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ABSTRACT

Novel techniques for high-throughput steady-state

metabolomic profiling yield information about

changes of nearly thousands of metabolites. Such

metabolomic profiles, when analyzed together with

transcriptional profiles, can reveal novel insights

about underlying biological processes. While a num-

ber of conceptual approaches have been devel-

oped for data integration, easily accessible tools

for integrated analysis of mammalian steady-state

metabolomic and transcriptional data are lacking.

Here we present GAM (‘genes and metabolites’):

a web-service for integrated network analysis of

transcriptional and steady-state metabolomic data

focused on identification of the most changing

metabolic subnetworks between two conditions of

interest. In the web-service, we have pre-assembled

metabolic networks for humans, mice, Arabidopsis

and yeast and adapted exact solvers for an op-

timal subgraph search to work in the context of

these metabolic networks. The output is the most

regulated metabolic subnetwork of size controlled

by false discovery rate parameters. The subnet-

works are then visualized online and also can be

downloaded in Cytoscape format for subsequent

processing. The web-service is available at: https:

//artyomovlab.wustl.edu/shiny/gam/

INTRODUCTION

Integration of metabolomic and transcriptional data
has been widely discussed in the context of �ux opti-
mization of bacterial production of various metabolites

(1,2). Recent developments in high-throughput steady-
state metabolomic pro�ling provide novel opportunities
for studying details of metabolic rewiring in mammalian
cells, especially in the context of cancer and immune
cell metabolism (3,4). Current state-of-the-art methods al-
low measuring up to thousands of steady-state metabolic
signals, yielding robust coverage of 200–400 metabo-
lites. Thus, in a context of metabolic networks, these
datasets contribute considerable amount of coverage (for
comparison––typical connected component of the mam-
malian metabolic network contains about 1000–2000 en-
zymes). Overall, this warrants ef�cient and accessible tools
for integration of steady-state metabolomics data with
steady-state mRNA level measurements.
Three major approaches are typically used for

metabolomic and transcriptional data integration: (i)
�ux balance analysis (FBA), (ii) pathway-enrichment and
(iii) network analysis. While FBA-based methods have
been used successfully in the context of metabolic �ux (5),
incorporating steady-state metabolomic data into such
methods is not straightforward. Yizhak et al. have devel-
oped an Integrative Omics-Metabolic Analysis (IOMA)
method for such integration, but it has been shown to work
only for bacterial-size models (6). Widely used pathway
enrichment methods, such as iPEAP and Metaboanalyst
(7,8), are directly applicable for integrating steady-state
metabolomic and transcriptional data. These methods,
however, depend highly on the pre-de�ned pathways and,
thus, lack the power to identify novel pathways and links
between the existing pathways. In contrast, network-based
methods have a potential advantage of an unbiased identi-
�cation of novel pathways critical in the speci�c biological
context, particularly when comparing different conditions
or activation states (3,4).
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Network-based methods were originally developed in the
context of protein–protein interactions with the goal to
identify regulatory modules of interacting genes based on
differential expression (DE) data (9,10). By leveraging con-
nections among the input signals of potentially different
type such methods allow integration of different types of
data. The connections could be both inferred, for exam-
ple from the correlational structure of the data (11,12), or
be inherent to the data types, such as metabolic networks
for integrating transcriptional and metabolomic data. Re-
cently, integration approaches that use of metabolic net-
works have proven to be powerful in identifying novel regu-
latory modules in yeast (13), micro-organisms (14) and sim-
ple plants (15). In the context of the mammalian systems,
the network-based approaches are restricted to the analy-
sis of nearest neighbor interactions, e.g. MetScape (16,17)
and lack subnetwork analysis capabilities. In this work, we
describe easily accessible tool for identi�cation of the most
regulated subnetworks based onDE analysis of steady-state
metabolomic and transcriptional data. Such analysis allows
to identify reactions and modules that are changing the
most when comparing between two conditions, providing
a valuable insight for further biological follow-up and hy-
pothesis generation.
Two major aspects have to be addressed in creating such

