generated of transcendence degree 1,
then

h
(t) n£r(vj:v)d(tij:v) = [K:K].

;=i
Also note that Vj is unramified over v , or over K, means that r(vj : v) = 1

and the residue field of v¡ is separable over the residue field of v ; Vj is ramified
over v , or over K, means that Vj is not unramified over v ; v is unramified
in K means that î)j is unramified over v for 1 < j < h; and finally, v is

44In this paper, by a valuation we shall mean a real discrete valuation.
45Also called the reduced ramification index.
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ramified in K means that v is not unramified in K. Now it is well known
that if f(Y) is irreducible in K[Y], K = K(ax), K* = the completion of K
with respect to v, and ej(Y) is irreducible in A"*[y] for 1 < j < m, then
h = m and, after a suitable relabelling, r(vj : v)d(v¡ :v) = nj for 1 < j < h ;
for instance see §2 of [A2]. Moreover, by Newton's Theorem, if the residue
field of v is an algebraically closed field of the same characteristic as K, and
if nj ^ 0(charA") for some j, then for that / the Galois group Gal(e,, K*) is
cyclic; for a proof of Newton's Theorem based on Shreedharacharya's method
of completing the square, see my new book on algebraic geometry for scientists
and engineers [A6]. Therefore by the Cycle Prelemma we get the

Cycle Lemma. If f(Y) is irreducible in K[Y] and there exists a valuation v
of K such that the residue field of v is an algebraically closed field of the same
characteristic as K and such that for the extensions i)\, ... ,vh of v to a root
jield46 of f(Y) over K we have that r(Vj : v) and r(i)\ : v) are coprime
and r(Vj : v) £ O(charÄ') for 1 < j < h, and either r(ii\ : v) is prime or
r(i}\ : v) ^ O(charA'), then the Galois group Gal(/, K) contains an r(i)\ : v)-
cycle.

The Basic Extension Principle can be refined thus.

Refined Extension Principle. Given any field extensions K c K' c K*, by the Ba-
sic Extension Principle we may regard Ga\(f, K*) < Ga\(f, K') < Gal(/, K) <
S„, and assuming K* to be a finite normal extension of K we have that
Gal(/, K*) < Gal(/, K) and the factor group Gal(/, A")/Gal(/, K*) is a ho-
momorphic image of Gal(A"*, K) 41

To see this, let L = K(ai, ... , an) and L* = K*(a\, ... , a„). Now L
is a (finite) Galois extension of K, and given any a e Gal(/, K), we view
er as a permutation of {1,2,...,«} such that for some (actually unique)
t 6 Gal(L,Ä") we have t(a;) = aCT(,) for 1 < i < n. Likewise, L* is a
(finite) Galois extension of K*, and given any a* e Gal(/, K*), we view
a* as a permutation of {1,2,...,«} such that for some (actually unique)
t* € Gal(L*, K*) we have r*(a;) = aCT.{,) for 1 < / < «. Obviously, a =
a* <*=> t = t*|L where t*|L denotes the restriction of x* to L. Thus we get
the commutative diagram

Gal(/, K*)   -► Gal(/, K)

I 1
Gal(L*,A-*) —*—+ G&\(L,K)

where the left arrow is the isomorphism a* >-»■ t* , the right arrow is the iso-
morphism a h-> t, the top arrow is the inclusion Gal(/, A^*) c Gal(/, K),
and the bottom arrow ô is the injection x* >-► t*|L. Therefore our asser-
tion is equivalent to saying that im ö is a normal subgroup of Gal(L, K) and

46A root field of f(Y) over K is a field obtained by adjoining a root of f(Y) to K, for
instance the field K(a\).

47That is, Gal(/, /q/Gal(/, K*) « Ga\(K*, K)/N for some normal subgroup N of
Gal(K* , K). Note that for any finite normal extension K* of a field K , without assuming
K* to be separable over K , the Galois group Gal(.K* , K) is defined to be the group of all K-
automorphisms of K* .
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Gal(L, K)/imô « Gal(A"*, K)/N for some normal subgroup N of Gal(A"*, K).
To prove this new version of the assertion, let A"0 = Ln A*, let A"g be the maxi-
mal separable algebraic field extension of An in AT*, let L^ = K^(a\ , ... , a„),
and let us depict all this in the following Hasse diagram.

L*

Referring to the lower quadrilateral in the above diagram, Lq/Kq is a fi-
nite Galois extension, the field L*, is a compositum of the fields L and A"q
with L n Kq = An , and the four sides of the said quadrilateral represent the
finite Galois extensions L/An, A"q/A"0 , Lq/L, and Lq/Kq ; hence by the Fun-
damental Theorem of Galois Theory, the group Gal(Lj*,, An) is the internal
direct product of the two normal subgroups48 Gal(L*,, L) and Gal(L¿ , Kq) ,
and X* i-> X*\L gives a surjection Gal(L*,, An) —» Gal(L,A"n) whose ker-
nel is Gal(L¡5 j L) and whose restriction to Gal(L*,, Kq) is an isomorphism

a

Gal(L*,, A"o ) —► Gal(L, A"o). By applying the Fundamental Theorem of Galois
Theory to the left triangle in the above diagram, i.e., by noting that L/K, L/K0,
and An/A" are Galois extensions, we see that Gal(L, A"o) is a normal sub-
group of Gal(L, A") and Gal(L, A")/Gal(L, A"0) « Gal(A"0, A"). Upon letting
Gal(L, Ko) -^ Gal(L, A") be the natural inclusion Gal(L, K0) C Gal(L, A"),

a a*

we see that the composition Gal(L*,, Kq) —> Gal(L, A"0) —► Gal(L, A") coin-
cides with the injection Gal(¿Q , A*q) —^ Gal(L, A") given by X* >-» X*\L, and
hence

imrio = Gal(L, K0) < Gal(L, A")
and

Gal(L, A")/im<50 « Gal(A"0, A").
By applying the Fundamental Theorem of Galois Theory to the right triangle
in the above diagram, i.e., by noting that Kq/K , Kq/Kq , and A"o/A" are finite
Galois extensions, we see that

Gal(Ao*, Kq) < Gal(Ao*, A")   and    Gal(A"0*, A")/ Gal(A"0*, A"0) « Gal(A"0, A").

Therefore, upon letting N = Gal(A"r*, A"n), we conclude that

im<50 < Gal(L, A")   and    Gal(L, A")/imá0 « Gal(Äj , K)/N
for some

A^<Gal(A"0*, A").

48That is, the intersection of the two normal subgroups is the identity and they generate the
whole group.
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Finally, referring to the modified diagram obtained by deleting the three lines
emanating from A"o in the above diagram, L/K and A"<*/A" are finite Galois
extensions; K*/K is a finite normal extension; A"*/A"q is pure inseparable; L*,
is a compositum of L and A"q ; and L* is a compositum of Lq and K*.
Consequently X i-» X\Kq gives an isomorphism Gal(A"*, A") —> Gal(A"Q , A"),
whereas X' >-» X'\Lq gives an isomorphism

Gal(L* ,K*)-^ Gal(L5 , A"0*)

such that f5o(imf5') = im<î ; therefore by the next to last display we conclude
that

imr5<Gal(L, A")   and    Gal(L, K)/imô « Gal(A"*, K)/N
for some N < Gal(K*, A").

For applying to specific situations, here are some

Corollaries of the Refined Extension Principle. Given any finite algebraic field ex-
tension K' of K, by the Basic Extension Principle we may regard Gal(f, A"') <
Gal(/, A") < S„ , and then upon letting K* be a least normal extension of K
containing K', we have the following.

(1.1) There exists 7V<Gal(A"*, A") and M<Gal(f, K) with M < Gal(/, A"')
such that Ga\(f, K)/M « Gal(A"*, K)/N.

(1.2) // Gal(A"*, A") is solvable, then there exists M < Gal(f, K) with M <
Gal(f, K') such that Gal(/, K)/M is solvable.

(1.3) If Gal(A"*, K) is solvable, and Gal(/, A") = Sn, and 3 ¿ n ^ 4, then
Gal(f, K') = Sn or An .

(1.4) // Gal(A"*, A") is cyclic and Ga\(f,K) = S„, then Gal(/, A"') =
S„ or A„.

(1.5) // Gal(A"*, A") is cyclic of odd order and Ga\(f, K) = S„, then
Gal(f, K') = Sn .

(1.6) If there is no nonidentity group which is a homomorphic image of
Ga\(f, K) as well as Ga\(K*, A"), then Gal(f, K') = Gal(/, K).

(1.7) If Gal(/, A") ¿s a simple group which is not a homomorphic image of
Gal(K*, K), then Gal(f, A"') = Gal(/, A").

(1.8) If Gal(A"*, A") is solvable and Gal(/, A") is nonabelian simple, then
Gal(f,K') = Gal(f,K).

(1.9) // Gal(A"*, A") is solvable, and Gal(/, K) = An, and 3 ¿ n ¿ 4, then
Gal(f,K') = An.

(1.10) // Gal(A"*, A") ¿s cyclic, and Gal(/, A") = An, and « = 4, then
Gal(f,K') = Anor(Z2)2.

(1.11) // Gal(A"*, A") is cyclic, and Gal(/, A") = An, and n = 3, then
Gal(f,K') = A„ orZx.

(1.12) // Gal(A"*, A") is cyclic of order nondivisible by 3 and Ga\(f', K) =
An, then Gal(/, A"') = An .

(1.13) // Gal(A"*, A") ¿j solvable and Gal(/, A") = PSL(2, q) for a prime
power q>3, then Gal(/, A"') = PSL(2, q).

(1.14) If Gal(A"*, A") is cyclic of order nondivisible by char/c and Gal(/, A")
= PSL(2, q) with \<q = n-\ = a power of char Ac, then Gal(/, A"') =
PSL(2,a).

(1.1) follows by taking M = Gal(/, A"*) in the Refined Extension Principle.
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The implication ( 1.1 ) =*> ( 1.2) follows from the fact that a homomorphic image
of a finite solvable group is solvable. In view of (1.1), the implication (1.2) =>•
(1.3) follows from the facts that if « > 5 then Sn is nonsolvable, and An and
S„ are the only nonidentity normal subgroups of S„, and there are no other
subgroups of Sn between An and S„, whereas if « < 2 then A„ and S„
are the only subgroups of Sn . In view of (1.1), the implication (1.3) => (1.4)
follows from the fact that S3 and S4 are noncyclic; A3 is the only nonidentity
normal subgroup of S3, for the factor group we have S3/A3 = Z2 , and the only
nonidentity normal subgroup of S4 other than A4 is the Klein group (Z2)2
consisting of the four permutations (1), (12)(34), (13)(24), (14)(23), and the
factor group of S4 by the Klein group is isomorphic to S3. In view of ( 1.1 ), the
implication (1.4) => (1.5) follows from the fact that S„/A„ = Z2 or Z\. The
implications (1.1) => (1.6) => (1.7) are obvious. The implication (1.7) =>■ (1.8)
follows from the fact that a homomorphic image of a finite solvable group is
solvable. In view of (1.1), the implication ( 1.8) => (1.9) follows from the facts
that if n > 5 then A„ is nonabelian simple, whereas if « < 2 then A„ = Z\ .
The implication (1.1) =>■ (1.10) follows from the facts that A4 is not cyclic, and
the Klein group (Z2)2 is the only nonidentity normal subgroup of A4 , and the
factor group by the Klein group is Z3. The implication (1.1) => (1.11) follows
from the fact that A3 = Z3. In view of ( 1.1 ), ( 1.10), and (1.11), the implication
(1.9) => (1.12) follows from the fact that A4/(Z2)2 = Z3 = A3. The implication
(1.8) =>• (1.13) follows from the fact that PSL(2, q) is nonabelian simple for
every prime power q > 3. Finally, in view of (1.1), and what we have said
about S3 and A4 , the implication (1.13) => (1.14) follows from the facts that
PSL(2, 2) = S3 and PSL(2, 3) = A4.

As a consequence of the Refined Extension Principle we have the
Substitutional Principle. Assume that K = the field k(X) of rational functions
in an indeterminate X with coefficients in afield k, i.e., a, = a¡(X) e k(X) for
1 < / < «. Given any /(AT) e k(X) \k, let

fx = fx(Y) = Y"+al(x(X))Y"-l + .-- + an(X(X))ek(X)[Y] = K[Y]
and let K' = k(V) where V is an indeterminate. Then the k-homomorphism
X >-* x(V) gives an embedding K — k(X) c k(V) = K', and by sending
Y to Y it gives an embedding K[Y] = k(X)[Y] c k(V)[Y] = K'[Y], and
this sends f to fx with X changed to V. Therefore, fx has no multiple
roots in any field extension of k(X) and, upon letting K* - a least normal
extension of k(X) containing k(V), by the Basic Extension Principle we may
regard Gal(f, K*) < Ga\(f,k(V))= Ga\(fx,k(X))< Ga\(f, k(X)) < Sn,
and now by the Refined Extension Principle Gal(/, A"*) < Gal(/, k(X)) and
Gal(/, k(X))l Gal(/, K*) « Gal(A-*, k(X))/N for some N<Gal(K*, k(X)) .49

Here are the corresponding

Corollaries of the Substitutional Principle. Letting the situation be as in the Sub-
stitutional Principle, and remembering that K* = a finite normal extension of
k(X) and Gal(fx , k(X)) <  Gal(f, k(X)) <S„,we have the following.

49Note that by writing x(-ï) = x'(X)/x"(X), where x'(X) and x"(X) are coprime nonzero
polynomials in X with coefficients in k , we have K* = a splitting field of x'(Y) - Xx"(Y) over
k(X), and if the said splitting field coincides with a root field of x'(Y) - Xx"(Y) over k(X),
then we have Gal(/, K*) = Gal(/, k(V)) = Gal(/X , k(X)).
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(2.1) There exists N < Gal(K*, k(X)) and M < Gal(/, k(X)) with M <
Gal(fx , k(X)) such that Ga\(f, k(X))/M « Gal(A:*, k(X))/N.

(2.2) // Gal(A"*, k(X)) is solvable, then there exists M <Ga\(f, k(X)) with
M < Ga\(fx, k(X)) such that Gal(/, k(X))/M is solvable.

(2.3) // Gal(A"*, k(X)) is solvable, and Gal(/, k(X)) = Sn, and 3 ¿ n ± 4,
then Ga\(fx , k(X)) = S„ or An .

(2.4) //Gal(A"*, k(X)) is cyclic and Gal(/, k(X)) = S„, then Gal(fx , k(X))
= S„ or An .

(2.5) // Gal(A"*, k(X)) is cyclic of odd order and Ga\(f', k(X)) = S„, then
Gal(fx , k(X)) = Sn .

(2.6) If there is no nonidentity group which is a homomorphic image of
Gal(f, k(X)) as well as Gal(K*, k(X)), then Gal(fx, k(X)) = Gal(f, k(X)).

