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Abstract We describe the open-source global fitting

package GAMBIT: the Global And Modular Beyond-
the-Standard-Model Inference Tool. GAMBIT combines

extensive calculations of observables and likelihoods

in particle and astroparticle physics with a hierarchi-

cal model database, advanced tools for automatically

building analyses of essentially any model, a flexible and
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powerful system for interfacing to external codes, a suite

of different statistical methods and parameter scanning

algorithms, and a host of other utilities designed to

make scans faster, safer and more easily-extendible than

in the past. Here we give a detailed description of the

framework, its design and motivation, and the current

models and other specific components presently imple-

mented in GAMBIT. Accompanying papers deal with
individual modules and present first GAMBIT results.

GAMBIT can be downloaded from gambit.hepforge.org.
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1 Introduction

The search for physics Beyond the Standard Model

(BSM) is a necessarily multidisciplinary effort, as evi-

dence for new physics could appear in any observable

in particle, astroparticle or nuclear physics. Strategies

include producing new particles at high-energy collid-

ers [1–3], hunting for their influences on rare processes
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and precision measurements [4–6], directly detecting

dark matter (DM) in the laboratory [7–9], carefully ex-

amining cosmological observations for the influence of

new physics [10–12], and detecting high-energy particles

from DM annihilation or decay [13–15]. In this context,

exclusions have so far been just as valuable as apparent

detections; many purported signals of new physics have

appeared [16–24], often only to be disproven by a lack

of correlated signals in other experiments [14, 25–29].

Properly and completely weighing the sum of data

relevant to a theory, from many disparate experimen-

tal sources, and making rigorous statistical statements

about which models are allowed and which are not,

has become a challenging task for both theory and ex-

periment. This is the problem addressed by global fits:
simultaneous predictions of a raft of different observables

from theory, coupled with a detailed combined statistical

analysis of the various experimental searches sensitive

to them. Several attempts to address this problem have

been made in particle physics, from the characterisation
of electroweak physics with ZFitter [30] and later GFitter

[31] to CKM fits [32], neutrino global fits [33–35] and

global analyses of supersymmetry (SUSY) [36–38], in

particular with packages like SuperBayeS [39–56], Fittino

[57–59], MasterCode [60–71] and others [72–88].

BSM global fits today remain overwhelmingly fo-

cused on SUSY, specifically lower-dimensional subspaces

of the minimal supersymmetric standard model (MSSM)

[89–93], or, more rarely, the next-to-minimal variant

(NMSSM) [94–97]. There are only a handful of notable

exceptions for non-SUSY models [98–107] and none for

SUSY beyond the NMSSM. These studies, and their

underlying software frameworks, were each predicated
on one specific theoretical framework, relying on the

phenomenologist-as-developer to hardcode the relevant

observables and theory definitions. This inflexibility and

the correspondingly long development cycle required to

recode things to work with a new theory, are two of the

primary reasons that global fits have been applied to so

few other models. The unfortunate result has been that

proper statistical analyses have not been carried out for
most of the theories of greatest current interest. This

is in spite of the fact that the LHC and other experi-
ments have yet to discover any direct evidence for SUSY,
heavily constraining the minimal variant [89–93]. It is

therefore essential that as many new ideas as possible

are rigorously tested with global fits.

Even working within the limited theoretical context

for which they were designed, existing global fits do not

offer a public framework that can be easily extended

to integrate new observables, datasets and likelihood

functions into the fit as they become available. Nei-

ther do they provide any standardised or streamlined

way to deal with the complex interfaces to external
codes for calculating specific observables or experimen-

tal likelihoods. Of the major SUSY global fit codes, only

one (the now-discontinued SuperBayeS [113]) has seen

a public code release, in stark contrast to many of the

public phenomenological tools that they employ. Public

code releases improve the reproducibility, accessibility,

development and, ultimately, critique, acceptance and

adoptance of methods in the community.

Another difficulty is that carrying out detailed joint

statistical analyses in many-dimensional BSM parameter

spaces is technically hard. It requires full understand-

ing of many different theory calculations and experi-

ments, considerable coding experience, large amounts

of computing time, and careful attention to statisti-

cal and numerical methods [90, 114–117]. Outside of

global fits, the response has been to focus instead on

individual parameter combinations or a limited, not-

necessarily-representative part of the parameter space,

e.g. [2, 3, 118]. Making concrete statements across ranges

of parameters requires adopting either the Bayesian or

frequentist statistical framework. These each impose
specific mathematical conditions on how one discretely

samples the parameter space and then combines the sam-

ples to make statements about continuous parameter

ranges. The choice of statistical framework therefore has
a strong bearing upon the appropriateness and efficiency

of the scanning algorithm one employs [114, 115]; ran-

dom sampling is rarely adequate. Most global fits have

so far assumed either Bayesian or frequentist statistics,

discarding the additional information available from the

other. They have also employed only a single parameter
sampling algorithm each, despite the availability and

complementarity of a wide range of relevant numerical

methods.

Here we introduce GAMBIT, the Global And Mod-

ular BSM Inference Tool. GAMBIT is a global fitting

software framework designed to address the needs listed

above: theory flexibility, straightforward extension to

new observables and external interfaces, code availabil-

ity, statistical secularism and computational speed. In

this paper we describe the GAMBIT framework itself in

detail. First results for SUSY and the scalar singlet DM

model can be found in accompanying papers [119–121],

as can detailed descriptions of the constituent physics

and statistics modules [108–112]. The GAMBIT codebase
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Table 1: A GAMBIT reading list

User/reader: Wants: Should read Sections / References:

Cheersquad to get an overview of features 2, referring to D
Playtime to run GAMBIT →֒ A, 11.2–11.4, 12
Runtime to run GAMBIT without causing injury →֒ 5.4, 6, 8, 9.1, 9.2, 10.2, 10.4, 10.7, 10.8
Dev to add observables, backends, etc. →֒ all of 11 → 3, 4.1, 4.4, all of 10
Model-Dev to add new theories →֒ all of 5
Guru BOSS the world →֒ 4.5, 4.6, 7, 9.3

Physicist details of physics implemented [108–111]
Stats/CompSci details of scanning algorithms & framework [112]

is released under the standard 3-clause BSD license1,

and can be obtained from gambit.hepforge.org.

This paper serves three purposes. It is:

1. An announcement of the public release of GAMBIT,

2. A generally-accessible presentation of the novel and

innovative aspects of GAMBIT, along with the possi-

bilities it provides for future particle phenomenology,
3. A reference manual for the framework and associated

code.

Goals 2 and 3 imply slightly different things for the

structure and content of this paper. Here we begin by

specifically addressing Goal 2, in Sec. 2. This section pro-

vides an extended synopsis of the flexible and modular

design concept of GAMBIT, describing its main features

and advances compared to previous global fits. Sec. 2

provides something of a teaser for the more extended

‘manual’, which can be found in Secs. 3–13. These sec-

tions describe how the features of GAMBIT are actually

implemented, used and extended. A quick start guide

can be found in Appendix A, library dependencies and

supported compiler lists in Appendix B, specific SM

parameter definitions in Appendix C, and a glossary

of GAMBIT-specific terms in Appendix D. When terms

make their first or other crucial appearances in the text,

we cross-link them to their entries in the glossary. To

the end of this arXiv submission, we also append the
published Addendum to this paper, which describes

the changes implemented in GAMBIT 1.1 compared
to GAMBIT 1.0, including support for calling external

Mathematica codes from GAMBIT.

Within the ‘manual’ part of the paper, Sec. 3 de-

scribes in detail how a physics module in GAMBIT works,

Sec. 4 details the system GAMBIT uses for interfacing

with external codes, and Sec. 5 covers the internal model

database and its influence on analyses and the rest of

1http://opensource.org/licenses/BSD-3-Clause. Note that fjcore

[122] and some outputs of FlexibleSUSY [123] (incorporating
routines from SOFTSUSY [124]) are also shipped with GAMBIT

1.0. These code snippets are distributed under the GNU General
Public License (GPL; http://opensource.org/licenses/GPL-3.0),
with the special exception, granted to GAMBIT by the authors,
that they do not require the rest of GAMBIT to inherit the GPL.

the code. Sec. 6 explains the user interface to GAMBIT

and documents the available settings in the master ini-

tialisation file. Sec. 7 details the GAMBIT system for

instigating scans by automatically activating different

calculations, depending on the models scanned and the

observables requested by the user. Sec. 8 explains how

GAMBIT deals with statistical and parameter scanning
issues; further details of the specific methods and opti-

misation options in the scanning module can be found

in Ref. [112]. Sec. 9 describes the system for outputting

results from GAMBIT. Sec. 10 covers other assorted
utility subsystems. Section 11 discusses the build and

automatic component registration system, including a

crash course in adding new models, observables, like-

lihoods, scanners and other components to GAMBIT.

Sec. 12 describes some minimal examples included in

the base distribution, and provides information about

releases and support.

A code like GAMBIT and a paper such as this have

multiple levels of user and reader. The relevant sections
of this paper for each are summarised in Table 1. Those

more interested in understanding what GAMBIT offers

than actually running or extending it need only this

introduction, Sec. 2 and the glossary (Appendix D).
Users interested in running scans without modifying

any code should find more than enough to get started in
Appendix A, Secs. 11.2–11.4 and 12. To get the most out

of the code, such users should then move progressively

on to Secs. 5.4, 6, 8, 9.1, 9.2, 10.2, 10.4, 10.7 and 10.8.

Those interested in adding new observables, likelihoods

or interfaces to external codes should also read Secs. 3,

4.1, 4.4, and the rest of Secs. 10 and 11. Users wanting

to extend GAMBIT to deal with new models and the-
ories should add the remainder of Sec. 5 to this tally.

Power users and developers wanting to have a complete

understanding of the software framework should also

familiarise themselves with Secs. 4.5, 4.6, 7 and 9.3.

Readers and users with specific interests in particular

physical observables, experiments or likelihoods should

also add the relevant physics module paper(s) [108–111]

http://gambit.hepforge.org
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/GPL-3.0
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G
A M B I T

Fig. 1: A schematic representation of the basic elements of a GAMBIT scan. The user provides a YAML input file (see www.yaml.org),
which chooses a model to scan and some observables or likelihoods to calculate. The requested model δ and its ancestor models (see
text for definition) β and α are activated. All model-dependent module and backend functions/variables are tested for compatibility
with the activated models; incompatible functions are disabled (C2 in the example). Module functions are identified that can provide
the requested quantities (A2 and B1 in the example), and other module functions are identified to fulfil their dependencies. More are
identified to fulfil those functions’ dependencies until all dependencies are filled. Backend functions and variables are found that can
fulfil the backend requirements of all chosen module functions. The Core determines the correct module function evaluation order. It
passes the information on to ScannerBit, which chooses parameter combinations to sample, running the module functions in order
for each parameter combination. The requested quantities are output by the printer system for each parameter combination tested.

to this list, and those interested in details of parameter

scanning or statistics should likewise add Ref. [112].

2 Design overview

GAMBIT consists of a number of modules or ‘Bits’,

along with various Core components and utilities. Fig.

1 is a simplified representation of how these fit together.

GAMBIT modules are each either physics modules

(DarkBit, ColliderBit, etc.) or the scanning module, Scan-

nerBit. ScannerBit is responsible for parameter sampling,
prior transformations, interfaces to external scanning

and optimisation packages and related issues; it is dis-

cussed in more detail in Sec. 8 and Ref. [112].

2.1 Modularity

2.1.1 Physics modules, observables and likelihoods

The first version of GAMBIT ships with six physics

modules:

ColliderBit calculates particle collider observables and

likelihoods. It includes detailed implementations of

LEP, ATLAS and CMS searches for new particle pro-

duction, and measurements of the Higgs boson. The

LEP likelihoods are based on direct cross-section lim-

its on sparticle pair production from ALEPH, OPAL
and L3. Fast Monte Carlo simulation of signals at

ATLAS and CMS can be performed with a specially

parallelised version of Pythia 8 [125]. ColliderBit of-

fers the option to carry out detector simulation with

BuckFast, a fast smearing tool, or the external pack-

age Delphes [126, 127]. We have validated all likeli-

http://www.yaml.org/
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hoods and limits via extensive comparison to experi-

mental limits and cutflows. Higgs likelihoods in the

first version of ColliderBit are provided exclusively by

communication with HiggsBounds [128–130] and Hig-

gsSignals [131]. Supersymmetic models are presently

supported natively by the LEP and LHC likelihoods.

The Higgs likelihoods are model-independent in as

much as they require only Higgs couplings as inputs.
Other models can be supported in LHC calculations

by reading matrix elements into Pythia 8, e.g. from

MadGraph [132, 133]. For a detailed description, see
[108].

FlavBit calculates observables and likelihoods from
flavour physics, in particular B, D and K meson

decays as observed by LHCb, including angular ob-

servables and correlations. Possibilities for inter-code

communication exist with SuperIso [134–136] and

FeynHiggs [137–143]. Supersymmetry is supported

directly. A broad range of other models is supported,

via the use of effective field theory. Likelihoods and

observables have been validated by comparison to

existing flavour fits [144–146]. See [109].

DarkBit calculates DM observables and likelihoods,

from the relic abundance to direct and indirect

searches. It includes an on-the-fly cascade decay

spectral yield calculator, and a flexible, model-
independent relic density calculator capable of mix-

ing and matching aspects from existing backends, in-

cluding DarkSUSY [147] and micrOMEGAs [148–153].

Direct detection likelihoods in DarkBit are based on

calls to the DDCalc package [110]. Indirect detection

can be carried out with the help of nulike [15] (neu-

trinos) and gamLike [110] (gamma rays). Validation
of relic density calculations is based on extensive

comparison with results from standalone versions of

DarkSUSY and micrOMEGAs. Direct and indirect lim-

its are validated by comparison with exclusion curves

from the relevant experiments. All calculations sup-
port MSSM neutralinos and all other WIMPs (in

particular, this includes Higgs portal models such as

scalar singlet dark matter). See [110] for details.
SpecBit interfaces to one of a number of possible ex-

ternal spectrum generators in order to determine
pole masses and running parameters, and provides

them to the rest of GAMBIT in a standardised spec-

trum container format. Spectrum generators cur-
rently supported include FlexibleSUSY [123] and

SPheno [154, 155]. Models include MSSM models
defined at arbitrary scales and the scalar singlet

model. Support for additional spectrum generators

and models is straightforward for users to add. Re-

sults of the existing code have been validated by

comparison to standalone versions of FlexibleSUSY,

SPheno and SOFTSUSY [124, 156–159]. SpecBit also

carries out vacuum stability calculations and pertur-
bativity checks, which have been validated against

existing results in the literature. See [111] for full

details.

DecayBit calculates decay rates of all relevant particles
in the BSM theory under investigation, and contains

decay data for all SM particles. Theory calculations

can make use of interfaces to FeynHiggs [137–143]

and an improved version of SUSY-HIT [160–163],

validated against direct SLHA communication with
the same codes. DecayBit supports the MSSM and

scalar singlet models. See [111].
PrecisionBit calculates model-dependent precision cor-

rections to masses, couplings and other observables,

as well as precision nuisance likelihoods for e.g. Stan-

dard Model (SM) parameters. BSM calculations are

presently limited to the MSSM, and can call on

GM2Calc [164], FeynHiggs [137–143] and SuperIso

[134–136]. See [111].

Physics modules are collections of module func-

tions, each capable of calculating a single physical or

mathematical quantity. This may be an observable, like-

lihood component or any intermediate quantity required

for computing one or more observables or likelihoods.

Each module function is tagged with a capability,

which together with the associated type describes ex-

actly what quantity it is capable of calculating. Module

functions, rather than modules themselves, are the main
building blocks of GAMBIT. The capability-type pairs
associated with module functions are the threads that

allow GAMBIT to automatically stitch together multiple

functions into arbitrarily complicated physics calcula-

tions.

Individual module functions may have one or more

dependencies on quantities that their own calculations
depend on. At runtime, GAMBIT selects an appropriate

module function to fulfil each dependency, by matching

the declared capabilities of module functions with the

declared dependencies of other module functions. This

process also requires matching the declared return types

of module functions with the types requested in each

dependency.
A simple example is the W mass likelihood function

in PrecisionBit, which has capability lnL_W_mass. This

function calculates a basic χ2 likelihood for the W mass,

and is correspondingly named lnL_W_mass_chi2. To do

its job, PrecisionBit::lnL_W_mass_chi2 must be provided

with a predicted value for the W mass, by some other

module function in GAMBIT. These aspects are declared

#define CAPABILITY lnL_W_mass

START_CAPABILITY

#define FUNCTION lnL_W_mass_chi2
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START_FUNCTION(double)

DEPENDENCY(mw, triplet<double>)

#undef FUNCTION

#undef CAPABILITY

Here the DEPENDENCY on the W mass mw is explicitly de-

clared, and the declaration demands that it must be

provided as a set of three real numbers, correspond-

ing to a central value with upper and lower uncer-

tainties (a triplet<double>). lnL_W_mass_chi2 accesses

these values in its actual source via a pointer named mw

placed in a special namespace reserved for dependencies

(Pipes::lnL_W_mass_chi2::Dep). It then uses the values to

compute the likelihood, which it returns as its result:

/// W boson mass likelihood

const double mw_central_observed = 80.385;

const double mw_err_observed = 0.015;

void lnL_W_mass_chi2(double &result)

{

using namespace Pipes::lnL_W_mass_chi2;

double theory_uncert = std::max(Dep::mw->upper,

Dep::mw->lower);

result = Stats::gaussian_loglikelihood(

Dep::mw->central, mw_central_observed,

theory_uncert, mw_err_observed);

}

This module function has no concern for precisely

where or how the W mass has been determined. This

allows GAMBIT to choose for itself at runtime, on the

basis of the model being scanned, whether it should pro-
vide e.g. an MSSM-corrected prediction (for an MSSM

scan), or a different prediction (for a scan of a different

model). This serves to illustrate the power of the mod-

ular design of GAMBIT, allowing different calculations

to be automatically reused in myriad different physics
scenarios, with essentially zero user intervention.

Section 3 covers declaring and writing module func-

tions in detail.

2.1.2 Backends

External software packages that might be useful for cal-

culating specific quantities are referred to in GAMBIT as
backends. Examples of these might be DarkSUSY [147]

(for, e.g., relic density calculations), or FeynHiggs [139–

143] (for, e.g., Higgs mass calculations). A full list of

existing codes with which GAMBIT can communicate via

the backend system, along with all relevant references,

can be found in the file README.md included in the main

distribution. All studies that make use of GAMBIT with

a backend must cite all the literature associated with

that backend, along with all relevant GAMBIT literature.

Although GAMBIT itself is written in C++, with a

small admixture of Python for build abstraction, back-

ends can in principle be written in any language. Module

functions can directly call backend functions and ac-

cess global backend variables from these codes. To
do this, a module function must declare that it has a

backend requirement, which is then matched at run-

time to the declared capability of a function or variable

from some backend. This mirrors the manner in which

GAMBIT fills dependencies from amongst the available

module functions.

Whilst module functions can have both dependen-

cies (resolvable with other module functions) and back-

end requirements (resolvable with backend functions

or variables), backend functions and variables cannot

themselves have either dependencies nor backend re-
quirements. This is illustrated in the example in Fig. 1:

backend functions and variables feed into module func-

tions, but nothing feeds into the backend functions nor

variables themselves.

A simple example is the calculation in DarkBit of

the rate at which DM is gravitationally captured by the

Sun:

#define CAPABILITY capture_rate_Sun

START_CAPABILITY

#define FUNCTION capture_rate_Sun_const_xsec

START_FUNCTION(double)

DEPENDENCY(mwimp, double)

DEPENDENCY(sigma_SI_p, double)

DEPENDENCY(sigma_SD_p, double)

BACKEND_REQ(cap_Sun_v0q0_isoscalar, (), double,

(const double&, const double&, const double&))

#undef FUNCTION

#undef CAPABILITY

Here DarkBit::capture_rate_Sun_const_xsec depends on

the DM mass and scattering cross-sections, and explic-

itly declares that it requires access to a function from

a backend. It demands that the backend function be

tagged with capability cap_Sun_v0q0_isoscalar, that it

take three const double& arguments, and that it must
return a double result. The declaration of a matching

backend function (taken in this example from the inter-

face to DarkSUSY 5.1.3) would then look like:

BE_FUNCTION(dsntcapsuntab, double, (const double&,

const double&, const double&), "dsntcapsuntab_",

"cap_Sun_v0q0_isoscalar")

The function DarkBit::capture_rate_Sun_const_xsec then

accesses the backend function from its source via a

similar alias system to the one used for dependencies:

// Capture rate in s−1 of regular DM in the Sun

// ( =⇒ σ is neither v-dependent nor q-dependent),

// assuming isoscalar interactions (σp = σn).

void capture_rate_Sun_const_xsec(double &result)

{

using namespace

Pipes::capture_rate_Sun_const_xsec;

result =

BEreq::cap_Sun_v0q0_isoscalar(*Dep::mwimp,
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*Dep::sigma_SI_p, *Dep::sigma_SD_p);

}

Typically, the requirement cap_Sun_v0q0_isoscalar will

be fulfilled by DarkSUSY, a Fortran code – but there
is nothing about this particular example function nor

its declaration that forces such a pairing. The only
conditions are that the selected backend function fulfils

the requirements laid out in the BACKEND_REQ declaration.

This is another example of the power of the modular

design of GAMBIT, allowing it to attach any matching

function from any backend at runtime, and to adapt to

the presence or absence of different versions of different

backends present on any given user’s system.

There are many additional options and declarations

available but not shown in this example, for constrain-

ing which versions of which backends are permitted to
provide which backend requirement, under what model-

dependent conditions and so on. Two additional features

of note are not shown in Fig. 1: backend initialisation

functions, which always run before any functions or

variables in a backend are used, and backend conve-

nience functions, which are agglomerations of func-
tions and variables from one backend, presented to the

rest of GAMBIT as if they are single backend functions.

Declaration of backend requirements is covered in de-

tail in Section 3.1.3, and declaration of actual interfaces

to backends is covered in Section 4.

2.1.3 Models

The models already implemented in GAMBIT 1.0.0 are

shown in Fig. 2, and described in detail in Sec. 5.4.

Instructions for adding new models are given in Sections
5.1 and 11.1.

GAMBIT automatically activates or disables module

and backend functions2 according to their compatibility

with the BSM model under investigation. It does this

using a hierarchical model database, where each model

is defined as a set of free parameters and a series of

relations to other models. Models can be declared as

children of existing models, which implies that there

exists a mapping from the child parameter space to some

subspace of the parent space. Each child model comes

with a function that defines the transformation required
to take a parameter point in its space to a correspond-

ing point in the parent parameter space. GAMBIT uses

these transformations at runtime to deliver the same

parameter point in different parameterisations to differ-

ent module functions, according to their declared needs.

Models can also have translations pathways defined to

2and backend variables — but from here we will stop explicitly
referring to backend functions and backend variables as different
things except where it actually matters.

other so-called friend models outside their own family

tree.

One important aspect of this arrangement is that

models can be arbitrarily ‘bolted together’ for any given

scan, so that multiple models can be scanned over simul-

taneously, and their parameter values delivered together

to any module functions that need them. This allows for

the SM parameters to be varied as nuisance parameters
when doing an MSSM or other BSM scan, for example.

It also means that in such a joint SM-MSSM scan, the

same underlying SM model (and therefore the same SM

calculations wherever possible) will be used as in any

other joint SM-BSM scan.

When a user requests a scan of a particular BSM

model, that model and its entire model ancestry are
activated. This makes all module and backend functions

that are compatible with any model in the activated an-

cestry available as valid building blocks of the scan. This

provides maximum safety by forbidding any calculations
that are not valid for the model under consideration,
and maximum re-usability of modules, backends and

their functions with new models, by providing certainty

about which existing functions are ‘safe’ to use with

new additions to the model hierarchy.

A basic example of model and backend function ac-

tivation/deactivation can be seen in Fig. 1. Functions

A1 and C2 have been specifically declared as model-

dependent and therefore require activation or deactiva-

tion by the model database. Only functions that have

been declared as model-dependent in this way are al-

lowed to access the values of the underlying parameters

in a scan. No other functions have any such declarations,

so they are therefore valid for all models. Such functions

must always work for any model, as all they need to do
their job is to be confident that GAMBIT will deliver

their declared dependencies and backend requirements

in the form that they request – and GAMBIT guarantees

precisely this for all module functions.

The two examples given in the previous subsections,
of the W mass likelihood and the capture rate of DM

by the Sun, are both examples of essentially model-

independent calculations, where the module function

does not need direct access to any of the underlying
model parameters. These functions care only that their

dependencies and backend requirements are available; if

this is the case, they can do their jobs, irrespective of

the underlying model actually being scanned.3

3Note the distinction between model-independent functions and
model-independent results. Model-independent numerical results
have the same values regardless of the physics model assumed.
Model-independent functions act on input data according to
the values of the data only, not according to the physics model
that gave rise to the data. In general, the input data to model-
independent functions are model-dependent quantities, leading



9

NormalDist

StandardModel_Higgs_running StandardModel_Higgs

MSSM63atQ

MSSM30atQ

MSSM63atMGUT

MSSM25atQ

MSSM24atQ

MSSM20atQ

StandardModel_SLHA2

MSSM19atQ MSSM16atQ

MSSM30atMGUT

NUHM2 NUHM1 CMSSM mSUGRA

SingletDM_running SingletDM

nuclear_params_fnq nuclear_params_sigma0_sigmal nuclear_params_sigmas_sigmal MSSM11atQ

MSSM15atQ

MSSM10atQ

MSSM10batQ

MSSM9atQ

MSSM7atQ

MSSM10catQ

Halo_gNFW

Halo_gNFW_rho0

Halo_gNFW_rhos

Halo_Einasto

Halo_Einasto_rho0

Halo_Einasto_rhos

G
AM B I T

WC

Fig. 2: The model hierarchy graph of the pre-defined models that ship with GAMBIT 1.0.0. The graph forms a set of disconnected
directed trees, potentially linked by friend translation pathways. Nodes are individual models. Black arrows indicate child-to-
parent translation pathways. The red arrows from MSSM9atQ to MSSM10batQ, and from MSSM19atQ to MSSM20atQ, indicate
translations to friend models. Friend translations can cross between otherwise disconnected family trees, or, as in these two
examples, between different branches of the same tree. Graphs like this (including any additional user-specified models) can be
generated by running gambit models from the command line, and following the instructions provided.