tool: the underlying network structure and the subnetwork
search algorithm. In the case of metabolic networks, net-
work structure re�ects not only speci�c connectivity of the
metabolites and reactions but also the way such connec-
tions are represented. For example, reactions can be rep-
resented (and scored) as network nodes re�ecting underly-
ing enzymes, or as edges connecting different metabolites.
For each representation, different scoring schemes and cor-
responding formulations of subnetwork search algorithms
have to be used. Accordingly, we have implemented a web-
service providing three different subnetwork search algo-
rithms. Two of the algorithms (18,19) were adapted from
the protein–protein interaction network analysis, the third
one was developed by our group. Speci�cally, in their work
(18), Dittrich et al. used a subnetwork scoring scheme for
protein–protein interaction networks that could be reduced
to a maximum-weight connected subgraph (MWCS) prob-
lem. They also developed a practical exact solver and later
showed that the approach of reducing to MWCS is robust
to different types of noise (20). For a special case when re-
actions are scored and represented as edges in the network
we have also developed an original exact solver for �nding
the most regulated subnetworks.

MATERIALS AND METHODS

Network analysis pipeline

Overall, GAM (‘genes and metabolites’) networks provided
in the web interface are constructed based on KEGG RE-
ACTION database, using RPAIR database for the case
when reactions/enzymes are represented as edges. The web-
service has human, mouse, Arabidopsis and yeast networks
con�gured and ready to use. However, networks for other
organisms available in KEGG can be added on request.
The analysis takes as input DE tables for genes and/or

metabolites between two conditions of interest contain-

ing all expressed genes (whether they are differentially ex-
pressed or not). Then the following procedures are carried
out for the analysis (Figure 1):

(i) The network is adjusted to contain only reactions with
expressed enzymes.

(ii) The network is mapped to a simple graph in order to
apply the subgraph search algorithm.

(iii) Nodes or nodes and edges are scored depending on the
chosen network representation to yield a scored global
network. Each reaction and metabolite is scored using
a scheme adopted from Dittrich et al. (18) so that the
reactions and metabolites with low P-value have posi-
tive scores and ones with high P-values have negative
scores. The number of positive nodes and edges is con-
trolled by false discovery rate parameter (FDR) thresh-
olds.

(iv) The most regulated subnetwork is identi�ed. For the
scored graph, a problem of �nding MWCS is solved
using one of the supported solvers. For a node-scored
network we support heinz (18) or heinz2 (19) solver.
If the nodes-and-edges scoring is used, which might
be considered more biologically meaningful, then we
use heinz solver or the original solver called gmwcs
(see ‘SolvingMWCS’ section). This �nal step produces
a module that contains a connected subnetwork of
signi�cantly regulated reactions and metabolites while
minimizing the number of non-signi�cantly regulated
connections.

(v) Post-processing operations are applied. To ease biolog-
ical interpretation and visualization, we implemented
a few of optional post-processing steps that enrich the
module with additional nodes and edges such as near-
est neighbor metabolites. Final networks are visual-
ized in the web-service and can be downloaded in PDF,
XLSX or Cytoscape formats.

Implementation details

Internally, GAM consists of three parts: (i) an R-package
GAM with the method implementation, (ii) an R-package
GAM.db with the required data from KEGG (21) and
Metabocards (22) databases and (iii) aweb-interfacewritten
using R Shiny framework. Additionally, GAM.networks
package can be built that contains constructed networks
for the supported organisms. We provide all the source
codes, so that the analysis can be carried out program-
matically, if the KEGG database and solvers are avail-
able. Source codes forGAM,GAM.db andGAM.networks
packages are available at https://github.com/ctlab/GAM.
The web-interface source code is available at https://github.
com/ctlab/shinygam.

Constructing the global network

We implemented the following procedure for constructing
the network. First, based onKEGGREACTIONdatabase,
a global reaction-metabolite network is constructed. Next,
for purposes of the network analysis, a number of ubiqui-
tous metabolites have to be excluded to avoid biases due
to their extreme connectivity (Supplementary Table S1).
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Figure 1. The GAMwork�ow. (A) From the KEGG database reactions possible in the selected species are extracted. (B) If the gene DE data are available
reactions without expressed enzymes (i.e. present in the input) are removed. (C) Reaction network is mapped to a simple graph. (D) Nodes and/or edges
of the graph are scored based on the corresponding P-values and chosen FDR values. (E) The most regulated module is identi�ed using maximum-weight
connected subgraph solver. (F) The post-processing options are applied to get the �nal module.