(2.7) If Gal(/, k(X)) is a simple group which is not a homomorphic image
of Gal(A"*, k(X)), then Ga\(fx, k(X)) = Gal(/, k(X)).

(2.8) If Gal(AT*, k(X)) is solvable and Gal(/, k(X)) is nonabelian simple,
then Gal(fx , k(X)) = Gal(/, k(X)).

(2.9) // Gal(A"*, k(X)) is solvable, and Gal(f, k(X)) = An, and 3 ¿ n ± 4,
then Ga\(fx ,k(X)) = An.

(2.10) //Gal(A"*, k(X)) is cyclic, and Gal(/, k(X)) = A„,andn = 4, then
Gal(fx,k(X)) = Anor(Z2)2.

(2.11) If Gal(K* ,k(X)) is cyclic, and Gal(f, k(X)) = A„, and n = 3, then
Gal(fx , k(X)) = An or Z,.

(2.12)//Gal(A"*, k(X)) is cyclic of order nondivisible by 3 and Gal(f, k(X))
= An, then Ga\(fx ,k(X)) = A„.

(2.13) // Gal(A"*, k(X)) is solvable and Gal(/, k(X)) = PSL(2, q) for a
prime power q > 3, then Gal(^ , k(X)) = PSL(2, q).

(2.14) If Gal(A"*, k(X)) is cyclic of order nondivisible by char A; and
Gal(f, k(X)) = PSL(2, q) with l<q = n-l = a power of charfc, then
Ga\(fx,k(X)) = PSL(2,q).

The proof of (2.1) to (2.14) follows from the above proof of (1.1) to (1.14)
by changing "Refined Extension Principle" to "Substitutional Principle" and by
changing (1./) to (2./) for 1 < / < 14.

Stated in a form more suitable for applying to the specific equations described
earlier, here are some further

Corollaries of the Substitutional Principle. Letting the situation be as in the Sub-
stitutional Principle, and remembering that Gal(^ , k(X)) < Gal(f, k(X)) <
Sn, and assuming that k is algebraically closed and x(X) - cXr with O^c e k
and nonzero integer r, we have the following.

(3.1) There exists M < Gal(/, k(X)) with M < Gal(fx, k(X)) such that
Gal(/, k(X))/M is a cyclic group whose order is nondivisible by charfc but
divides r.

(3.2) // Gal(/, k(X)) = S„, then Gal(fx , k(X)) = S„ or A„ .
(3.3) // Gal(/, k(X)) = S„ and char A; = 2, then Gal(fx , k(X)) = Sn .
(3.4) If Gal(/, k(X)) is nonabelian simple, then Gal(^ , k(X)) =

Gal(f,k(X)).
(3.5) // Gal(/, k(X)) = An and 3 ¿ n ¿ 4, then Ga\(fx, k(X)) = An .
(3.6) // Gal(/, k(X)) = A„ and n = 4, then Gal(fx , k(X)) = An or (Z2)2.
(3.7) // Gal(/, k(X)) = A„ and « = 3, then Gal(fx , k(X)) = An or Zx.
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(3.8) // Gal(/, k(X)) = A„ and charÂ: = 3, then Gal(fx , k(X)) = An .
(3.9) // Gal(/, k(X)) = PSL(2,?) for a prime power q > 3, then

Gal(fx,k(X)) = PSL(2,q).
(3.10) //Gal(/, k(X)) = PSL(2, q) with 1 < o = n-1 = a power of char k,

then Ga\(fx , k(X)) = PSL(2, q).

Namely, Gal(A"*, K), i.e., the Galois group of the splitting field of Y^ -
(7)       over k(X) is a cyclic group whose order is nondivisible by char/: but
divides r, and hence (3.1), (3.2), (3.3) follow from (2.1), (2.4), (2.5) respec-
tively, and (3./) follows from (2./ + 4) for 4 < / < 10.

Here are still some more

Corollaries of the Substitutional Principle. Letting the situation be as in the Sub-
stitutional Principle, and remembering that Gal(fx, k(X)) < Gal(f, k(X)) <
S„, and assuming that

X(X) = XdiXd-Á--(Xx(X)).--)),
where d is a positive integer and

Xi(X) = ^-)ek(X)\k

with coprime nonzero members x¡(X) and x'/i-X) of k[X] for 1 < / < d,
and upon letting K* to be a splitting field of x'i(Y) - Xx"(Y) over k(X) for
I < i <d, we have the following.

(4.1) If for each i with 1 < i < d we have that there is no nonidentity group
which is a homomorphic image of Gal(f, k(X)) as well as Gal(K*, k(X)),
then Ga\(fx , k(X)) = Ga\(f, k(X)).

(4.2) IfGa\(f, k(X)) is a simple group which is not a homomorphic image of
Gal(A"; , k(X)) for any i with \<i<d, then Ga\(fx , k(X)) = Gal(/, k(X)).

(4.3) // Ga\(K*,k(X)) is solvable for each i with 1 < / < d, and
Gal(/, k(X)) is nonabelian simple, then Ga\(fx , k(X)) = Gal(f, k(X)).

(4.4) // Gal(K*,k(X)) is solvable for each i with 1 < i < d, and
Gal(/, k(X)) = An, and 3 ¿ n # 4, then Gal(fx, k(X)) = An .

Namely, (4.1), (4.2), (4.3), and (4.4) follow by repeatedly applying (2.6),
(2.7), (2.8), and (2.9) respectively.

Although we shall not use it in this paper, here is a third basic principle
of computational Galois theory; for a proof see §61 of volume I of van der
Waerden's book [V], and for some applications see the 1958 follow-up [A4] of
my 1957 paper.

Basic Homomorphism Principle. If_f(Y) e RV[Y] where Rv is the valuation
ring of a valuation v of K and if f(Y) has no multiple roots in any overfield of
K, where K is the residue field of v and f(Y) e A"(y) is obtained by applying
the canonical epimorphism Rv —> K to the coefficients of f(Y), then, as a
permutation group, the Galois group Gal(/, A") may be regarded as a subgroup
of the Galois group Ga\(f, K).

To give some concrete examples of valuations, assume that K = k(x) where
x is a transcendental over a field k. Then for every nonconstant irreducible
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(¡>(x) € k[x] we get a valuation v^ of k(x)/k by taking

for any integer / and any nonzero n(x) and e(x) in /:[x] which are non-
divisible by <f>(x) ; we may call this the <f>(x) = 0 valuation of k(x)/k ; if
(f)(x) = x - c with c € k then we may also call it the x = c valuation of
k(x)/k ; note that for any other nonconstant irreducible <t>*(x) e k[x] we have
v$ = Vj,.&(/> and <¡>* are constant multiples of each other. In addition to these
valuations, there is exactly one more valuation Voo of k(x)/k given by taking

-(&)-
dege(x) -deg7r(x)

for all nonzero n(x) and e(x) in k[x] ; we may call this the x = oo valuation
of k(x)/k.

Let X > p > 0 be integers, and consider the polynomial ¿¡(Z)YX + n(Z)Y'i
in indeterminates Y and Z where ¿;(Z) and f/(Z) are nonzero coprime poly-
nomials in Z with coefficients in /:. Let y be an element in an overfield of
K = k(x) such that c¡(x)yx + n(x)yfl = 0. Now, upon letting i}\, ... ,vh be
the extensions of v = v* to A" = K(y), for \ < j <h we have

r(fy : «)«(i(x)^(x)) =

and hence

r(fy : «) v í(x) ; = l^(/-")l = (A-^)l«;(y)l

r(Vj:v) _ 0 (^qcjj^.^^ v(^W„(x)))J
and therefore by (f) we get

(tí) ^^^Kgcdía-I^W^))))-
From this we deduce the following

First Irreducibility Lemma. Let X > p > 0 be integers, and consider the poly-
nomial £(Z)YX + n(Z)Y/i in indeterminates Y and Z where t\(Z) and n(Z)
are nonzero coprime polynomials in Z with coefficients in a field k. Let
y be an element in an overfield of k(Z) such that Ç(Z)yx + n(Z)y>1 = 0.
Assume that there exists a finite number of nonconstant irreducible polynomi-
als <t>\(Z), ... , <pm(Z) in Z with coefficients in k such that, upon letting u¡
be the largest integer for which (j>i(Z)Ui divides £,(Z)n(Z) in k[Z], we have
GCD(A - p,vi, ... , vm) = 1. Then [k(y, Z) : k(Z)] = X - p, and the polyno-
mial Ç(Z)YX + n(Z)Y'i is irreducible in k(Y)[Z] .50

Namely, by (ft) we see that

[*(y.Z>:*(Z)]-0(oa¿-_''       ,)    for.</<».

50That is, í(Z)Yx + r¡(Z)Y>i is either a nonzero element of k(y) or a nonconstant irreducible
polynomial in Z with coefficients in k(y).
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and clearly

*-"_=LCMf_^—t_ _^_ï
GCD(X-p,ul,...,um)        ^     \GCD(k-/i,vi)'"" GCY>(X - p, vm) )

and hence

[k(y, Z) : k(Z)) = 0 (——*lLE-_) .

Since GCD(¿ - p,v\, ... , vm) = 1, we get

[k(y,Z):k(Z)] = 0(X-p)

and since y'1"'' = -n(Z)/Ç(Z), we conclude that

[k(y,Z):k(Z)] = X-p
and the polynomial yA_'< + r\(Z)jt\(Z) is irreducible in k(Z)[Y]. Therefore
by the Gauss Lemma,51 the polynomial t\(Z)Yl~11 + n(Z) is irreducible in
k[Y, Z], and hence again by the Gauss Lemma, the polynomial t\(Z)Yl~>1 +
n(Z) is irreducible in k(Y)[Z], and therefore the polynomial C(Z)Yx+n(Z)Yß
is irreducible in k(Y)[Z].

Let us now convert the above lemma into the following

Second Irreducibility Lemma. Let X > p > 0, and let ¿¡x(Y, Z) and nß(Y, Z)
be nonzero homogeneous polynomials of respective degrees X and p in (Y, Z)
with coefficients in a field k. Assume that the polynomials ¿¡x(Y, Z) and
tifi(Y, Z) are regular in Z,52 and the polynomials ¿¡¿(l, Z) and nß(\, Z)
have no nonconstant common factor in k[Z]. Also assume that there exists a
finite number of nonconstant irreducible polynomials (fii(Z), ... , 4>m(Z) in Z
with coefficients in k such that, upon letting v¡ to be the largest integer for which
<t>i(Z)Vi divides £¿(1, Z)^(l, Z) in k[Z], we have GCD(X-p, v\, ... , vm) =
1. Then the polynomial ¿¡¿(Y, Z) + nß(Y, Z) is irreducible in k(Y)[Z].

To prove this, note that Z *-* YZ gives a /c(y)-automorphism of k(Y)[Z]
which sends the polynomial £¿(Y, Z)+n/1(Y, Z) to the polynomial ^(1, Z)YX
+ nß(\, Z)Yfí. By the First Irreducibility Lemma, the second polynomial is
irreducible in k(Y)[Z] and hence so is the first.

As an illustration, let n > t > 1 be integers such that GCD(«, /) = 1. Now
if u is any element in an algebraic closure k of k such that u" = 1 = u', then,
since GCD(«, t) = 1, we must have u = 1 ; therefore 1 is the only common
root of Zn - 1 and Z' - 1 in k. Again since GCD(«, t) = 1, either « or t
is nondivisible by the characteristic of k, and hence either Z" - 1 or Z' - 1 is
devoid of multiple roots in k. Therefore the polynomials (Z"-1)/(Z-1) and
(Z* - 1)/(Z - 1) have no common root in k and at least one of them has no
multiple root in k , and hence they have no nonconstant common factor in k[Z]
and at least one of them has no nonconstant multiple irreducible factor in k[Z] ;
since « > t > 1, we conclude that their product has at least one nonconstant

5'The Gauss Lemma says that a nonzero polynomial in indeterminates Y and Z with coeffi-
cients in a field k is irreducible in k[Y, Z] if and only if it is irreducible in fc(Z)[7] and, as a
polynomial in Y , its coefficients have no nonconstant common factor in k[Z].

52That is, their degrees in Z coincide with their degrees in ( Y, Z).
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nonmultiple irreducible factor in k[Z] ,53 By applying the ^-automorphism
ZhZ + 1 of k[Z] and by multiplying the second polynomial by -a, where
a is any nonzero element of k, we see that the polynomials (Z + 1)" - 1)/Z
and -a[(Z + 1)' - 1]/Z have no nonconstant common factor in k[Z] and
their product has at least one nonconstant nonmultiple irreducible factor in
k[Z]. Consequently by taking (Z + Y)n - Yn/Z and -a[(Z + Y)' - Y']/Z for
ii(Y, Z) and nß(Y, Z), and by letting 4>\(Z), ... , <f>m(Z) to be the distinct
monic nonconstant irreducible factors of ^(i,z)*7/t(l > Z) in k[Z], and by let-
ting i/, to be the largest integer for which 4>i(Z)Vi divides &(1, Z)rjß(l, Z) in
k[Z], we see that £x(Y, Z) and nM(Y, Z) in k[Z] are nonzero homogeneous
polynomials of respective degrees X — n - \ and p = / — 1 in (Y, Z) with
coefficients in A: such that the polynomials £¿(1, Z) and f/A(l, Z) have no
nonconstant common factor in k[Z], and for some / we have vt■. = 1, and
hence trivially we have GCD(A-//, v\,..., vm) = 1. Therefore by the Second
Irreducibility Lemma we get the following

Third Irreducibility Lemma. Let n > t > 1 ¿>e integers such that GCD(«, t) -
1. Let Y and Z be indeterminates over afield k, and let 0 / a e k. Then the
polynomial ((Z + Y)n - Yn/Z - a[(Z + Y)< - Y']/Z is irreducible in k(Y)[Z].

20. The tilde polynomial and borrowing cycles
Let us now apply the twisted derivative method to the polynomial

Fn,s = Fn,s{X,Y) = Yn-aYt + Xs

with  1 < t < « and GCD(«, t) = 1, where s is a positive integer, a is a
nonzero element in a field k of characteristic p ,54 and X and Y are indetermi-
nates over k. We want to calculate the Galois group G„,s = Ga\(F„iS, k(X)) ,55

Let k be an algebraic closure of k, and let
... .     n-t       . f 1 if/> = 0,
(i)       a =-    where e = < n,    „    . „

e \ maxp" with n-t = 0(p")   ifp¿0.
Now

d
(ii) y-ar^y'IJir-ß)'

with pairwise distinct nonzero elements ß\, ... , ßd in k and GCD(e, t) — 1,
and hence by the First Irreducibility Lemma we see that Fn¡s is irreducible in
k(X)[Y], and therefore FH,S is irreducible in k(X)[Y] ,56

Let us put x = X and let y be a root of F„ _ s in an overfield of k(x). Then
(iii) xs = ay' - y"

53That is, there exists a nonconstant irreducible member of k[Z] which divides the said product
but whose square does not divide the said product.