An example of an explicitly model-dependent module

function is the DarkBit likelihood associated with the

nuclear matrix elements relevant for spin-independent

DM-nucleon scattering:

// Likelihoods for nuclear parameters.

START_CAPABILITY

#define FUNCTION lnL_sigmas_sigmal

START_FUNCTION(double)

ALLOW_MODEL(nuclear_params_sigmas_sigmal)

#undef FUNCTION

Here the ALLOW_MODEL declaration is used to indicate that

the module function can only be used when scanning

the nuclear_params_sigmas_sigmal model (or one of its de-

scendants – but it has none in this version of GAMBIT).
This particular module function directly accesses the

values of the model parameters, uses them to compute

the joint likelihood and returns the result. In contrast,

when the nuclear matrix elements are needed for calcu-

lating the physical DM-nucleon couplings in e.g., the

scalar singlet Higgs portal model, they are instead up-

cast to the nuclear_params_fnq model (an ancestor of

nuclear_params_sigmas_sigmal, cf. Fig. 2), and presented

as such within the relevant module function:

#define FUNCTION DD_couplings_SingletDM

START_FUNCTION(DM_nucleon_couplings)

DEPENDENCY(SingletDM_spectrum, Spectrum)

ALLOW_JOINT_MODEL(nuclear_params_fnq, SingletDM)

#undef FUNCTION

Here the ALLOW_JOINT_MODEL declaration explicitly forbids

GAMBIT from using this function except when scanning
both the nuclear_params_fnq and SingletDM models, or

to different results for different models. The W mass likelihood
is a case in point: the predicted value of mW and its likelihood
are necessarily model-dependent quantities – but the function
that computes the likelihood from a given value of mW is not
dependent on the model for which mW has been computed.

some pairwise combination of their respective descen-

dants.

The GAMBIT model database, its declarations and

features are discussed in much more detail in Sec. 5.

2.2 Adaptability and flexibility

After filtering out invalid module and backend func-

tions by checking their compatibility with the model
under investigation, GAMBIT works through the remain-

ing functions to properly connect module functions to

dependencies and backend functions to backend require-

ments. It starts with the quantities requested by the

user (observables, likelihood components or other de-

rived quantities), and then progressively resolves depen-

dencies and backend requirements until it either reaches

an impasse due to a mutual dependency between groups

of module functions, or no outstanding needs remain.

If all needs have been fulfilled, the result is a directed
graph of dependencies, with no internal closed loops – a

so-called directed acyclic graph. Directed acyclic graphs

have the mathematical property that they possess an

implied topological order. GAMBIT computes this or-

dering, and uses it to determine the optimal order in

which to evaluate the module functions, such that each

module function is guaranteed to run before any other

function that depends on its results. GAMBIT further

optimises the ordering beyond the constraint implied by

this condition, considering the typical evaluation time

of each function as a scan progresses, and its role in

ruling out previous parameter combinations. We explain

this overall dependency resolution process in detail

in Sec. 7.

With a specific module function evaluation order in

hand, GAMBIT passes the problem of actually sampling

the parameter space to ScannerBit (Sec. 8). ScannerBit
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engages whichever statistical scanning algorithm and

output method a user has selected in their input file (see

Sec. 6), choosing parameter combinations, calling the

module functions in order, and sending the results to

the GAMBIT printer system (Sec. 9). Functions log their

activity via an extensive internal logging system (Sec.

10.2), and invalid parameter combinations, warnings

and errors are identified using a dedicated exceptions
system (Sec. 10.3).

This rather abstract formulation of the global fit

problem enables a very high degree of automation, in

turn providing flexibility and extendibility. By deferring

the actual choice of the function that will provide the
requisite physical inputs to each step of a calculation,

GAMBIT makes it easy to confidently swap or add func-
tions to existing scans. It also makes such scans efficient,

as only the calculations needed for a given scan are

actually activated, and each calculation is guaranteed

to run only once for each parameter combination. Link-

ing this to a hierarchical model database then provides

the means for GAMBIT to automatically adapt existing

likelihood and observable calculations to new models,

to the largest extent theoretically possible. New compo-

nents of course need to be added when different physics

is to be considered for the first time, but the level of

automation allows the user to immediately identify the

precise gaps in the theoretical chain in need of new

work, rather then wasting time by coding almost iden-

tical functions for every new model. This is facilitated

by extensive and informative error messages presented

when a scan is attempted but some link in the depen-

dency chain cannot be fulfilled. These messages explain,

for example, when a given dependency cannot be filled
by any known function, if a requisite backend appears

to be missing, if appropriate functions seem to exist but

are not compatible with the model being scanned, if

multiple permitted options exist for resolving a given

dependency or backend requirement, and so on.
GAMBIT takes this flexibility and automatic adap-

tation even further by having the backend (Sec. 4) and

build (Sec. 11) systems automatically add or disable

modules, backends, models, printers and other compo-

nents when new ones are defined, or when existing ones

happen to be missing from a user’s system. GAMBIT

also includes extensive command-line diagnostics, which

the user can employ to obtain reports on the status and

contents of its components at many different levels (Sec.

10.4).

2.3 Performance and parallelisation

Parallelisation in GAMBIT happens at two levels: at the

scanner level via MPI [165], and at the level of mod-

ule functions with OpenMP [166]. This allows GAMBIT

to easily scale to many thousands of cores, as most
major external sampling packages employ MPI, and a

number of external physics codes make use of OpenMP

(e.g. nulike [15] and forthcoming versions of DarkSUSY

[147]). Users also have the option of implementing their

own module functions using OpenMP natively in GAM-

BIT. In fact, GAMBIT can even automatically connect

OpenMP-aware module functions and have other module

functions run them in parallel using OpenMP. Sec. 3.1.4

explains how to achieve this. With this method, the to-
tal runtime for a single MSSM parameter combination,

even including explicit LHC Monte Carlo simulation,

can be reduced to a matter of a few seconds [108].

The performance of GAMBIT is explored in detail
in the ScannerBit paper [112].

2.4 Available examples

In Sec. 12.1 we provide a series of examples showing how

to run the full GAMBIT code. Any GAMBIT module can
also be compiled with a basic driver into a standalone

program. We also give a number of examples of module

standalone drivers in Sec. 12.1, as well as dedicated

examples for different modules included in first release

[108–112].

A standalone driver program that calls a GAMBIT

module needs to do a number of specific things:

– specify which model to work with,

– choose what the parameter values should be,

– indicate which module functions to run and what to

do with the results,
– indicate which module functions to use to fulfil which

dependencies,

– indicate which backend functions or variables to use

to fulfil which backend requirements, and

– set input options that different module functions

should run with.

These are all functions that are normally done auto-

matically by GAMBIT. We provide a series of simple

utility functions specifically designed for use in stan-

dalone driver programs though, allowing most of these

operations to be completed in a single line each.

3 Modules

Other than the six physics and one scanning module

in GAMBIT 1.0.0, behind the scenes GAMBIT also ar-

ranges backend initialisation functions into a virtual

module known as BackendIniBit, and puts model pa-

rameter translation functions into effective modules of
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their own. These are discussed in detail in Secs. 4 and

5, respectively.

3.1 Module function declaration

GAMBIT modules and their functions are declared in

a module’s so-called rollcall header, using a series of

convenient macros.

A module called MyBit would be created simply by

creating a header MyBit_rollcall.hpp containing

#define MODULE MyBit

START_MODULE

#undef MODULE

and then rerunning the build configuration step in order

to make GAMBIT locate the new file.4

Creating a module function requires a user to write

it as a standard C++ function in a source file, and add
a corresponding declaration to the rollcall header. The

function should have return type void, and take exactly

one argument by reference: the result of the calculation

that the function is supposed to perform. This result

can be of any type.5 Taking a double-precision floating

point number as an example, the definition of a function

function_name in module MyBit would look like

namespace MyBit

{

void function_name(double& result)

{

result = ... // something useful

}

}

This would traditionally be placed in a file called

MyBit.cpp or similar.

The declaration must state the name of the function,

the type of its result, and the capability to assign to it.

Such a declaration would look like

#define MODULE MyBit

START_MODULE

#define CAPABILITY example_capability

START_CAPABILITY

#define FUNCTION function_name

START_FUNCTION(double)

#undef FUNCTION

#undef CAPABILITY

#undef MODULE

4Re-running the configuration step is a generic requirement
whenever adding new source or header files to GAMBIT. See Sec.
11 for details.
5At least, any type with a default constructor. Dealing in types
without default constructors requires declaring objects internally
in the module and returning pointers to them.

where example_capability is the name of the capability

assigned to the function MyBit::function_name in this

example.

The following examples in Secs. 3.1.1–3.1.3 will show

other specific declarations that may be given between
START_FUNCTION and #undef FUNCTION.

3.1.1 Model compatibility

In the absence of any specific declarations as to the

model-dependency of the calculations in a module func-

tion, GAMBIT assumes that the function is completely

model-independent. To instead declare that a module

function may only be used with a single specific model

model_a, one adds a declaration

ALLOW_MODEL(model_a)

after calling START_FUNCTION. To declare that the function

may be used with one or more models from a particular

set, one instead writes

ALLOW_MODEL(model_a)

ALLOW_MODEL(model_b)

...

or just

ALLOW_MODELS(model_a, model_b, ...)

where the ellipses ... indicate that the ALLOW_MODELS

macro is variadic, and can take up to 10 specific models.
Alternatively, to declare that all models from a given

set must be in use, one declares

ALLOW_JOINT_MODEL(model_γ, model_δ, ...)

Declaring ALLOW_MODEL, ALLOW_MODELS or

ALLOW_JOINT_MODEL also grants the module func-

tion access to the values of the parameters of the
appropriate model(s) at runtime. Section 3.2.3 below

deals with how to retrieve these parameter values.

GAMBIT is expressly designed for simultaneous scan-

ning of multiple models, where the parameters of each

model are varied independently. This allows for arbitrary

combinations of different models, e.g. from including

SM parameters as nuisances in a BSM scan, to vary-

ing cosmological and BSM parameters simultaneously

in some early-Universe cosmological scenario. In these

cases, module functions can be granted access to the

parameters of multiple models at the same time, as long

as the function is declared from the outset to need all

of those parameters in order to operate correctly.

To set rules that constrain module functions’ va-

lidities to scans of specific combinations of models,

rather than simply declaring valid combinations one
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by one with ALLOW_JOINT_MODEL, a more involved syn-

tax is required. Here, the possible individual mod-
els involved in the combinations are first listed with

ALLOW_MODEL_DEPENDENCE. They are then placed into one

or more specific model groups. Each allowed model

combination is then specified by setting allowed combi-

nations of model groups. If a given scan includes one

model from each group listed in an allowed combination,

then the module function is deemed to be compatible

with the given scan.

For example, to specify that a function may be used
when either model_a or model_b is being scanned, but

only if model_c is also being scanned at the same time,

one must write

ALLOW_MODEL_DEPENDENCE(model_a, model_b, model_c)

MODEL_GROUP(group1, (model_a, model_b))

MODEL_GROUP(group2, (model_c))

ALLOW_MODEL_COMBINATION(group1, group2)

This reveals that ALLOW_JOINT_MODEL(model_γ, model_δ,

...) is simply a special case of this extended syntax,

precisely equivalent to

ALLOW_MODEL_DEPENDENCE(model_γ, model_δ, ...)

MODEL_GROUP(group1, (model_γ))

MODEL_GROUP(group2, (model_δ))

...

ALLOW_MODEL_COMBINATION(group1, group2, ...)

Note that GAMBIT still deems a model to be in

use even if its parameters are fixed to constant values

during a scan. Declaring that a module function requires
some model or model combination to be in use therefore

merely demands that the model parameters have definite

values during a scan, not that they are necessarily varied.

An explicit example of the syntax described

in this section can be found in the declaration

of the function DarkBit::DD_couplings_MicrOmegas in

DarkBit/include/gambit/DarkBit/DarkBit_rollcall.hpp:

ALLOW_MODEL_DEPENDENCE(nuclear_params_fnq,

MSSM63atQ, SingletDM)

MODEL_GROUP(group1, (nuclear_params_fnq))

MODEL_GROUP(group2, (MSSM63atQ, SingletDM))

ALLOW_MODEL_COMBINATION(group1, group2)

This function computes couplings relevant for direct

detection, using micrOMEGAs [167]. To do this, it needs

the parameters of the nuclear matrix element model

nuclear_params_fnq, plus the parameters of a dark
matter model, which in GAMBIT 1.0.0 may be either

the MSSM or the scalar singlet model.

3.1.2 Dependencies

To indicate that a module function requires some specific

quantity as input in order to carry out its own calcula-

tion, one must declare that it has a dependency upon the

capability, and the corresponding type, of some other

module function. Dependencies are explicitly defined in

terms of capabilities, not specific functions: from the

GAMBIT perspective functions do not depend on each

other, they depend on each others’ capabilities. This is

specifically designed to make module functions genuinely

modular, by keeping the use of a module function’s re-

sult completely independent of its identity. This has the

(entirely intentional) consequence of making it practi-

cally impossible to safely use global states for passing

information between module functions.
The syntax for declaring that a module function

function_name has a dependency on some capability ca-

pability is simply to add a line

DEPENDENCY(capability, type)

to the module function declaration. Here type is the

actual C++ type of the capability that needs to be
available for function_name to use in its function body.

Such a declaration ensures that at runtime, GAMBIT

will arrange its dependency tree such that it

a) only runs function_name after some other module

function with capability capability and return type type

has already run for the same parameter combination,

b) delivers the result of the other module function to

function_name, so that the latter can use it in its own

calculation.

It is also possible to arrange conditional depen-

dencies that only apply when specific conditions are

met. The simplest form is a purely model-dependent
conditional dependency,

MODEL_CONDITIONAL_DEPENDENCY(capability, type,

model_α, model_β, ...)

which would cause a function to depend on capability only

when model_α and/or model_β is being scanned. Here

the ellipses again indicate that up to 10 models can be

specified.
A concrete example of this is the decla-

ration of the function FlavBit::SuperIso_modelinfo

in FlavBit/include/gambit/FlavBit/FlavBit_rollcall.hpp.

This function is responsible for constructing the data

object that will be sent to SuperIso [134, 135] to tell it

the values of the relevant Lagrangian parameters. Its

declaration includes the lines:

MODEL_CONDITIONAL_DEPENDENCY(MSSM_spectrum,

Spectrum, MSSM63atQ, MSSM63atMGUT)

MODEL_CONDITIONAL_DEPENDENCY(SM_spectrum,

Spectrum, WC)

These statements cause the function to have a depen-

dency on an MSSM_spectrum when scanning the MSSM,

but a dependency on an SM_spectrum when scanning
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a low-energy effective theory of flavour (WC; see Sec.

5.4.5).

An alternative formulation allows both model condi-

tions and backend conditions to be specified:

#define CONDITIONAL_DEPENDENCY capability

START_CONDITIONAL_DEPENDENCY(type)

ACTIVATE_FOR_MODELS(model_α, model_β, ...)

ACTIVATE_FOR_BACKEND(requirement, be_name1)

ACTIVATE_FOR_BACKEND(requirement, be_name2)

#undef CONDITIONAL_DEPENDENCY

In this example, the dependency on capability would not

only be activated if model_α or model_β were in use, but
also if either backend be_name1 or backend be_name2 were

used to resolve the backend requirement requirement. In

this case, the CONDITIONAL_DEPENDENCY declaration must

appear after the corresponding backend requirement is

declared. Declaration of backend requirements is covered

in Sec. 3.1.3.

There is currently no way to specify more compli-

cated arrangements like ‘dependency is activated only

if scanning model_α and using backend_name’ or ‘only

if scanning both model_α and model_β’. Wanting to use

such complicated scenarios is usually a sign that the

intended design of the module function is unnecessarily

complicated, and the function would be better just split

into multiple functions with different properties.

3.1.3 Backend requirements

Backend requirements are declarations that a module
function intends to use either a function or a global

variable from a backend (external) code. Backend re-

quirements are specified in a similar way to dependencies:
by declaring the type and the capability of the required
backend function or variable (not the name of a specific

backend function). In contrast to dependencies, however,

the type of a backend requirement may be an entire

function signature, describing not just the return type,

but also the types of an arbitrary number of arguments.

Designating the capability of the backend variable re-

quired as var_requirement and its required type var_type,

the declaration of a backend variable requirement is

BACKEND_REQ(var_requirement, (tags), var_type)

If a backend function is required, with capability fn_

requirement, return type fn_return_type and function argu-

ment types arg1_type, arg2_type and so on, the declaration

is instead

BACKEND_REQ(fn_requirement, (tags), fn_return_type,

(arg1_type, arg2_type, ...))

Note that the final argument of BACKEND_REQ should be

absent for backend variable requirements, but should be

explicitly specified as () for backend functions with no

arguments — as is standard C/C++ syntax. The ellipses

in the backend function example again indicate that

the entry is variadic, so as many function arguments

can be specified as required. If the backend function is

itself required to be variadic (in the C-style sense that

the function required must be able to take a variable

number of arguments), then instead of the traditional

ellipses used to declare such a function, one must use

the keyword etc, as in

BACKEND_REQ(fn_requirement, (tags), fn_return_type,

(arg1_type, etc))

The tags entry in the declarations above allows one

to specify a set of zero or more comma-separated tags,

which can then be used to impose various conditions on

how backend requirements can be filled. Consider the

following example:

BACKEND_REQ(req_A, (tag1), float, (int, int))

BACKEND_REQ(req_B, (tag1, tag2), int, ())

BACKEND_REQ(req_C, (tag3), int)

ACTIVATE_BACKEND_REQ_FOR_MODELS( (model_α,

model_β), (tag1) )

BACKEND_OPTION( (be_name1), (tag1) )

BACKEND_OPTION( (be_name2, 1.2, 1.3, 1.5),

(tag2, tag3) )

FORCE_SAME_BACKEND(tag1)

In this example, the ACTIVATE_BACKEND_REQ_FOR_MODELS di-

rective ensures that req_A and req_B only exist as back-

end requirements when model_α and/or model_β are in

use. FORCE_SAME_BACKEND creates a rule that at runtime,

both req_A and req_B must be filled using functions from

the same version of the same backend.

Further rules are given by the BACKEND_OPTION declara-
tions. The first of these indicates that be_name1 is a valid

backend from which to fill one or both of req_A and req_

B. The second BACKEND_OPTION declaration indicates that

req_B and req_C may each be filled from versions 1.2, 1.3

or 1.5 only of be_name2. Version numbers here are both

optional and variadic. Failure to list any version is taken

to imply that any version of the backend is permitted.

Presently there is no mechanism for indicating that only

specific ranges of version numbers are permitted, short of

listing each one explicitly. Version numbers can actually

be specified in the same way when ACTIVATE_FOR_BACKEND

is specified within a CONDITIONAL_DEPENDENCY declaration.

When model_α or model_β is being scanned, the rules
in this particular snippet have the effect of forcing req_A

to be filled from some version of be_name1 (due to the

first BACKEND_OPTION declaration), which in turn forces

req_B to be filled from the same version of be_name1 (due

to the FORCE_SAME_BACKEND directive). If other models are

scanned, req_A and req_B are simply ignored, and go

unfilled. Req_C is forced to be filled from either version
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1.2, 1.3 or 1.5 of be_name2, regardless of which models

are scanned.

As with other GAMBIT rollcall header commands,

the lists of models and tags in all backend requirement

declarations are variadic. In this case there is practically

no limit to the number of entries that a tag or model

list may contain. Empty lists () are also permitted.

When a backend requirement has a rule imposed
on it by one or more BACKEND_OPTION declarations, one

of the stated options must be used. When none of the

tags of a given backend requirement is mentioned in a
BACKEND_OPTION command, any version of any backend

is permitted as long as the capability and type match.

Simply omitting BACKEND_OPTION altogether means that

any matching function can be used, from any backend.

3.1.4 Parallel module functions

GAMBIT can make effective use of OpenMP parallelis-

taion either at the backend level, or natively within its

own module functions. The simplest way to use OpenMP

at the module function level is to place OpenMP di-

rectives inside a single module function, keeping the
OpenMP block(s) wholly contained within the module

function. In this case no special declarations are needed

at the level of the module’s rollcall header.
An alternative method is to have a single module

function open and close an OpenMP block, and to call

other module functions (indirectly) within that block,

potentially very many times over for a single parameter

combination. In this case we refer to the managing

module function as a loop manager and the functions

it calls nested module functions. Loop managers are

declared using the CAN_MANAGE_LOOPS switch

START_FUNCTION(type, CAN_MANAGE_LOOPS)

Unlike regular module functions, loop managers may

have type = void. Nested functions need to declare the

capability of the loop manager that they require with

NEEDS_MANAGER_WITH_CAPABILITY(management_cap)

This declaration endows the function with a special

dependency on management_cap that can only be fulfilled

by a function that has been declared as a loop manager.

The result type of the loop manager is ignored, i.e. loop

managers of any return type are equally valid sources

of this dependency.

This arrangement allows GAMBIT’s dependency

resolver to dynamically string together various nested

module functions and instruct loop managers to run

them in parallel. At runtime, nested functions are ar-
ranged into their own mini dependency trees, and point-

ers to ordered lists of them are handed out to the desig-

nated loop managers.

Other functions can depend on nested functions in

the regular way. In this case they receive the final re-
sult of the function, the last time it is called by its

loop manager for a given parameter combination. Loop

managers are assigned hidden dependencies at runtime

by the dependency resolver, on all quantities on which

their designated nested functions depend. This ensures

that a loop is not invoked until the dependencies of all

functions in the loop have been satisfied.

The GAMBIT Core does not invoke any nested func-

tions itself; this is the express responsibility of loop

managers. The only exception to this rule occurs when

for whatever reason a nested function’s loop manager

executes zero iterations of the loop it manages, but some

other module function outside the loop depends on one

of the nested functions that never ran; in this case the

nested function is run the first time the dependent func-
tion tries to retrieve its value (as are any other nested

functions that the first nested function depends on).

3.1.5 One-line module function declaration

It is also possible to declare a module function with its

allowed models and even dependencies, in a single line:

QUICK_FUNCTION( module_name,

example_capability,

capability_vintage,

function_name,

function_type,

(model_α, model_β, ...),

(dep_cap1, dep_type1),

(dep_cap2, dep_type2),

... )

Here one gives the module name explicitly, meaning that

the declaration can even be used after MODULE has been

#undef-ed. The argument capability_vintage tells GAM-

BIT whether or not example_capability has been declared

previously; this can be set to either NEW_CAPABILITY or

OLD_CAPABILITY. As usual, the variadic allowed model

list (model_α, model_β, ...) can take up to 10 entries.

This can be followed by up to 10 dependencies, given as

capability-type pairs. The model list and dependency

entries are optional arguments; specifying dependencies

but leaving the allowed models free requires giving ()

for the allowed model list.

3.2 Pipes

Module functions must be entirely self-contained for

GAMBIT to safely place them in a dependency tree. They

must not call each other directly, nor call functions from

specific backends directly. They should also strongly

avoid setting or reading any global variables, especially
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those where the order of read or write operations might

matter at all. The only safe way for code inside module

functions to communicate with the outside world is via

the function’s own personal set of pipes.

At runtime, GAMBIT’s dependency resolver (Sec.

7) connects each pipe to the relevant data stream that

a module function is permitted to interact with. This

might be the result of a module function deemed appro-

priate for fulfilling a dependency, a backend function

fitting a backend requirement, or some other more spe-

cific utility.
Pipes are safe pointers, automatically declared when

module functions themselves are declared. They and the
data they point to can be set by the dependency re-

solver, but not by code inside module functions (except

for the special case of data pointed to by a backend vari-

able requirement pipe). They reside in the namespace

Pipes::function_name.

Here we give a complete list of all the pipes that can

be available to a module function, along with informa-

tion on their usage and the circumstances under which

they should be expected to exist.