Furthermore, groups of anomeric metabolites are collapsed
into one metabolite (Supplementary Table S2). Next, a
reaction-enzyme mapping is extracted from KEGG RE-
ACTION database followed by an enzyme-gene-organism
mapping from KEGG ENZYME. To avoid redundancy,
reactions that are part of a multi-step reaction are ex-
cluded from the global network (Supplementary Table S3).
By combining information about enzymes, reactions and
genes, we construct a many-to-many mapping between re-
actions and genes encoding corresponding enzymes.

Input �les

Before the analysis, �les with DE data for genes and/or
metabolites have to be uploaded into GAM. Each DE
dataset must be in a separate text �le (comma-, tab- and
space- separated �les are supported, archived �les are sup-
ported too). The �rst line of each �le must contain a header
with column names. Files should contain the following
columns:

(i) ‘ID’: RefSeq mRNA transcript ID, Entrez ID or sym-
bol for genes and HMDB or KEGG ID for metbolites.

(ii) ‘pval’: DE P-value (non-adjusted).
(iii) ‘log2FC’: Base 2 logarithm of the fold-change.

The columns in the �les can have somewhat different
names, in which case GAM will try to guess which one to
use by comparing with a set of alternative names for these
columns. Raw outputs of limma (23) andDESeq2 (24) tools
are supported.
The ‘log2FC’ column is optional, but we recommend pro-

viding it if possible. It informs about the directionality of
changes, which is later used for assigning corresponding col-
ors in the graph visualization. Any other columns will be

copied to a network as node or edge attributes. ExampleDE
data tables are available as Supplementary Tables S4 and 5
and are embedded into the web-service.

Adjusting the global network

For a particular analysis we consider a network only from
the reactions with enzymes present in the input data. This
allows user to control the ‘expressed universe’ of enzymes
by removing reactions without expressed enzymes. We rec-
ommend the input data to include about 10 000–15 000 of
the most expressed genes, which roughly corresponds to the
number of well-expressed genes in an individual cell. If no
transcriptional data are provided we consider the complete
species-speci�c network that includes all enzymes for that
species.

Mapping to a simple graph

In order to apply subnetwork search algorithms, the net-
work of reactions has to be converted into a simple graph.
In the case of metabolic networks, this procedure is non-
trivial due to a presence of bimolecular reactions. We im-
plemented two distinct ways for suchmapping (Supplemen-
tary Figure S1). The �rst one represents the metabolic �ow
centric view: it maps metabolites to nodes and reactions to
edges that represent interconversions between the metabo-
lites (Supplementary Figure S1B). We also use informa-
tion from KEGG RPAIR database, so that only substrate-
product pairs that represent ‘main’ interconversions in the
reaction are connected (Supplementary Figure S1C). The
other way is gene-centric, this is preferred mode of analysis
when one only has transcriptional data. Here, bothmetabo-
lites and reactions are mapped to nodes that are connected
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if the metabolite is involved in the reaction (Supplementary
Figure S1D). Connected reactions that share an enzyme are
collapsed into one node associated with the corresponding
enzyme (Supplementary Figure S1E and F). This reduces
redundancy of the network and helps to avoid arti�cial bi-
ases toward differentially regulated enzymes catalyzingmul-
tiple topologically close reactions.
Overall, the �ow-centric method with only ‘main’

RPAIRs proved to give better interpretable results if
metabolomic data are available (see case studies for exam-
ples). For other cases use of gene-centric approach is rec-
ommended.

Scoring

Themethod of scoring reactions andmetabolites is adopted
from Dittrich et al. (18). First, DE P-values between two
conditions in consideration are �tted into a �-uniform dis-
tribution, where B(a, 1) distribution corresponds to signal
component and the uniform distribution corresponds to the
noise (Supplementary Figure S2). Then score is calculated
as a log-likelihood ratio of a P-value being in the signal
component, normalized to an FDR threshold. The pro-
cedure is carried out separately for GAM. This results in
metabolites and reactions with low p-value having positive
scores and ones with high P-values having negative scores.
The score for metabolites absent from the data is a free pa-
rameter, which by default is equal to the score forP-value of
1. Since sometimes multiple enzymes catalyze one reaction
and are encoded by multiple genes, we attribute to the reac-
tion the smallest p-value among the gene corresponding to
the reaction. Biologically, this corresponds to anticipating
change of the reaction �ux even if only one of the enzymes
changes signi�cantly.