54Here p may or may not be zero. Later on we shall specialize to the case of p ^ 0 ; with the
further assumption that n = 0(p) and s = 0(f), the polynomial Fn,s reduces to the polynomial
Fn considered in § 11.

55ln a moment we shall show that F„tS has no multiple roots in any overfield of k(X), and
hence the Galois group Ga\(Fn,s , k(X)) is defined.

56 For s = 1 this also follows by noting that Fni is monic of degree 1 in X .
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and hence y is transcendental over k. Let E(y, Z) be the polynomial in an
indeterminate Z suchthat E(y, Y) is the twisted y-derivative of F„ ;í(x, Y)
at y. Then

E(y, z) = (z+y)n-y" _ a[(Z+y)'-y']

and hence by the Third Irreducibility Lemma we see that E(y, Z) is irreducible
in k(y)[Z].

For a moment suppose that s = 1 < t ; then by (iii) we have x e k(y),
and hence E(y, Z) is irreducible in k(x, y)[Z], and therefore by the Twisted
Derivative Criterion we see that Fnt i (X, Y) has no multiple roots in any over-
field of k(X), and so Ga\(F„t i, k(X)) is defined; since E(y, Z) is irreducible
in k(x,y)[Z], it also follows that Gal(F„i, k(X)) is 2-transitive. Thus, if
s= 1 <t then F„i is devoid of multiple roots and Gn,\ is 2-transitive.

Reverting to general s but still assuming t > 1, since F„tS(X, Y) —
Fn,i(Xs, Y) and F„ 11 (X, Y) has no multiple roots in any overfield of k(X), it
follows that Fn ,s{X, Y) has no multiple roots in any overfield of k(X). Thus,
if t>\ then F„tS is devoid of multiple roots and hence C7„jS is defined.

To give a direct proof of Fn ,s being devoid of multiple roots, let us calculate
its y-discriminant.

So first recall that the y-discriminant of a monic polynomial / = f(Y) of
degree n > 0 in Y with coefficients in a field A" is denoted by Discy(/) and
is defined by putting

Discy(/) = Resy(/, fy) = the y-resultant of / and fy ,

where fy is the (ordinary) y-derivative of /. Upon letting m be the degree
of fy , we note that Resy(/, fy) is the determinant of a certain « + m by
n + m matrix; also note that m = « - 1 •«■ « ^é 0(char A") ; finally note that if
fr = 0, i.e., if char A" = p ¿ 0 and / e K[YP], then we take Disc Y(f) = 0.
For calculational purposes, upon letting / = 11/= i(*" ~ ad we observe that

DiscY(f) = f[fY(ai)
1=1

and upon assuming fy^O and upon letting fy = e YlT=l(Y - e,) we observe
that

m

DiscY(f) = (-l)"me"l[f(ei).
/=i

Finally, upon letting

DiscY(f) = the modified Y -discriminant of F = Y\    (a, - a;)2
L'<y

we note that57
Disc*Y(f) = (-l)"("-1)/2Discy(/).

Let us record the following well-known

57On pages 82-87 of volume I of van der Waerden's book [V], it seems to be wrongly asserted
that Disc y(f) = Disc y(/). Some authors call Disc r(/) the discriminant of /.
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Discriminant Criterion. If char AT ̂ 2 and f is devoid of multiple roots, then:
Gal(/, A") c A„ •«• DisCy(f) is a square in K.

Now for the (ordinary) y-derivative of F„tS we have

(Fn,s)y = nYn-[-taY'-1

-{
-taY'-l¿0 ifn = 0(p),
"Y''1 n-=7(y - baa) * 0    if n * 0(p),

T>\%cY(Fn s) = \ ,    „

with ¿, coi, ... , <y„_, in A; suchthat nbn~' = ta and Y["=!(Y-0Ji) = Y"-'-\
and hence

(-l)"('-x)(-ta)"(Xs)'-1 ifn = 0(p),

(-i)"(»-»)««(jr*)«-« n?-i'[^* - "_1(" - O«*'®/]   if « ̂  o(p);
and therefore, because GCD(« - t, i) = 1, we get

r \      rv     (F   \- / (-l)"tin«"^(/-1) ifnsOO),
1 J n ",iJ " I ^-«[«"jrt"-« - (« - o«-W]   if « ï m >
and, observing that if « = 0(p) then in k we have «" = 0 and -(« - t)n~'t' =
(-l)n~t+lt" = (-l)n'tn ,58 we conclude that in both the cases we have

Discy(F„;i) = n"X^"-l) - (n - t)n-'t'anXs^'l\

Thus always Discy(F„;í) ^ 0 and hence F„,s is devoid of multiple roots.
If s = 1 and n - t ^ 0(p) then by (i), (ii), (iii) we see that the valuation

jc = 0 of k(x)/k splits in £(x, y) = k(y) into the n-t+l — d + 1 valuations
y = 0,y — ß\,...,y = ßd with reduced ramification exponents t, 1, ... , 1,
and hence if also t £ 0(p) then by the Cycle Lemma we can find a ¿-cycle
in Gal(F„i, k(X)), and therefore, since by the Basic Extension Principle we
have Gal(F„,,, k(X)) < Gal(Fn,,, k(X)) ,jwe get a i-cycle in Gal(F„, i, k(X)).
Thus, if n - t ^ 0(p) and t ^ 0(p) then G„ ; i contains a t-cycle.

Let us note the following Corollary of an 1871 Theorem of Jordan [J2]; a
proof can also be found in 13.3 on page 34 of Wielandt [Wi], and in 4.4 on
page 171 of Volume I of Huppert [HB].
Jordan's Corollary.  An and S„  are the only primitive permutation groups of
degree n containing a 3-cycle.

Let us also note the following two 1892 Theorems of Marggraff [Mar]; these
are given as Theorems 13.5 and 13.8 on pages 35 and 38 of Wielandt [Wi]
respectively.59

MarggrafFs First Theorem. An and S„ are the only primitive permutation
groups of degree n having a (n - v)-point stabilizer, with 1 < v < n/2, which
acts transitively on the remaining v symbols.

MarggrafFs Second Theorem. A primitive permutation group of degree n con-
taining a v-cycle, with 1 <v < n, is (n — v + l)-transitive.

58Note that if n and t are both odd then n — t + 1 and nt are both odd, whereas if one out
of n and t is odd and the other even then n - t + 1 and nt are both even, and finally, since
GCD(/i, t) = 1 , the remaining possibility of n and t both being even cannot occur.

59Apparently, MarggrafFs Second Theorem can also be found in [J2]; see Neumann [N].
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For a moment suppose that n- t £ 0(p) and 1 < t ± 0(p) .60 Now, in view
of what we have proved above, G„ ; i is a 2-transitive permutation group con-
taining a i-cycle and hence if t = 2 then obviously61 Gn, i = Sn ; if t = 3 then
by Jordan's Corollary62 we have G„, i = An or Sn ; if t < \ then by MarggrafFs
First Theorem we have Gn t \ = A„ or S„ ; if t < « - 4 then by MarggrafFs
Second Theorem and CTT we have G„t i = A„ or S„ ; if r = « - 4 then auto-
matically 12 t¿ « t¿ 24 and hence by MarggrafFs Second Theorem and CTT we
have G„i = A„ or Sn; and if t = n - 3 then again automatically 12 / « ^ 24
and hence if also 11 ^ n / 23, then by MarggrafFs Second Theorem and CTT
we have G„, i = An or S„ . In all these cases, if / is even then we must have
Gn, i = Sn because A„ cannot have a cycle of even length, and if t is odd and
p t¿ 2 then, in view of the Discriminant Criterion, by (iv) we can unambigu-
ously decide between A„ and S„ ; in particular, if k is algebraically closed
and « = 0(p) and p ^ 2 and t is odd then we get A„ because in that case
Discy(.Fn)i) is a square in k(x). Again, in all these cases, assuming k to be
algebraically closed, in view of Corollaries (3.2) to (3.8) of the Substitutional
Principle, we see that (1) t is even => G„t\ = S„ =$■ G„>s = A„ or S„ ; (2)
t is odd and n - 4 => G„t i = A„ or S„ with « = 4 =>• GHiS - (Z2)2 or An or Sn ;
(3) t is odd and « > 4 and p = 2 =>• Gn, i = A„ or S„ with « > 4 => G„tS =
/!„ or S„ ; (4) t is odd and « = 4 and p / 2 and DiscY(Fn< i) is a square in
fc(x) =» Gn,\ = An with B = 4 =*• Gb;í = (Z2)2 or A„ ; (5) t is odd and « >
4 and /? # 2 and Discy(Fn¡ \) is a square in k(x) => ¿7«, 1 = A„ with « > 4 =*•
ön,i — A„; and finally (6) í is odd andp ^ 2 and DiscY(Fn> 1) is not a square
in fc(x) => C7„;i = S„ => Gnji = An or S„ .

Now for a moment suppose that « = 0(». Then í ^ 0(/j) and hence by
(iv) we see that x = 0 and x = 00 are the only valuations of k(x)/k which
are possibly ramified in k(x, y). Moreover, if s = 0(t) then, in view of (i),
(ii), (iii), either by direct reasoning we see that the valuation x = 0 of k(x)/k
is unramified in k(x, y), or alternatively, first, upon letting x* — Xs we see
that the valuation x* = 0 of k(x*)/k splits in k(x*, y) - k(y) into several
valuations out of which y = 0 is the only valuation which is possibly ramified
over k(x*) and for it the reduced ramification index is t and the residue degree
is 1, and now upon letting

x' = {X, if/7 = °'
\ Xs' where s' — max px with 5 = OO^)     if p ^ 0,

we see that x'sls' — x* and s/s' is a positive integer which is divisible by t
but not divisible by p and hence by MRT63 we see that the valuation x' = 0
of k(x') is unramified in k(x', y), and finally from this we deduce that the
valuation x = 0 of k(x)/k is unramified in k(x, y) ,64

60Note that if he 0(p) then automatically n - t ^ 0(/>) and f ^ 0(p) because by assumption
GCD(n ,i)=l-

61A 2-cycle is simply a transposition, and a 2-transitive permutation group containing a trans-
position must contain all transpositions and hence must be the symmetric group.

62A 2-transitive permutation group is automatically primitive.
63MRT=Abhyankar's Lemma = pages 181-186 of [A5].
64This last deduction follows from the easy to prove fact which says that if a valuation v of a
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Thus, if « = 0(p) and s = 0(0, then x = oo is the only valuation of
k(x)/k which is possibly ramified in k(x, y), and hence65 x = oo is the only
valuation of k(x)/k which is possibly ramified in a least Galois extension of
k(x) containing k(x, y). It only remains to note that, by Result 4 on page 841
of the 1957 paper [A3], as a consequence of the genus formula, every member of
the algebraic fundamental group of the affine line over an algebraically closed
field k of characteristic p / 0 is a quasi p-group; therefore in our case, if
G„>s - An or S„ and p / 2 then we must have G„,s = A„ , because clearly S„
is not a quasi p-group for any n > p > 2 ; likewise, if Gn,s = {Z2)2 or An or S„
with « = 4 and p = 2, then we must have G„ t¡ = (Z2)2 or S„ because A4 is
not a quasi 2-group.

Let us put all this together in the following

Summary about the tilde polynomial. Let k be an algebraically closed field k
of characteristic p ^ 0, and consider the polynomial Fn = Y" - aY' + Xs
in indeterminates X and Y over k, where a is a nonzero element of k,
and n, s, t are positive integers with GCD(«, t) = 1 and t < n = 0(p) and
s = 0(t). Then Fn gives an unramified covering of the affine line over k, and
for the Galois group G„ = Gal(F„, k(X)) we have the following.

(II. 1) If 1 < t < 4 and p ¿ 2, then G„=An.
(11.2) If 1 < t < « - 3 and p ¿ 2, then G„ = An .
(11.3) If 1 < t = n - 3 and p / 2 and U¿p¿23, then G„ = A .
(11.4) If 1 < t < 4 < n and p = 2, then t7„ = ^„ or Sn .
(11.5) If 1 < t < n - 3 and p = 2, then G„ = A„ or S„ .
Here CT was not used in the proofs of (II. 1) and (II.4).   Moreover,66 the

following special cases of (II.2) and (II.5) were proved without using CT.
(II.2*) If 1 < t < n/2 and p ¿ 2, then G„ = An .
(II.5*) If 1 < t < n/2 and p = 2, then Gn = An or S„ .

Note. In the next section we shall consider the unramified covering of the affine
line given by the polynomial Tn = Y" - XY' + 1 with n = p + t and t ^ 0(p)
which was introduced in §11; there the calculation of the Galois group of T„
will be based on the fact that it contains a p-cycle because the valuation X -
oo splits into the valuations Y = 0 and Y = oo with reduced ramification
exponents t and p respectively.67 In the present section weconsidered the
unramified covering of the affine line given by the polynomial Fn = Y" - aY' +
Xs with « = 0(p) and GCD(«, t) = 1 and s = 0(t) which was also introduced
in § 11 ; contrary to the Galois group of the polynomial F„ , it is not easy to find
any cycle in the Galois group of the polynomial F„ because now the valuation
field K is unramified in a finite separable algebraic field extension L of K then the unique exten-
sion of v to a finite purely inseparable field extension K' of K is unramified in the compositum
of L and K' .

65Say by Proposition 1 of [Al].
66In view of the above discussion, without using CT we see that if 1 < / < 4 = n and p = 2 ,

then G„ = (Z2)2 or Sn , and using CT we see that if 1 < t = n — 3 and Gn ^ An , then either
n=p = 11 and G„ = Mx x , or n = p = 23 and Gn = Af23 ■

67 Actually, by reciprocating the roots of T„ we shall get the polynomial Y"-XYp + l for which
the valuation X = oo splits into the valuations Y = 0 and Y = oo with reduced ramification
exponents p and / respectively.
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X = oo has the valuation Y — oo as the only extension and for it the reduced
ramification exponent is « which is a multiple of p ; so what we did was
to "borrow" a ¿-cycle by going down to the subfield k(Xs) of k(X), i.e., by
embedding the Galois group over k(X) as a subgroup of the Galois group
over k(Xs) where the latter does contain a i-cycle. This method of borrowing
cycles can already be found in Hubert's 1892 paper [H] where he "borrows" a
transposition to embed A„ in Sn , thereby constructing A„ coverings of the
rational number field Q.

21. The bar polynomial
Let us now turn to the polynomial

Fn,q = Y"-XY' + l
with « = q + t and positive integer t ^ 0(p)  mentioned in §11.   This is
a polynomial in indeterminates X and  Y with coefficients in a field k of
characteristic p / 0, and o is a positive power of p .