3.2.1 Accessing dependencies

A dependency on a capability of dep_type can be accessed

at runtime through the safe pointer

Pipes::function_name::Dep::capability

by simply dereferencing it, or calling some_member_

function of class dep_type

using namespace Pipes::function_name;

dep_type my_variable = *Dep::capability;

Dep::capability->some_member_function();

e.g. if the function decay_width had a double-precision

dependency on mass, one would simply type

double m = *Pipes::decay_width::Dep::mass;

The actual host module, name, capability and type of

the function providing a dependency can be ascertained

from its pipe, e.g.

using namespace Pipes::decay_width;

std::string m_module = Dep::mass->origin();

std::string m_function = Dep::mass->name();

std::string m_capability= Dep::mass->capability();

std::string m_type = Dep::mass->type();

3.2.2 Accessing backend requirements

Backend requirements can be used or retrieved by way

of the safe pointer

Pipes::function_name::BEreq::requirement

Take the example of a double-precision backend vari-

able with capability my_var_req, declared in function

my_func with

BACKEND_REQUIREMENT(my_var_req, (), double)

This variable is accessed directly as

using namespace Pipes::my_func;

double y = 2.5 + *BEreq::my_var_req;

*BEreq::my_var_req = y*y;

In the case of a backend function, e.g. declared as

BACKEND_REQUIREMENT(my_fn_req1, (), double,

(double))

one can call the corresponding backend function by

writing

using namespace Pipes::my_func;

double f_of_pi = BEreq::my_fn_req1(3.14159);

If necessary, the actual underlying function or vari-
able pointer can be retrieved from a backend requirement

pipe, by calling its pointer() method. This can be useful

if a module or backend function requires a pointer to
some function in order to perform its duties, as in the

following example from DarkBit::nuyield_from_DS

// Hand back the pointer to the DarkSUSY

// neutrino yield function

result.pointer = BEreq::nuyield.pointer();

There is an important final subtlety to note here:

because the arguments are forwarded through a number

of different layers of indirection, in order to support

the direct use of literals in calls to backend functions

it is necessary to indicate explicitly if any non-literal

parameters must be passed by value. The way to do

this is to wrap such arguments in the helper function

byVal(). For example, take a backend requirement of a

function my_func declared as

BACKEND_REQUIREMENT(my_fn_req2, (), double,

(double, double&))

This can be safely called as

using namespace Pipes::my_func;

double x = 2.0;

double y = BEreq::my_fn_req2(3.0, x);

or

using namespace Pipes::my_func;

double x = 2.0;

double y = BEreq::my_fn_req2(byVal(x), x);

but will fail to compile if

using namespace Pipes::my_func;

double x = 2.0;

double y = BEreq::my_fn_req2(x, x);
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is attempted. The backend requirement system in GAM-

BIT is entirely typesafe, so if the code compiles one can
at least be confident that the types in calls to backend

functions correctly match their declarations.

As with dependencies, the name, capability and type

of the backend function fulfilling a backend requirement
can be extracted from its pipe, along with the host

backend and its version, e.g.

using namespace Pipes::my_func;

std::string r3_function = BEreq::r3->name();

std::string r3_capability =

BEreq::r3->capability();

std::string r3_type = BEreq::r3->type();

std::string r3_backend = BEreq::r3->origin();

std::string r3_bkend_versn = BEreq::r3->version();

3.2.3 Accessing model parameters

Model parameters are only provided to module functions

that have been explicitly declared as model-dependent,

and then only for the models actually being used in a

particular scan. A module function is model dependent if

it features an ALLOWED_MODELS or ALLOW_MODEL_DEPENDENCE

declaration, a model-conditional dependency, or a back-

end requirement activation rule that is conditional on

some model. Once again, this is to enforce modularity;

functions that claim to be model-independent through

their (lack of) model declarations must operate only on

dependencies and backend requirements, i.e. without

using the values of the scanned parameters.

For module functions that are permitted access to

the parameter values, all parameters of all models are

delivered in a simple map of parameter names to their

values. For such a function function_name, the value of a

parameter parameter_name can then be retrieved with

double p = Pipes::function_name::Param["parameter_

name"];

Whether or not the Param map contains a given pa-

rameter depends on whether or not its model is actually

being scanned. This can be checked with the funtion

bool Pipes::function_name::ModelInUse(str);

which takes as input a string containing the model in

question (str is just a typedef of std::string). Note that

the models in use in different functions may not always

be what one expects — the nature of the GAMBIT model

hierarchy is such that if a module function declares that

it can work with a model that is an ancestor of the actual

model being scanned, the function will be permitted to

run but will receive each parameter point delivered in

terms of the parameters of the ancestor model, rather

than directly in the parameters of the model actually

being scanned.6 This is an important feature, as it allows

module functions to be re-used unaltered with models

that may not have even been invented when the original

module function was written.

Although it is possible to scan two models containing

a parameter with a common name, it is not possible to

retrieve both parameters from the Param map in the same

module function. By default, GAMBIT raises a runtime

error if models with common parameters are declared as

allowed (by ALLOWED_MODELS or ALLOW_MODEL_DEPENDENCE) in

a single module function, and then activated together in

a scan. More adventurous users may wish to deactivate

this error and allow such parameter clashes in some very

specific circumstances (see Sec. 6.3.1).

3.2.4 Accessing options from the input file

GAMBIT features an extensive system for specifying

run options for module functions, discussed in detail
in Sec. 6. Module functions access these options via a

dedicated pipe, which connects to a miniature YAML

structure generated by the dependency resolver from all

the entries in the original input YAML file that actually

apply to the module function in question.

The pipe is runOptions. It can be queried for the

presence of a given option "my_option"

using namespace Pipes::function_name;

if (runOptions->hasKey("my_option"))

{

// Do something exciting

}

or used to retrieve the value as a variable of type opt_type,

either directly

using namespace Pipes::function_name;

opt_type x = runOptions->getValue<opt_type>

("my_option");

or with a default value default

using namespace Pipes::function_name;

opt_type x = runOptions->getValueOrDef<opt_type>

(default, "my_option");

3.2.5 Managing parallel module functions

Running OpenMP loops containing GAMBIT module
functions takes a little care, but it is ultimately one

of the most efficient ways to speed up computationally

challenging likelihood calculations.

6Note that if a module function is explicitly declared to work
with multiple ancestors of the model being scanned, then only the
parameters of the least-distant ancestor will be delivered. These
rules also apply for activation of model-dependent depedencies
and backend requirements (cf. Secs. 3.1.2 and 3.1.3).
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A loop manager lpman is responsible for opening and

closing the multi-threaded OpenMP block. Inside the

block, it needs to use the void function

Pipes::lpman::Loop::executeIteration(long long)

to execute a single call to the chain of nested functions
that it manages. Here the integer argument of the func-

tion is the iteration number, which is passed directly

on to each nested function running inside the loop. A
nested function nested_fn can access the iteration using

the pipe iteration as

long long it = *Pipes::nested_fn::Loop::iteration;

Internally, GAMBIT holds the results of each module

function in memory, for efficiently handing over results

as dependencies and so on. For nested functions, it holds

the results in an array of size equal to the number of

threads. Serial module functions access the first element

of this array when retrieving dependencies, whereas

nested module functions run by the same loop manager

access the element corresponding to the thread number.

This is what allows the nested module functions to run
safely in parallel, in arbitrary dependency trees arranged

by the dependency resolver at runtime.

A consequence of this setup is that any serial module

function that depends on a nested module function will

only read the result obtained in the last iteration of

the first thread (i.e. of index 0). For this reason, it

is generally advisable to run the final iteration of a

GAMBIT OpenMP loop in serial, so as to properly sync
the results for use further ‘downstream’. Likewise, it is

desirable to run the first iteration in serial as well, to

allow any nested module functions to initialise any local
static variables and other data elements that they might

share across threads. With this consideration in mind,

a minimal example of an OpenMP loop implemented in

a loop manager is

using namespace Pipes::lpman;

Loop::executeIteration(0);

#pragma omp for

for (int i = 1; i < 9; i++)

{

Loop::executeIteration(i);

}

Loop::executeIteration(9);

In this example, the first iteration of ten is run serially,

the next 8 are done in parallel using however many

threads are available, and the tenth and final iteration

is again done serially.

The above example assumes that the number of

required iterations is known at compile time. If this is

not the case, one may call the void function pipe wrapup()

from within a nested function, in order to signal to the

loop manager that the loop can be terminated. When

one of the nested module functions in one of the threads

calls wrapup(), the boolean pipe

Pipes::lpman::Loop::done

in the function managing the loop is set to true, allowing

it to cut the loop short. This allows constructions like

using namespace Pipes::lpman;

long long it = 0;

Loop::executeIteration(it);

#pragma omp parallel

{

#pragma omp atomic

it++;

while(not *Loop::done)

{

Loop::executeIteration(it);

}

}

Loop::executeIteration(it++);

to be used in loop managers. Note that using this pattern

requires that it be safe for a few more iterations of the

loop to be performed after the done flag has been raised,

because calling wrapup() in one thread will not affect
other threads until they at least complete their own

iterations and return to re-evaluate the while condition.

The final serial iteration should generally also still be

run as well, after the loop has terminated.

The done flag is automatically reset to false in all

nested functions for each new parameter point. If for

whatever reason it needs to be reset manually during a

calculation, this can be achieved with the void function

pipe

Pipes::lpman::Loop::reset()

which is available in all loop managers.

4 Backends

GAMBIT interfaces with backends by using them as

runtime plug-ins. Backends are compiled into shared

libraries, which GAMBIT then dynamically loads with

the POSIX-standard dl library. This approach allows

for direct access to the functions of the backend library

and efficient data communication via memory, while at

the same time keeping the build process of GAMBIT

separate from of that of the particular backends used.

The locations of backend shared libraries can be

specified in a YAML file config/backend_locations.yaml,

with entries of the form

backend_name:

backend_version: path_to_shared_library
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Library paths can either be given as absolute

paths, or relative to the main GAMBIT direc-
tory. If backend_locations.yaml does not exist, or

if it is missing an entry for a given backend,

GAMBIT will instead look for a path in the file
config/backend_locations.yaml.default, which contains

default library paths for all backends that GAMBIT has

interfaces to.

Similar to module functions, functions in backend

libraries are tagged with a capability describing what

they can calculate. The capability tags are used by

GAMBIT to match backend functions to the backend
requirements declared by module functions. The layer

of abstraction introduced by these tags allows appropri-

ately designed module functions to use different back-

ends interchangeably, given that they calculate the same

quantity.

GAMBIT can currently communicate with backends

written in C, C++ and Fortran. However, we must pay

some attention to the differences between these lan-

guages. In particular, using a Fortran backend requires

translating between standard Fortran and C-family types,

and using a C++ backend typically involves loading en-

tirely new types from the C++ library. We return to

these topics in Secs. 4.4 and 4.5.

The interface to a backend library is declared in a

frontend header file, located in

Backends/include/gambit/Backends/frontends

and named after the backend. Thus, a backend called

MyBackend would be traditionally interfaced with GAM-

BIT via a frontend header MyBackend.hpp. To differen-

tiate multiple versions of the same backend, the ver-
sion number can be appended to the header name, e.g.

MyBackend_1_2.hpp for version 1.2 of MyBackend. Appli-

cations such as this, where the periods in the version
number are replaced with underscores, make use of

what we refer to as the safe version of a backend, i.e.

a representation of the version number that is safe to

use when periods would be syntactically hazardous. A

frontend header starts by defining the name, version

and safe version of the backend, then immediately calls

the LOAD_LIBRARY macro, which takes care of loading the

backend shared library:

#define BACKENDNAME MyBackend

#define VERSION 1.2

#define SAFE_VERSION 1_2

LOAD_LIBRARY

4.1 Backend function declaration

The main pieces of information required to interface

a backend function to GAMBIT are its return type,

call signature and library symbol. The name mangling

schemes of g++/gfortran and icpc/ifort (the two main

compiler suites that GAMBIT supports; cf. Appendix B)

are mostly consistent, so a single symbol name can usu-

ally be entered here for both compilers.7 In addition, the

function must be assigned a name and a capability. This
is all specified via the BE_FUNCTION macro. For instance,

a C/C++ backend function with the declaration

double getMatrixElement(int, int);

could be registered in the frontend header as

BE_FUNCTION(getMatrixElement, double, (int, int),

"_Z13getMatrixElementii",

"rotation_matrix_element")

where "_Z13getMatrixElementii" is the library symbol
and "rotation_matrix_element" is the capability we as-

sign to this function.

The macro BE_VARIABLE used to interface global vari-

ables in a backend library follows a similar syntax. If

the backend contains a global variable

double epsilon;

controlling the tolerance of some calculation, it can be

registered as

BE_VARIABLE(epsilon, double, "_epsilon",

"tolerance")

with "_epsilon" the library symbol and "tolerance" the

capability assigned to the variable.

Backend functions and variables can be declared

as either model-independent or valid for use only with

certain models, just like module functions can. The
default is to treat everything as model-independent. To

declare an alternative default that applies to an entire

backend, one places

BE_ALLOW_MODELS(model_α, model_β, ...)

directly after LOAD_LIBRARY. This has the effect of allowing

the entire backend to be used only if one or more of

the listed models is involved in a scan. This default can

be further overridden at the level of individual backend

variables and backend functions, by adding additional

model arguments to their declarations:

7The symbols of a shared library, with names prepended by
an additional underscore, can be obtained using the nm com-
mand. Functions within Fortran modules are an exception to
the consistency of name mangling. The best way to deal with
these is often to use the C-interoperability features of Fortran

to explicitly choose a symbol name, taking the choice out of
the hands of the compiler. An example of this can be seen in
DDCalc [110]. In future, GAMBIT will automatically determine
the appropriate name mangling itself, according to the scheme
of the selected compiler.
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BE_FUNCTION(getMatrixElement, double, (int,int),

"_Z13getMatrixElementii",

"rotation_matrix_element",

(model_α, model_β, ...) )

BE_VARIABLE(epsilon, double,

"_epsilon",

"tolerance",

(model_α, model_β, ...) )

4.2 Convenience functions

If several backend function calls or variable manipula-

tions are commonly performed together, it may be useful

to combine these into a single backend convenience func-

tion. Althought technically defined inside GAMBIT, this
function will appear to the rest of GAMBIT as if it were

simply another function in the backend library. Conve-

nience functions are registered in the frontend header

with the BE_CONV_FUNCTION macro. The syntax is identical

to that of BE_FUNCTION except that there is no need to

specify a library symbol, as the convenience function is

not actually part of the backend library.

BE_CONV_FUNCTION(getMatrix, Matrix<double,2,2>,

(), "full_rotation_matrix")

The definition of the convenience function can then

either be given directly in the frontend header, or in
a separate source file named after the backend, e.g.,
MyBackend.cpp, and placed in the directory

Backends/src/frontends

In either case, the function definition must be placed in-

side a designated namespace Gambit::Backends::backend_

name_safe_version, automatically generated with the

BE_NAMESPACE and END_BE_NAMESPACE macros.

BE_NAMESPACE

{

Matrix<double,2,2> getMatrix()

{

// Call getMatrixElement four times

// and return a complete matrix.

}

}

END_BE_NAMESPACE

All backend functions and variables registered with the

BE_FUNCTION and BE_VARIABLE macros (in the same fron-

tend) can be accessed directly in convenience functions,

as long as the body of the convenience function appears

after their declarations. This also applies to calling con-

venience functions from each other.

Just like backend variables and regular backend func-

tions, backend convenience functions can be declared as

model-dependent, e.g.

BE_CONV_FUNCTION(getMatrix, Matrix<double,2,2>,

(), "full_rotation_matrix", (model_α,

model_β, ...) )

4.3 Backend initialisation functions

A backend library will usually have to be initialised in

some way before any calculations can be performed. For

instance, variables storing masses and couplings may

have to be reset for every new parameter point. For

this purpose, the user can define a backend initialisation

function. This is a special kind of convenience function

that automatically runs prior to any other backend oper-

ations. An initialisation function is registered by enclos-

ing it within BE_INI_FUNCTION and END_BE_INI_FUNCTION.

These macros automatically set up a void function tak-

ing no input arguments, so the user only has to supply

the function body. As for backend convenience func-

tions, this function definition can be placed either in the

frontend header file or in the corresponding source file.

BE_INI_FUNCTION

{

// Point-level initialisation.

}

END_BE_INI_FUNCTION

If some part of the initialisation only has to happen
once for an entire scan, this can be accomplished by

using a static flag:

BE_INI_FUNCTION

{

static bool scan_level = true;

if(scan_level)

{

// Scan-level initialisation.

}

scan_level = false;

// Point-level initialisation.

}

END_BE_INI_FUNCTION

As with convenience functions, all registered backend

functions and variables from the same backend are di-

rectly accessible from within the body of initialisation

functions, so long as the body appears after the functions

and variables have been declared.

To help with scan-level initialisation, GAMBIT pro-

vides a flag for every registered backend function, vari-

able and convenience function, indicating whether or

not it will be used in the upcoming scan. These flags are

accessible only from a backend’s initialisation function.

The flags consist of pointers to boolean variables placed

in the InUse namespace, i.e.
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bool *InUse::name

where name is the name of the backend function, variable

or convenience function as declared in the frontend

header. Some example usage of the backend function

InUse flags can be found in the fronted source files for
nulike [15, 53] and DDCalc [110].

Some backends write temporary files to disk during

scan-level initialisation, which means that they can-

not be safely initialised simultaneously in different MPI

processes.8 For such cases we provide a simple locking

utility (Utils::FileLock) that can be employed to force

serial execution of any block of code; example usage can

be seen in the frontends to HiggsBounds and HiggsSig-

nals [128–130].

In fact, backend initialisation functions are actually

promoted to module function status, and associated

with a special GAMBIT-internal module called Back-

endIniBit. This is how GAMBIT ensures that they al-

ways run before any other functions from their backend

are used. This also allows backend initialisation func-

tions to depend on input from other GAMBIT module

functions. This is declared using the BE_INI_DEPENDENCY

and BE_INI_CONDITIONAL_DEPENDENCY macros. These fol-

low exactly the same syntax as the DEPENDENCY and

MODEL_CONDITIONAL_DEPENDENCY macros for module func-

tions (Sec. 3.1.2):

BE_INI_DEPENDENCY(capability, type)

BE_INI_CONDITIONAL_DEPENDENCY(capability, type, model_
α, model_β, ...)

Thus, a backend initialisation function that needs to
know the particle spectrum for the given parameter

point could declare a dependency similar to

BE_INI_DEPENDENCY(particle_spectrum, Spectrum)

This will be fulfilled if some module function can pro-
vide the capability particle_spectrum of type Spectrum.

The dependency can then be accessed from within the

function body of the initialisation function,

const Spectrum& my_spec = *Dep::particle_spectrum;

This is similar to the way module functions access their

dependencies (Sec. 3.2.1), except that for backend ini-

tialisation functions there is no need to specify the

namespace Pipes::function_name.

4.4 Backend types

Backend functions and variables will often require types

that are not known to GAMBIT, and which therefore

8This is also to be discouraged on basic efficiency grounds.

need to be defined. For C and Fortran backends, these

types are typically structs or typedefs involving only

built-in C types. In this case the required definitions can

be placed directly in a designated backend types header,

named after the backend and placed in

Backends/include/gambit/Backends/backend_types

The types must live within the Gambit namespace, e.g.,

namespace Gambit

{

struct Triplet

{

double x, y, z;

};

}

but additional sub-namespaces can of course be used.

To ease the process of generating these type declara-

tions and the BE_FUNCTION and BE_VARIABLE declarations

that use them, GAMBIT ships with a simple utility for
parsing Fortran backend code: CBGB, the Common Block

harvester for GAMBIT Backends. CBGB automatically

generates GAMBIT code that declares the necessary

backend types, functions and variables, according to the

list of functions and common blocks that a user chooses

to interface with GAMBIT. CBGB is written in Python

and can be found in Backends/scripts/CBGB.

CBGB takes a single configuration file as input. This

file is written in Python syntax and must be placed in

Backends/scripts/CBGB/configs. An annotated example

detailing all options and variables can be found in

Backends/scripts/CBGB/configs/example.py.

The most important variables to set in the configuration

file are the three lists input_files, load_functions and

load_common_blocks. We illustrate their use with a simple

example, assuming a Fortran backend FortranBE v1.1:

input_files =

["../../installed/FortranBE/1.1/src/main.f90"]

load_functions = ["f1", "f2"]

load_common_blocks = ["cb"]

Here CBGB would parse the Fortran file main.f90 and

generate the BE_FUNCTION declarations needed to load the

functions/subroutines f1 and f2, as well as the type and

BE_VARIABLE declarations required to load the common

block cb. The file paths in input_files must either be

absolute paths or relative to the Backends/scripts/CBGB

directory. To ensure that the library symbol names

used in BE_FUNCTION and BE_VARIABLE match those in the

backend shared library, CBGB must also know which

name mangling scheme to use. This is specified via

the variable name_mangling, which can be set to either

"gfortran", "ifort" or "g77".
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Once the configuration file is ready, CBGB can be

run by passing in this file as a command line argument,

e.g.

python cbgb.py configs/FortranBE.py

The generated GAMBIT code is stored in the output

files backend_types_code.hpp and frontend_code.hpp. In

this example, the code in backend_types_code.hpp should

be used in the backend types header Backends/include/

gambit/Backends/backend_types/FortranBE_1_1.hpp, while

the code in frontend_code.hpp should go in the

frontend header Backends/include/gambit/Backends/

frontends/FortranBE_1_1.hpp.

As GAMBIT itself is written in C++, interfacing with

a Fortran backend requires translation between the For-

tran types used in the backend and the corresponding

C-family types. Therefore, GAMBIT provides several
Fortran-equivalent types and typedefs for use in commu-
nicating with Fortran backends, with names indicating

which Fortran type they correspond to:

Flogical

Flogical1

Finteger

Finteger2

Finteger4

Finteger8

Freal

Freal4

Freal8

Freal16

Fdouble

Fdoubleprecision

Fcomplex

Fcomplex8

Fcomplex16

Fdouble_complex

Flongdouble_complex

Fcharacter

These are the types that CBGB makes use of in the

generated GAMBIT code. In cases where CBGB fails to

correctly parse the Fortran code, the user must manually

specify type, BE_VARIABLE and BE_FUNCTION declarations

using the above Fortran-equivalent types.

There are important differences in how arrays are

treated in Fortran compared to C/C++. First, the lower

array index in Fortran is by default 1, in contrast to

C/C++ arrays, which count from 0. More generally, For-

tran allows the user to specify arbitrary index ranges,

something that is not allowed in C/C++. In the case
of multidimensional arrays, C/C++ arrays are stored

in memory in row-major order, whereas Fortran arrays

use column-major ordering, and the two types of ar-

rays are therefore effectively transposed with respect to

each other. To save the user from having to deal with

these complexities, GAMBIT provides an Farray class for

working with Fortran arrays. This class provides basic

Fortran array semantics directly in C++ code. The class

is templated on the array type and index ranges. Thus,

a two-dimensional integer array with index ranges 1–3

and 1–4 can be declared as

Farray<Finteger,1,3,1,4> my_f_array;

We also provide a special Fstring class for working

with Fortran strings. It takes the string length as a

template argument

Fstring<4> my_f_string;

Similar to regular Fortran strings, any string longer than
the specified length will be truncated, and shorter strings

will be padded with trailing spaces.

More information about the GAMBIT Fortran

compatibility types can be found in the in-code
GAMBIT documentation (cf. Sec. 10.7), and in

Utils/include/gambit/Utils/util_types.hpp.

4.5 Loading C++ classes at runtime with BOSS

Most physics tools written in C or Fortran are funda-

mentally just collections of functions and variables of
standard types. In contrast, C++ tools typically define

a number of new classes for the user to work with. Un-

fortunately, there exists no standard way of loading an

arbitrary C++ class from a shared library at runtime.

The dl library, itself written in C, only provides access

to functions and global variables. This limitation can be

overcome if the main application has a predefined class

interface that classes in the shared library are forced to

adhere to; this is the so-called ‘factory’ pattern. This
is unproblematic as long as all plug-ins are developed

after the main application, which is normally the case.

In GAMBIT, however, we face the reverse problem of

turning already existing C++ physics tools into plug-ins

for GAMBIT. To solve this problem we have developed

the Python-based Backend-On-a-Stick Script (BOSS),

which we describe here.

Strategies for runtime loading of classes are essen-

tially always based on the C++ concept of polymorphism.

One constructs a class interface from a base class con-

taining a set of virtual member functions. These are

functions for which the signature is defined, but where

the actual implementation is expected to be overridden

by classes that inherit from the base class. The idea can

be illustrated by considering a base class Polygon contain-

ing a virtual member function calculateArea. From this

base class two derived classes Triangle and Rectangle can

be defined. Both classes should contain a calculateArea

member function, but their implementations of this

function would differ.
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In plug-in, i.e. factory-based, systems, the main appli-

cation defines the base class, while the plug-ins provide

the specialized classes deriving from the base class. The

main application can then be designed with the assump-

tion that any future class passed in from a plug-in will

have the predefined set of member functions, whose im-

plementations live in the shared library that is loaded at

runtime. The shared library also contains factory func-

tions, one for each class it provides. These are functions

that return a pointer to a newly created instance of a

plug-in class. When a new class instance is required,

the main application calls the correct factory function

and interprets the pointer it receives as pointing to an

instance of the known base class.

The purpose of BOSS is to reverse-engineer such a
plug-in system for every backend class that is to be used

from GAMBIT. Starting from a class X defined in the

backend library, BOSS must generate source code for a

base class with matching pure virtual member functions,

as well as code for factory functions corresponding to the
constructors X(...). The generated base class is called

Abstract_X, as classes containing pure virtual member

functions are generally referred to as abstract classes.

The source code for Abstract_X is added to both the

backend source code and to GAMBIT. On the backend

side, some additional source code is also inserted in the

original class X, most importantly adding Abstract_X to

the inheritance list of X. If class X originally inherits from

a parent class Y, the abstract classes generated by BOSS

mirror this structure. The resulting ‘ladder pattern’ is

illustrated in Fig. 3.

When the ladder structure is complete, the basic

ingredients for a plug-in system are in place. However,
from the user perspective there are several limitations

and inconveniences inherrent in such a minimal system.

For example, the factory functions must be called to

create class instances, and class member variables can-

not be accessed directly. To overcome such limitations,

BOSS generates an additional layer in the form of an

interface class, which mimics the user interface of the
original class. It is this interface class that a user inter-

acts with from within GAMBIT. The generated class is

placed in a namespace constructed from the backend
name and version, so if our example class X is part of
MyBackend v1.2 the full name of the interface class will

be MyBackend_1_2::X. However, from within a GAMBIT

module function using this class, the shorter name X can

be used.