Selecting FDRs

The FDR values and the score for absent metabolites op-
tions control the size of the module. Generally, increasing
the FDR value makes adding reactions or metabolites to a
module easier and thus expands the size of produced sub-
network. Separate FDR thresholds for metabolites and en-
zymes allow to control the shift between metabolic or tran-
scriptional signals.We recommend to start from the default-
generated values which gives ∼150 positively-scored GAM,
a reasonably-sized starting module (‘Autogenerate FDRs’
button). While these default values do not necessarily lead
to the best results from the hypothesis generation point of
view, they provide a good start for exploring the dataset.
Depending on the results thresholds can be tweaked to be
more stringent to restrict themodule tomore signi�cant sig-
nals or to be more relaxed to get the broader view on the
data.

Solving MWCS

The problem of �nding MWCS can have slightly different
formulations. There are three of them that we de�ne and
that are useful in the context of metabolic networks: simple,
generalized and acyclic MWCS. The �rst, simple MWCS
(SMWCS), requires to �nd a subgraph with the maximal

weight for a graph with weighted nodes. This formulation
was used by Dittrich et al. in their work (18). It can be
shown that for such formulation the optimal solution can
always be represented as a tree. In a more general formula-
tion, that we call generalized MWCS (GMWCS), not only
nodes, but also edges have weights. If edge weights are al-
lowed to be positive, the optimal solution is not restricted
to a tree, but also can be a graph with cycles. Trivial example
is a graphwith three positive nodes pairwise-connectedwith
three positive edges. Finally, an acyclic MWCS (AMWCS)
formulation can be de�ned where both nodes and edges are
weighted but only acyclic subgraphs are considered.
In the web-service there are three MWCS solvers avail-

able: heinz, heinz 2 and gmwcs. Heinz is a solver �rst de-
scribed in (18) for SMWCS and in (20) for AMWCS. It
can be used to solve the edge-weighted problem, but only
searches for acyclic solutions. The web-service uses ver-
sion 1.68 (http://homepages.cwi.nl/∼klau/data/heinz 1.68.
tgz). Heinz 2 is described by El-Kebir and Klau in (19). It
solves the SMWCS problem where only nodes are scored.
Thus, it cannot be used when reactions are mapped to edges
and with DE for genes available. Gmwcs is a solver devel-
oped by our group for solving the GMWCS formulation,
able to �nd maximum-weighted connected subgraph with
weighted edges, not limited to acyclic solutions (in con-
trast to heinz). It is available at https://github.com/ctlab/
gmwcs-solver. The solver uses a reduction of GMWCS in-
stance into an integer linear programming (ILP) problem
described in (25) and an heuristic to split instance into
smaller problems (Supplementary Figure S3). IBM ILOG
CPLEX is used as an ILP solver.
By default, heinz 2 and gmwcs solvers with a time limit

of 30 s are used if edge weights are absent or present, re-
spectively, as they showmore robust performance of �nding
good suboptimal solution when the time is limited. Option
to use heinz solver is available as the means to faster way to
reach a provable optimality (time is limited to 4 min). We
suggest using this option for the �nal version of analysis.
Although heinz is limited in searching for acyclic solutions,
the result is usually similar to gmwcs, because optimal so-
lutions are almost acyclic (have just a few more edges than
is required for connectivity) in practice.

Post-processing

For the ease of interpretation we provide post-processing
options which allow to see interconnections that are not re-
quired for the connectivity but may be relevant for the in-
terpretation. When reactions are represented as edges and
RPAIRs are used, there is a post-processing option ‘Add
trans-edges’. It adds edges between metabolites in the mod-
ule that correspond to ‘trans’ RPAIR type (Supplemen-
tary Figure S4A and B). When reactions are represented
as nodes there is a post-processing option ‘Add common
metabolites’. It adds metabolites that are simultaneously
taking part in at least two reactions in the module (Sup-
plementary Figure S4C and D).
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Figure 2. Screenshot of the web-service after data uploading. Summary of input differential expression tables is displayed. Supplementary Tables S4 and
5 were used as the input data.