The (ordinary) y-derivative of F„y9 is given by

(Fn,q\ = «(y«-1-xy'-1)
and so we get

—       y —
Fn,q = —(Fn,q)Y + 1

and hence for the y-discriminant of F„ t q we have

Discy(F„?) = «" = a nonzero element of k.

Therefore this gives an unramified covering of the affine line over k. At any
rate, F„yq , as a polynomial in Y, is devoid of multiple roots, and so we can
talk about its Galois group over k(X). We are interested in calculating this
Galois group Gn,q = Gal(F„)?, k(X)).

Now F„ t q , as a polynomial in X, is linear and in it the coefficient of X has
no common factor with the terms devoid of X. Therefore F„, q is irreducible
in fc[y][Af] and hence in k(X)[Y]. Consequently, Gnq , as a permutation
group ofdegree_ n, is transitive.

Regarding Fn¡q as a polynomial in Y and reciprocating its roots we get the
polynomial

e = e(Y) = Y"+t - xY" +1,
where we have put x = X. Let y be a root of this polynomial in some overfield
of k(x). Then solving 8(y) = 0 for jc we get the equation x - y' + y~q.
The q — p case of this equation was really the starting point of this paper
and it was originally obtained by taking h — C\ = \ in Proposition 1 of the
1957 paper [A3]. The case of general q can also be obtained by taking h =
q/p and cq/p - 1 and c, = 0 for 1 < / < q/p in that Proposition. By the
said Proposition, or directly by looking at the above equation, we see that ( 1 )
the simple transcendental extension k(y) of k is a separable algebraic field
extension of the simple transcendental extension k(x) of k with field degree
[k(y) : k(x)] = q + t ; (2) i^ : x = oo is the only valuation of k(x)/k which
is ramified in k(y) ; (3) t;«, splits in k(y) into the valuations Wo : y = 0 and
Woo '• y = oo ; and (4) for the residue degrees and reduced ramification exponents
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we have d(wo : Woo) = 1 and r(w0 : t>oo) = q, and d(Woo : ft») = 1 and
r(Woo '■ Woo) = t. Now Gnq = Gal(Fn<q, k(X)) — Gal(8, k(x)), and hence in
view of (3) and (4), by the Cycle Lemma we see that if k is algebraically closed
and q = p then G„tP contains a p-cycle; by the Basic Extension Principle,
as a permutation group, Gal(F„jq, k(X)) is a subgroup of Gal(F„q, k(X))
where k is an algebraic closure of k ; therefore, without assuming k to be
algebraically closed, we have that if q = p then Gn,p contains a p-cycle.

Let prime denote the twisted y-derivative at y. Then

0'(Y) = [Y"(Y' - x)]' + (1)'    (by linearity)
= [Yq(Y' - x)]'   (because constant' = 0)
= (Y + y)q(Y{ - x)' + Yq~l(y' - x)   (by power product rule)
= (Y + y)q(Yt)' + Yq-\yl - x)   (because constant' = 0)
= (Y + y)q(Yt)' - y-qYq-1    (because x = y' + y~q)

and hence by the definition of (Y1)' we get

e'(Y) = [(y+y)g](y+yy~yt -y-qYq~l

and therefore
6'(0) = tyq+'-1 ¿0.

Let A(Y) be the polynomial obtained by reciprocating the roots of Q'(Y).
Then A(Y) is a monic polynomial of degree q + t - 1 in Y with coefficients
in k(y) and we have

/y?+i-l

: \tyq+'~l
*(Y) =       i—-r     0

\yi)\Y

= [(y + y-1)"]

'(r)
yi (y)[(7+yy-yt}   (y«+<

+ y)\ (f)(,} {ty<«
y[(Y + y~l Y-Y<]       Y'

yq-i

ty2q+t-\-

Let A(Z) be the polynomial obtained by multiplying the roots of A(Z) by
ty . Then A(Z) is a monic polynomial of degree q + t—l in an indeterminate
Z with coefficients in k(y) and we have

A(Z) = (iyr'-1A^|)

> + *)' -(§)']   (o>r<-'(§)'w(i + ?Jj
X ,!   (^)'-V

[(z + i)9l
(Z + /)' - Z'     tq~2Z'

fl yv+t
and hence

A(Z) = (z + o*y(Z) - f-2y-"-'z',
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where y(Z) is the monic polynomial of degree t — 1 in Z with coefficients in
the prime field kp c k given by

/-i
y(Z) = r2[(Z + 0' - z'] = £ y/Z'-1-',

i=0

where y¡ = i,-1(,+i) e fcp with y0 = 1. Now y(0) = tl~2 and y(-t) =
(-l)t+it'-2 and hence y(0) ¿0¿ y(-t).

Let z be a root of A(Z) in some overfield of k(y). Then solving A(z) = 0
for y we get

tq~2z'(*) yQ+t = —-—-—
K} y        (z + t)qy(z)

and so in particular we see that z is transcendental over k. Consider the
valuation k : z — 0 of k(z)/k and let £ be an extension of it to k(y, z).
Since t / 0 ^ y(0), by the above equation we see that

(f+OÍW = CO««) = C ((jf^fe)) = '« = •* Ö - « ■ **■
Since a + / and t are coprime, we must have r(Ç : k) > q + t. Therefore
[k(y, z) : k(z)] > q + t and hence by the above equation for yq+t we get
[k(y, z) : k(z)] = q + t.

Since [k(y, z) : k(z)] = q + t, by the above equation for yq+t we see that
the polynomial (z + t)qy(z)Yq+t - tq~2z' is irreducible in k(z)[Y]. Since the
nonzero polynomials (Z + t)qy(Z) and tq~2Z' in Z with coefficients in k
have no nonconstant common factor in k[Z], we conclude that the polynomial

(Z + t)qy(Z)Yq+t-tq-2Z'

is irreducible in k[Y, Z]. Consequently the polynomial (Z + í)í}>(Z)yí+/ -
tq~2Z' is irreducible in k(y)[Z], and hence the polynomial A(Z) is irreducible
in k(y)[Z] .68 Therefore the polynomials A(Y) and A(Y) are irreducible in
k(y)[Y], and hence Gal(A, k(y)) — Gal(A, k(y)) — a transitive permutation
group of degree « - 1. Since this group is the one-point stabilizer of G„i3 =
Gal(F„>g, k(x)), we conclude that:  G„>? is 2-transitive.

As we have noted above, if q = p then G„tP contains a /»-cycle, and hence
by a 1873 Theorem of Jordan we see that if also t > 2, then G„,p = A„ or
S„. In Result 4 on page 841 of the 1957 paper [A3] we have noted that, as a
consequence of the genus formula, every member of the algebraic fundamental
group of the affine line over an algebraically closed ground field of characteristic
p ,¿ 0 is a quasi /»-group. Also obviously, for « > 1 and p ¿ 2, the symmetric
group S„ is not a quasi p-group. Therefore // k is algebraically closed and
q =p ^ 2 and n =p + t with t £ 0(p) and t > 2, then G„tP = the alternating
group An.

Here is the 1873 Theorem of Jordan [J3] we spoke of; proofs can also be
found in 13.9 on page 39 of Wielandt [Wi] and in 3.7 on page 331 of volume
III of Huppert-Blackburn [HB].

68This also follows from the First Irreducibility Lemma. In fact, the above argument is a special
case of the argument used in the proof of the said lemma.
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Jordan's Theorem. // a primitive permutation group G of degree n = p + t
contains a p-cycle, where p is prime and t > 2, then G = A„ or Sn .69

In the case p — 2, a /7-cycle is simply a transposition, and obviously Sn is
the only 2-transitive permutation group of degree « which contains a transpo-
sition.70 Therefore if q = p = 2 and n = p + t with t ^ 0(p) and t > 0, then
Gn,p= the symmetric group S„ .

To throw away a second root of F„,q, or more precisely to throw away a
root of A(Z), this time around let prime denote the twisted Z-derivative at
z. Then
A'(Z) = [(Z + t)qy(Z)\ - tq-2y-q-'[Z']'   (by linearity)

^(Z + z + t)qy'(Z) + Zq~ly(z) - tq-2y-q-'[Z']'   (by power product rule)
= (Z + z + t)qy'(Z) + Zq~xy(z) - y(z)(z + tfz^Z^   (by (*))
= (Z + z + t)qy(Z) + y(z)Zq~l - y(z)(z + t)qz~'pt.x(Z),

where pj(Z) is the monic polynomial of degree j > 0 in Z with coefficients
in the prime field kp c k given by

Pj(Z) =
(Z + z)J+l - zJ+l

and
1-2

y(Z)^y£yt-2-jPJ(Z).
j=0

Let <P( W) be the monic polynomial of degree q + t-2 in an indeterminate
W with coefficients in k(z) obtained by multiplying the roots of A'(W) by
z. Then

<b(W) = zq+'-2A' (^Ç\

(E+z+,)^-2,(E)]+r(z),-,L-, (i)-1'

y(z)(z + t)qzq-q-l-\ ,-,,-, ®

and hence
<D(IF) = (W + z2 + tz)qy(W) + y(z)z'-' W^"1 - y(z)(z + t)qzq-x~xpt_x(W)

where £/(fF) is the monic polynomial of degree j > 0 in W with coefficients
in k[z] given by

(W + z2\j+l _ z2>+2
w

and
/-2

K^^^z'"2-^^-^^^).
>=0

69A 2-transitive permutation group is automatically primitive.
70A 2-transitive permutation group which contains a transposition, must automatically contain

all transpositions, and hence must be the symmetric group.
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Note that if t = 1 then y(W) — 0,71 whereas if t > 1 then y(W) is a monic
polynomial of degree t - 2 in W with coefficients in k[z], and hence, in
particular, if t — 2 then y(IV) = 1.

For a moment suppose that t = 1 ; then y(Z) is a monic polynomial of
degree t - 1 = 0 in Z and hence y(Z) = 1 and therefore y(z) = 1 ; also
as noted above y(W) = 0; finally pt-i(W) is a monic polynomial of degree
t - 1 = 0 in ^ and hence pt-\(W) = 1. Thus,

(1*) t= 1
¡A(Z) = (Z + l)q-y-q-lZ   and
| <D(PF) = Wq~x - (z + l^z«-2.

Next, for a moment suppose that / = 2 ; then

y(Z) = 2"2[(Z + 2)2 - Z2] = Z + 1

and hence y(z) — z + 1 ; also as noted above y(W) = 1 and clearly (W + z2 +
iz)« = Wq + (z + 2)qzq ; finally /?,_i ( W) is the monic polynomial of degree 1
in W given by pt-i(W) = W + 2z2 and hence

0(0) = (z + 2)?z« - (z + l)(z + 2)qzq-\2z2)
= (z + 2)iz«-'(z - 2z - 2) = -(z + 2)«+1z«-1.

Thus,

(2*)

rA(Z) = (Z + 2)«(Z + l)

> I O(W) = Wq + (z + \)zWq-x
- (z + 2)q+xzq~x.

2q-2y-q-2Z2 and
(z+ l)(z + 2)«z«-3IT

In the case of general t, by looking at the equation (*), we get the following
"ramification diagram" for the field extensions k(x) c k(y) c k(y, z), where
the square bracketed numbers are the reduced ramification exponents.

«oo : x = oo—

w<x:y = oo[t]—

C, : <y,(z) = 0[l]for I </</• — 1

C,. : (y,.(z) = 0[?]

two : y = 0[g]-

Co : z = 0[i]

Coo,; : 2 = ooande^yT^zT-) = OI^p-1]

for 1 < j < t".

To explain the top half of the extreme right hand side in the above diagram,
first note that, since t £ 0(p), the Z-discriminant of (Z + t~1)' - t~' G k[Z]

Because in that case the summation in the above expression for y(W) is empty.
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is a nonzero constant; now 0 is a root of this monic polynomial and by re-
ciprocating the roots of ((Z + t~x)' - t~'/Z we get y(Z); therefore y(Z)
is free from multiple factors; since y(-t) ^ 0, we conclude that y(Z) —
y/\(Z)y/2(Z) ■ ■ ■ y/t'-i(Z), where, upon letting y/r(Z) = Z + t, we have that
^i(Z), y/2(Z), ... , y/,. (Z) are pairwise distinct nonconstant monic irreducible
polynomials in Z with coefficients in k ; let zc, be the valuation of k(z)/k
given by i//¡(z) ; since GCD(ö +1, q) = 1, by (*) we see that k, has a unique
extension C/ to k(y, z), and Ci, C2, • • • » C/- are exactly all the extensions of
Woo to k(y, z), and we have r(C/ : k,-) = 0 + í for 1 < /' < t*, r(C/ : u>oo) = 1
for 1 < i < t* — 1, and r(£t. : u;«,) = q .

Turning to the bottom half, since GCY)(q + t, t) = 1, by (*) we see that
the valuation Ko : z - 0 of k(z)/k has a unique extension Co to k(y, z) ;
since t it 0(p), upon letting t' = GCD(<? + t, q - 1) we have Z'' - tq~2 =
t\(Z)t2(Z)...etn(Z), where t\(Z), t2(Z), ... , (.t«(Z) are pairwise distinct
nonconstant monic irreducible polynomials in Z with coefficients in k ; now
by (*) we see that the valuation Koo '■ z — 00 of k(z)/k has t" exten-
sions £00,1, Coo,2> ••■ > Coo,/" to k(y, z) which are characterized by saying
that Coo JMy^'V«-1)/'')) > 0 for 1 < j < t", and moreover Co, Coo, 1,
Coo,2 > • • •, Coo,/" are exactly all the extensions of wq to k(y, z), and we have
f(Co :rco) = q'+t, f(Co : w0) = t, r(Coo,j : Koo) = {q + /)A' for 1 < ;' < '",
and f(Coo,; : w^o) = (q - l)/f for 1 < j < t" .

Finally note that, since v^ is the only valuation of k(x) which is ramified
in k(y), no valuation of k(y), other than wq and Woo, can be ramified in
k(y, z), and no valuation of k(y, z), other than Ci, C2, • • • , Cr , Co, Coo, 1,
Coo,2, • • • , Coo,/" , can be ramified in the splitting field of <S>(W) over k(y, z).

Now, as noted above, if t = 1 then y(Z) - 1, whereas if t = 2 then
y(Z) = Z + 1, and hence, in connection with the top half of the above diagram,
we have that

( 1' ) t = 1 =► yq+l - ^¡^ , and t* = 1 and ^,(z) = z + 1

whereas
(2'}
/ = 2 => y*+2 = (z+22)g2(f+1) , Í* = 2,  ^,(z) = z + 1, and ^2(z) = z + 2.