Fundamentally, the interface class is just a wrapper

for a pointer to the abstract class. Through a factory

function, this pointer is initialised to point to an in-

stance of the orginal class, thus establishing the connec-

tion between GAMBIT and the original class living in

Fig. 3: The basic class ‘ladder’ pattern generated by BOSS in
order to allow runtime loading of classes X, Y and Z, where Z is the
parent of Y, which is in turn the parent of X. The original class
hierarchy is mirrored by the abstract parent classes generated
by BOSS. Virtual inheritance, illustrated here by dashed arrows,
is used to avoid ambiguities. Member functions in the original
classes are matched by pure virtual member functions in the
abstract classes.

the backend library. In the example considered above,

the class MyBackend_1_2::X would hold a pointer of type

Abstract_X, pointing to an instance of X. This system is

illustrated in Fig. 4. Note that the source code for the

interface class is also inserted into the backend library.
This allows BOSS to generate wrapper functions for any

global library functions where the original class appears
in the declaration.

When a GAMBIT module function requires classes

from a backend library, this must be specified in the
function’s rollcall header entry by adding the macro

NEEDS_CLASSES_FROM(backend_name, versions)

Here versions is an optional comma-separated list of per-

mitted backend version numbers. If versions is left out
or set to default, GAMBIT will use the default back-

end version specified in the header file Backends/include/

gambit/Backends/default_bossed_versions.hpp. Here a de-

fault version can be chosen by setting a precompiler

variable Default_backend_name to the desired safe ver-

sion number, e.g.

#define Default_MyBackend 1_2

BOSS itself is the stand-alone Python program

Backends/scripts/BOSS/boss.py
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Fig. 4: Schematic diagram of the plug-in system generated
by BOSS for the case where a backend library MyBackend 1.2

contains a single class X. For every constructor in X, a factory
function returning a pointer to a new X instance is added to the
library. An abstract base class Abstract_X and an interface class
MyBackend_1_2::X are generated and added to both the back-
end library and GAMBIT. The interface class MyBackend_1_2::X

wraps a pointer to Abstract_X. The factory function initialises
this pointer with an instance of X, allowing GAMBIT to commu-
nicate with the original library class.

For parsing the backend library source code BOSS em-

ploys the open-source tool CastXML.9 The basic input to

BOSS is a configuration file, written in Python, contain-

ing information about the backend library code that is

to be ‘BOSSed’. The configuration file should be placed

in the configs subdirectory of the main BOSS directory.
Here we will briefly go through the most important parts

of the configuration file. For a complete list of options

and variables we refer the reader to the example

Backends/scripts/BOSS/configs/Example_1_234.py

First the name and version number that GAM-

BIT should associate with the BOSSed library is

set via the two variables gambit_backend_name and

gambit_backend_version.

gambit_backend_name = "MyBackend"

gambit_backend_version = "1.2"

Then follows a set of path variables. All paths must be

given either as absolute paths or relative to the main
BOSS directory. Consider the following example:

input_files =

["../../installed/MyBackend/1.2/include/X.hpp"]

include_paths =

["../../installed/MyBackend/1.2/include"]

base_paths = ["../../installed/MyBackend/1.2"]

Here we assume that our example backend MyBackend

1.2 is located in

Backends/installed/MyBackend/1.2

9http://github.com/CastXML/CastXML

The input_files variable is a list of the header files that

contain the declarations for the classes and functions

that are to be used from GAMBIT. Next, include_paths

lists the paths where CastXML should search for any

header files that are included from one of the input files.

Finally, base_paths is a list of the base directories of the

backend library. This is used by BOSS to differentiate

between classes that are native to the backend and

classes that are pulled in from external libraries.

BOSS generates a number of header and source files

that must be included when the BOSSed backend is
compiled into a shared library. The output paths for

these files are set with the variables header_files_to and

src_files_to, for instance

header_files_to =

"../../installed/MyBackend/1.2/include"

src_files_to = "../../installed/MyBackend/1.2/src"

The next two variables, load_classes and

load_functions, are lists containing the fully qual-

ified names of the classes and functions to be loaded for

use in GAMBIT. If we assume that in addition to the
class X, MyBackend also contains a global function addX

for adding two instances of X, we may have

load_classes = ["X"]

load_functions = ["addX(X, X)"]

Typically users will only need access to a subset of

all the classes defined in the library, so only a subset of

the available classes will be listed in load_classes. BOSS

will then automatically limit the user interface of the

BOSSed library to make sure that only functions and
variables that make use of the loaded library classes and

standard C++ types are accessible from GAMBIT. How-

ever, if the backend library includes some classes that are

also independently included in GAMBIT, functions and

variables relying on these classes should also be allowed

as part of the BOSSed library interface. Such classes

can be listed in the dictionary known_classes. Here the

dictionary key is the class name and the corresponding

value is the header file where the class is declared.

BOSS is run by passing in the configuration file as

a command line argument. For instance, with a config-

uration file configs/MyBackend_1_2.py, the command is

simply

python boss.py configs/MyBackend_1_2.py

When BOSS finishes, a short set of instructions on how

to connect the BOSSed library with GAMBIT is printed

to stdout. Several of the variables in the configuration

file can also be set directly as command line arguments

to BOSS. For a complete list of arguments with expla-

nations, see the output of the command

http://github.com/CastXML/CastXML
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python boss.py --help

Although BOSS is able to provide runtime loading

for most C++ classes and functions, there are some cases

that the plug-in system generated by BOSS cannot han-

dle yet. Most importantly, BOSS currently does not

work with backend template classes, nor specialisations

of C++ standard template library (STL) classes where

the template parameter is a backend class. Further, the

use of function pointers as function arguments or return

types, and the use of C++11 features in function decla-

rations, is only partially supported. When a limitation

only affects a class member function or variable, BOSS

will attempt to generate a limited class interface where

the problematic element is excluded. Future versions of

BOSS will improve on these limitations.

4.6 Backend information utility

Although most users will never have need to access it
directly, we briefly point out here that a global backend

information object exists in GAMBIT. It can be accessed

by reference from any module function using the func-

tion Backends::backendInfo(). It provides a plethora of

runtime information about which backends are presently

connected, their versions, functions, classloading status
and so on. The mostly likely use cases from within mod-

ule functions for this object are to determine the folder

in which a loaded backend resides:

std::string path_to_MyBackend_1_2 = Backends::

backendInfo().path_dir("MyBackend", "1.2");

or to get the default version of a BOSSed backend

required by an unversioned NEEDS_CLASSES_FROM declara-

tion:

std::string default_MyBackend = Backends::

backendInfo().default_version("MyBackend");

The full interface to this object can be found in

Backends/include/gambit/Backends/backend_info.hpp.

5 Hierarchical model database

In GAMBIT, a model is defined to be a collection of
named parameters. These parameters are intended to

be sampled by some scanning algorithm, according to

some chosen prior probability distribution.10 The physi-

cal meaning of these parameters is defined entirely by

how they are interpreted by module functions. It is

10For frequentist sampling, the prior simply defines the distance
measure on the parameter space to be used internally by the
scanning algorithm when choosing new points.

up to the writers of modules to ensure that parameters

are used in a consistent manner. Consistent usage is
facilitated by the GAMBIT model database that the

dependency resolver (Sec. 7) employs in order to

automatically determine which module functions are

compatible with which models. Module functions that

are incompatible with the model(s) selected for scan-

ning are disabled at runtime, and not considered during

dependency resolution.

5.1 Model declaration

GAMBIT ships with a pre-defined selection of common

models (Sec. 5.4). New models can be defined easily by

adding an appropriate declaration in a new C++ header

file located in the folder

Models/include/gambit/Models/models

When the GAMBIT build configuration is next re-run

(see Sec. 11), the new model will be automatically de-

tected and registered. The declarations of all the pre-

defined models can also be found in this folder.

The syntax for declaring a simple two parameter

model my_model with parameters my_par1 and my_par2

is:

#define MODEL my_model

START_MODEL

DEFINEPARS(my_par1, my_par2)

#undef MODEL

The START_MODEL command creates a ModelParameters ob-

ject for the given model, which will hold the values of

the parameters chosen at runtime by ScannerBit, and
communicate them to relevant module functions during

a scan. The macro DEFINEPARS is variadic, and can take
up to 64 parameters (or more, depending on the user’s

version of Boost). If one prefers to break a long list of

parameters into several pieces, this macro can be reused

as many times as desired.

It is often the case that models will be subsets of a

more general model, in the sense that a mapping from

the general model to the more constrained model can

be constructed. This hierarchical relationship between

models is handled in GAMBIT by defining the general

model to be a parent of the constrained model, with the

constrained model being reciprocally defined as a child

of that parent. The mapping from the child parameters

to the parent parameters is encoded in a translation

function, which GAMBIT will call automatically when

needed. Each parent model may have multiple children,

however, a child model has only one parent. The “family

tree” of any given model is thus a directed rooted tree

graph, with the root of the tree being the common
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ancestor of all other models in the graph. The complete

model database consists of a disconnected set of such

family trees, see Fig. 2. When assessing the compatibility

of module function with the model(s) being scanned,

the GAMBIT dependency resolver automatically treats

all module functions that declare compatibility with a

given model as also compatible with all descendents of

that model.

To declare that a model has a parent model parent,

and assign a function to_parent capable of performing the

translation from the child to the parent parameter set,

the model declaration can be expanded to the following:

#define PARENT parent

#define MODEL my_model

START_MODEL

DEFINEPARS(my_par1, my_par2)

INTERPRET_AS_PARENT_FUNCTION(to_parent)

#undef MODEL

#undef PARENT

If a model is declared to have a parent but no transla-

tion function, any attempt to use another function that

depends on the translation will trigger a runtime error

from the dependency resolver. Further details on declar-

ing and defining translation functions can be found in

Sec. 5.3. Note that we are only dealing with the abstract

concept of translation functions between different model
parameter spaces at this stage, not the actual physics

of any translations in any given class of models. The
actual translations between the models implemented in
GAMBIT 1.0 are implied by the relations between parent

and child models described in Sec. 5.4.

Putting these aspects together, complete model dec-

larations can be very simple, as in the CMSSM:

// Must include models that are targets of

// translation functions

#include "gambit/Models/models/NUHM1.hpp"

#define MODEL CMSSM

#define PARENT NUHM1

START_MODEL

DEFINEPARS(M0,M12,A0,TanBeta,SignMu)

INTERPRET_AS_PARENT_FUNCTION(CMSSM_to_NUHM1)

// Translation functions defined in CMSSM.cpp

#undef PARENT

#undef MODEL

This declaration can be found in the model header

Models/include/gambit/Models/models/CMSSM.hpp.

Directed cross-links between branches of a family

tree, or even between trees, are also possible. Mod-

els related in this way are denoted as friend models,

though the relationship is not automatically mutual.

If a model my_model has a friend model friend, then a

function to_friend must also exist that can translate the

parameters of my_model into those of friend. To declare

such a relationship, one inserts the following into the

model declaration for my_model:

INTERPRET_AS_X_FUNCTION(friend, to_friend)

With the addition of friend translations, the model

hierarchy graph can become arbitrarily complicated. To

avoid painful manual resolution of ambiguous transla-

tion pathways between models, it can be advisable to

limit the number of friend links. Nevertheless, a large

number of the possible ambiguities are automatically
resolved by the default behaviour of the dependency re-

solver to prefer child-to-parent links over child-to-friend

links. This behaviour can be disabled by switching the

prefer_model_specific_functions option in the KeyValues

section of the initialisation file to false. Manual reso-

lution of all translation pathway ambiguities will then

be required. Alternatively, one can simply add a Rule

that overrides the default in a specific case. See Sec. 6

for details.

In some cases the translation from child to parent

model, or to a friend model, may require the result of

a calculation from a module function. It is therefore

possible to declare dependencies for translation func-

tions, which are directly analogous to the dependencies

declared by module functions.11

In general, translation functions can depend on any

other capability, which may be filled by functions from

any module. The dependency resolution system ensures

consistency of the requested and provided dependencies

of all translation functions in such cases. For example,

the translation functions might depend on some aspect

of the particle spectrum, and may involve translation of

parameters from one renormalisation scheme to another,

from a UV-complete theory to an EFT, or from one
renormalisation scale to another. In these examples, the

dependencies would be most naturally resolved from

SpecBit, if it possesses the relevant capability for the
model in question; we refer readers to Ref. [111] for

details of the functionalities available from this module.

To declare a dependency on some capability with C++

type for a child-to-parent translation function, one adds

the following to the model declaration for the child:

INTERPRET_AS_PARENT_DEPENDENCY(capability, type)

To declare such a dependency for a translate-to-friend

function, one instead adds:

INTERPRET_AS_X_DEPENDENCY(friend, capability, type)

where friend is the name of the target friend model.

These declarations must appear after the declaration of

the corresponding translation function.

11Internally, the translation functions actually are module func-
tions, each belonging to a virtual module named after their
source model.
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The full machinery for declaring dependencies with

complicated conditions on groups of models and backend

choices — which is available for standard module func-

tions — is not available for the dependencies of model

translation functions. If this machinery is required, one

should write a module function that uses it and returns

a result associated with a new capability, which can

then be made accessible in a translation function using

the above declarations. In the most extreme case, this

module function may perform the complete parame-

ter translation and then simply store the results in a

temporary ModelParameters object, which can then be re-

trieved by the “true” translation function via the above
mechanism and simply copied into the target model

ModelParameters object (see Sec. 5.3).

5.2 Model capabilities

In some cases a parameter in a model may directly

correspond to a physically meaningful quantity. This
quantity may be available already, computed in an alter-

nate way, as the capability of some existing module

function. One may wish to have the alternative of

simply using the value of the parameter to satisfy the

dependencies of other module functions on this quan-

tity, rather than the module function calculation. It can

therefore be convenient to directly inform GAMBIT of

this correspondence when declaring a model. To declare

this kind of relationship between a parameter my_par

and a capability capability, one adds the following to the

declaration of the model containing my_par:

MAP_TO_CAPABILITY(my_par, capability)

Of course the same could be achieved by manually cre-

ating a trivial module function that takes the model

parameters as input, and then directly outputs one

of them as its capability. Internally, MAP_TO_CAPABILITY

causes GAMBIT to create a virtual module function of

precisely this kind, but it is convenient to have this task

performed automatically.

The module function so created has the same name

as the parameter being mapped, and lives in the

module corresponding to the model to which it be-

longs. Take the example of the top mass, a parame-

ter of the demo_A model found (commented out) in

Models/include/gambit/Models/models/demo.hpp:

MAP_TO_CAPABILITY(Mstop, Mstop_obs)

This declaration creates a new module function called

Mstop, with capability Mstop_obs and return type double,

and places it within the module named after demo_

A. The function demo_A::Mstop simply returns the value

of the Mstop parameter as it varies during a scan of

demo_A.

This convenience facility exists for the simplest case

only. In the case where the correspondence is not direct

— for example, if a factor of two or a change of units is

required, or if a dependency on some other calculation

exists — then manually adding an additional module

function to do the transformation is the only option.

5.3 Defining translation functions

In Sec. 5.1 we discussed how to declare a translation

pathway between two models; we now turn to how to de-

fine the functions that actually perform the translation.

These may or may not involve calculations relating to

the spectrum (as in the example the referee is thinking
of). , so in this case, they would depend on functions

from SpecBit. The full details of how those functions

work is provided in the SpecBit, DecayBit and Preci-

sionBit paper (1705.07936). In particular, this includes

translations between pole and running masses in differ-

ent schemes and EFTs.

The function definition can either be placed directly

into the header file in which the source model is declared,

or into a separate source file that includes the header.

In the former case, the function body must appear after

the INTERPRET_AS macro that declares it. In the latter

case, the source file should be placed in

Models/src/models

to be properly auto-detected by the GAMBIT build

system. Some extra headers providing additional helper

macros should be included, and the names of the model

and its parent redefined in order for the helpers to work

properly. A basic template for such a file is:

#include "gambit/Models/model_macros.hpp"

#include "gambit/Models/model_helpers.hpp"

#include "gambit/Models/models/my_model.hpp"

#define MODEL my_model

#define PARENT parent

// function definition

#undef PARENT

#undef MODEL

Consider the following example function definition:

void MODEL_NAMESPACE::to_parent(const

ModelParameters& myparams, ModelParameters&

parentparams)

{

double x = myparams["my_par"];

parentparams.setValue("parent_par", 2*x);

}
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Although this example is a child-to-parent translation

function, the syntax is the same for child-to-friend func-

tions. The translation function must return void, and

take two arguments by reference: the source model pa-

rameters (which are const), and the target model param-

eters (of either the parent or friend model). The helper

macro MODEL_NAMESPACE places the function in the correct

namespace (Gambit::Models::MODEL), and relies on MODEL

having been defined appropriately. On the first line of

the function body, a parameter my_par is retrieved from

the ModelParameters object, which contains the parame-
ters of the source model. The value of this parameter is

stored in the variable x. This is then multiplied by two,

and used to set the value of the target model parameter

parent_par, completing the parameter translation.

This example assumes that the target model has only

one parameter, parent_par. Often a source and target

model will have many overlapping parameters, and it

is convenient to have a mechanism for copying all of

these automatically, without modification. This can be

done using the setValues member function of the target

ModelParameters object:

parentparams.setValues(myparams, true);

The second parameter is optional, and true by default.

This triggers an error if any of the parameters in myparams

(from my_model) are missing from parentparams (from

parent), i.e. if the source model parameter names are not

a subset of the target model parameter names. Setting

this false causes matching parameters to be copied but

unmatched parameters to be ignored.

A real-world example that make use of setValues

is the the CMSSM-to-NUHM1 translation function
(which was declared in Sec. 5.1):

#define MODEL CMSSM

void MODEL_NAMESPACE::CMSSM_to_NUHM1

(const ModelParameters &myP,

ModelParameters &targetP)

{

logger()<<"Running interpret_as_parent "

<<"calculations for CMSSM --> NUHM1."

<<LogTags::info<<EOM;

// Send all parameter values upstream

// to matching parameters in parent.

targetP.setValues(myP);

// Set NUHM1 parameter mH equal to m0.

targetP.setValue("mH", myP["M0"]);

}

#undef MODEL

This function can be found in Models/src/models/

CMSSM.cpp.

To retrieve dependencies on externally-calculated

quantities, one uses regular module function syntax

USE_MODEL_PIPE(target)

const type* my_variable = *Dep::capability;

where the USE_MODEL_PIPE macro simply expands to

a using statement that brings the pipes for the

translation function into the current namespace, mak-

ing the Dep::capability pointer easily accessible. The

argument should be the name of the target (par-

ent or friend) model, i.e. USE_MODEL_PIPE(friend) or

USE_MODEL_PIPE(PARENT) (remembering that PARENT is a

macro holding the actual parent model, defined in the

model header).

5.4 Models defined in GAMBIT 1.0.0

Here we list the models already defined in the first

release of GAMBIT, along with their parameters. The
relationships between these models can be seen in Fig.

2.

5.4.1 Standard Model

The SM exists in two parts within GAMBIT. The Higgs

mass must be specified separately from the rest of
the SM parameters, as it is often contained within
the definition of BSM theories featuring BSM Higgs
sectors. For those theories that do not include their

own Higgs sector, e.g. SingletDM, we therefore provide

additional models containing the Higgs mass as a pa-

rameter: StandardModel_Higgs and StandardModel_

Higgs_running. Typically, one of these models should

be scanned over in tandem with the rest of the SM

(StandardModel_SLHA2) and the BSM theory in ques-

tion. To investigate just the SM itself, one should per-

form a simultaneous scan of StandardModel_SLHA2

and either StandardModel_Higgs or StandardModel_

Higgs_running.

StandardModel_SLHA2: CKM_A, CKM_etabar,

CKM_lambda, CKM_rhobar, GF, alpha1, alpha2,

alphaS, alphainv, delta13, mBmB, mCmC, mD, mE,

mMu, mNu1, mNu2, mNu3, mS, mT, mTau, mU, mZ,

theta12, theta13, theta23.

This model contains the SM parameters defined
in the SMINPUTS, VCKMIN and UPMNSIN blocks of

the second SUSY Les Houches Accord (SLHA2;

[168]). This includes the Z pole mass, the Fermi

(weak) coupling GF, the strong and electromagnetic

couplings at scale mZ in the MS renormalisation

scheme, pole masses for leptons, neutrinos and

the top quark, running masses for other quarks
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in the MS scheme (at scale mb for b, mc for

c and 2 GeV for u, d and s), the CKM mixing
matrix in Wolfenstein parameterisation, and the

PMNS matrix, characterised by three mixing angles

and three CP -violating phases. To convert the

Wolfenstein parameters into VCKM entries internally,

we use the 9th-order expansions of Ref. [32]. More

detailed definitions of these parameters can be
found in Appendix C.

StandardModel_Higgs_running: QEWSB, mH.

This model provides a description of the SM Higgs

sector in terms of m2
H , the bare Higgs mass parame-

ter in the SM Lagrangian at scale mZ . The vacuum

expectation value of the SM Higgs field at mZ can

be obtained from the StandardModel_SLHA2 as

v0 = (
√

2GF)−1/2. This model is intended for use

in situations where the Higgs potential is run to

different scales, e.g. for calculating pole masses or
investigating vacuum stability. It therefore also con-

tains one additional parameter: QEWSB, the scale at

which the electroweak symmetry-breaking (EWSB)

consistency condition that the Higgs potential pos-

sess a tree-level minimum is imposed. Although in

principle physical properties should not depend on

its value, typically one prefers to take QEWSB ∼ mt

in order to minimise errors from neglecting higher-

order loops. It is common to vary this parameter

by a factor of a few in order to try to quantify the

uncertainty in resulting pole masses from missing

loop terms.

StandardModel_Higgs: mH.
Unlike the StandardModel_Higgs_running model,

the tree-level Higgs mass mh is taken as the free pa-

rameter of StandardModel_Higgs, but interpreted

directly as the pole mass for most calculations.

This generally removes the need to calculate it via

renormalisation group running in any higher-energy

theory. For simple calculations, this allows a cut-

down GAMBIT Spectrum object to be produced, with
no ability to run, and the Higgs ‘pole’ mass ex-

tracted from it by simply accessing the value of the

tree-level parameter for the given point in param-

eter space. When observables are to be calculated

that genuinely need to use running parameters, the

model point is up-translated to a parameter point

in the StandardModel_Higgs_running (the parent

model), where m2
H at scale mZ is set equal to the

square of the tree-level mass, and QEWSB is set to

mt. This is useful for more detailed calculations in-

volving module functions that explicitly require the

running mass parameter of StandardModel_Higgs_

running, and/or functions that need accurate pole

masses calculated by including the Higgs sector in

renormalisation calculations.

5.4.2 Scalar singlet

The scalar singlet is the simplest possible model for

DM, consisting of a single additional scalar field S un-

charged under the gauge symmetries of the SM, and

stabilised by a Z2 symmetry. The additional renormalis-

able Lagrangian terms permitted by general symmetry

arguments are

LSS =
1

2
µ2

SS2 +
1

2
λhSS2|H|2 +

1

4
λSS4 +

1

2
∂µS∂µS. (1)

From left to right, these are: the bare S mass, the
dimension-4 Higgs-portal coupling, the S quartic self-

coupling, and the kinetic term. The latter plays no role

in phenomenology, leaving three free parameters of the

theory: µ2
S , λhS and λS. After EWSB, the singlet mass

receives an additional contribution from the Higgs-portal

term, leading to a tree-level mass of

mS =

√

µ2
S +

1

2
λhSv2

0 . (2)

This model has been subjected to global fits in Refs.

[99, 107, 121].

SingletDM_running: lambda_S, lambda_hS, mS.

This model has the MS couplings λhS and λS at
scale mZ as free parameters, as well as the tree-

level mass mS , which is matched internally to the

MS value of µS at scale mZ using λhS(mZ) and

Eq. 2. This allows full calculation of pole masses,

renormalisation group running and vacuum stability.

SingletDM: lambda_hS, mS.

The relationship between SingletDM and

SingletDM_running is analogous to the
one between StandardModel_Higgs and

StandardModel_Higgs_running. SingletDM

has mS as a free parameter, leading to two use cases.

The first is to interpret the model parameter directly

as the pole mass for S and do phenomenology

without any spectrum calculation; the second is to

take the parameter mS as the tree-level estimate of

the mass, use Eq. 2 to recover µ2
S matched to the

tree-level mass at scale mZ , and calculate the pole

mass accordingly in the parent model SingletDM_

running. One chooses between these two options

by selecting which function from SpecBit to obtain

a Spectrum object from. SingletDM includes the

Higgs-portal coupling λhS identically to the parent

model, which we also set the running coupling at

mZ to when translating a SingletDM model point



29

to a SingletDM_running point. It however does

not include any description of the quartic coupling.

This is because the S self-coupling term only plays

a role in observables via RGE running, such as in

the calculation of pole masses and analysis of Higgs

vacuum stability. When translating to the parent
model, we therefore explicitly choose the quartic

coupling to be absent at scale mZ (even though it

will be regenerated at other scales under RGE flow):

λS(mZ) = 0. (3)

5.4.3 Weak-scale MSSM

These models feature MSSM soft SUSY-breaking La-

grangian parameters defined at a chosen scale Q, typi-

cally set to something near the weak scale.

The MSSM is the version of SUSY containing the

least additional field content beyond the SM. Its La-
grangian (see e.g. [169])

LMSSM = LSUSY-SM + Lsoft, (4)

is obtained by supersymmetrising the (pre-EWSB) SM

Lagrangian to find LSUSY-SM, and augmenting it with
all possible renormalisable soft SUSY-breaking terms

that conserve both baryon (B) and lepton number (L).