RESULTS

Web-service

From the user perspective the analysis implemented in
GAM consists of two steps:

Step 1: creating a global network of metabolites and reac-
tions speci�c to the provided expression data.

Step 2: �nding a connected subnetwork (module) that con-
tains the most signi�cant changes.

In the �rst step the user needs to select the organism to
use, upload the DE data and select options of mapping net-
work to a graph (see ‘Mapping to a simple graph’ section).
Each DE dataset must be in a separate �le (see ‘Input �les’
section). After the �les are uploaded, a �le summary is dis-
played and recommended options for mapping to a graph
are automatically selected (Figure 2). Clicking the ‘Step 1:
make network’ button will create a data-speci�c global net-
work suitable for the consecutive subnetwork search.
After the network is created, a module that contains the

most signi�cantly changed GAM can be found. This re-
quires setting FDRs (see ‘Scoring’ and ‘Selecting FDRs’
sections) and selecting whether the module search should
be done to provable optimality. The button ‘Autogenerate
FDRs’ generates FDR values so that the resulting mod-
ule will be about 100–150 reactions. By default, the mod-

ule search is limited to 30 s so that the service is more in-
teractive compared to optimal solving. The button ‘Find
module’ runs anMWCS solving algorithm and displays the
result (Figure 3). For convenience, reactions and metabo-
lites in the displayed module have links to the correspond-
ing KEGG entries.
The button ‘Run step 1, autogenerate FDRs and run step

2’ allows a one-click analysis after the data are uploaded
with autoselected options.
The module can be downloaded as a PDF, XLSX or

XGMML �le. The latter can be loaded in Cytoscape
for additional processing. Corresponding visual style
is available at https://artyomovlab.wustl.edu/publications/
supp materials/GAM/GAM VizMap.xml.

Case study: mouse macrophage activation

We applied GAM to analyze differences between LPS
+ IFNg-stimulated (M1) and unstimulated (M0) mouse
macrophages based on high-throughput metabolomic and
transcriptional data (3) (input data are provided in Supple-
mentary Tables S4 and 5 and as the example dataset in the
web-service). We computed the most regulated module us-
ing metabolomic and transcriptional data together as well
as separately (see Supplementary File S1). Notably, the dif-
ferences in regulation of the tricarboxylic acid (TCA) cycle
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Figure 3. Screenshot of the web-service after module search. The most regulated module found for the example data for mouse macrophages M0 versus
M1 comparison (Supplementary Tables S4 and 5) and default parameter values.

and glycolysis are highlighted at the metabolic level, while
the differences in the urea cycle and fatty acid synthesis are
best seen at the transcriptional level. Yet, it is the integra-
tion of the both data types that provides a complete picture
of the overall changes in cellular metabolism.

Case study: glucose metabolism in mammary cell lines

We also applied GAM to analyze control versus 2-
deoxy-glucose (2DG) treated mammary epithelial cells
(MCF10A). The data were acquired from GEO Omnibus
GSE59228 (26). TheDE table is available in Supplementary
Table S6.
2DG treatment blocks glycolysis and results in the same

effects as glucose deprivation. The analysis highlighted two
major upregulated features: (i) upregulation of glutathione
redox control locus and (ii) usage of glutamine via glu-
taminolysis (Supplementary File S2). Notably, these fea-
tures have been documented as characteristic for glucose
starved cells (27,28). This application illustrates the power
of metabolic network based analysis even when only tran-
scriptional data are available.

CONCLUSIONS

GAM is a web-service that facilitates an analysis of the
metabolomic and transcriptional pro�ling data in the con-
text of cellular reaction network. GAM service provides a
way for a quick interactive analysis of the data to identify
the most regulated metabolic subnetworks. The service sup-
ports multiple input formats, including results from widely-
used DESeq2 and limma pipelines, provides automatic se-
lection of recommended parameter values and uses a range
of MWCS solvers yielding good suboptimal solutions in a
time frame of 30 s.
By comparing steady state metabolomics and transcrip-

tional data between two conditions or cell states, GAM al-
lows the identi�cation of critical modules within a global
metabolic network. Such regulated modules provide excel-
lent candidates for further biological investigation as evi-
denced by application of GAM in the contexts of cancer
and immune cells (3,4).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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