Concerning the bottom half of the above diagram we note that
,_9   . LCM(r(Cp : w0), /'(Coo, 1 : Wp), • ■ • , KCqq,/" : w0))

r(<»o ■ w0)
(2"} fV     if 9 = 1(3),

i^fi     if q* 1(3).
Recall that a permutation group is said to be semiregular if its stabilizer,

at any point in the permuted set, is the identity; in our terminology this is
equivalent to 1-antitransitive. By analogy, let us say that a univariate monic
polynomial, with coefficients in some field, is semiregular over that field if by
adjoining any one of its roots we get the splitting field. Note that then, assuming
the roots to be distinct, the polynomial is semiregular if and only if its Galois
group is semiregular.
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For a moment suppose that t = 1 and k contains all the (q - l)th roots of
1. Then by (1*) we see that <$>(W) is semiregular over k(y, z) and hence its
Galois group is 1-antitransitive; ^ince this group is the 2-point stabilizer of the
2-transitive permutation group C7„;9 , we conclude that Gn,q is a (2,3) group.
Now if p = 2 then d((z + \)qzq~2) = q(q+ 1) and GCD(q'-l,q(q+l))= 1,
and therefore by (1*) we see that (¡>(W) is irreducible in k(y, z)[W] and its
Galois group is a cyclic group of order q - 1, and hence in particular the said
Galois group is a (1,1) group; consequently, G„,q is a (3,3) group. On the other
hand, if p / 2 then by (1') we have (z + \)qzq~2 = z9_1y_(i+1) and hence by
(1*) we get

<b(W) = (W(q-X)l2 - z(q-W2y-(q+l)/2^W(q-l)/2 + z(q-l)/2y-{q+l)/2^

and also
¡■i{z{q-X)l2y-(q+X)l2) =   U((r + ,^-2) = g(g + 1)

and «„(«^.ifc+ll).,,
and hence the above two factors of O(W) are irreducible in k(y, z)[W] and
the Galois group of <f>(W) over k(y, z) is a cyclic group of order ^^ . Thus,
(/" í = 1 a«a* A; contains all the (q - \)th roots of 1, then G„,q is a (2,3)
group, and moreover if also p = 2 i«e« G„>g ¡s a (3,3) group and its order is
(q + Y)q(q - 1), whereas if p ^ 2 /«e« G„ 9 « «oí a (3,3) grow/? a«a" its order
is íttlMízü.

Therefore by an obvious corollary of the Zassenhaus-Feit-Suzuki Theorem
we see that if t = I and k contains all the (q - \)th roots of I, then G„,q =
PSL(2, q) with the possible exception that for q = 7 we may have Gn q =
ATL(1, 8).

The said corollary may be formulated in the following manner. For deduc-
ing this corollary from the Zassenhaus-Feit-Suzuki Theorem, the only thing we
need to check is that if the (degree, order) pair (2l, 2'(2' - 1)/) of a Feit
Group ATL(1, 2'), where / is a prime, equals (q + 1, (q+xMq-x)) then / =
(2l - 2)/2 = 2'-1 - 1 and by direct calculation we see that this is not possible
for 1 = 2, but is possible for 1 = 3, and is never possible for / > 4 because
then 2'-1 -1 = 1+2 +22 + --- + 2'"2 > 1 + 2(1 - 2) = I + (/ - 3) > /.
Corollary of the Zassenhaus-Feit-Suzuki-Theorem. If p = 2, i.e., if q is a pos-
itive power of 2, then PSL(2, q) is the only (3, 3) group of degree q + 1. If
p / 2, i.e., if q is a positive power of an odd prime p, then PSL(2, q) is the
only (2, 3) group of degree q + 1 and order (g+1Wg~') with the exception that,
in the case q = 7, the group ATL(1, 8) also satisfies this description.

Now, on the one hand, by Result 4 on page 841 of [A3] we know that, in
case k is algebraically closed, C7„i? is a quasi /7-group, and, on the other
hand, for the group ATL(1, 8) = GF(8) x TL(1, 8) we have TL(1, 8) =
GL(1, 8) x Aut(GF(8)) and hence Aut(GF(8)) = Z3 is a homomorphic im-
age of ATL(1, 8) and therefore ATL(1, 8) is not a quasi 7-group.72 Con-

12 A quasi p-group can be characterized as a finite group having no homomorphic image whose
order is prime to p and greater than 1.
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sequently, in case k is algebraically closed, the said exception cannot occur
and hence {/ k is algebraically closed and t = 1, then G„>q = PSL(2, q) =
PSL(2,«-1).

Before proceeding further, let us record the following

Fourth Irreducibllity Lemma. Remember that p is a prime number, and t is a
positive integer.13 For 0 < i < t, let f(Y) and g¡(Y) be monic polynomials of
degree p + t-i in Y with coefficients in afield AT,, such that g¡(Y) is obtained
from f(Y) by making one or more of the three operations of multiplying the
roots by a nonzero quantity in K¿, reciprocating the roots,14 and decreasing the
roots by a quantity in K¡. Assume that, for 1 < i < t, the polynomial f(Y)
is obtained by throwing away a root a, of g¡^i(Y), and for the field K¡ we
have Ki = Ki-i(a¡). Also assume that fo(Y) has no multiple roots.15 Finally
assume that there exist valuations w(,) and m(,) of K¡ for 0 < i < t such that
u(0) _ M(0) .ßjf \ <i <t, the valuation w(l> is an extension of ô*'-1) to K¡ ;for
1 < i < t, the valuation u^ is an extension of i/'-1) to K¡ ;for every i with
1 < i < t we have f(w(,) : w(,_1)) £ 0(p) ; and for some j with 1 < j < t we
have r(«t/) : i*CM>) = 0(p).

Let u' be an extension of w(/) to a splitting field K' of gt(Y) over Kt, and
let r* = ní=i f("(/) : m(,'_1)) and r' = W '■ M</)) • Let uf = ii« ,u2l),..., uf
be all the extensions of w(i_1) to K,, and let

„ _ LCM(r(M(1° : u«-V),..., r(uf : M<f-'>))
r  ~ r(u«) : «('-!)) *

Finally let S(0), ... , 8(<), u' be any valuations of Kq, ... , Kt, K' respectively,
with ß(0) = m(0) , such that s(,) ¿s a« extension of ß(,_1) for 1 < i < t, and
U' is an extension of 8(<) for 1 < i < t, and let r* = Y['i=l r(s(,) : S(,_1>) and
r' = r(ü' :flW).

Then the polynomial gt(Y) is irreducible in Kt[Y], and we have |Gal(^(, Kt)\
= O(r') and r' = 0(r") and r*r' = r*r'. Moreover, if g,_i(y) is irreducible in
K,-i[Y], and the residue field of w(0) is an algebraically closed field of the same
characteristic as K0, and r(u¡ : w('-1)) ^ 0(charAT0) for 1 < j < 8, then
r' = r".

To see this, take an extension «' of w(i) to K'. By assumption

r(uU} : uu~X)) = 0(p)   for some ; with 1 < j < t

and clearly r(u' : w(0)) = r*r', and hence we must have r(u' : m(0)) = 0(p). Now
both the valuations w' and u' are extensions of û(0) = w(0) to K' which is a
Galois extension of A^,76 and hence r(u' : ó(0)) = r(u' : w(0)), and therefore
r(u' : w(°)) = 0(p). By assumption r(ßW : «('-'') jé 0(p) for \ < i < t and
clearly r(û' : m<°)) = r(û^ : fiW)... f(«(') : û^'-^)r(ù' : ûW), and hence we must
have r(u' : û(,)) = 0(p). By assumption K' is a splitting field of gt(Y) over
K, and hence |Gal(g(, Kt)\ must be divisible by r(u' : u{t)), and therefore
|Gal(g,, Kt)\ = 0(p); since gt(Y) is a monic polynomial of degree p in Y

73In this lemma, / is allowed to be divisible by p .
74In case of reciprocating the roots, we of course assume that zero is not a root.
75In any field extension of Kq .
76Because it is a splitting field of fo(Y) over K0 .
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with coefficients in Kt, we conclude that gt(Y) is irreducible in Kt[Y]. Since
K' is a splitting field of gt(Y) over Kt, we also get | Gal(g,, Kt)\ = O(r'). Now
K' is a Galois extension of Kt-i, and hence r' = 0(r"). Since K' is a Galois
extension of K0, and ü' and u' are extensions of «(0) = m(0) to AT', we also
get r*r' = r(U' : a(°>) = r(u' : tt<°>) = r*r'. If gt-\(Y) is irreducible in Ä",_i[y]
then K' is a least Galois extension of Kt-\ containing Kt, and hence the last
assertion follows from Proposition 7 on page 845 of [A3].

Note that this lemma gives an alternative proof of the irreducibility of A( Y)
in case of q = p and t = 1. In fact we have the following

Corollary of the Fourth Irreducibility Lemma. If k is algebraically closed and
F(Y) is a monic irreducible polynomial of degree p + 1 in Y with coefficients
in k(X) such that no valuation of k(X)/k, other than the valuation given by
X = oo, is ramified in the root field of F(Y) over k(X), then the Galois group
Gal(F ,k(X)) is 2-transitive.

To deduce this from the lemma, it suffices to note that, in view of Proposition
6 on page 835 of [A3], in the root field of F(Y) over k(X), the valuation
X = oo must split into two valuations with reduced ramification exponents p
and 1 respectively.77

More interestingly, in view of the ramification diagram and implication (2"),
by the above lemma we see that if q = p and n = p + t with t = 2 ^ 0(p),
then Q>(W) is irreducible in k(y, z)[W] and so G„,p is 3-transitive, and the
order of its 3-point stabilizer Gal(0, k(y, z)) is divisible by x, where x = ^
or x = ^y- according as p = 1(3) or p ^ 1(3), and hence the order of Gn,P is
divisible by (p + 2)(p + l)px, and moreover the reduced ramification exponent
of any extension of Co (resp. Ci, C2, Coo,i > ••• > Coo,/") to a splitting field of
Q>(W) over k(y, z) is divisible by x (resp. px,x, 1,..., 1), and, in case k
is algebraically closed, the reduced ramification exponent of any extension of
Co (resp. Ci, C2, Coo.i, ••• , Coo,/") to a splitting field of <&(W) over k(y, z)
equals x (resp. px, x, 1, ... , l).78

Therefore by the following Corollary of CTT we see that if q = p and n =
p + t with t = 2 ^ 0(p), and if G„,p is neither equal to A„ nor equal to S„ ,79
then either p = 1 and G„,p = PSL(2, 8), or p = 7 and G„,p = PTL(2, 8),
or p = 31 and Gn,P = PTL(2, 32).
Corollary of CTT. Let G be a 3-transitive permutation group of degree n = p+2
with an odd prime p, such that G is neither equal to An nor equal to S„ . Then
p = 2f-l forsomeprime p,m andeither G = PSL(2, 2") or G = PTL(2, 2").
Moreover, if the order of G is divisible by (p + 2)(p + l)px, where x = £jp or
¿f1 according as p = 1(3) or p ^ 1(3), then either p = l and G = PSL(2, 8),
or p = l and G = PrL(2, 8), or p = 31 and G = PYL(2, 32).

To deduce the above Corollary from CTT, by inspection we see that no group
77Alternatively, in view of Proposition 6 on page 835 of [A3], this Corollary can be deduced

from the fact that if G is a transitive permutation group of degree p + 1 of order divisible by p
then G must contain a p-cycle and hence it must be 2-transitive.

78In the present case, by (2') we have t* = 2 .
79That is if, as a permutation group, it is not isomorphic to either of these.
80Recall that a prime p is called a Mersenne prime if it is of the form 2^ — 1 for some positive

integer p., and then automatically p. is itself a prime number.
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listed in items (3) to (8) of CTT has degree of the form p + 2 with an odd
prime p. Moreover the degree of every group listed in items (1) and (2) of
CTT is of the form n* + 1, with prime n and positive integer p, and if we
have re" + 1 = p + 2 then, in case of odd n, we would get the contradiction
p = nß _ i = 0(2). Therefore by CTT we conclude that p = 2" - 1 for some
prime p, and G is a group between PSL(2, 2") and PTL(2, 2"). Since p
is prime and PSL(2, 2") is a normal subgroup of PTL(2, 2") of index p,
there are no groups strictly between PSL(2, 2") and PrL(2, 2"). Therefore
G = PSL(2, 2^) or G = PYL(2, 2"). Now if the order of G is divisible by
(p + 2)(p+l)px, then (p + 2)(p + l)pp = \PYL(2, 2")| > \G\ > (p + 2)(p+l)px
and hence p > x > ^ = (2^ - 2)/6 and therefore 2^_1 - 1 < 3p ; on the other
hand, if p > 5 then 2*"1 -1 = (l+2+22) + (23+24+- • •+2''-2) > 7+8(^-4) =
3p + 5(p-5) > 3p. Therefore if the order of G is divisible by (p+2)(p+l)px,
then we must have p = 2 or 3 or 5, i.e., p = 3 or 7 or 31; now the case p = 3
is ruled out because then PSL(2, 2") = An and PTL(2, 2") = Sn with p = 2
and « = 5 ; also, in case of p = 31, we cannot have G = PSL(2, 32) because
| PSL(2, 32)| = 33 • 32 • 31 < 33 . 32 • 31 • 5 = (p + 2)(p + \)px.

Once again by Result 4 on page 841 of [A3] we know that, in case k is
algebraically closed, the group Gn,q is a quasi p-group, and obviously, in the
case p # 2, the group S„ is not a quasi p-group because it has Z2 as a
homomorphic image, and likewise, in the case of a Mersenne prime p = 2» - 1,
with a prime p, the group PTL(2, 2») is not a quasi p-group because it has
Zp as a homomorphic image. Therefore by the above italicized conclusion we
see that if k is algebraically closed and q = p and n= p + t with t = 2 ^ 0(p),
then in the case p±l we have Gn,P-An, whereas in the case p = 7 we have
G„,P = A„ or PSL(2,«-1).

Now let œ be an element in an overfield of k(y, z) such that

(**) O(g>) = 0,
and let ¥([/) be the monic polynomial of degree q - 1 in an indeterminate
U with coefficients in k(y, z, o>) obtained by throwing away the root œ of
*(£/). Actually, <D(I7) e k(z)[U) and hence ¥([/) € k(z, œ)[U].

To compute ^(U), let prime stand for the twisted {/-derivative at co ; then
we have *F([/) = 0'(t/), and by the prime power rule we have (Uq)' = Uq~x ,
and by the power rule we have (Í70)' = 0 and (£/)' = 1, and by direct calcula-
tion we have

a,«-i[.l + (l + g)«(l + g)-']
U

u
^-1[-l+(l-g+g--+^)]

u
= Uq~2 - col/i'3 + w2Uq~4-+ o)q-3U - wq~2,
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and therefore, in view of (2*), by linearity we see that
(2**)

f W) = W~i + (z + l)z[Uq-2 - œUq-3 + œ2Uq-4-+ a/>~3U]
^ \ -(z+l)z[coq-2 + (z + 2)qzq-4].