These soft terms are

Lsoft = − 1

2

[

M1
¯̃B0B̃0 + M2

¯̃WAW̃A + M3 ¯̃gB g̃B

]

(5a)

− i

2

[

M ′
1

¯̃B0γ5B̃0 + M ′
2

¯̃WAγ5W̃A + M ′
3
¯̃gBγ5g̃B

]

(5b)

− ǫab

[

bHa
uHb

d + h.c.
]

− m2
Hu

|Hu|2 − m2
Hd

|Hd|2

(5c)

+
∑

i,j=1,3

{

−
[

Q̃†
i (m2

Q)ijQ̃j + d̃†
Ri(m

2

d)ij d̃Rj

+ ũ†
Ri(m

2

u)ij ũRj + L̃†
i (m2

L)ijL̃j + ẽ†
Ri(m

2

e )ij ẽRj

]

(5d)

− ǫab

[

(Tu)ijQ̃a
i Hb

uũ†
Rj − (Td)ijQ̃a

i Hb
dd̃†

Rj

− (Te)ijL̃a
i Hb

dẽ†
Rj + h.c.

]

(5e)

− ǫab

[

(Cu)ijQ̃a
i H∗b

d ũ†
Rj − (Cd)ijQ̃a

i H∗b
u d̃†

Rj

− (Ce)ijL̃a
i H∗b

u ẽ†
Rj + h.c.

]}

. (5f)

Here we explicitly sum over the generation indices i and

j, and imply summation over the gauge generator indices

A = 1 .. 3 and B = 1 .. 8, as well as the SU(2)L indices

a, b = 1, 2. Here ǫab is the two-dimensional completely

antisymmetric tensor, defined such that ǫ12 = −ǫ21 = 1.

Superparticle fields are denoted by tilded operators (Q̃j ,

ũ†
Rj , etc.), where B̃0, W̃A and g̃B are the superpart-

ners of the SM gauge bosons. Fields denoted with capi-

tal letters are SU(2)L doublets (Qi ≡ (uLi, dLi)
T, etc),

whereas lowercase fields are SU(2)L singlets. The sub-

scripts u and d refer to the two Higgs doublets, which

give masses separately to up- and down-type quarks.

The first two terms in Eq. 5 (5a and 5b) are explicit

gaugino masses associated with the real parameters

M1, M2, M3 and M ′
1, M ′

2, M ′
3. The second set of these

violates CP , so M ′
1, M ′

2 and M ′
3 should be very small to

agree with experiment. The Higgs sector (5c) includes

explicit mass terms with real parameters m2
Hu

and m2
Hd

,

as well as a bilinear coupling with complex parameter

b. Explicit sfermion masses (5d) come from the five

3 × 3 Hermitian mass-squared matrices m
2

Q, m
2

u, m
2

d ,

m
2

L and m
2

e . The final two terms (5e and 5f) denote

trilinear couplings between the Higgs and squarks or

sleptons, with general Yukawa-type complex 3×3 matri-

ces Tu, Td, Te and Cu, Cd, Ce. The C terms are often

omitted from the definition of the MSSM, as they end

up strongly suppressed in many SUSY-breaking schemes.

SUSY-breaking scenarios often imply universality rela-
tions between the Yukawa-scaled soft-breaking trilinear

couplings Au, Ad and Ae, which are defined as

(Af )ij ≡ (Tf )ij/(Yf )ij f ∈ {u, d, e}, (6)

where i and j run over all three generations, but sum-

mation is not implied.

LSUSY-SM contains derivatives of the superpotential

Ŵ = ǫab

{

∑

i,j=1,3

[

(Yu)ijQ̂a
i Ĥb

uÛ c
j − (Yd)ijQ̂a

i Ĥb
dD̂c

j

− (Ye)ijL̂a
i Ĥb

dÊc
j

]

− µĤa
uĤb

d

}

. (7)

Here the indices i and j are again generation number, a

and b are SU(2)L indices and ǫab is the two-dimensional

antisymmetric tensor. Carets indicate superfields. The

terms Û c
j , D̂c

j and Êc
j are the left chiral superfields

containing the charge conjugates of the right-handed

SU(2)L singlets: up-type (s)quarks, down-type (s)quarks

and (s)electrons, respectively. Derivatives of Ŵ with

respect to its scalar fields give rise to all non-gauge

interaction terms in LSUSY-SM. It plays a similar role

to the non-gauge part of the scalar potential in non-
supersymmetric theories, specifying the Higgs potential

via the complex parameter µ and the Higgs-fermion

interactions and fermion masses via the complex 3 × 3

Yukawa coupling matrices Yu, Yd and Ye.

R parity is conserved in Eqs. 5 and 7 by construc-

tion, by virtue of B and L being conserved individually.

This makes the lightest SUSY particle (LSP) absolutely

stable; in general we impose the condition that this must

be the lightest neutralino. Unless otherwise noted, we

neglect the phenomenology of the gravitino, assuming
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it to be sufficiently heavy that it is not the LSP and its

decays at early times are irrelevant.

MSSM63atQ: Ad_11, Ad_12, Ad_13, Ad_21, Ad_22,

Ad_23, Ad_31, Ad_32, Ad_33, Ae_11, Ae_12, Ae_13,

Ae_21, Ae_22, Ae_23, Ae_31, Ae_32, Ae_33, Au_11,

Au_12, Au_13, Au_21, Au_22, Au_23, Au_31, Au_32,

Au_33, M1, M2, M3, Qin, SignMu, TanBeta, mHd2,

mHu2, md2_11, md2_12, md2_13, md2_22, md2_23,

md2_33, me2_11, me2_12, me2_13, me2_22, me2_23,

me2_33, ml2_11, ml2_12, ml2_13, ml2_22, ml2_23,

ml2_33, mq2_11, mq2_12, mq2_13, mq2_22, mq2_23,

mq2_33, mu2_11, mu2_12, mu2_13, mu2_22, mu2_23,

mu2_33.
This model contains 65 free parameters: the scale

Q, the sign of the µ parameter, and 63 parameters

of the MSSM Lagrangian. Because of their usual
irrelevance in (known) SUSY-breaking schemes, here

we set the C terms to zero. Apart from this omission,

the MSSM63 is the most general formulation of

the CP -conserving MSSM: here the CP -violating

gaugino masses M ′ and complex phases are all also

explicitly set to zero. This leaves 3 free gaugino

masses M1, M2 and M3, 6 real parameters each from

the mass-squared matrices m
2

Q, m
2

u, m
2

d , m
2

L and

m
2

e and a further 9 each from the trilinear couplings

Au, Ad and Ae. The final three parameters come

from the Higgs sector, where we have m2
Hu

and

m2
Hd

, and trade b and µ for the sign of µ and the

ratio of the up-type to down-type Higgs vacuum
expectation values tan β ≡ vu/vd. All parameters

are defined in the DR scheme at the scale Q, except

for tan β, which is defined at mZ .

Relative to the general MSSM, the additional con-

straints applied in this model are:

M ′
1 = M ′

2 = M ′
3 = 0, (8)

Cu = Cd = Ce = 0, (9)

m
2

Q, m
2

u, m
2

d , m
2

L, m
2

e , Au, Ad, Ae all real. (10)

MSSM30atQ: Ad_1, Ad_2, Ad_3, Ae_1, Ae_2, Ae_3,

Au_1, Au_2, Au_3, M1, M2, M3, Qin, SignMu,

TanBeta, mHd2, mHu2, md2_1, md2_2, md2_3, me2_1,

me2_2, me2_3, ml2_1, ml2_2, ml2_3, mq2_1, mq2_2,

mq2_3, mu2_1, mu2_2, mu2_3.

As per the MSSM63atQ, but with all off-diagonal

elements in m
2

Q, m
2

u, m
2

d , m
2

L, m
2

e , Au, Ad and Ae

set to zero, in order to suppress flavour-changing

neutral currents:

m
2

Q, m
2

u, m
2

d , m
2

L, m
2

e , Au, Ad, Ae diagonal. (11)

MSSM25atQ: Ad_3, Ae_12, Ae_3, Au_3, M1, M2, M3,

Qin, SignMu, TanBeta, mHd2, mHu2, md2_1, md2_2,

md2_3, me2_1, me2_2, me2_3, ml2_1, ml2_2, ml2_3,

mq2_1, mq2_2, mq2_3, mu2_1, mu2_2, mu2_3.
This was the model investigated in Ref. [170].
As per the MSSM30atQ, but with first and

second-generation trilinear couplings degenerate in

the slepton sector, and set to zero for squarks:

(Ae)11 = (Ae)22, (12)

(Au)11 = (Au)22 = (Ad)11 = (Ad)22 = 0. (13)

MSSM24atQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, md2_1, md2_2, md2_3,

me2_1, me2_2, me2_3, ml2_1, ml2_2, ml2_3, mq2_1,

mq2_2, mq2_3, mu2_1, mu2_2, mu2_3.

As per the MSSM25atQ, but with first and

second-generation trilinear couplings in the slepton

sector also set to zero:

(Au)ii = (Ad)ii = (Ae)ii = 0 ∀ i ∈ {1, 2}. (14)

MSSM20atQ: Ad_3, Ae_12, Ae_3, Au_3, M1, M2, M3,

Qin, SignMu, TanBeta, mHd2, mHu2, md2_12, md2_3,

me2_12, me2_3, ml2_12, ml2_3, mq2_12, mq2_3,

mu2_12, mu2_3.

As per the MSSM25atQ, but with degenerate first

and second-generation sfermion mass parameters:

(Ae)11 = (Ae)22, (15)

(Au)11 = (Au)22 = (Ad)11 = (Ad)22 = 0, (16)

(m2

X)11 = (m2

X)22 ∀ X ∈ {Q, u, d, L, e}. (17)

MSSM19atQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, md2_12, md2_3,

me2_12, me2_3, ml2_12, ml2_3, mq2_12, mq2_3,

mu2_12, mu2_3.

This is the model that is sometimes referred to

as the “phenomenological” MSSM (pMSSM). It

has been the focus of many non-statistical random

parameter scans, e.g. [2, 118, 171–173]. As per the

MSSM20atQ, but with first and second-generation

trilinear couplings in the slepton sector also set to

zero:

(Au)ii = (Ad)ii = (Ae)ii = 0 ∀ i ∈ {1, 2}, (18)

(m2

X)11 = (m2

X)22 ∀ X ∈ {Q, u, d, L, e}. (19)

MSSM16atQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, md2_3, me2_3, ml2_12,

ml2_3, mq2_12, mq2_3, mu2_3.

As per the MSSM19atQ, but with all first and sec-

ond generation squark mass parameters degenerate,

and all first and second generation slepton mass

parameters degenerate:

(m2

Q)ii = (m2

u)jj = (m2

d)kk ∀ i, j, k ∈ {1, 2}, (20)

(m2

L)ii = (m2

e )jj ∀ i, j ∈ {1, 2}. (21)



31

MSSM15atQ: A0, At, M1, M2, M3, Qin, SignMu,

TanBeta, mHd2, mHu2, md2_3, me2_3, ml2_12, ml2_3

mq2_12, mq2_3, mu2_3.

This is the model explored in Ref. [89], up to

reparameterisation of the Higgs sector. As per the

MSSM16atQ, but with down-type and sleptonic

trilinear couplings degenerate:

(Ad)33 = (Ae)33. (22)

MSSM11atQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, ml2, mq2.

As per the MSSM16atQ/MSSM19atQ, but with

universal squark (m2
q̃) and slepton (m2

l̃
) mass

parameters:

(m2

X)ii ≡ m2
q̃ ∀ i ∈ {1..3}, X ∈ {Q, u, d}, (23)

(m2

Y )ii ≡ m2
l̃

∀ i ∈ {1..3}, Y ∈ {L, e}. (24)

MSSM10atQ: Ad_3, Au_3, M1, M2, M3, Qin, SignMu,

TanBeta, mHd2, mHu2, ml2, mq2.

As per the MSSM11atQ, but with no sleptonic

trilinear coupings:

(Ae)33 = 0. (25)

MSSM10batQ: Ad_3, Ae_3, Au_3, M1, M2, M3, Qin,

SignMu, TanBeta, mHd2, mHu2, mf2.
As per the MSSM11atQ, but with a universal

sfermion mass parameter m2
f̃
:

m2
q̃ = m2

l̃
≡ m2

f̃
. (26)

MSSM10catQ: A0, M1, M2, M3, Qin, SignMu, TanBeta,

mHd2, mHu2, ml2, mq2_12, mq2_3.

This is the model explored in Ref. [92], up to

reparameterisation of the Higgs sector. As per

the MSSM15atQ, but with a universal trilinear

coupling A0, 3rd generation squark mass (m2
q̃3) and

slepton mass (m2
l̃
) parameters:

(Au)33 = (Ad)33 = (Ae)33 ≡ A0, (27)

(m2

Q)33 = (m2

u)33 = (m2

d)33 ≡ m2
q̃3, (28)

(m2

L)ii = (m2

e )jj ≡ m2
l̃

∀ i, j ∈ {1..3}. (29)

MSSM9atQ: Ad_3, Au_3, M1, M2, M3, Qin, SignMu,

TanBeta, mHd2, mHu2, mf2 As per the MSSM11atQ,

but with both the approximations introduced in
the MSSM10atQ and MSSM10batQ, i.e. universal

sfermion masses and no sleptonic trilinear couplings:

(Ae)33 = 0, (30)

m2
q̃ = m2

l̃
≡ m2

f̃
. (31)

MSSM7atQ: Ad_3, Au_3, M2, Qin, SignMu, TanBeta,

mHd2, mHu2, mf2.

This model has been used extensively in Dark-

SUSY papers, e.g. [147, 174, 175]. As per the

MSSM9atQ, but assuming a Grand Unified Theory

(GUT)-inspired relationship between the gaugino

masses.

3

5
cos2 θWM1 = sin2 θWM2 =

α

αs
M3. (32)

When implementing this relationship, we use sin2 θW

at the Z pole mass scale, which we calculate directly

from the StandardModel_SLHA2 parameters GF,

mZ (pole) and α−1

MS
(mZ).

5.4.4 GUT-scale MSSM

These models feature MSSM soft SUSY-breaking La-

grangian parameters defined at the scale of gauge cou-

pling unification, typically referred to as the GUT scale.

MSSM63atMGUT: Ad_11, Ad_12, Ad_13, Ad_21, Ad_22,

Ad_23, Ad_31, Ad_32, Ad_33, Ae_11, Ae_12, Ae_13,

Ae_21, Ae_22, Ae_23, Ae_31, Ae_32, Ae_33, Au_11,

Au_12, Au_13, Au_21, Au_22, Au_23, Au_31, Au_32,

Au_33, M1, M2, M3, SignMu, TanBeta, mHd2, mHu2,

md2_11, md2_12, md2_13, md2_22, md2_23, md2_33,

me2_11, me2_12, me2_13, me2_22, me2_23, me2_33,

ml2_11, ml2_12, ml2_13, ml2_22, ml2_23, ml2_33,

mq2_11, mq2_12, mq2_13, mq2_22, mq2_23, mq2_33,

mu2_11, mu2_12, mu2_13, mu2_22, mu2_23, mu2_33.

As per the MSSM63atQ, but with Q set to the

GUT scale. Translation to MSSM63atQ requires

having already solved the renormalisation group

equations (RGEs) for the model, in order to

determine the value of the GUT scale.

MSSM30atMGUT: Ad_1, Ad_2, Ad_3, Ae_1, Ae_2,

Ae_3, Au_1, Au_2, Au_3, M1, M2, M3, SignMu,

TanBeta, mHd2, mHu2, md2_1, md2_2, md2_3, me2_1,

me2_2, me2_3, ml2_1, ml2_2, ml2_3, mq2_1, mq2_2,

mq2_3, mu2_1, mu2_2, mu2_3.

This is the MSSM30atQ with Q = MGUT; as per

the MSSM63atMGUT, but with all off-diagonal

elements in m
2

Q, m
2

u, m
2

d , m
2

L, m
2

e , Au, Ad and Ae

set to zero, in order to suppress flavour-changing
neutral currents:

m
2

Q, m
2

u, m
2

d , m
2

L, m
2

e , Au, Ad, Ae diagonal. (33)

NUHM2: A0, M0, M12, SignMu, TanBeta, mHd, mHu.

The second Non-Universal Higgs Mass model.

Descended from the MSSM63atMGUT. All off-

diagonal elements in m
2

Q, m
2

u, m
2

d , m
2

L and m
2

e

are set to zero, and all diagonal elements are set
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equal to a universal sfermion mass m0. All gaugino

masses are set to the universal mass m1/2, and all

entries in Au, Ad and Ae are set to a universal tri-

linear coupling A0. Global fits of this model have

been performed in Refs. [69, 85, 119].

m
2

Q, m
2

u, m
2

d , m
2

L, m
2

e diagonal, (34)

M1 = M2 = M3 ≡ m1/2, (35)

(m2

X)ii ≡ m2
0 ∀ i ∈ {1..3}, X ∈ {Q, u, d, L, e}, (36)

(AY )ij ≡ A0 ∀ i, j ∈ {1..3}, Y ∈ {u, d, e}. (37)

NUHM1: A0, M0, M12, SignMu, TanBeta, mH.
The first Non-Universal Higgs Mass model, fitted in

Refs. [54, 61, 67, 68, 119]. As per the NUHM2, but

with a single Higgs mass parameter mH :

m2
Hu

= m2
Hd

≡ (mH)2. (38)

CMSSM: A0, M0, M12, SignMu, TanBeta.

The Constrained MSSM, most notably fitted in re-

cent years in Refs. [68, 88, 90, 119]. As per the

NUHM1, but with m0 playing the role of a fully

universal scalar mass parameter:

mH = m0. (39)

mSUGRA: A0, M0, M12, SignMu, TanBeta.

The most common definition of the minimal super-

gravity model; just a pseudonym for the CMSSM.12

5.4.5 Flavour EFT

The study of rare meson decays is typically done within

the framework of effective field theory (EFT), where

squared matrix elements for decays from initial states i

to final states f are calculated from |〈f |Heff |i〉|2, using

an interaction Hamiltonian

Heff = −4GF√
2

VtbV ∗
ts

∑

x

Cx(µ)Ox(µ) . (40)

Here µ specifies the scale of the process, V is the CKM

matrix and GF is the Fermi constant. Heff is decomposed

into a linear combination of effective interactions Ox

with Wilson coefficients Cx. Some such interactions exist

already in the SM, e.g.

O7 =
e

(4π)2
mb(sσµνPRb)Fµν ,

O9 =
e2

(4π)2
(sγµPLb)(ℓ̄γµℓ) ,

O10 =
e2

(4π)2
(sγµPLb)(ℓ̄γµγ5ℓ) , (41)

12Other authors define mSUGRA as a smaller subspace of the
CMSSM; see Ref. [176] for discussion and further references.

whereas others, such as

Q1 =
e2

(4π)2
(s̄PRb)(ℓ̄ ℓ) ,

Q2 =
e2

(4π)2
(s̄PRb)(ℓ̄γ5ℓ) , (42)

are almost exclusively the purvey of new physics. In

general, the interesting quantities for new physics are
therefore the differences between the expected SM and

BSM values,

∆Cx ≡ Cx,BSM − Cx,SM. (43)

More details can be found in the FlavBit paper [109]

and Ref. [135].

WC: Re_DeltaC7, Im_DeltaC7, Re_DeltaC9,

Im_DeltaC9, Re_DeltaC10, Im_DeltaC10,

Re_DeltaCQ1, Im_DeltaCQ1, Re_DeltaCQ2,

Im_DeltaCQ2.

This model incorporates enhancements and suppres-

sions to the real and imaginary parts of the Wilson

coefficients of the effective operators O7, O9, O10,

Q1 and Q2 (Eqs. 41 and 42).

5.4.6 Nuisance parameters

These models contain values with significant uncertain-

ties that can be essential for calculating signal rates

(particularly in DM searches), but which are not part

of a BSM model or the Standard Model.

Halo_gNFW: alpha, beta, gamma, r_sun, rho0, rhos,

rs, v0, vesc, vrot.

This as well as all other halo models specify the

radial dark matter distribution ρ(r) in the Milky

Way and the local properties of dark matter
relevant for direct detection and capture in the

Sun. Specifically, this model corresponds to the

generalized NFW profile

ρ(r) =
2(β−γ)/αρs

(r/rs)γ [1 + (r/rs)α]
(β−γ)/α

, (44)

where γ (β) describes the inner (outer) slope of the

profile, α is the shape in the transition region around

the scale radius r = rs, and ρs ≡ ρ(rs) is the scale

density. Furthermore, the local properties of dark

matter are described by means of the local density ρ0

as well as a Maxwell-Boltzmann velocity distribution

boosted to the rest frame of the Earth,

f(u) =
e

−
(

u+vLSR+v⊙,pec+V⊕

v0

)2

π3/2v3
0 erf

(

vesc

v0

)

− 2πv2
0vesce

−
(

vesc
v0

)2 . (45)
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Here, v0 is the most probable speed of a DM particle

with respect to the galactic halo, while vesc denotes

the local escape velocity [177]. The remaining pa-

rameters describe the relative motion of the Earth

and the Galactic rest frame: vLSR = (0, vrot, 0) is

the motion of the Local Standard of Rest in Galactic

coordinates, with vrot being the local disk circular

velocity, v⊙,pec = (11, 12, 7) km s−1 is the peculiar
velocity of the Sun [178], and V⊕ = 29.78 km −1 is

the Keplerian velocity of the Earth around the Sun.

Notice that in this halo model the scale density ρs

and the local density ρ0 are treated as independent

parameters.
Halo_gNFW_rho0: alpha, beta, gamma, r_sun, rho0,

rs, v0, vesc, vrot.

Same as Halo_gNFW, but deriving the scale

density ρs ≡ ρ(rs) from a given value of the local

density ρ0 ≡ ρ(rsun) via Eq. 44. Here, rsun denotes

the distance from the solar system to the Galactic
center.

Halo_gNFW_rhos: alpha, beta, gamma, r_sun, rhos,

rs, v0, vesc, vrot.

Same as Halo_gNFW, but deriving the local

density ρ0 ≡ ρ(rsun) from a given value of the scale

density ρs ≡ ρ(rs) via Eq. 44.

Halo_Einasto: alpha, r_sun, rho0, rhos, rs, v0,

vesc, vrot.

Same as Halo_gNFW, but assuming instead the
Einasto profile for the radial distribution of dark

matter in the Milky Way:

ρ(r) = ρs exp

{

− 2

α

[(

r

rs

)α

− 1

]}

, (46)

with rs referring to the scale radius, ρs to the scale

density, and α describing the shape of the profile.
Halo_Einasto_rho0: alpha, r_sun, rho0, rs, v0,

vesc, vrot.

Same as Halo_gNFW_rho0, but using the Einasto

profile given by Eq. 46.

Halo_Einasto_rhos: alpha, r_sun, rhos, rs, v0,

vesc, vrot.

Same as Halo_gNFW_rhos, but using the Einasto

profile given by Eq. 46.

nuclear_params_fnq: deltad, deltas, deltau, fnd,

fns, fnu, fpd, fps, fpu.

This model contains the nuclear matrix elements

that parameterise the quark content of protons and

neutrons, f
(N)
Tq

, defined by

mN f
(N)
Tq

≡ 〈N |mq q̄q|N〉 , (47)

where N ∈ {p, n} and q ∈ {u, d, s} [179]. The model

also contains the parameters ∆
(p)
q that describe the

spin content of the proton.

nuclear_params_sigma0_sigmal: deltad, deltas,

deltau, sigma0, sigmal.
The same as nuclear_params_fnq, but with the 6

f
(N)
Tq

parameters replaced by the light quark content

of the nucleon σl and the quantity σ0, defined as

σl ≡ ml〈N |ūu + d̄d|N〉 , (48)

σ0 ≡ ml〈N |ūu + d̄d − 2s̄s|N〉 , (49)

where ml ≡ (1/2)(mu + md). We take σl and σ0 to

be the same for protons and neutrons [180].

nuclear_params_sigmas_sigmal: deltad, deltas,

deltau, sigmal, sigmas.
The same as nuclear_params_fnq, but with the 6

f
(N)
Tq

parameters replaced by σ0 from Eq. 49 and

the strange quark content of the nucleon σs, which

is defined as

σs ≡ ms〈N |s̄s|N〉 . (50)

Again, σ0 and σs are assumed to be the same for

protons and neutrons [180].

5.4.7 Toys

NormalDist: mu, sigma.
A simple test model consisting of two parameters: the

width and central value of a Gaussian distribution.

This model is used in most of the toy examples

discussed in this paper.

TestModel1D: x.

A one-dimensional test model, typically used for
debugging simple prior transformations, or when a

dummy model is required (as in the external model

example of the ColliderBit paper [108]).

demo_A, demo_B, etc:
These are additional example models available in the

same header as NormalDist and TestModel1D, but

commented out in order to keep from cluttering up
the model hierarchy with fake models.

6 User interface and input file

In this section we describe the general user interface
of GAMBIT. This includes a description of the avail-

able command line switches as well as a detailed walk-

through of the structure and content of the main ini-
tialisation file. Further details about the functionality

of the dependency resolver, printers and scanners are

given in the following sections.
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6.1 Command line switches and general usage

GAMBIT is run by executing the gambit executable. The

canonical way to launch a scan is to specify an initiali-

sation file myfile.yaml with the -f switch, as in

gambit -f myfile.yaml

The full set of command-line switches available is:

--version

Print the GAMBIT version number and exit.

-h/--help

Display usage information and exit.

-f file

Use instructions in file to start a scan.

-v/--verbose

Run with full verbose output.

-d/--dryrun

Perform a dry run of a scan. GAMBIT will resolve

all dependencies and backend requirements, then list

the function evaluation order to stdout, but won’t

actually start the scan. It will also produce necessary

files and instructions for plotting the dependency

tree (see Sec. 7). Requires -f.

-r/--restart

Restart a scan, overwriting any existing output. Re-

quires -f. If -r is not specified and previous output

exists matching the instructions in file, GAMBIT will

attempt to resume scanning based on that output.

GAMBIT also has various diagnostic modes that pro-

vide information about its current configuration from

the command line. See Sec. 10.4 for further information.