For a moment suppose that k is algebraically closed and q = p = 7 and t =
2. Since A9 is 4-transitive and PSL(2, 8) is sharply 3-transitive, by the above
italicized assertion it follows that Gn,P / An «=> Gn,P = PSL(2, « - 1 ) •» *P(U)
is reducible in k(y, z, a>)[U] o ^(U) completely factors (into linear factors)
in k(y, z, cû)[U] . To convert the question of reducibility of *F({7) over the
field k(y, z, (o) to its reducibility over the simpler field k(z, co), first note
that k(z, co) c k(y, z, co) and hence ¥(£/) is reducible in k(z, oj)[U] =>•
^(U) is reducible in k(y, z, a))[U] ; next, by (2') we see that k(y, z, co) is a
cyclic extension of k(z, co) of degree 1 or 3 or 9, and hence ^(U) completely
factors in k(y, z, co)[U] =>• the degrees of the irreducible factors of ¥(£/) in
fc(z, <«)[[/] are (3,3) or (3,1,1,1) or (1,1,1,1,1,1). Therefore if k is algebraically
closed and q = p = 7 and n = p + t with t = 2 i«e« l7„iP ^ An -^ G„yP =
PSL(2, «-1) «• ¥([/) is reducible in k(y, z, <y)[í7] <^ ¥({/) completely factors
(into linear factors) in k(y, z, íu)[í7] <;=> 4*(C7) w reducible in k(z, co)[U] •»
the degrees of the irreducible factors of ^(U) in k(z, co)[U] are (3,3) or
(3, 1, 1, 1) or (1, 1, 1,1, 1, 1).

To further simplify the question of reducibility of *P"( U), we proceed to
eliminate the last two possibilities of (3, 1, 1, 1) and (1,1,1,1,1,1) for
the degrees of the irreducible factors of *F(C/) in k(z, a>). Afterwards, we shall
also indicate how the question of reducibility of ^(U) in k(z, co)[U] can be
converted to its reducibility in kp(z, co)[U].

Recall that y(Z) is a monic polynomial of degree t-\ in Z with coefficients
in the prime field kp c k . Let

(z + OMz)
y z'

and
A*(Z) = (Z + t)qy(Z) - y*Z' e /<p(y*)[Z].

Now the element y* is transcendental over k, the polynomial A*(Z) is ir-
reducible in k(y*)[Z], the element z is a root of A*(Z), the polynomial
A'(Z) € kp(z)[Z] is obtained by throwing away the root z of A*(Z), the poly-
nomial <b(W) e kp(z)[W] is obtained by multiplying the roots of A'(W) by
z, the element œ is a root of <i>(W), the polynomial ¥({/) € kp(z, co)[U] is
obtained by throwing away the root œ of O(U), and finally if q = p and t = 2
then the polynomial <b(W) is irreducible in k(z)[W] and hence Gal(A*, k(y*))
and Gal(A*, kp(y*)) are 2-transitive permutation groups of degree p + 1.

For t = 2 we have y(Z) = Z + 1 and so

( 2*** ) t = 2 => y* = (Z + 2)<?,(Z+1)  and A*(Z) = (Z + 2)«(Z + 1) - y*Z2.
zL

If o = p and í = 2 then either directly by the above expression for y*, or
indirectly by the formulae (*) and (2') and the ramification diagram of the
field extension k(y) c k(y, z), we see that w^ : y* = 0 and w^ : y* = oo are
the only valuations of k(y*)/k which are ramified in k(z), the valuation w^
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splits into the valuations K\ : z + 1 = 0 and k2 : z + 2 = 0 of k(z)/k with
reduced ramification exponents f(/ci : Wq) = 1 and t(k2 : w^) = p, and the
valuation w^ splits into the valuations Kn : z = 0 and Koo '■ z = oo of k(z)/k
with reduced ramification exponents r(/co : «£,) = 2 and f(fCco : tu^,) = p - 1 .
Thus, in case of q = p and ( = 2 we have the special ramification diagram for
the field extension k(y*) c k(z) where the square bracketed numbers are the
reduced ramification exponents:

w* : y* = 0 —

«£, : y* = oo —

K, :z + l =0[1]

k2 : z + 2 = 0[p]

k0:z = 0[2]

Koo : z = oo[p- 1].

For a moment suppose that # = p and r = 2. Since the degree of ®(W) is
p, by the above diagram we see that Ki has a unique extension X\ to k(z, co),
for Ai we have f(X\ : K\) = p, and the reduced ramification exponent of
any extension of X\ to a splitting field of *¥(U) over k(z, co) equals the re-
duced ramification exponent of any extension of k2 to the said splitting field.
By direct calculation with the expression of &(W) given in (2*), it can be
shown that k2 has 3 extensions to k(z, co) with reduced ramification expo-
nents (1, ^y- , ^y') . Therefore, say by the Fourth Irreducibility Lemma, the
reduced ramification exponent of any extension of X\ to the said splitting field
must be divisible by ^- . Consequently the degree of some irreducible factor
of *F(£/) in k(z, co)[U] must be > ^ . The said direct calculation will not be
given here,81 and hence, for deducing the last consequence, at least in the case
when k is algebraically closed, let us indirectly argue in the following manner.

So for a moment suppose that k is algebraically closed and q = p and
t = 2. Now in view of MRT,82 by implication (2') and by the paragraphs
"Finally note that..." and "More interestingly...", we see that K\, k2, Kq are
the only valuations of k(z)/k which are ramified in a splitting field of <S>(W)
over k(z), and the reduced ramification exponent of any extension of K\ (resp.
k2 , K0 ) to the said splitting field is p{?~x) (resp. ^, ^ ). Since the degree
of Q>(W) is p, it follows that Ki has a unique extension X\ to k(z, co), for
X\ we have r(X\ : K\) = p , and the reduced ramification index of any extension
of X\ to a splitting field of *F(C/) over k(z, co) is ^ . Therefore the degree
of some irreducible factor of *F(t/) in k(z, co)[U] must be > ^ .

Finally for a moment suppose that k is algebraically closed and q = p = 1
and t = 2. Then by the above paragraph and the paragraph following (2**)
we see that ^(U) is reducible in k(z, co)[U] •» the degrees of the irreducible

8'But it will be given in my forthcoming paper [A7].
82MRT = Abhyankar's Lemma = Pages 181-186 of [A5].
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factors of V(U) in k(z, co)[U) are (3,3) or (3,1,1,1). Thus, "¥(U) is re-
ducible in k(z, co)[U] •«• Gal(A*, k(y*)) is 2-transitive but neither 3-transitive
nor sharply 2-transitive. Therefore, since AGL( 1,8) is sharply 2-transitive,
by the Special CDT we conclude that *¥(U) is reducible in k(z, co)[U] «•
Gal(A*, k(y*)) = PSL(2, 7) or ATL(1,8); by the Zassenhaus-Feit-Suzuki
Theorem, both of these are (2,3) groups, and hence ¥(£/) is reducible in
k(z, co)[U] o- the degrees of the irreducible factors of ^(U) in k(z, co)[U]
are (3,3) and they have a common splitting field over k(z, co) with Galois group
Z3. It follows that *¥(U) is reducible in kp(z, co)[U] <& the degrees of the ir-
reducible factors of ^(U) in kp(z, co)[U] are (3, 3) «> Gal(A*, kp(y*)) is 2-
transitive but neither 3-transitive nor sharply 2-transitive •«• Gal(A*, kp(y*)) is
not 3-transitive; therefore by CTT, Special CDT, and the Zassenhaus-
Feit-Suzuki Theorem, we see that ^(U) is reducible in kp(z, co)[U] «■
Gal(A*, kp(y*)) = PSL(2, 7) or ArL(l, 8) «*> Gal(A*, kp(y*)) £ {S%,A%,
AGL(3,2),PGL(2, 7)}.

Let us close this long section with a
Summary about the bar polynomial. Let k be an algebraically closed field of
characteristic p ^ 0. Let a be a positive power of p and let « = q + t where
t is a positive integer with / ^ 0(p). Let F~„t9 = Yn - XYl + 1 e k[X, Y] and
let G„,q = Gal(F„;9, k(X)). Without using CT we have shown that if / = 1
then Gn,q = PSL(2, q) = PSL(2, «- 1), whereas if q = p and t > 2^ p then
Gn,q — A„ , and finally if q = p and t > 2 = p then Gn¡q = S„ .83 Using CT
we have shown that if q = p ^ 7 and t = 2 then Gn>q = A„ . Using CT, and
referring to (2*), (2'), (**), (2**), (2***) for notation and remembering that z
is transcendental over k, we have also shown that if q = p = 7 and t = 2 then
C7„,9 / An <& Gn,q = PSL(2, « - 1) -» ^(C/) is reducible in k(y, z, &>)[£/] «►
^(L7) completely factors (into linear factors) in k(y, z, co)[U] •«• ¥(£/) is
reducible in /c(z, co)[U] •«• the degrees of the irreducible factors of *F(C/) in
k(z, co)[U] are (3, 3) and they have a common splitting field over k(z, co)
with Galois group Z3 <» Gal(A*, it(y*)) = ATL(1, 8) & *¥(U) is reducible in
kp(z, co)[U] -» the degrees of the irreducible factors of *F(i7) in kp(z, co)[U]
are (3, 3) & Gal(A*, kp(y*)) = ATL(1, 8).
Remark. To establish the above long chain of equivalences, we still need to
prove that
( ' ) C79,7 = PSL(2, 8) => Gal(A*, k(y*)) / PSL(2, 7)
and
(") Gal(A*,Â:(y*))

= ATL(1, 8) => Gal(A*, kp(y*)) Ï {58, A,, AGL(3, 2),
PGL(2, 7),PSL(2,7)}.

Now Gal(A, k(y)) and AGL(1, 8) are the 1-point stabilizers of G?tj and
PSL(2, 8) respectively, and hence to prove (') it suffices to show that
( '" ) Gal(A, k(y)) = AGL(1, 8) => Gal(A*, k(y*)) ¿ PSL(2, 7)
Let / be a nonconstant univariate monic polynomial with coefficients in a field
K having no multiple roots in any field extension of K, and let K* be a (finite)

83Since PSL(2, 2) = S3 , it follows that if g = p = 2 then G„, „ = S„ .
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Galois extension of K. By (2') and (2***) we see that, in the case q = p = 7
and t = 2, the field k(y) is a Galois extension of the field k(y*) and hence,
by taking / = A = A* and (K, K*) = (k(y*), k(y)), implication ('") follows
from the implication

( Ö ) Gal(/, K*) = AGL(1, 8) =► Gal(/, K) ¿ PSL(2, 7).
Also clearly for some finite algebraic field extension k* of kp we have that
Gal(A*, k*(y*)) = Gal(A*, k(y*)) and k*(y*) is a Galois extension of kp(y*)
and hence, by taking / = A* and (K, K*) = (kp(y*), k*(y*)), implication (")
follows from the implication

Gal(/,tf*) = ArL(l,8)
m> =* Gal(/, K) <¿ {Ss, ¿8, AGL(3, 2), PGL(2, 7), PSL(2, 7)}.
Now AGL( 1,8) is a nonidentity solvable group and PSL(2,7) is a nonabelian
simple group, and hence AGL(1, 8) is not isomorphic to a normal subgroup
of PSL(2, 7), and therefore (jt) follows from the Refined Extension Princi-
ple. Likewise, ATL(1, 8) is a nonidentity solvable group but all the non-
identity normal subgroups of {58, A», AGL(3, 2), PGL(2, 7), PSL(2, 7)}
are nonsolvable because they respectively contain the nonabelian simple group
{^8, ^8, PSL(3, 2), PSL(2, 7), PSL(2, 7)} as a normal subgroup, and hence
A r L( 1, 8) cannot be isomorphic to a normal subgroup of any one of the groups
{Sa, As, AGL(3, 2), PGL(2, 7), PSL(2, 7)} , and therefore (U) also follows
from the Refined Extension Principle.

Note. Assuming q = p = 1 and t — 2, in my forthcoming paper [A7], first by
resolving the singularities of the curve <P(uj) = 0 in the (z, a>)-plane I calculate
its genus in terms of infinitely near singularities, and then, seeing that the genus
is 2 and hence the curve is hyperelliptic, by means of adjoints I express it as a
double covering of the line, and finally, using the resulting square-root parame-
trization of the curve I show that the polynomial *F((7) factors in k(z, co)[U]
into two factors of degree 3, and so I conclude that Gg^ = PSL(2, 8). Ini-
tially I used the square-root parametrization to take the "norm" of *F(t/) which
is a monic polynomial ^(T, U) of degree 12 in U with coefficients which
are polynomials in T over the prime field k-¡. I used REDUCE and MAC-
SYMA to calculate ^(T, U) ; the largest coefficient degree in T turned out
to be 216, and it took 10 pages to print out the exact expressions of the co-
efficients. From what I have said above, it follows that ^(U) is reducible
in k(z, co)[U] & »F»(7\ U) is reducible in k7[T, U] <s> *F«(7\ U) factors in
k7[T, U] into two polynomials of degree 3 in U. Although the last two tasks
are finitistic in nature, the computer algebra packages REDUCE and MAC-
SYMA refused to factor bivariate polynomials over a finite field! So I turned
back to hand calculation in a hyperelliptic function field, using MACSYMA only
for checking ordinary polynomial operations !!

22. The roof polynomial and decreasing induction
Let X and Y be indeterminates over an algebraically closed field k of

characteristic p ^ 0, let 0 ^ a e k, let í and t be positive integers with
t ^ 0(p), and consider the polynomial

Fn = Yn-aXsY' + l    with n=p + t
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mentioned in §11. This corresponds to the q = p case of the more general
polynomial

Fn,q = Yn-aXsY'+ 1

with « = q + t and q = a positive power of p which was also mentioned in
§11. The polynomials F„ and F„i? in turn may be obtained by substituting
aXs for X in the polynomials

F„,q = Yn-XY'+l

with n = q + t and q = a positive power of p and

Fn = Y" - XY' + 1    with n=p + t.
As noted in the beginning of §21, the y-discriminant of the polynomials Fn
and Fn > q is the nonzero element n" of k, and hence the y-discriminant of
the polynomials Fn and Fn>q is also the nonzero element nn of k, and there-
fore each one of the four polynomials F„, Fn¡q, F„, F„,q gives an unramified
covering of the affine line over k ,84

In the beginning of §21, we noted that the polynomials F„ and F„>9 are ir-
reducible in A:(X)[y], and considering the Galois groups G„ = Gal(.F„ , k(X))
and Gn,q = Gal(.F„f?, k(X)), as summarized in the Summary and the Note at
the end of that section, in the rest of that section we proved the following.85

(1.1*) If t - 1, then Gn = PSL(2^p) = PSL(2, « - 1).
(1.2*) If t = 2 and p = 1, then Gn = PSL(2, 8) = PSL(2, « - 1).
(1.3*) If t = 2 and p ± 7, then Gn = An.
(1.4*) If t > 2 and p £ 2, then G„ = A„ .
(1.5*) If p = 2, then G±= Sn .
(III. 1*) If t= l,then C7„>9 = PSL(2,a) = PSL(2,«- 1).
As noted in the said Summary and Note, on the one hand, CT was not used

in the proofs of (1.1*), (1.4*), (1.5*), and (III.l*), and on the other hand, the
proof (1.2*) was complete only modulo the reducibility of the polynomial *¥(U)
which will be established in [A7]. Actually, CT was used only in the sense that,
assuming t = 2, we first showed Gn to be a 3-transitiye permutation group
of degree « and from this by^TT we deduced that Gn = An or S„ . Now
the 3-transitivity tells us that |G„|>«(«-l)(«-2) and hence if p = 3 then
obviously G„ = A„ or S„ . Likewise, for p = 5 we need not invoke CT because
again in that case, say in view of the following elementary theorem which occurs
as item IV on page 148 of Carmichael's book [Ca],86 the 3-transitivity directly
tells us that G„ = An or Sn .