6.2 The master initialisation file

The master initialisation file of GAMBIT is written in

the YAML format.13 YAML is a ‘human-friendly, cross-

language, Unicode-based data serialization language’

that provides a general framework for setting up nested

structures of common native data types. The format is

reminiscent of Python. As such, leading whitespace (i.e.

the indentation level) matters, and is part of the syntax.

The top node of the master initialisation file is a

dictionary that contains eight entries.

13See http://www.yaml.org for a definition of the
standard. A compact introduction can be found at
http://en.wikipedia.org/wiki/YAML. Note that GAMBIT

is also fully compatible at the module level with the SLHA1
[181] and SLHA2 [168] formats for SUSY models; see Refs.
[108–111] for details.

Parameters describes the scan parameters for different

models.

Priors describes the priors to be placed on the scan

parameters.

ObsLikes describes observables and likelihoods that the

user would like to be calculated in a scan.

Rules specifies additional rules to guide the resolution

of dependencies and backend requirements.

Printer provides details about how and where to store

the results of the scan.

Scanner provides information about the scanning algo-
rithm to be adopted in a scan.

Logger chooses options for logging GAMBIT messages

during the scan.

KeyValues is an additional global option section.

Any number of other YAML files can be imported

to any section of the master initialisation file, using

the !import other_file.yaml directive. Imported files may

import files of their own, and so on.

6.3 Model and parameters

6.3.1 General setup and fast priors

Selecting models to scan and setting options for their pa-
rameters is done in the Parameters section of the master

YAML file, using the syntax:

Parameters:

model_1:

parameter_1:

# optional fast prior statements

parameter_2:

# optional fast prior statements

...

model_2:

# content as above

model_3:

...

For example, in the scalar singlet YAML file that
ships with GAMBIT, yaml_files/SingletDM.yaml, this

looks like:

Parameters:

# SM non-Higgs parameters.

StandardModel_SLHA2: !import

include/StandardModel_SLHA2_scan.yaml

# Nuclear matrix parameters.

nuclear_params_sigmas_sigmal:

sigmas:

range: [19, 67]

sigmal:

range: [31, 85]

deltau: 0.842

deltad: -0.427

deltas: -0.085

http://www.yaml.org
http://en.wikipedia.org/wiki/YAML
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# SM Higgs-sector parameters

StandardModel_Higgs:

mH:

range: [124.1, 127.3]

# Scalar singlet dark matter parameters

SingletDM:

mS:

range: [45., 10000.]

prior_type: log

lambda_hS:

range: [0.0001, 10.00]

prior_type: log

# Dark matter halo parameters

Halo_gNFW_rho0:

rho0:

range: [0.2, 0.8]

v0: 235.0

vesc: 550.0

vrot: 235.0

rs: 20.0

r_sun: 8.5

alpha: 1

beta: 3

gamma: 1

Here we see that the SM parameters are im-

ported from the YAML fragment yaml_files/include/

StandardModel_SLHA2_scan.yaml.

As this layout suggests, multiple models can be

scanned simultaneously; for example a particle physics

model, plus a DM halo model, plus a set of nuclear

physics parameters. This allows for arbitrary physics

models to be combined easily and fluidly. This makes

it simple to add new observables to existing scans even

if they bring ‘baggage’ in the form of additional free

parameters. The typical example is that of nuisance pa-

rameters. Adding an observable that depends not only

on the particle physics scenario, but also the assumed

value of the top mass, for example, is easy: one adds the

new observable to the ObsLikes section, and adds the

value or range of top masses to consider when calculat-

ing that observable to the Parameters section. Broader

examples of the utility of this arrangement include ob-

servables with dual implications for both particle physics

and cosmology, or for both BSM and neutrino physics.

The subsection following each parameter is an op-

tional ‘fast prior’ definition. For the purposes of sampling

parameter values, a prior is the portion of the probabil-

ity distribution function for choosing parameter values

that is independent of the likelihood, i.e. the sampling

distribution determined prior to any contact with data.

Many sampling algorithms (indeed, essentially all useful

ones) apply additional conditions designed to preferen-

tially sample points that constitute better fits to data —

but one must always choose what initial prior to employ,

independent of the sampling algorithm to be employed.

The simplest example would be assigning independent

flat distributions for each parameter, viz. ‘flat priors’.

When paired with a naive random scanner, this would

lead to simple uniform sampling of the parameter values.

Using the Prior section (see Sec. 6.3.2 and Ref. [112]),

GAMBIT makes it possible to use any arbitrary prior

in a scan — but in most cases a very simple prior will

suffice. The fast prior subsection provides a streamlined

way to directly set such simple priors in the Parameters

section, for each parameter.

Note that every parameter of every model mentioned

in the Parameters section must be associated with some

prior, either in the Priors section or via a fast prior in
the Parameters section. This applies even if the param-

eter is not actually used in a given scan. In this case,

the parameter should normally simply be set to some
arbitrary constant value in the YAML file.

In it’s simplest form, the fast prior section can just

specify such a value to fix a parameter to during a scan

(a so-called ‘delta-function prior’):

model_1:

parameter_1: 125.0

parameter_2: 750.0

The same thing can be achieved with

model_1:

parameter_1:

fixed_value: 125.0

parameter_2:

fixed_value: 750.0

This syntax naturally extends to specifying an ordered

set of points to cycle through, e.g.

model_1:

parameter_1: [125.0, 142.5, 119.0]

parameter_2:

fixed_value: [750.0, 2015.0, 38.0]

There may be cases where parameters spanning

multiple models are equivalent and should thus be de-

scribed as a single parameter. GAMBIT allows model

parameters to be combined using the same_as keyword.

Thus, parameter_1 of model_1 can be set to be equal to

parameter_2 of model_2 via a fast prior entry such as

model_1:

parameter_1:

same_as: model_2::parameter_2

scale: scale

shift: shift

Here, model_1::parameter_1 will be automatically set from

the value assigned to model_2::parameter_2 at each point

in the scan. The keywords scale and shift can also be

optionally specified; these scale the parameter by an

amount scale and shift it by shift. Thus, in the above
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example,

model_1 :: parameter_1 =

shift + scale ∗ model_2 :: parameter_2. (51)

When two models being scanned have parameter

names in common, extra care needs to be taken. Scanner-

Bit treats each parameter of each model as fully separate

by default, but any module functions that declare both

models as allowed (either individually or in combination)

will trigger a runtime error when GAMBIT attempts to

add the values of all parameters in both models to the

Params pipe (cf. Sec. 3.2.3). Usually this indicates poor

module function design, although there are some use

cases, where the same_as directive is in use, when it may

be simplest to proceed without worrying which of the

two models’ common parameters appears in the Params

pipe. Users wishing to hack their way through such a

situation can set the ALLOW_DUPLICATES_IN_PARAMS_MAP pre-

compiler variable in Elements/include/gambit/Elements/

module_macros_incore.hpp to 1.

Other fast priors can be chosen via the prior_type

keyword, which can be set to flat, log (uniform in the

log of the parameter value), or various trigonometric

functions (cos, sin, tan or cot), as in

model_1:

parameter_1:

prior_type: chosen_prior

range: [low, high]

parameter_2:

prior_type: log

range: [5, 75]

The allowed values of the parameters are given by setting
range. The scale and shift parameters also work with

prior_type, in just that same way as with same_as.

If no fixed value is given for a parameter, and both
prior_type and same_as are absent but range is given, a

flat prior is assumed.
Additional custom priors can be be written

as plugins for ScannerBit, and accessed by setting
prior_type:plugin; details can be found in Ref. [112].

6.3.2 More involved priors

Certain priors introduce correlations between param-
eters. This makes specifying a separate, unique prior

for each parameter impossible. Such multidimensional

priors, operating on multiple parameters simultaneously,

can only be declared in a separate Prior section of the

main YAML file.

Priors:

prior_name:

parameters: [model_1::param1, model_1::param2,

...]

prior_type: prior_type_1

options

other_prior_name:

parameters: [model_2::paramA, model_2::paramB,

...]

prior_type: prior_type_2

options

...

A multidimensional prior is defined under a new user-

defined key such as prior_name. Each prior declared in

this way must specify a vector of input parameters, a

prior type, and any options required by the prior. A list

of prior types and their options can be obtained with

the GAMBIT diagnostic gambit priors (see Sec. 10.4.7).

Available multidimensional priors include Gaussian and

Cauchy distributions, as well as the ability to specify any

additional ScannerBit prior plugin present on a user’s

system; these are discussed in detail in Ref. [112].

6.4 ObsLikes: Target observables and likelihoods

Entries in this section determine what is calculated

during a scan. Each entry lists a likelihood contribution

or an observable that should be calculated during the
scan. (Likelihood functions and observables are largely

the same within GAMBIT, the main difference being

that the former are used to drive the scan, whereas the

latter are simply recorded.) The minimal allowed entry

has the form

ObsLikes:

- capability: example_capability

purpose: example_purpose

- ...

Here, example_capability is the capability of the likelihood
or observable to be calculated, while example_purpose

is its role in the scan. The latter determines its treat-

ment by the scanner and the printer system. In the

simplest cases, purpose will be set to either LogLike or
Observable.14 In the case of a LogLike, the calculated
quantity will be used as one of the likelihoods in the

scan. As a convention in GAMBIT, all likelihoods are
given in terms of log L = ln(likelihood). In the case of

an Observable, the calculated quantity will be simply

written as additional output and will be available for

later post-processing.

For example, the following entries from yaml_files/

SingletDM.yaml ensure that the likelihood from the dark
matter relic density is included in the overall likelihood

function, and that the value of the relic density itself is

saved in the output of the scan, for every valid combi-

nation of model parameters:

14Alternative purposes are relatively easy to arrange, but these
are the conventional ones. See Sec. 8 for further discussion.
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ObsLikes:

# Relic density likelihood contribution

- capability: lnL_oh2

purpose: LogLike

# Relic density prediction

- capability: RD_oh2

purpose: Observable

It will often happen that several module functions

can provide the same capability. In order to remove
such ambiguities, it is possible to specify the requested

quantity further by adding one or more of the following

optional arguments

ObsLikes:

- capability: capability

purpose: purpose

type: type

function: function

module: module

- ...

Here, type specifies the C++ type of the module function

that should be used to fulfil the requested capability,

function explicitly gives the name of a module function,
and module demands that the function must come from

a specific module. These additional specifications in the

ObsLikes section are in fact just a convenient shortcut

for setting up the most common rules for dependency

resolution. Dependency resolution rules can be set up in

far more generality in the separate Rules section, which

we discuss below.

In the case of the purpose LogLike, the type of

the module function selected must be double, float,

std::vector<double> or std::vector<float>, as the result

will be sent to the likelihood container to contribute
to the total likelihood function. (This applies regardless

of whether the user has specified the type explicitly, or

left it to the dependency resolver to work out.) In the

case of vectors, the likelihood container automatically

sums all entries.

Finally, the additional option printme can be set for

each ObsLikes entry, for example

ObsLikes:

- capability: example_capability

purpose: example_purpose

printme: true

- ...

This option is true by default, meaning that by default

GAMBIT will attempt to record to disk (i.e. ‘print’; see

Sec. 9) the computed result of the each of the target

observables/likelihoods. This is the behaviour that one

almost always wants during a production scan, however

by setting printme to false the user can tell GAMBIT

not to try to output the result of the thusly-flagged

computation. It is useful to do this when testing and
debugging new module functions, for example, because

these often produce results that are not of a printable

C++ type (and so attempting to print them would cause

a runtime error, see Sec 9.3), yet one will often want

to set these functions as ObsLikes targets just to ensure

that GAMBIT will run them.

6.5 Rules: Dependency resolution and module options

Entries in the Rules section determine the details of how
the likelihoods and observables listed in the ObsLikes

section are calculated in the scan. In the rather com-

mon case that several different module functions can

provide a capability requested in the ObsLikes section,

or several module functions can provide the neccessary

capability-type pair requested in another module func-

tion’s dependency, then further specifications in the

Rules section are required to fully define the scan. The

Rules section can likewise be used to control the res-

olution of backend requirements, and to set options
for individual module functions, modules and backend

initialisation functions.

6.5.1 Module function dependencies

In the rather common case that several different module

functions provide the same requested quantity, further

rules are necessary to define the scan. Note that with

quantity, we refer here specifically to capability/type

pairs, quantity ≡ (capability, type). These rules can be

specified in the Rules section of the initialisation file.

Furthermore, this section is used to control the reso-

lution of backend dependencies, and to set options for

individual module functions, modules and backend ini-

tialisation functions. In this sense, the rules determine

how an individual point is calculated during the scan.

In the simplest case, a rule has the form

Rules:

- capability: capability

type: type

function: function

module: module

where capability is required, type is optional, and one

or both of the entries function and module must be given.

This entry translates into the rule: Any capability with

C++ type type should be resolved by module function

function from the module module. Assigning the empty

string "" or the wildcard character "*" to an entry is

equivalent to omitting it. If regex is activated (this is

not the default; see Sec. 6.9), all entries are actually
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treated as regular expressions, allowing rules to be made

arbitrarily complex.15

A simple example of such a rule is the one in

yaml_files/SingletDM.yaml that specifies that the ob-

served relic density should be treated as an upper limit

only when computing the likelihood. This allows for the

possibility that some of the dark matter is not in the
form of scalar singlet particles.

# Choose to implement the relic density likelihood

# as an upper bound, not a detection

- capability: lnL_oh2

function: lnL_oh2_upperlimit

This rule says that wherever the capability lnL_oh2 is
needed in a scan, GAMBIT must use a function with

the name lnL_oh2_upperlimit. As it turns out, there

is only one function with such a name in GAMBIT

1.0.0, and it lives in DarkBit – so this rule forces
DarkBit::lnL_oh2_upperlimit to be used.

The simple form shown above applies a rule to the res-
olution of dependencies of any module functions match-

ing the specified capability and type. In order to set

up rules that only affect the dependency resolution of

a specific module function, one can add a dedicated

dependencies subsection, and optionally omit any of the

top-level keys capability, type, function and module (or

equivalently, set them to "" or "*").

Rules:

- capability: capability

type: type

function: function

module: module

dependencies:

- {capability: cap_A, type: type_A,

function: func_A, module: mod_A}

- {capability: cap_B, type: type_B,

function: func_B, module: mod_B}

- ...

- ...

If regex is activated, the values are treated as regular

expressions. The entry translates into the following rule:

when resolving dependencies of module function function

in module module, which provides capability capability

with C++ type type, apply the rules listed under the
keyword dependencies.

If conflicting rules are found during dependency res-

olution, GAMBIT will throw an error. This is intended

to reduce side effects that changes in some parts of the

initialisation file can have on other parts. However, rules
can be explicitly declared as weak and over-rideable, by

using the flag weak!, as per

Rules:

15For details about regular expressions we refer the reader to
https://en.wikipedia.org/wiki/Regular_expression.

- !weak

capability: capability

type: type

function: function

module: module

- ...

Note that the flag affects the entire rule for which it is

set, not only specific nearby keywords.

A special case can occur if several module functions

depend on the same quantity as they provide. In this

case these module functions can be chained, and set-

ting up such chains in the rules section is simplified by

using the keyword functionChain. This is illustrated in

the following example, where func1, func2 and func3 are

supposed to provide as well as depend on capability with

type. These functions will be chained together, with func1

fulfulling the depenencies of func2 etc.

Rules:

- capability: capability

type: type

functionChain: [func1, func2, func3]

module: module

Finally, when performing type matching, the de-

pendency resolver takes all type equivalences defined

in config/resolution_type_equivalency_classes.yaml into

account. We discuss this type equivalency database for

dependency resolution in more detail in Sec. 10.5.

6.5.2 Backend requirements

After a module function has been selected to take part

in a scan, its backend requirements are resolved. This

process can be guided and controlled using rules for
backend requirements, which have the form:

Rules:

- capability: capability

type: type

function: function

module: module

backends:

- {capability: cap_A, type: type_A,

function: func_A, backend: backend_A,

version: backend_A_version_number}

- {capability: cap_B, type: type_B,

function: func_B, backend: backend_B,

version: backend_B_version_number}

- ...

The usage is essentially identical to the one discussed

above for dependencies, except that backend may be

specified rather than module, and a specific version of a

backend may be requested, as e.g.

- capability: Higgs_Couplings

backends:

- {backend: FeynHiggs, version: 2.11.3}

https://en.wikipedia.org/wiki/Regular_expression
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There are also a number of other restrictions that can

be applied via rules declared in the module function’s

rollcall header entry (Sec 3.1.3). These include backend

requirements that are only activated for specific models

(analogous to model-conditional dependencies of module

functions), restricted lists of permitted backends and
versions, and the condition that certain combinations

of backend requirements must be resolved by the same

version of the same backend.

6.5.3 Options for module functions

Besides setting rules for the resolution of dependencies

and backend requirements, the Rules section can also be

used to set options for module functions. This is done
with the options keyword, as

Rules:

- capability: capability

type: type

function: function

module: module

options:

key_A: value_A

key_B: value_B

...

- ...

This rule sets the option key_A to value_A and option

key_B to value_B, for any module function that matches

the indicated capability, type, function and module. Any of

these keywords can be omitted; if regex is activated,

they are treated as regular expressions. This allows, for

instance, module-wide options to be set using just the

name of the module, whilst omitting the other three

keywords or setting them to wildcards:

Rules:

- module: DarkBit

options:

DM_is_made_of: axions

Here, the key DM_is_made_of is accessible by all module

functions in the module DarkBit.

This last example is a bit glib, as in reality

DM_is_made_of is not a recognised option of any func-
tions in DarkBit, so setting it doesn’t actually have any

effect in GAMBIT 1.0.0. A more realistic example is:

Rules:

# Use the DarkBit native calculator

# to compute the relic density

- capability: RD_oh2

function: RD_oh2_general

options:

fast: 1

This can be seen in e.g. yaml_files/SingletDM.yaml. This

rule specifically selects the RD_oh2_general function from

DarkBit for calculating capability RD_oh2 (i.e. the relic

density), and passes it the option fast = 1, to set the

accuracy required when solving the Boltzmann Equation

for the thermal relic density of scalar singlet particles.

The key-value pairs specified in this way are easily

accessed by any module function that matches a given

rule, using runOptions->getValue (cf. Sec. 3.2.4).

In most cases, module functions will interpret op-

tion values as simple C++ types (commonly float,

int, bool or std::string), but composite types like

std::vector<double> can also be set. The necessary syn-

tax for doing this is defined by the YAML standard.

Options can also be easily nested, with the C++ type of

the top-level option to be retrieved itself a YAML::Node16,

from which lower-level options can then be retrieved.

Information about what options are available for

which module function can be found in the module func-

tion documentation. Options that are never requested

by module functions at runtime are silently ignored.

In case of ambiguity, such as when an option re-

quested by a module function is listed in several match-

ing rules, GAMBIT throws an error during initialisation.

6.6 Printer

The GAMBIT “printer” system handles the output of all

scan results, whether to disk, a network resource or any

other output stream. This system allows all GAMBIT

output to be handled in an abstract way throughout

the code, with the actual format of the output being

decided by the choice of an output plugin (a printer) at
runtime, via the master YAML file. Therefore, setting up

GAMBIT output consists primarily of choosing a printer

and setting options for it. In this section we describe

how to do this; full details of the printer system can be

found in Sec. 9.

Note that output handled by the GAMBIT printer

system is essentially independent of other output that

might be created by any backend or scanner codes. This

allows the output to remain as uniform as possible,
regardless of the scanning algorithm and external codes

being used.

GAMBIT 1.0.0 ships with two printers: ascii and

hdf5. The ascii printer outputs data as a simple ASCII
table, whereas the hdf5 printer writes data to a binary

file in HDF5 format17. The former format is useful for

its simplicity, however the latter is far superior when

dealing with large datasets, particularly in terms of disk

usage and read/write speed. We have also upgraded

16This class is defined in the contributed package yaml-cpp,
which ships with GAMBIT. Documentation is available at
http://github.com/jbeder/yaml-cpp.
17https://www.hdfgroup.org/HDF5/

http://github.com/jbeder/yaml-cpp
https://www.hdfgroup.org/HDF5/
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the external analysis tool pippi [182] to accept GAMBIT

input in these formats; it can be easily retrieved via the

GAMBIT build system (Sec. 11.3).

Most options that affect the output system are en-

tered in the Printer section of the master YAML file.

The basic layout of this section is:

Printer:

printer: plugin_name

options:

option_1: value_1

option_2: value_2

...

That is, one chooses a plugin plugin_name and sets its

options, which vary with the plugin. In the next sections

we describe the options available in each printer.

6.6.1 Common options

These options are common to both the ascii and hdf5

printers:

options:

output_path: default_output_path

output_file: filename

output_path specifies the directory in which the printer

output will be stored. By default it is set to the value
of default_output_path as set in the KeyValues section

of the input YAML file (see Sec. 6.9), however if a

value is set here it will override that default.

output_file specifies the name of the file in which to

store data generated during the run. If it does not
exist then it will be created.

6.6.2 Specific options: ascii printer

The only specific option for this plugin is buffer_length,

which defaults to a value of 100:

Printer:

printer: ascii

options:

buffer_length: 100

This specifies the size of the internal buffer used by

the printer. A value of N will cause output to be writ-
ten to disk every N model points. If model points are

slow to evaluate, it can be useful (particularly during

testing) to set buffer_length to 1 so that output is gen-

erated frequently. However, if model points are evalu-

ated extremely rapidly then frequent writing of output

will create a significant bottleneck, and a high value of

buffer_length will be more appropriate.

6.6.3 Specific options: hdf5 printer

There are three specific options for this plugin:

Printer:

printer: hdf5

options:

group: "/"

delete_file_on_restart: false

The first is group, which defaults to "/". This option

specifies the name of the group within the host HDF5

output_file in which data will be stored. HDF5 files are

structured similarly to a filesystem (i.e. hierarchically)

and a ‘group’ is analogous to a directory. Various objects

(such as datasets, and other groups) are then stored

within groups18 The default value of "/" specifies the

root group, and this option should rarely need to be set

to anything else. A deeper-layer group can be specified

e.g. as "/group1/group2/etc/". Absent groups at any layer

will be automatically created.

The second option is delete_file_on_restart. This

option is mainly a convenience for performing repeated

test scans, and causes the file specified by output_file

to be deleted if it already exists when a run restarts

(i.e. if the -r command line flag is used, see Sec. 6.1).

By default this is false, meaning that if a HDF5 file
already exists matching the name given in output_file

then GAMBIT will attempt to add the data for the run
to this pre-existing file.

Further details of the HDF5 objects that GAMBIT

writes to disk via this printer can be found in Sec. 9. Note

that results from several runs can be stored inside the

same HDF5 file by storing the data in different groups,

however it is safer to use separate files because HDF5 files

are vulnerable to corruption from write errors (which in
principle can occur if GAMBIT terminates abnormally;

see Sec. 10.8 for safe early shutdown methods), and data

recovery is difficult. If delete_file_on_restart is false

and the chosen group already exists, GAMBIT will throw

a runtime error telling you to choose a different group or

overwrite the whole file. Groups can be deleted, however
the disk space they occupy cannot be reclaimed without

copying the entire contents of the HDF5 file into a new

file, e.g. using the h5repack command line tool19. We

leave these kind of file manipulations to the user.

6.6.4 Output selection

The outputs handled by the printer system are simply

the results of module function evaluations. However,

18See https://www.hdfgroup.org/HDF5/doc/Glossary.html for
further description of ‘groups’ and ‘datasets’ in HDF5.
19https://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-
Repack

https://www.hdfgroup.org/HDF5/doc/Glossary.html
https://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Repack
https://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Repack
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not all module function results are of a C++ type that

can be ‘printed’ with every printer (see Sec. 9.3 for the

restrictions), so GAMBIT cannot automatically output

all results. To instruct GAMBIT to write the result of a

calculation to an output stream, the module function

that computes a result must be selected to fulfil one of

the capabilities requested in the ObsLikes section of the

master YAML file. Intermediate results, computed by

functions run by the dependency resolver only in order

to fulfil dependencies of other functions, are not output.

6.7 Scanner

GAMBIT ships with a variety of scanner plugins that

can be used in a “plug and play” manner. A full list

of scanner plugins can be obtained from the GAMBIT

scanners diagnostic (Sec. 10.4.5). A scanner is selected

by specifying one of these plugins and any plugin-specific

options in the Scanner section of the YAML file, e.g.

Scanner:

use_scanner: nested_sampler

scanners:

nested_sampler:

plugin: MultiNest

like: LogLike

nlive: 4000

tol: 0.5

mmodal: 1

other_sampler:

plugin: ...

...

...

The Scanner section can contain multiple scanner defi-

nitions with user-defined names, such as nested_sampler

and other_sampler in the above example. The scanner
that will actually be used in a given scan is specified

with the use_scanner key. Within the YAML scanner defi-

nitions, the plugin option must be set to a valid scanner

plugin known to GAMBIT, and any necessary/desired

options for that scanner should also be set. Note that a

typical scanner plugin requires a purpose to use for its

objective function, such as LogLike or Observable; this is

provided by setting the like option in the example of

the MultiNest plugin. Valid and required plugin options,

plugin descriptions, and the status of a plugin can be

obtained through the GAMBIT free-form diagnostic (see

Sec. 10.4.8),

gambit plugin_name

where plugin_name is the name of the scanner plugin.

GAMBIT also ships with a number of simple objective

test functions, which can be used as objective functions

for a scan in place of the regular GAMBIT likelihood

container output, for testing scanners and other parts

of the code. These exist as test function plugins in

ScannerBit, and are accessed from the main YAML file

with similar syntax to scanners, e.g.

Scanner:

use_objectives: my_test_function

objectives:

my_test_function:

plugin: uniform

parameter_A: 10

parameter_B: false

other_test_function:

plugin: ...

...

...

As the use_objectives directive suggests, multiple test
functions can be specified with the regular YAML[x,y]

syntax if desired, in which case all the listed objectives

will be multiplied to form the actual objective function to

be used in the scan. Details of the available test functions
and their options can be found in the ScannerBit paper

[112].

6.8 Logger

The logging output of a scan can be directed to various

output files. This is done using entries of the form:

Logger:

prefix: output_path

redirection:

[Scanner, Warning] : "scanner_warnings.log"

[ExampleBit_A] : "ExampleBit_A.log"

...

Here prefix specifies the output location for log files (de-

faulting to default_output_path; cf. Sec. 6.9), and the en-

tries in the redirection subsection dictate which logging

messages go to which file. These options are discussed

further in Sec. 10.2.

6.9 KeyValues: general purpose options

Most of the general behaviour of GAMBIT is controlled

by various options in the KeyValues section. The syntax

is the same as described above in the context of the

module function options. We provide here a complete

list of available options. Where we indicate concrete

values, these are the default values that will be used if

the option is omitted; where no default is indicated, the

option is required.

KeyValues:

likelihood:

# The value of the log-likelihood to assign to

# invalid points. Also the log-likelihood value
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# below which an otherwise valid point is declared

# invalid.

model_invalid_for_lnlike_below: lnlike_min

# Alternative value of the log-likelihood to

# assign to invalid points later in a scan (e.g.

# with the MultiNest scanner; see [112]).

model_invalid_for_lnlike_below_alt: #defaults to

# 0.5*lnlike_min.

# Print likelihood debug information to stdout and

# logs, including parameter values and

# contributions of individual likelihood

# components. Set true automatically if the master

# debug flag (below) is true.

debug: false

exceptions:

# Set the fatality of different exceptions (see

# Sec. 10.3). By default, all

# errors are fatal and all warnings non-fatal.

core_warning: non-fatal

core_error: fatal

ExampleBit_A_warning: non-fatal

ExampleBit_A_error: non-fatal

...

dependency_resolution:

# If multiple module functions can resolve the

# same dependency, prefer the one that is more

# tailored for the scanned model. See Sec. 7.1.

prefer_model_specific_functions: true

# Interpret rules in terms of regular expressions

use_regex: false

# Print running average runtime for all functions

# in dependency resolver logs

log_runtime: false

# Print timing information into hdf5 output

print_timing_data: false

# Root prefix to use in all output paths. The

# default value is based on the input \YAML file

# name, with the (final) file extension removed.

default_output_path: "runs/inifile_name/"

# Call MPI_ABORT when attempting to shut down. Many

# implementations of MPI_ABORT are buggy and do not

# abort other MPI processes properly; in these

# cases, set this option false to let GAMBIT try to

# abort things its own way.

use_mpi_abort: true

# Pick a random number generator engine.

# See Sec. 10.6 for details.

rng: default # default = mt19937_64 in GAMBIT 1.0.0

# Turn on master debug mode. Implies

# Logger:debug=true and

# KeyValues:likelihood:debug=true

debug: false

7 Dependency Resolver

The dependency resolver runs during the initiali-

sation stage of a GAMBIT scan. It determines which
module functions are required for a specific scan, in-

fers their initial evaluation order, and connects their

pipes. A major part of this plumbing exercise is con-

structing the dependency tree of a scan, a directed

acyclic graph with dependency pipes as the connectors

(‘edges’ in graph language) and module functions as the

nodes. Roughly speaking, the dependency tree starts at

its ‘top’ with the scanned models and their parameters,

and terminates at the ‘bottom’ with functions that pro-
vide the likelihoods and observables requested in the

ObsLikes section of the scan’s initialisation file (Sec. 6.4).
An example can be seen in Fig. 5. The construction of a

valid dependency tree will happen mostly automatically,
and depends only on the declarations in the module and

backend rollcall headers. However, it is rather com-

mon in GAMBIT that there are several ways to calculate

the same thing, in which case additional rules have to

be specified in the input file (Sec. 6.5).

7.1 General procedure

The steps of dependency resolution are:

1. Disable all module and backend functions not com-

patible with the models being scanned.

2. Based on the entries of the ObsLikes section, make a

list of initially requested quantities; this is the initial

dependency queue.

3. Pick an unresolved quantity from the dependency
queue, along with a designated target. Entries in

the initial dependency queue can be thought of as

having the chosen printer as their target.

4. Make a list of module functions that can provide the

requested quantity.

5. If the KeyValues entry

prefer_model_specific_functions is true:

– If any module functions on the list are tailor-

made for the scanned models, remove all other

module functions from the list.

– If any module functions on the list are tailor-

made for ancestors of the scanned models, keep

only the module functions most closely related

to the scanned models.

6. Adopt the Rules specified in the initialisation file (see

Sec. 6.5), removing non-matching module functions

from the list.

7. If exactly one module function is left on the list,

resolve the quantity requested by the target function

with the capability provided by that module function.



43

CMSSM_parameters
Type: ModelParameters

Function: primary_parameters
Module: CMSSM

LibFirst_1_1_init
Type: void

Function: LibFirst_1_1_init
Module: BackendIniBit

nevents_postcuts
Type: int

Function: predicted_events
Module: ExampleBit_B

Example_lnL_B
Type: double

Function: example_lnL
Module: ExampleBit_B

LibFortran_1_0_init
Type: void

Function: LibFortran_1_0_init
Module: BackendIniBit

function_pointer
Type: fptr

Function: function_pointer_retriever
Module: ExampleBit_A

particle_id
Type: std::string

Function: particle_identity
Module: ExampleBit_B

ptr_arr_tests
Type: int

Function: ptrArrTester
Module: ExampleBit_B

test_BE_Array
Type: double

Function: Backend_array_test
Module: ExampleBit_A

test_vector
Type: std::vector<double>

Function: exampleVec
Module: ExampleBit_B

nevents
Type: double

Function: nevents_pred
Module: ExampleBit_A

nevents
Type: int

Function: nevents_pred_rounded
Module: ExampleBit_A

eventLoopManagement
Type: void

Function: eventLoopManager
Module: ExampleBit_A

event
Type: float

Function: exampleEventGen
Module: ExampleBit_A

event
Type: int

Function: exampleCut
Module: ExampleBit_A

eventAccumulation
Type: int

Function: eventAccumulator
Module: ExampleBit_A

Example_lnL_A
Type: double

Function: nevents_like
Module: ExampleBit_A

xsection
Type: double

Function: test_sigma
Module: ExampleBit_A

G
A M B I T

Fig. 5: An example dependency tree generated in the initialisation stage of a GAMBIT scan. Each block corresponds to a single
module function, with the red text indicating its capability. Arrows indicate resolution of dependencies of different module
functions with the results of others. The functions selected by the dependency resolver to provide the observables and likelihoods
requested in the ObsLikes section of the scan’s input YAML file are shaded in green. Module functions shown shaded in purple
are nested module functions. These run in an automatically-parallelised loop managed by a loop manager function, which
is shown shaded in blue. This example is included in the GAMBIT distribution as spartan.yaml; see Sec. 12.1 for more details.
Figures like this can be generated for any scan by following the instructions provided after calling GAMBIT with the -d switch; see
Sec. 6.1 for details.

This automatically connects the pipe of the target

function to the result of the resolving function.

8. If the resolving function was not already activated

for the scan, activate it and add its dependencies to

the dependency queue (with the resolving function

as new target function).

9. Resolve backend requirements, as described below.

10. Resolve module function options, as described below.

11. Repeat from step 3 until the dependency queue is

empty.

7.2 Evaluation order

After building up the dependency tree of module func-

tions, the dependency resolver determines the initial

runtime ordering of its chosen module functions. An

obvious minimal requirement is that if the output of

module function A is required by module function B,

then A must be evaluated before B. We do this by topo-

logically sorting the directed dependency tree, using

graph-theoretic methods from the Boost Graph Library.20

20http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/.
The reader may wonder how mutually-dependent quantities
should be dealt with, i.e. in cases where the values of A

and B are defined by a set of equations that must be solved
simultaneously, by means of iteration. Take the calculation
of precision values of mW and mh in the MSSM for example,
where each depends on the other. GAMBIT does not provide
any option for doing such iterative calculations directly through
the dependency tree. Generally the way to deal with such a
situation is to either

1. write a module function that can compute the two quanti-
ties simultaneously and self-consistently (i.e. that does the
iteration internally), returning them both as its result, or

2. use function pointers as return values of module functions.

http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/
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In most cases, the evaluation order of the observables

and likelihoods listed in the ObsLikes section (Sec. 6.4)

remains unconstrained by the topological sorting. The

dependency resolver first orders the likelihoods by es-

timating the expected evaluation time for each one,

including all dependent module functions, along with

the probability that each likelihood will invalidate a

point. (A point may be invalidated if the likelihood is
extremely close to zero, the point is unphysical, etc.)
These estimates are based on the runtime and invalida-

tion frequency of the previously calculated points, and
updated on the fly during the scan. The dependency
resolver then sorts the evaluation order of likelihoods

such that the expected average time until a point is in-

validated is minimised. In practice this means that, for

instance, the relatively fast checks for consistency of a

model with physicality constraints, such as perturbativ-

ity and the absence of tachyons, would be automatically

performed before the often time-consuming evaluation

of collider constraints. This gives a significant efficiency

gain in a large scan, because expensive likelihoods are

not even evaluated for points found to be invalid or

sufficiently unlikely on the basis of faster likelihoods.

Observables not associated with likelihoods used to

drive a scan (cf. 6.4) are always calculated after the

likelihood components, as they do not have the power to

completely invalidate a model point. Invalid observable

calculations can still be flagged, but they will not trigger

the termination of all remaining calculations for that

point in the way that an invalid likelihood component

will.

7.3 Resolution of backend requirements

Resolving backend requirements is in some sense a lot

easier than resolving module function dependencies, in

that backend requirements cannot themselves have ex-

plicit backend requirements nor dependencies, so there is

For option 2, take the Higgs mass example. If a module author
wishes to permit the user to choose from two possible expressions
for mh that depend on mW , they would first write the two
expressions as functions of mW . Call these expressions f(mW )
and g(mW ). The author would then write one or more module
functions that return a pointer to f or g. The module function
that computes mW should then depend on a pointer to a Higgs
mass function, and then just call it (either f or g, depending on
which one the user chooses) whilst it does its iterative calculation
of mW . It should then return its final value of mW . Another
module function responsible for computing mh should then
depend on both the value of mW , and the pointer to the same
Higgs mass function (f or g). This module function then simply
takes the previously computed value of mW , passes it to the
function pointed to by its dependency on the Higgs mass function
pointer, retrieves the final value of the Higgs mass, and returns
it as its own result.

no equivalent of the dependency tree to build. However,

the ability to specify groups of backend functions from

which only one requirement must be resolved, along

with rules that apply to them (Sec. 3.1.3), especially

the declaration that backend requirements that share a

certain tag must be resolved from the same backend —

without necessarily specifying which backend — makes

backend resolution a uniquely challenging problem.

The dependency resolver employs an iterative ap-

proach to backend resolution. It performs multiple passes

over the list of backend requirements, choosing to defer
resolution of ambiguous requirements until resolution of

other requirements makes it possible to uniquely resolve
the initial requirements. The overall strategy proceeds

as follows:

1. Create a new group of backend requirements, con-

sisting of all requirements that were declared in the

rollcall header without a group. This will be a special

group; unlike declared groups, all requirements in
this group must be resolved rather just one.

2. Create a queue of all groups of backend requirements.

3. Choose a group from the queue.

4. (a) If the group is a regular group, iterate through

all available backend functions and retain those

that fulfil all rules of the group. If no backend

function exists that satisfies all rules, throw a

runtime error. If only one such function exists,

resolve the group backend requirement with it.

If multiple solutions are found, but one or more

of them is subject to a rule linking it to another

backend requirement, flag the group as one whose

resolution should be deferred until other backends

have been resolved.
(b) If instead the group is the special one, iterate

over all requirements in the group, attempting

one by one to find a unique backend function

that fulfils each requirement. Fail if no solution

exists to any one of these requirements. If just

one solution exists to a given requirement, resolve

the requirement with it. If no unique solution is

found for some requirement, but one or more can-

didates is subject to a rule linking it to another

requirement, flag the group for deferral and come

back to its unresolved members later.

5. If it has been flagged for deferral, add the group

again to the end of the queue.
6. Repeat from step 3 until either

(a) all groups have been fully resolved, or

(b) the queue stagnates, i.e. a full iteration has been

carried out through the entire queue of groups

without any successful backend resolutions. In

this case, disable the possibility to defer resolu-

tion, and try one last iteration through the queue,
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ultimately failing if any backend groups fail to

resolve on the final attempt.

7.4 Resolution of loops and nested functions

As discussed in Sec. 3.1.4, it is possible to write special

module functions (loop managers) that control the

parallel execution of other module functions (nested

module functions). Nested functions explicitly declare

a dependency on a loop manager with a certain capa-

bility. The dependency resolution proceeds then as for

non-nested module functions. The main difference is

that loop managers have access to pointers to the nested

module functions that they control. The dependency

resolver generates a miniature dependency tree for each

loop manager, consisting of all nested functions assigned

to run inside the loop managed by that manager. The

loop manager is then given responsibility for executing
the nested functions, in the order provided to it by the

dependency resolver. Further details can be found in

Sec. 3.1.4.

7.5 Option resolution

Each time a module function is activated during the pro-

cess of dependency resolution, the dependency resolver

searches the Rules section of the initialisation file for

relevant option entries (see Sec. 6.5.3 for the format of

option entries). All options matching the characteristics

of the activated module function are collected into a
new object, which is then connected to the function’s

runOptions pipe (cf. Sec. 3.2.4). If the same option is

set to conflicting values in multiple entries in the Rules

section of the initialisation file, the dependency resolver

will throw an error.

8 Statistics and scanning

In this section we explain the statistical strategy em-

ployed by GAMBIT (Sec 8.1), how to obtain final in-
ferences from its outputs (Sec 8.2), and the generic

likelihood forms available within GAMBIT for use by

module functions that do not define their own dedicated

likelihoods (Sec 8.3).

8.1 The role of ScannerBit

To launch a GAMBIT run, a user requests a parameter

scan of a certain model, specifying ranges and priors

of the model parameters, how to sample them, and the

quantities that should be calculated and included in

the scan. The GAMBIT model database activates the
relevant model ancestry, which the dependency resolver

uses together with the capabilities and types of the

user’s requested quantities to select and connect appro-

priate module and backend functions into a dependency

tree. Choosing which values of the model parameters to

run through this dependency tree is the job of Scanner-

Bit, the sampling and statistics module [112]. Scanner-

Bit applies any prior transformations requested by the

user, and activates the appropriate scanner plugin in
order to run the requested sampling algorithm. Scan-

nerBit presently contains plugins for nested sampling
(MultiNest [183]), Markov Chain Monte Carlo (GreAT

[184]), a population-based Monte Carlo (T-Walk [112]),

differential evolution (Diver [112]), and various grid, ran-

dom and other toy samplers [112]. It also contains a

dedicated postprocessor scanner plugin, which can be

used for reprocessing samples obtained in a previous
scan, either to recompute some output quantities or add

new ones. See Ref. [112] for details.

When requesting a quantity in a scan, users are re-

quired to assign it a purpose in the context of that scan.

The purpose may be Observable or Test, indicating that

the quantity should be computed and output for every

parameter combination sampled during a scan. Alterna-

tively, a user can assign a purpose with a specific statis-

tical meaning, such as LogLike or Likelihood. Interfaces

to parameter sampling algorithms in ScannerBit allow

the user to choose which purpose to associate with the

objective function for the scanner at runtime. Following

dependency resolution, GAMBIT creates a likelihood

container from the module functions of the dependency

tree that have been assigned the purpose(s) associated

with the sampling algorithm. The likelihood container
packages the module functions’ combined results into a

simple objective function for the sampler to call. The

sampler then chooses parameter combinations to sample,

sends each to the likelihood container, and receives the

final likelihood for the parameter combination in return.

The GAMBIT convention is to assign purpose:LogLike

to each component of a fit that is to be associated with

the scanner, and for the module functions in question

to return the natural log of the likelihood ln L. The

likelihood container then combines the results of all

such module functions by simply summing their return

values, returning the result to the scanner as the to-

tal log-likelihood. All sampling algorithms interfaced in

ScannerBit 1.0.0 allow only a single designated purpose

to drive a scan, although other scanners to be connected

in future versions will make use of multiple, different pur-

poses within a single scan, for example to split likelihood

calculations into ‘fast’ and ‘slow’ subsets [185].
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8.2 Analysing samples

As it samples different parameter values, ScannerBit

ensures that those values are output using whichever

generalised print stream the user has selected (see Sec.

9 for details), along with all requested observables and

likelihood components. The final task of statistical in-

terpretation then requires parsing the printed samples

and processing them into meaningful statistical quanti-

ties, whether Bayesian (posterior probability distribu-

tion functions, credible intervals and/or evidence ratios)

or frequentist (profile likelihoods, confidence intervals

and/or p values). Depending on the sampler employed,

not all of these options may be valid (we return to this

discussion in more detail in Ref. [112]).

Although processing the saved samples into statis-
tical measures and producing corresponding plots are

tasks technically outside the scope of GAMBIT itself, we

specifically provide printer options that produce output

compatible with common parsing and plotting software

such as GetDist [186] and pippi [182]. We also provide a

simple installer for pippi from within the GAMBIT inte-
grated build system (Sec. 11). This allows GAMBIT to

effectively produce profile likelihoods, confidence inter-

vals, posterior probability distributions and maximum-

posterior-density credible intervals in situ, by outsourc-

ing the final step to pippi. Bayesian evidences can also

be obtained directly from relevant scanners (e.g. Multi-

Nest), or calculated after the fact with pippi. Calculating

p values requires the user to make their own ansatz for

the distribution of the GAMBIT log-likelihood (or other

test statistic that they might choose to employ in a

GAMBIT scan), and then convert the best fit identified

by pippi to p. Future versions of ScannerBit are planned

to include features designed to aid in determining this

distribution.

8.3 Available likelihood forms

GAMBIT ships with a number of centrally-

implemented, general purpose Gaussian and log-

normal likelihood functions. These can be found in

Utils/src/statistics.cpp. These are intended for use

with simple observables and uncorrelated data, for

implementing, e.g., nuisance likelihoods corresponding

to well-measured SM parameters (see [111]). Module

functions responsible for more complicated likelihood

calculations typically contain their own implementa-

tions of appropriate test statistics, and corresponding

translations to a quantity that can be treated as

equivalent to ln L in a scan (see the indirect detection

likelihoods in [110], for example).

The centrally-implemented likelihoods come in a

number of variants, allowing them to be used for de-
tections, upper limits and lower limits. They deal with

systematic uncertainties (theory errors, experimental

systematics, related nuisance parameters, etc) by ana-

lytically profiling or marginalising over an assumed dis-

tribution for an auxiliary parameter ǫ, which describes

departures from a perfect mapping between model pa-

rameters and predicted values of observables. The mod-

ule author must choose an appropriate central likelihood

function to employ when computing a given likelihood.
However, in every module function that uses one of fol-

lowing likelihoods, we choose to implement a boolean
YAML option profile_systematics (default false) that

selects at runtime whether systematics will be profiled

or marginalised over.21

8.3.1 Profiled Gaussian

The basic Gaussian likelihood for data measured with

some mean x and standard deviation σ, given a predic-

tion µ, is

LG(x|µ) =
1√
2πσ

exp

[

−1

2

(x − µ)2

σ2

]

. (52)

Here µ may be a model parameter itself, or some compli-
cated function of the true underlying model parameters.

Taking ǫ to be an additive offset in µ induced by some

source of error, and modelling its distribution as also

Gaussian, centred on zero with standard deviation σǫ,

the joint likelihood becomes

LG =
1

2πσσǫ
exp

[

−1

2

(x − µ − ǫ)2

σ2
− 1

2

ǫ2

σ2
ǫ

]

. (53)

Exactly how to denote L on the left of this equation

depends on whether ǫ and σǫ are to be interpreted

to result from an auxiliary, independent measurement

(frequentist), or simply some input systematic, possibly

theoretical (Bayesian). In the former case, L = L(x, ǫ|µ),

and a final form of the likelihood for x alone can be
obtained by profiling over the observed value of ǫ. To

do this, we determine the value of ǫ that maximises

L(x, ǫ|µ), by differentiating Eq. 53 to find the root

ǫ̂ =
σ2

ǫ

σ2 + σ2
ǫ

(x − µ). (54)

Substituting back into Eq. 53, the profiled version of

the Gaussian likelihood is

LG,prof(x|µ) =
1

2πσσǫ
exp

[

−1

2

(x − µ)2

σ2 + σ2
ǫ

]

. (55)

21If the end user so desires, this can even be set differently for
different module functions, although the resulting composite
likelihood would arguably be inconsistent.
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Fig. 6: The different generic likelihood functions available in GAMBIT, described in Sec. 8.3: Gaussian (top left), Gaussian limit
(top right) and log-normal (bottom). Here we show the log-normal likelihood computed with a fixed absolute systematic uncertainty
(bottom left), and instead with a fixed fractional (relative) systematic uncertainty (bottom right). Each curve is computed assuming
an observed central value of x = 10 and standard deviation σ = 1, for two different assumed values of the systematic error. Two
potential pitfalls are visible: the profiled upper limit likelihood shows a strong dependence on σǫ at low values of µ, and adopting
an absolute systematic uncertainty can introduce additional features in the log-normal likelihood at low µ.

8.3.2 Marginalised Gaussian

If the quantity ǫ in Eq. 53 is instead interpreted as a

direct input from e.g. theory, its Gaussian distribution

has the character of a prior and L = L(x|µ, ǫ, σǫ). Note

that in this case, σǫ has the character of a model param-
eter (or a quantity derived from the model parameters),

indicating that it may vary as a function of the under-
lying model across the parameter space, independent of

any considerations from data.

In this case, the appropriate likelihood for x alone in-

stead comes from marginalising Eq. 53 over the possible

values of ǫ, as

LG,marg(x|µ, σǫ) =
1

2πσσǫ

∫ ∞

−∞
e

− (x−µ−ǫ)2

2σ2 − ǫ2

2σ2
ǫ dǫ, (56)

giving

LG,marg(x|µ, σǫ) =
1

√

2π(σ2 + σ2
ǫ )

exp

[

−1

2

(x − µ)2

σ2 + σ2
ǫ

]

.

(57)

We compare the marginalised and profiled forms of

the Gaussian likelihood for a toy problem with x = 10

and σ = 1 in the first panel of Fig. 6, assuming σǫ = 0.5

or σǫ = 2.
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8.3.3 Profiled Gaussian limits

The simplest reasonable approximation to the under-
lying likelihood associated with an upper limit on an

observable µ is to assume flatness below some canonical

‘observed’ or limiting value x, and to model the drop-off

at µ > x with a Gaussian of width σ. This defines the

piecewise function

LG↑(x|µ) =







1√
2πσ

, if µ ≤ x

1√
2πσ

exp
[

− 1
2

(x−µ)2

σ2

]

, if µ ≥ x.
(58)

This treatment can be used to directly convert a mea-

sured value into a limit likelihood. An example is the

relic density of dark matter Ωχh2, which has been mea-

sured rather precisely, but may not consist exclusively

of the dark matter candidate present in any particular

BSM theory under investigation. The same treatment

can also be used to implement likelihoods associated

with published upper limits, but additional modelling

is required to recover the equivalent central value x and

falloff width σ from a published limit. Typically limits

at two different CLs are needed to uniquely determine

both x and σ.

Including an uncertainty from some auxiliary nui-

sance observable ǫ proceeds similarly to the pure Gaus-

sian case,

LG↑,prof(x|µ) =
1

2πσσǫ
max

{

max
ǫ≤x−µ

exp

[

− ǫ2

2σ2
ǫ

]

,

max
ǫ≥x−µ

exp

[

− (x − µ − ǫ)2

2σ2
− ǫ2

2σ2
ǫ

]}

. (59)

Despite the need to carefully piecewise maximise in

the different regimes, this leads to the simple result

LG↑,prof(x|µ) =

{

1
2πσσǫ

, if µ ≤ x
1

2πσσǫ
exp

[

− 1
2

(x−µ)2

σ2+σ2
ǫ

]

, if µ ≥ x.

(60)

The corresponding expression LG↓,prof(x|µ) for a lower

limit is identical, except that the inequalities relating x

and µ are reversed.

The simplicity of Eq. 60 is somewhat beguiling. Incor-

rectly using this expression when ǫ and σǫ are interpreted

in a Bayesian manner can lead to behaviour of the test

statistic that is undesirable in a frequentist analysis.

For example, if σǫ varies over the parameter space, the

likelihood function will not actually be flat for µ ≤ x,

despite the fact that the data make no statement about

neighbouring values of µ in this region, and therefore

neither should a sensible profile likelihood. An example

of this behaviour can be seen in the second panel of Fig.

6. In such cases, it is important to carefully decide on

the interpretation of ǫ and σǫ from the outset. If they

cannot be interpreted in a strict frequentist sense, then

the marginalised variants of the likelihoods discussed

here should be adopted instead, even when the final goal

of a BSM scan is to produce profile likelihood results.

8.3.4 Marginalised Gaussian limits

To produce the marginalised form of Eq. 58, we again

integrate the joint likelihood over all possible ǫ,

LG↑,marg(x|µ, σǫ) =
1

2πσσǫ

∫ x−µ

−∞
exp

[

− ǫ2

2σ2
ǫ

]

dǫ

+

∫ ∞

x−µ

exp

[

− (x − µ − ǫ)2

2σ2
− ǫ2

2σ2
ǫ

]

dǫ, (61)

leading to

LG↑,marg(x|µ, σǫ) =
1

23/2
√

π

[

1
√

σ2 + σ2
ǫ

e
− 1

2
(x−µ)2

σ2+σ2
ǫ

× erfc

(

σ

σǫ

x − µ
√

2(σ2 + σ2
ǫ )

)

+
1

σ
erfc

(

µ − x√
2σǫ

)



 , (62)

where erfc(x) = erf(1 − x) is the complementary error

function. We can now see that

lim
µ→−∞

LG↑,marg(x|µ, σǫ) =
1√
2πσ

, (63)

regardless of σǫ, and precisely as one would prefer a

sensibly-behaved profile likelihood to do. This behaviour

can be seen in the second panel of Fig. 6.