84That is, say in view of Proposition 1 of [Al], X = oo is the only valuation of k(X)/k which
is possibly ramified in the splitting field of F„ (resp. Fn,q , F„ , Fn,q ) over K(X).

85As said earlier, my work on this paper started when, in September 1988, Serre told me that he
could prove (LI*). As he now tells me, his proof, which also applies to (III.l*), uses "descending
Galois theory" which is different from my method which he calls the "ascending" method. With
Serre's kind permission, his letter to me, dated 15 November 1990, describing his "descending"
proof, is appended herewith.

86The statement of Charmichael's Theorem given on page 154 of Volume I of Huppert [HB]
says that A„ and S„ are the only /-transitive groups of degree n for which / > f . This seems
incorrect beacause for (/, n) = (4,11) we have 4 > -y but the Mathieu group Mn is a 4-
transitive group of degree 11, and for (/, n) = (5, 12) we have 5 > -y but the Mathieu group
M\2 is a 5-transitive group of degree 12.
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Carmichael's Theorem. A„ and S„ are the only l-transitive groups of degree «
for which / > [f + 1] where [f + 1] is the greatest integer not exceeding | + 1.

By Corollaries (3.5) to (3.10) of the Substitutional Principle, the Galois
groups Gnq = Gal(Fnq, k(X)) and G„ = Gal(F„, k(X)) have the same de-
scription as the above description of the Galois groups G„ = Gal(F„, k(X))
and Gn%q = Ga\(Fnq, k(X)). Let us summarize this in the following

Summary about the roof polynomial. Let k be an algebraically closed field of
characteristic p ^ 0, let 0 ^ a 6 k, and let 5 and t be positive integers
with t té 0(p). Then the polynomials Fn = Yn - aXsY' + 1 with n = p + t
and F„tq = Yn — aXsY' + 1 with « = q + t and q = a positive power of p,
give unramified coverings of the affine line over k, and for their Galois groups
G„ = Gal(F„, k(X)) and G„>q = Ga\(Fnq, k(X)) we have the following.

(1.1) If t = 1, then G„ = PSL(2, p) = PSL(2, « - 1).
(1.2) If t = 2 and p = 7, then G„ = PSL(2, 8) = PSL(2, « - 1).
(1.3) If t = 2 and p ¿ 7, then G„ = A„ .
(1.4) If t > 2 and p ¿ 2, then G„ = An .
(1.5) If p = 2, then C7„ = S„ .
(III.l) If t= l.then Gn,g = PSL(2,^) = PSL(2,«-l).
Here, CT is not used in the proofs of (1.1), (1.4), (1.5) and (III.l); likewise,

it is not used in the proof of (1.3) for p < 7. Moreover, referring to the
polynomial 4*(£7) obtained by taking q = p = 7 in item (2**) of the §21, the
proof of (1.2) is complete only modulo the reducibility of *¥(U) in k(z, co) to
be established in [A7].

Now what does the "decreasing induction" in the title of this section refer
to? Roughly speaking, it says that if we can find an unramified covering of
the affine line with Galois group A„ then we can find one with Galois group
A„-i. If this were so without any qualification, then an An covering for large
« would yield an A„ covering for all smaller « . But there is a qualification!
More precisely, we have the following

Method of decreasing induction. Assuming that we are working over an alge-
braically closed field k of characteristic p ^ 0, let there be given an irreducible
«-fold unramified covering of the affine line by the affine line,87 such that the
point at infinity splits exactly into two points, say the origin and the point at
infinity, with ramification exponents p and t = « - p £ 0(p), and let G be
the Galois group of the given covering.88 Now if G = An with « > 5 then
we can find an unramified covering of the affine line with Galois group An_\ .
More generally, without any condition on « or G, we can find an unramified
covering of the affine line with Galois group G* <G\ = the 1-point stabilizer
of G such that G\/G* is cyclic of order nondivisible by p .

To prove this informally, say the original line is the X-axis, and the cov-
ering line is the y-axis, and let C be the least Galois covering of the X-axis
"containing" (or, "dominating") the y-axis. Then the Galois group of C over
the y-axis is the one-point stabilizer G\  of G.  Moreover, the origin of the

87That is, a covering of the projective line by the projective line, which is unramified over the
affine line.

88That is, G is the Galois group of the associated least Galois covering.
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y-axis is tamely ramified in C, say with reduced ramification exponent t* ,89
and the point at infinity of the y-axis is the only other point which is possibly
ramified in C . Now considering the y*-axis with a*Y*r = Y with 0 ^ a* e k
and r = 0(t*), and passing to the "compositum" C* of C and the y*-axis,
by MRT90 we see that C* is an unramified covering of the affine line = the
y *-axis, and upon letting G* to be the Galois group of C* over the Y * -axis,
by Corollary (3.1) of the Substitutional Principle we see that G* < Gi = the
1-point stabilizer of G, and G\/G* is cyclic of order nondivisible by p .

To apply this method to the polynomial F„ , from the initial material91 of
§21 we recall that92 by putting X = x and reciprocating the roots of F„ we
get the polynomial

e(Y) = Yp+t + xYp + 1
and by letting y be a root of &(Y) in an overfield of k(x) we have k(x, y) =
k(y), and by letting &(Y) be the twisted y-derivative of Q(Y) at y, and
letting A(y) be the polynomial obtained by reciprocating the roots of Q'(Y),
and letting A(Z) be the polynomial obtained by multiplying the roots of A(Z)
by ty, we get

A(Z) = y(Z)(Z + t)P - tP-2y-P-'Z',
where

y(Z) = r2[(Z +1)'- Z'].
Now A(Z) is irreducible in k(y)[Z] and has no multiple roots in any overfield
of k(y), and upon taking 1-point stabilizers, by (1.3*), (1.4*), and (1.5*) we get
the following where CT is used only in the p > 5 case of (1.3**).

(1.3**) If t = 2 and p # 7, then Gal(A(Z), k(y)) = An_{.
(1.4**) If t > 2 and p # 2, then Gal(A(Z), k(y)) = An_x.
(1.5**) If p = 2, then Gal(A(Z), k(y)) = £„_,.
Remembering that 5 is any positive integer and a is any nonzero element

of k , we let
As¡a(Z) = y(Z)(Z + t)P - aY-sZ'

and we note that if í = 0(p + t) then Asa(Z) can be obtained from A(Z)
by replacing y by a'Ysl^+c>, where a' e k is such that tp~2a'~p~' = a. In
view of the LCM Theorem,93 by the first ramification diagram94 in §21, we see
that LCM (p - 1, i) is divisible by the reduced ramification exponent of every
extension of the valuation y = 0 of k(y)/k to a splitting field of A(Z) over
k(y), and no valuation of k(y)/k, other than the valuations y = 0 and y = oo,
is ramified in the said splitting field. Therefore, if 5 = 0((p +1) LCM(p -1,0)
then by MRT we see that no valuation of k(Y)/k, other than the valuation Y =
oo, is ramified in a splitting field of As>a(Z) over k(Y), and obviously As<a(Z)
has no multiple roots in any overfield of k(Y), and in view of Corollaries (3.3),
(3.5), and (3.8) of the Substitution Principle, by (1.3**), (1.4**), and (1.5**) we
see that (3') if t = 2 and p ^ 7, then Gal(Ai>a(Z), k(Y)) = An-\, whereas

89By the argument on pages 843-845 of [A3] we see that t*  divides LCM (/, (p - 1)!) and
hence the origin of the 7-axis is tamely ramified in C .

90MRT = pages 181-186 of [A5].
91Up to formula (*).
92Until further notice q = p and n = p + t with positive integer / ^ 0(p).
93That is, Proposition 7 on page 845 of [A3].
94Together with its explanation in the three paragraphs following it.
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(4') if r > 2 and p # 2, then Gal(As,a(Z), k(Y)) = An-X , and finally (5') if
p = 2, then Gal(AJ>a(Z), k(Y)) = S„_x . Thus we have the following where
CT is used only in the p > 5 case of (I. 3' ).

(1.0' ) If s = 0((p + t) LCM(p -1,0) then no valuation of k(Y)/k, other
than the valuation Y = oo, is ramified in a splitting field of Aia(Z) over
k(Y), and As>a(Z) has no multiple roots in any overfield of k(Y).

(1.3') If t = 2 and p # 7 and s = 0((p + i)LCM(p - 1,0), then
Gal(A,,a(Z),A:(y)) = ^_i.

(1.4') If t > 2 and p # 2 and s = 0((p + 0LCM(p - 1,0), then
Gal(Ai,a(Z),fe(y)) = ^„_1.

(I. 5') If p = 2 and 5 = 0((p+0LCM(p-l, 0),then Gal(As,a(Z), k(Y)) =
Sn-\ •

Actually, the above four assertions remain valid if we replace the assump-
tion that 5 = 0((p + 0LCM(p -1,0) by the weaker assumption that s =
0(LCM(p -1,0)- To see this, first note that A(Z) can be obtained from
Ai > i (Z) by replacing Y by t2~pyp+t ; now since no valuation of k(y)/k , other
than the valuations y = 0 and y = oo, is ramified in a splitting field of A(Z)
over k(y), it follows that no valuation of k(Y)/k , other than the valuations
y = 0 and y = oo, is ramified in a splitting field of Aii(Z) over k(Y);
moreover since A(Z) is irreducible in k(y)[Z] and has no multiple roots in
any overfield of k(y), it follows that Ai,i(Z) is irreducible in k(Y)[Z] and
has no multiple roots in any overfield of k(Y) ; finally, in view of Corollary
(3.1) the Substitutional Principle, by (1.3**) to (1.5**) we see that (3***) if
t = 2 and p ± 7, then Ga\(Ax A(Z), k(Y)) = An_x or 5„_] , and (4***) if
t > 2 and p ¿ 2, then again Ga^Ai^Z), k(Y)) = An_x or S„_,, and (5***)
if p = 2, then Gal(Aii(Z), k(Y)) = S„-X . Again, AJ)(J(Z) can be obtained
from Aii(Z) by substituting aYs for Y and hence, in view of Corollaries
(3.2) to (3.8) of the Substitutional Principle, we get the following where CT is
used only in the p > 5 case of (I. 3" ).

(1.0" ) No valuation of k(Y)/k, other than the valuations Y = 0 and Y =
oo, is ramified in a splitting field of Aja(Z) over k(Y), and As>a(Z) is
irreducible95 in k(Y)[Z] and has no multiple roots in any overfield of k(Y).

(I. 3" ) If t = 2 and p ^ 7, then Gal(AJifl(Z), k(Y)) = A„-X or S„_,.
(1.4") If t > 2 and p ^ 2, then Ga\(As'a(Z), k(Y)) = An_x or 5„_i.
(I. 5" ) If p = 2, then Gal(A,>fl(Z), k(Y)) = S„.x .
Now y(0) /0// and, upon letting Z' to be a root of Ai,i(Z) in an

overfield of k(Y), we have
Z"

y =-
y(Z')(Z' + t)P

and hence the valuation Y = 0 of k(Y)/k splits in k(Y, Z') = k(Z') into the
valuations Z' = 0 and Z' = oo with reduced ramification exponents t £ 0(p)
and p - 1 ^ 0(p) respectively, and therefore by the LCM Theorem we see
that LCM (p - 1, 0 is divisible by the reduced ramification exponent of every
extension of the valuation Y = 0 of k(Y)/k to a splitting field of A(Z) over
k(Y), and hence by MRT we see that if j = 0(LCM(p-1, 0) then no valuation
of k(Y)/k, other than the valuation Y = oo, is ramified in a splitting field of

95The irreducibility of As,a follows from the First Irreducibility Lemma. Alternatively, it
follows from the fact that a polynomial is irreducible if and only if its Galois group is transitive.
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Ai>a(Z) over k(Y), and therefore by Result 4 on page 841 of [A3] we know
that Gal(AJ>a(Z), k(Y)) is a quasi p-group. Thus, in view of (1.0" ), (1.3" ),
(1.4" ), and (I. 5" ), we conclude with the following where CT is used only in
the p > 5 case of (IV. 2' ).

(IV. 0' ) If s = 0(LCM(p -1,0). then no valuation of k(Y)/k , other than
the valuation Y = oo, is ramified in a splitting field of As,a(Z) over k(Y), and
As a(Z) is irreducible in k(Y)[Z] and has no multiple roots in any overfield
of'k(Y).

(IV. 1' ) If t > 2 and p # 2 and s = 0(LCM(p - 1,0), then
Ga\(As,a(Z),k(Y)) = An_x.

(IV. 2' ) If t = 2 and p ^ 7 and s = 0(LCM(p - 1,0), then
Gal(Ai(fl(Z),A:(y)) = ^B_1.

(IV. 4' ) If p = 2 and s = 0(LCM(p -1,0), then Gal(A, ,a(Z), k(Y)) =
Sn-\ ■

As we have said, CT is used only when t = 2 ; now in the case t = 2 we
have y(Z) = Z + 1 and hence A, ,a(Z) = (Z + 1)(Z + 2)p - aY-'Z1 ; therefore
by (1.0" ) we see that if t = 2 then A,,a(Z) = (Z + 1)(Z + 2)p - aY~sZ' is
unramified outside Y = 0 and Y = oo. For getting hold of a variation of
(I. 3'" ) without CT, let us reprove the said unramifiedness in a more general
context. So let

E(Z) = (Z + \)(Z + b)P - YZX
with 1 < x < p and 0 / b e k. Now for the (ordinary) Z-derivative we have

Ez(Z) = (z + b)p-xYzT-x

and hence
E(Z) = (Z + l)Ez(Z) + E*(Z),

where
E*(Z) = (x-l)YZ*-x(z + v^j

and therefore for the Z-discriminant we have

Discz(£(Z)) = Resz(£(Z), EZ(Z))
= Resz(E*(Z),Ez(Z))

= (T-l)fF£z(0r'£z(^)

= (t- \)PYpbP^-X)Ez (^y)

= (x-\)PYPbP^~x\-xY) (^-)T       if è = 73T

= (-t)t(t - \)P-*+ibp(x-X)YP+x     ifb = —^~
x - 1

and hence if b = ^r¡ then no valuation of k(Y)/k, other than the valuations
y = 0 and y = oo, is ramified in a splitting field of E(Z) over k(Y), and
E(Z) has no repeated roots in any overfield of k(Y). Therefore, upon re-
membering that a is any nonzero element of k and s and t are any positive
integers with t ^ 0(p), and upon letting
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Es>a(Z) = (Z + 1)(Z + by - aY~sZ'

we get the following.96
(IV.O**) If 1 < r < p and è = yéï then no valuation of k(Y)/k, other than

the valuations Y = 0 and Y = oo, is ramified in a splitting field of EStU(Z)
over fc(y),and Es>a(Z) is irreducible97 in k(Y)[Z] and has no multiple roots
in any overfield of k(Y).

Before proceeding further, let us make note of the following

Alternate Corollary of the Fourth Irreducibility Lemma. If F(Z) is a monk
irreducible polynomial ofdegree p + 1 in Z with coefficients in k(Y) suchthat
some valuation of k(Y)/Y, say the valuation Y = co, splits in a root field of
F(Z) over k(Y) into two valuations with reduced ramification exponents p and
1, then the Galois group Gal(F(Z), k(Y)) is 2-transitive.

For a moment suppose that 1 < t < p and b = jéj . Now upon letting Z*
to be a root of ExyX(Z) in some overfield of k(Y), we have

Y= z*'
(Z* + l)(Z* + b)P

and hence the valuation Y = oo of k(Y)/k splits in k(Y, Z*) = k(Z*) into
two valuations with reduced ramification exponents p and 1 and therefore,
by the above Alternate Corollary, Gal(Ex¡x(Z), k(Y)) is 2-transitive. By the
above equation for Y we also see that the valuation Y = 0 of k(Y)/k splits
in k(Z*) into the valuations Z* = 0 and Z* = oo with reduced ramification
exponents t ^ 0(p) and p + 1 - t ^ 0(p) respectively. Therefore on the one
hand, by the LCM Theorem and MRT we see that if 5 = 0(t(p + 1-0) then
no valuation of k(Y)/k, other than the valuation Y = oo, is ramified in a
splitting field of Es,a(Z) over k(Y), and hence by Result 4 on page 841 of
[A3] we see that Gal^,a(Z), k(Y)) is a quasi p-group, and so if we already
knew that Gal(£i>a(Z), k(Y)) = Ap+X or Sp+X then we would conclude that
Gal(.Es)a(Z), k(Y)) = Ap+X. On the other hand, by the Cycle Lemma we
see that if GCD(p + I - t,t) = 1 then Gal^^^Z), k(Y)) contains a t-
cycle, and hence by MarggrafFs First Theorem we see that if also t < ^ then
Gal(£i t i(Z), k(Y) = Ap+X or Sp+X. Note that if p > 5 and t is an odd prime
factor of (p-1)(p-3) then either t is an odd prime factor of ^ or t is an odd
prime factor of ^y3-, and in both the cases 1 < t < ^ and GCD(p+1,0 = 1.
Also note that, in the case p > 5, there do exist odd prime factors of (p~'K^~3) >
because otherwise we would have p - 1 =2m with m > 2 and p - 3 = 2m' with
m' > 1, and this would give 2m'~x = ^f3- = ^^ = 2m~x - 1 which would be
a contradiction since 2m _1 is even and 2m~1 - 1 is odd. Thus, without using
CT, we have proved the following.98

(IV.O*) If p > 5 then t can be chosen so that 1 < í < ^+i anci
GCD(p + 1, t) = 1, and for any such t, upon assuming b = ^y and 5 =
0(î(p + 1 - 0), we have that no valuation of k(Y)/k , other than the valuation

96For a while there will be no reference to n .
97The irreducibility of Es a b follows from the First Irreducibility Lemma.
98This was inspired by discussions with Walter Feit.
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y = oo, is ramified in a splitting field Es<a(Z) over k(Y), and Es,a{Z) is
irreducible in k(Y)[Z] and has no multiple roots in any overfield of k(Y).

(IV.3*) If p > 5 then t can be chosen so that 1 < t < ^ and
GCD(p +1,0 = 1, and for any such t, upon assuming ¿> = 737 and i =
0(t(p + 1 - 0), we have Gal(£'i,a(Z), k(Y)) = Ap+X.

The above two results with (Y, Z) changed to (X, Y), together with the
results (IV.O'), (IV. 1'), (IV.2'), and (IV.4') with (n,Y,Z) changed to
(« + 1, X, Y)," may be summarized in the following
Summary about the primed roof polynomial. Let k be an algebraically closed
field of characteristic p ^ 0, let a, b be nonzero elements in k, let «, s, t be
positive integers with « + 1 ^ 0(p) and « > £ =é 0(p), and consider the monic
polynomial of degree « in y with coefficients in k(X) given by

F^ = h(Y)(Y + b)P -aX~sY'   with 0 ^ bek,
where h(Y) is the monic polynomial of degree n-p in Y with coefficients in
k given by

,       _ (Y + n + l)n+x-P-Yn+x-P

K   '~ (n + \)2
Then in the following cases F'n is irreducible in k(Y)[Z], has no multiple
roots in any overfield of k(Y), and gives an unramified covering of Lk with
the indicated Galois group G'„ = Gal(F„', k(X)).

(IV.l) If « + 1 - p = t > 2 ¿ p and b = t and s = 0(p - 1) and s = 0(0 ,
then G'n = An .

(IV.2) If « + 1 - p = t = 2 and p # 7 and b = t and s = 0(p - 1), then
G'„ = AH .

(IV.3) If « = p + 1 and p > 5, then t can be chosen so that 1 < t < ^
and GCD(p +1,0 = 1, and for any such /, upon assuming ¿ = 737 and
5 = 0(i(p + 1 - 0), we have G'n = An .

(IV.4) If n + 1 - p = t and p = 2 and b = t and 5 = 0(0 , then G'n = Sn .
Here CT is used only in the p > 5 case of (IV.2).
Referring to the summaries about the tilde polynomial and the roof polyno-

mial and the primed roof polynomial, we have established the following four
corollaries and we have arranged a proof of the First and the Second Corollaries
independent of CT.
First Corollary. For any n > p > 2, there exists an unramified covering of the
affine line in characteristic p whose Galois group is A„ .
Second Corollary. For any n > p = 2, there exists an unramified covering of the
affine line in characteristic p whose Galois group is S„ .
Third Corollary. Unramified coverings of the affine line in characteristic p with
a few more Galois groups have been constructed.
Fourth Corollary. Let G be a quasi p-group. Assume that G has a subgroup
H of index p + 1 such that H does not contain any nonidentity normal sub-
group of G .10° Also assume that p is not a Mersenne prime and p is different

"Note that with these changes, if « + 1 -p = t & 0(p) then y(Y) = (y+"+')"^-y,'+'~p .
100Equivalently, G is isomorphic to a transitive permutation group of degree p + 1 .
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from 11 and 23. Then there exists an unramified covering of the affine line in
characteristic p having G as Galois group.

It only remains to note that, in view of the said three Summaries, the above
Forth Corollary follows from CTT, Special CDT, and the Corollary of the
Fourth Irreducibility Lemma given in §21. Moreover, given any n > p > 2,
as a definite alternative for getting an (^4„)-covering as asserted in the First
Corollary without CT : if p + 2 < « £ 0(p) then use (1.4) with t = n- p; if
« = p + 2 and p < 7 then use (1.3) with t = 2; if n = p + 2 and p > 7 then
use (IV. 1) with t = 3 ands = t(p - 1) ; if « = p + 1 and p < 7 then use (IV.2)
with t = 2 and s = p - 1 ; if «=p + l and p > 7 then use (IV.3) with t =
the smallest odd prime factor of (p-1)^-3) and with s = t(p + I -1), [note that
in case of « = 8 and p = 7 this gives t = 3 and s = 15] ; if « = 0(p) then
use (II. 1 ) with t = 2. Likewise, given any « > p = 2, as a definite alternative
for getting an (S„)-covering as asserted in the Second Corollary without CT:
if « ^ 0(p) then use (1.5) with t = n — p ; if « = 0(p) then use (IV.4) with
t = « + 1 - p and s = t.

The above cited three summaries are transcribed from my e-mail message to
Serre dated 28 August 1989. This was only one out of the nearly a hundred
e-mail and s-mail messages which flashed back and forth between him and me
in the two year period September 1988 to September 1990. Indeed it has been a
tremendous pleasure working with him. So once again my hearty MERCI MON
AMI to Serre.
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Appendix by J.-P. Serre *
Harvard, November 15, 1990

Dear Abhyankar,

Here is my original proof that PSL2(FÖ) occurs for the equation Yq+X -
XY+l = 0.

I use "descending Galois theory," i.e., I construct a priori the Galois covering
one wants. This is different from your "ascending" method; in particular, I
don't need any characterization of PGL2(Fa), or PSL2(Fa), as a permutation
group on q + 1 letters.

Notation, p is a prime; q is a power pe of p .
G = PGL2(Fa), i.e., the quotient of GL2(F0) by its center F*.
k is an algebraically closed field of characteristic p ; all the curves I consider

are over k.

Preliminary construction. I start from the obvious fact that G acts in a natural
way (by "fractional linear transformations") on the projective line Pi . In al-
gebraic terms this means that G acts on k(t) by / h-> (at + b)/(ct + d). The
quotient curve P', = Pi/G is of course (Lüroth's theorem!) a projective line.
Equivalently, the field of invariants of G in k(t) is a purely transcendental
field k(x).

The first computational problem which arises is to write x explicitly. To do
so, let us call (u, v) the homogeneous coordinates on Pi, so that t = v/u.
The invariant theory of k[u, v] with respect to the action of G has been
done long ago by Dickson. The basic covariants are the following homogeneous
polynomials:

A(u, v) = uvq - vuq,        B(u, v) = (uvq -vuq)/A(u,v).

They are of degree q + 1 and q2 - q respectively. Hence the ratio

x = B(u,v)q+x/A(u,v)q2-q

is invariant by G.   Its expression in terms of t is easy to find: if we write
A(u, v) = uq+xa(t), B(u ,v) = uq2~qb(t), we have

a(t) = tq -t,        b(t) = (tql - t)/(tq - t) = a(t)q~x + 1

* The author expresses his appreciation to J. P. Serre for permission to include the following
letter in this paper.
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and
(*) x = b(t)q+x/a(t)q2-q = (a(t)q-x + \)q+x/a(t)q2-q.

This shows that x is a rational function of t of degree q(q2 - 1). Since it is
invariant by G, which has order q(q2 - 1), Galois theory shows it generates the
field of the (/-invariant elements of k(t). Hence we have found our parameter
for P', =PX/G.

Ramification. It is necessary to study the ramification in the Galois extension
k(t)/k(x) thus constructed. This amounts to looking for the fixed points of the
action of G on the projective line Pi. It is easy to see that these fixed points
make up two orbits. Namely:

(a) The Ffl-rational points of Pi . This orbit has q + 1 elements. The
stabilizer of an element is a triangular subgroup ("Borel subgroup") of order
q(q - 1). Since that order is divisible by p, there is wild ramification.

The point of P', corresponding to this orbit is x = oo .
(b) The "quadratic" points, i.e., the Ffl2-rational points of Pi which are not

rational over Ffl . There are q2 - q of them. The stabilizer of such a point is
a cyclic group of order q + 1 ("nonsplit Cartan subgroup"). Since that order is
prime to p, the ramification at such a point is tame.

The point of P\ corresponding to this orbit is x = 0.
Hence we see that the covering of P'x we get in this way is ramified both at

0 and oo, and nowhere else. The next step is thus:

Getting rid of the ramification at 0 using Abhyankar's lemma. We consider the
cyclic extension k(X) of k(x) defined by the equation Xq+1 = x. By making
a base change to that extension (i.e., by considering k(t, X)/k(X)) we get rid
of the ramification at 0. Only the ramification at oo remains. Of course, one
has to see what the new Galois group is. There are two cases:

(i) p = 2. The extensions k(X)/k(x) and k(t)/k(x) are disjoint. Hence
the new Galois group is equal to the old one, namely G = PGL2(Ffl), which
happens to be equal to PSL2(Fa).

(ii) p ^ 2. The extensions k(X)/k(x) and k(t)/k(x) have a quadratic
extension in common, namely k(xx/2). Hence the new Galois group is G' =
PSL2(Ffl).

In both cases, one thus gets a Galois extension of k(X) with Galois group
PSL2(F0) which is ramified only at X = oo.

It remains to see that this extension is the same as the one you get by the
equation Yq+l-XY+l =0.

An equation for the degrees a+1 extension. I go back to the k(t)/k(x) extension
with Galois group G. Let H be the triangular subgroup of G, of index q + 1.
The fixed field k(t)H is an extension of degree q + 1 of k(x) and we want to
find a generator y for that field (which is also a purely transcendental field, of
course). We may assume that H is the group of transformations t >-* at + b .
This shows that the polynomial

y = a(t)q-x = (tq -t)q~x

is invariant by H. Since its degree is q(q - 1) = \H\, the same argument as
above shows that k(y) is equal to k(t)H .
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I now write the equation of degree q + 1 relating y to x. This is easy, since
by construction, we have x = (y + l)q+x/yq , cf. (*) above. We thus get the
equation

(y + l)q+x -xyq = 0.
But I want to work on k(X), with x = Xq+X. We have:

(y+l)q+x -Xq+Xyq = 0.

Let me put Y = (y+l)/yX, i.e., y = l/(XY-l). The above equation becomes

Yq+X -XY+l = 0,

and we are done.
This is the proof I found in 1988 when I started thinking about your problem.

The first part is natural enough—and could indeed be applied to other groups,
à la Nori. The second part (the search for the degree q + 1 equation) is not;
it looks like a happy coincidence, and I would not have found it if I had not
known in advance your polynomial Yq+X - XY + 1.

With best regards,
Yours

J-P. Serre
PS The determination of the invariants of G in k(t) is not new. I am almost
certain to have seen it in print very long ago, as an elementary exercise in Galois
theory. (Indeed: see Lang's Algebra, 2nd ed., p. 349, exercise 33, and also P.
Rivoire, ̂ ««. Inst. Fourier 6 (1955-1956), pp. 121-124.)

(Shreeram S. Abhyankar) Mathematics Department, Purdue University, West Lafayette,
Indiana 47907