The corresponding marginalised likelihood for a

lower limit LG↓,marg(x|µ, σǫ) is obtained by making the

replacements x → −x and µ → −µ in Eq. 62.

8.3.5 Profiled log-normal

A log-normal likelihood describes the situation where

the distribution of the logarithm of some observation

is expected to be Gaussian over repeated experiments.

This may occur in cases where, for example, observa-

tions must return positive values by construction. The

likelihood takes the form

LLN(x|µ) =
1√

2πσ′x
exp

[

−1

2

(ln x
µ )2

σ′2

]

. (64)

Here x and µ remain the observed and predicted values

of the observable, and the Gaussian distribution for ln x

is centred on ln µ. The Gaussian width is σ′, which is

related to σrel, the relative uncertainty on x, as

σ′ ≡ ln(1 + σrel) = ln(1 + σ/x). (65)
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This likelihood describes statistical variation in the

scale of an observable, and is therefore most prone to the

effects of systematics also able to impact that scale. In

this case, ǫ takes the form of an auxiliary multiplicative

source of error, with the corresponding additive offset

given by ln ǫ. It is therefore appropriate to model the
distribution of ǫ with a log-normal centred on 1. The

corresponding width σ′
ǫ is then given by

σ′
ǫ ≡ ln(1 + σǫ,rel) = ln(1 + σǫ/µ). (66)

The joint likelihood is then

LLN =
1√

2πσ′σ′
ǫxǫ

exp

[

−
(ln x

ǫµ )2

2σ′2 − (ln ǫ)2

2σ′2
ǫ

]

. (67)

This has its maximum at

ǫ̂ = exp

[

σ′2
ǫ (ln x

µ − σ′2)

σ′2 + σ′2
ǫ

]

, (68)

leading to the profiled likelihood

LLN,prof(x|µ) =

1

x
√

2πσ′σ′
ǫ

exp






−1

2

(

ln x
ǫµ

)2

+ σ′2
ǫ ln x

µ − σ′2σ′2
ǫ

σ′2 + σ′2
ǫ






.

(69)

8.3.6 Marginalised log-normal

Integrating Eq. 67 over ǫ instead of maximising it gives

the marginalised log-normal likelihood:

LLN,marg(x|µ) =
1

x
√

2π(σ′2 + σ′2
ǫ )

exp

[

−1

2

(ln x
µ )2

σ′2 + σ′2
ǫ

]

.

(70)

In the lower panels of Fig. 6, we compare the

marginalised and profiled forms of the log-normal likeli-

hood, for the same toy problem as discussed previously

(x = 10 and σ = 1). As in the Gaussian case, the profiled

and marginalised versions show very similar behaviour,

despite the fact that unlike the Gaussian case, they

posses somewhat different functional forms. Here we

also show the additional features that can be induced

at low µ if a constant value of the absolute systematic

σǫ is employed with the log-normal likelihood, rather

than a constant relative uncertainty σǫ,rel.

9 Output

Output from GAMBIT scans is handled by the Printer

subsystem, which generalises the writing of scan data

to disk or any other output medium. It is designed so

that the output format can be chosen at runtime with

options in the master YAML file. Print commands within

GAMBIT are issued via a general abstract interface, while

the actual writing of data to the chosen output medium
is handled by one of several derived classes, known as

printers.

The actual print commands are automatically is-

sued by GAMBIT whenever it runs a module function,

so writers of new module functions need not concern

themselves with how to send information to the printer

system. Most users only need to know how to set up a

printer via the master YAML file, and what the format

of the output is. Sec. 6.6 covers the YAML setup. We

deal with the main output format in Sec. 9.1, and the

output formats of specific printers in 9.2.

There are three main scenarios that require addi-

tional knowledge of the printer system. One is writing
a scanner plugin, where one must use the printer

interface class to output e.g. probability weights or like-

lihoods. We discuss this briefly in Sec. 9.2.1, but we

refer readers to the ScannerBit paper [112] for a full

exposition. Another is when a user wishes to make an

existing printer emit a new C++ type, to e.g. allow a new

module function returning a custom type to print its

result. We deal with this in Sec. 9.3. The final scenario

is writing a new printer, for outputting GAMBIT data

in a new format. This is a straightforward but quite

specialised task, requiring complete knowledge of the
class structure of the printer subsystem. The requisite

details are left to documentation shipped with the code

(found in doc/writing_printers.pdf)

9.1 Overview of the output format

Other than in scanner plugin code (see Ref. [112]), print

commands are issued automatically to the GAMBIT

printer system. This occurs after the evaluation of each

module function that has been requested for printing

from the master YAML file (see Sec. 6.6). Nonetheless, it

useful to know how this system works when interpreting

its output. The printer system receives print commands

via functions with the signature

void _print(type const& result,

const std::string& label,

const int IDcode,

const unsigned int MPIrank,

const unsigned long pointID);

These contain the following information:
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result The result computed by the module function

(printable only if type is registered as printable and

has an appropriate function overload defined; see

Sec. 9.3).

label A string describing the result of the module func-

tion. It typically has the format

"#capability @module::function"

where capability, module and function are respectively

the capability, host module and actual name of the

module function that issued the print command. It

is left to individual printers to decide what to do

with this information (see Secs. 9.2.1 and 9.2.2).

IDcode A unique integer automatically assigned to each

module function for the duration of a scan. This
allows printers to identify the origin of each print

command without parsing the label string. Generally

this number will not be passed on to the output file.

MPIrank The process rank assigned by MPI. Along with

pointID this is needed to identify which parameter
space point triggered a given print command.

pointID A unique integer automatically assigned to ev-

ery parameter combination evaluated by a given MPI

process in a scan. The pointID is not unique across

processes, so both MPIrank and pointID need to be

used in combination to obtain a globally unique
identifier.

These arguments are the totality of information known

to the printer at the time of each print command. It

is then the job of the printer to assemble this informa-

tion, from many print commands, into a coherent set of

outputs.

Print commands can also be issued by ScannerBit or

its plugins. By default, ScannerBit prints the final result
returned to it for each model point (i.e. the total log-

likelihood returned by the likelihood container).22

However, scanners will often have other information that

they want to record about each model point, and this

can be added via manual calls to the print commands.

Details can be found in the ScannerBit paper [112].

In addition to the module function, likelihoood con-

tainer and scanner plugin outputs sent to the printer,

the MPIrank and pointID are also automatically printed

for every point. This allows printers the option of writ-

ing new data back to previous points. For example, the

MultiNest scanner plugin computes posterior probability
weights for a subset of points, long after the likelihood

22Technically, what is returned to the scanner is actually de-
termined by the purpose(s) that the user has associated with
their chosen scanner or test function plugin in the master YAML

file (see Sec. 8). When using ScannerBit standalone however,
anything can actually be connected to the scanner as its main
objective function, and it will still be printed by default.

function is evaluated at those points. With this setup,

such information can be inserted directly into the ex-
isting output medium at the position associated with
those points, rather than having to write an entirely

new output stream, as occurs in the native MultiNest

output. It is up to the individual printers exactly how

they handle this; for example, the ascii printer will write

out a new file as MultiNest itself does, but the hdf5

printer will automatically update existing HDF5 files

with new data about old points.

9.2 Available printers

Here we give specific details of how print commands

are translated into files on disk by the ascii and hdf5

printers. This is essential information for interpreting

the output of each printer.

9.2.1 ASCII output

The output file produced by the ascii printer (as named

by the output_file option; see Sec. 6.6.1) consists of

a simple whitespace-separated table of floating point

numbers. The table is produced as follows. First, the

GAMBIT module functions that are registered for print-

ing issue print commands to the primary print stream,

as they are each evaluated, and the result data is stored

in a buffer. The print commands contain the MPIrank and

pointID (see Sec. 9.1) identifying the model point that

produced the data. By monitoring when these identifiers

change, the printer detects when the scanner has moved

to a new model point. Upon detecting a new point, the

buffer begins a new line. Once the buffer is filled with a

preset maximum number of lines, it is written to disk.

The structure of the ASCII output table (i.e. which

data should be assigned to which column) is determined

exclusively from the contents of the buffer immediately

before the first dump. This imposes some extra restric-

tions on the data that the ascii printer can handle. For
example, variable-length vectors of data can be printed,

but at least one example with the maximum length

expected in an entire scan must be sent to the printer

before the first buffer dump, otherwise there will be

insufficient space allocated in the output table to accom-

modate the longest such vectors in subsequent dumps.

To interpret the contents of the resulting ASCII file,

an accompanying “info” file is produced at the time of

the first buffer dump. The info file contains a list of

labels identifying the columns of the output data file.
If the data file is named output.data, then the info file

will be output.data_info. When running GAMBIT via

MPI, a separate output file will be produced for each

process, with the rank of the host process appended
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to the root filename. An example info file describing

output generated by fitting a normal distribution with

MultiNest [183]23 is shown below:

Column 1: unitCubeParameters[0]

Column 2: unitCubeParameters[1]

Column 3: MPIrank

Column 4: pointID

Column 5: LogLikelihood

Column 6: #NormalDist_parameters \

@NormalDist::primary_parameters::mu

Column 7: #NormalDist_parameters \

@NormalDist::primary_parameters::sigma

Column 8: #normaldist_loglike \

@ExampleBit_A::normaldist_loglike

In this example the LogLikelihood (column 5) contains
the global log-likelihood used to drive MultiNest. It con-

sists of only one component, given in column 8: the

log-likelihood returned by the normal distribution log-

likelihood function normaldist_loglike from the mod-

ule ExampleBit_A. Model parameter values are given

in columns 6 and 7. The first two columns contain

“unit hypercube” parameters, which are the raw unit-

interval samples produced by MultiNest, before being
transformed into the actual model parameter values

by ScannerBit [112]. The MPIrank and pointID entries

contain the model point identification data (Sec. 9.1).

Print statements originating from scanner plugins
can be issued directly to the main printer — in which

case they will be treated the same as module function

output — or they can be issued to an auxiliary print

stream if the data are not synchronised with the like-
lihood evaluations. Instructions for correctly handling

this kind of data when writing scanner plugins are given

elsewhere [112]. In the example above, unlike in the the

native MultiNest output format, there are no posterior

weights. These are issued to an auxiliary print stream in

the MultiNest scanner plugin, so they end up in a differ-

ent output file. The auxiliary file is also a plain ASCII

table, and it comes with its own info file describing its

contents:

Column 1: Posterior

Column 2: MPIrank

Column 3: pointID

The Posterior column contains the posterior weights,

and the MPIrank and pointID contain the point identifi-

cation data as before. Because MPIrank and pointID are

shared between output files, they can be used to corre-

late Posterior weights with other data about the point

during post-run analysis. GAMBIT could in principle

perform this combination automatically at the end of a

run, however it is currently left up to user’s preferred

23See the ScannerBit paper [112] for details of the GAMBIT

interface to MultiNest.

post-run analysis tools. Note that the hdf5 printer does

automatically combine the auxiliary print stream data

with the primary print stream data, so it is the more

convenient format to use when working with auxiliary

print data like posterior weights.

9.2.2 HDF5 output

The output file produced by the hdf5 printer is set with

the output_file option (Sec. 6.6.3). It contains a separate

data record for every output quantity, each of length

equal to the number of parameter space points evaluated
during the scan. These datasets are located according to

the group option (Sec. 6.6.3). The command-line utility

h5ls (included in most HDF5 library distributions) can

be used to probe the internal layout of an HDF5 file.

This can be useful for inspecting the names given to each

dataset, which are derived from the label supplied via

the print commands (see Sec. 9.1). The same information

can also be obtained using the probe command in pippi

[182].

All datasets in the resulting HDF5 files are synchro-

nised, meaning that items at index i in every dataset

have been obtained from the same model point. Each

dataset comes with a second dataset of matching length,

containing a flag indicating whether the data at the given

index of the host dataset has been identified as valid

or not. The labels for these datasets match their hosts,

with _isvalid appended. For example, if an observable

quantity some_obs was registered as invalid by GAMBIT

for that point (perhaps because the result was unphysi-

cal), then the entry in the some_obs_isvalid dataset will

be set to 0 (false). The _isvalid entries can thus be used

as a mask for filtering out invalid or missing entries from

the main dataset. This is done automatically in pippi—

but a simple example Python script that uses h5py to

inspect the HDF5 output of a GAMBIT run serves to

illustrate the above concepts:

import h5py

import numpy as np

#Open the hdf5 file

f = h5py.File("output_filename","r")

#Retrieve the log-likelihoods

logL_label = "group/LogLikelihood"

logL = f[logL_label]

#Retrieve flags indicating log-likelihood validity

isvalid_label = "group/LogLikelihood_isvalid"

mask = np.array(f[isvalid_label], dtype = np.bool)

print "Successful LogLikelihood evaluations:"

print np.sum(mask)

#Apply flags to print only valid log-likelihoods

print "Valid LogLikelihood values:"
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print logL[mask]

Note that the output format described here applies

only to the final, combined output of a GAMBIT scan.

During a run, the information will be structured differ-

ently, and there will be one output file for every MPI

process involved in the scan. This output is combined

when scans resume (so that new temporary output can
be written), and when they complete. To examine the

output of a scan in the format described here before the

scan completes, it is necessary to stop the scan and then
resume it (see Sec. 10.8) to trigger the combination.

9.3 Expanding the printable types

A module function result can only be printed if its C++

type is in the set of printable types. In order for a type to

be printable, the printer chosen for a scan must have an

appropriate print function overload defined for the type.
The internal details of these function overloads must

vary with the printer, as they describe how to translate

the C++ type into the output format specific to each

printer. Here we outline the general requirements.

The process is best illustrated with an exam-

ple. Suppose one wishes to make the result type

std::map<std::string,int> printable via the ascii printer.

First, in order for the type to even be poten-

tially printable by any printer, it must be listed in

the PRINTABLE_TYPES macro in Elements/include/gambit

/Elements/printable_types.hpp. Note that commas con-

fuse the macro, so in this example the new type should

first be aliased with a typedef, e.g.

typedef std::map<std::string,int> map_str_int

Next, one needs to add a new overload of the print

function to the printer class (in this case the ascii printer).
This requires a new declaration to be added to the class

asciiPrinter. This can be acheived automatically by

putting the type into one of the two lists of types to

be found in Printers/include/gambit/Printers/printers

/asciitypes.hpp:

#define ASCII_TYPES \

(std::string) \

// etc

#define ASCII_MODULE_BACKEND_TYPES \

(DM_nucleon_couplings) \

(Flav_KstarMuMu_obs) \

(map_str_int) // <--- New printable type.

Here the type should be added to ASCII_MODULE_BACKEND

_TYPES if it is defined specifically as a module type or

a backend type, and to ASCII_TYPES otherwise. Users

unsure whether their type is a backend type, module

type or some other type should be able to find the
answer by studying Secs. 4.4, 10.5 and 11.1.

The corresponding function definition should

then be added to Printers/src/printers/asciiprinter/

print_overloads.cpp:

void asciiPrinter::_print(map_str_int const&

result, const std::string& label, const int

IDcode, const unsigned int MPIrank, const

unsigned long pointID)

{

std::vector<std::string> names;

std::vector<double> values;

names.reserve( result.size() );

values.reserve( result.size() );

for (std::map<std::string, int>::iterator

it = result.begin(); it != result.end(); it++)

{

std::stringstream ss;

ss << label << "::" << it->first;

names.push_back( ss.str() );

values.push_back( it->second );

}

addtobuffer(values,names,IDcode,MPIrank,pointID);

}

Note that if the type appears in the ASCII_TYPES macro

above, then the function definition should just go in

the main body of print_overloads.cpp. If the type is
instead part of ASCII_MODULE_BACKEND_TYPES, the function

definition needs to be surrounded by the preprocessor

directives #ifndef SCANNER_STANDALONE ... #endif in order

to retain the ability to use ScannerBit without GAMBIT

modules or backends.

Data can be supplied to the ascii printer buffer as

a vector of values plus a matching vector of labels, so

in this example the input string/integer map is simply

converted into two vectors and sent to the print buffer.

Of course, to fully understand the detail of the func-

tion body above one needs to understand the interior
workings of the asciiPrinter class; those details can be

found for each printer in the main code documentation

(located in the doc directory).

In general, any expansion of the types printable by

a given printer should also involve expanding the types

readable by the corresponding ‘inverse printer’, which

is used by the postprocessor scanner. See Ref. [112] for

details.

10 Utilities

10.1 Particle database

The GAMBIT particle database provides standard-

ised particle definitions for use throughout the code, in

particular for referring to states in GAMBIT Spectrum,

DecayTable and ProcessCatalog objects, which catalogue
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particle masses, decay and annihilation rates. It can be

found in Models/src/particle_database.cpp.

Declaring new particles can be done either in singular

form

add_particle("∼g", (1000021,0) )

or in sets, as

add_particle_set("h0", ((25, 0), (35, 0)) )

In the first example, the gluino is declared with name

"∼g", PDG code 1000021, and context integer 0. The

context integer provides an additional index beyond the

PDG code. This can be used to distinguish different

particles that might employ the same PDG code under

different circumstances, e.g. (s)fermion mass and gauge

eigenstates.

In the second example, two new particles are de-

clared, corresponding to the two neutral Higgses in the

MSSM. The names of the new particles are constructed

from the string "h0" and the indices of the individual
particles in the set, such that "h0_1" is created with

PDG code 25 and context zero, and "h0_2" is created
with PDG code 35 and context zero. Essentially any

number of particles can be placed together into a set in

this manner.
Equivalent versions of both add_particle and

add_particle_set exist for adding SM particles in partic-

ular; these are add_SM_particle and add_SM_particle_set.

SM particles are given special treatment and saved as

such inside the database, so that filters to e.g. decay

final states can be applied according to whether one of

the final states is or is not part of the SM.

A special version of add_particle also exists for

defining broad particle classes like ‘quarks’, ’baryons’,

‘mesons’, etc,

add_generic_particle("quark", (9900084, 0))

These generic states have rather limited applicability, as

they cannot participate in mass spectrum calculations,

but they can prove useful for specifying generic decay

channels.

Within the rest of GAMBIT, particles defined in the

particle database can be referred to in three equivalent

ways:

1. using their full name (e.g. "∼g", "h0_1", "h0_2", etc)

2. using their PDG-context integer pair (e.g. {35, 0})

3. using their short name and set index (e.g. {"h0", 2})

The particle database itself contains various other helper

functions for converting between these three conventions,

and for converting particles into their corresponding

anti-particles. It can be accessed using the function

ParticleDB(), which returns a reference to the (singleton)

database object.

The particle database in GAMBIT 1.0.0 contains

entries for all SM and MSSM particles, as well as the
singlet DM candidate, various significant SM mesons

and generic particle classes.

10.2 Logging

The GAMBIT logging system provides a mechanism for

writing important messages that occur during a run to

disk, so that they can be examined when diagnosing

problems or simply trying to understand a scan. Module

writers can access the central logging singleton object

via the accessor function logger(), which can be in-

cluded via the header Logs/include/gambit/Logs/log.hpp.
Log messages are sent to the logger object via the stream

operator <<. Strings fed into the logger are concatenated

until the special object EOM is received, which marks the

end of each log message and causes it to be written to

disk. A simple example is:

logger() << "Hello world" << EOM;

Log messages can be assigned tags depending on the
nature and origin of the message. Tags can be used for

automatically sorting log messages into different output

files. For example, the tag LogTags::info can be attached

to a message by inserting it via the stream operator at

any point before the EOM object is received. A list of the

available tags along with their string names used in the

log output is given below:

// Message types

debug = "Debug"

info = "Info"

warn = "Warning"

err = "Error"

// Flags

fatal = "Fatal"

nonfatal = "Non-fatal"

// Component tags

def = "Default"

core = "Core"

logs = "Logger"

models = "Models"

dependency_resolver = "Dependency Resolver"

scanner = "Scanner"

inifile = "IniFile"

printers = "Printers"

utils = "Utilities"

backends = "Backends"

Note that that namespace qualifier LogTags is required

to access the tags.

If GAMBIT is compiled with MPI and run with more

than one process, the MPI rank of the process that cre-

ates each log file is appended to its filename, separating

log messages from different processes into different files.



54

By default, all log messages are delivered to the files

runs/yaml_filename/logs/default.log_rank, where yaml_

filename is the root name of the YAML file used to run

GAMBIT, and rank is the MPI rank. There are two ways

to change this default path. The first is to specify an

override default_output_path in the KeyValues section of

the YAML file (see Sec. 6.9). The second is to specify a

new prefix in the Logger section of the YAML file, which

specifies a directory in which to store log files, and

overrides any default_output_path. Log messages having

a chosen set of tags can then be redirected into files in
that directory using the redirection subsection under

Logger. For example, to redirect all log messages to the

files new_def.log_rank in the directory /my_dir, and all

messages tagged with both Error and Fatal into the file

err_fatal.log_rank in the same directory, the following

Logger setup could be used:

Logger:

prefix: "/my_dir/"

redirection:

[Default] : "new_def.log"

[Error,Fatal] : "err_fatal.log"

The tag matching is inclusive, so any message contain-

ing the tags Error or Fatal will be directed to the file

err_fatal.log, regardless of what other tags it also has.

Such messages will also go to new_def.log, seeing as all

messages have the Default tag.

By default, messages with the Debug tag will not be

logged at all. The Logger option debug can be used to

turn on debug log output, e.g.

Logger:

debug: true

redirection:

[Debug] : "debug_log_messages.log"

The Logger:debug flag is automatically activated if the

central KeyValues:debug flag is set true (cf. Sec. 6.9).

Messages delivered to the logger from within a mod-

ule are automatically tagged with the name of the

module, allowing messages originating from different

modules to be easily isolated using the redirection sys-

tem.

The log system does not capture regular print state-

ments sent to stdout nor stderr. This means that any

statements printed to the screen in backends or mod-

ules will appear in stdout and stderr as usual. This can

be frustrating when working with a massively parallel

MPI job. We advise users to take advantage of options

for sending stdout and stderr to separate files for each

MPI process, or tagging outputs with the MPI rank;

these are available in the launcher applications (mpiexec,

mpirun, etc) of essentially all MPI implementations, and

in some batch schedulers as well.

10.3 Exceptions

GAMBIT has separate exceptions for errors, warn-

ings and invalid parameter points, all of which derive

from the C++ STL exception class. There is a single

invalid_point_exception object created at initialisation

for use throughout the code, along with a single error

and a single warning object for each GAMBIT subsystem

and each module. These are accessed by reference with

the functions

invalid_point();

core_error();

dependency_resolver_error();

utils_error();

backend_error();

logging_error();

model_error();

Printers::printer_error();

IniParser::inifile_error();

DarkBit_error();

ScannerBit_error();

...

core_warning();

dependency_resolver_warning();

utils_warning();

backend_warning();

logging_warning();

model_warning();

Printers::printer_warning();

IniParser::inifile_warning();

DarkBit_warning();

ScannerBit_warning();

...

Flagging an invalid point is as simple as invoking

the raise method with an appropriate explanation, e.g.

invalid_point().raise("Tachyon detected");

This causes the present parameter combination and

the explanation to be logged, and the current module

function evaluation to be terminated.

If an invalid point exception is raised during the

calculation of the likelihood (or other purpose matching

the scanner’s requirements, cf. Sec. 8), it short-circuits

the likelihood container. This causes all subsequent cal-

culations in the dependency tree to be skipped, and the

point declared invalid. In this way, by placing the mod-

ule functions that are most likely to invalidate points

earliest in the dependency tree, the dependency resolver
can help to optimise a scan by preventing unnecessary

calculations from being performed on points that turn

out to be invalid for other reasons.

If the invalid point exception is raised during an ob-

servable calculation that is not needed for the likelihood,

then the likelihood container simply notes that the cal-

culated observable is invalid, and moves on to the next
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observable, without invalidating the actual likelihood

value of the point.

Raising an error or a warning follows in a similar way

to an invalid point, but also provides the possibility to
provide an additional context string to facilitate future

debugging, e.g.

DecayBit_error().raise(LOCAL_INFO,"Negative

width!");

GAMBIT defines the macro LOCAL_INFO for this purpose,

which unrolls to give a string with the exact file and line

number in which it appears. Users can of course pass

different context information if they prefer.

By default, errors are considered fatal and warnings

non-fatal. Fatal exceptions cause a scan to terminate,

printing the error message to stdout, whereas non-fatal

ones are simply logged and the module function is al-
lowed to continue. Invalid point exceptions, as well as

errors and warnings set to be fatal, all eventually throw

themselves in the manner of regular C++ exceptions;

non-fatal errors and warnings never throw. Which errors
and warnings are considered fatal can be modified from

the KeyValues section of the input file, using options such

as

exceptions:

dependency_resolver_error: fatal

dependency_resolver_warning: non-fatal

core_warning: fatal

Sometimes, module writers will want to deliberately

raise and then catch a GAMBIT exception. Invalid point

exceptions always throw themselves, and if not caught

earlier, are always caught and logged by the likelihood

container. Module writers who wish to raise and catch

invalid point exceptions within their own module func-

tions can therefore safely do so using the regular raise

function, under the understanding that any logging of

the error is the responsibility of the catching routine.

The optional fatility of GAMBIT errors and warnings

makes it impossible to do the same thing with them,

however; despite being raised, an error or warning that is
deemed non-fatal will never actually be thrown, let alone

caught. GAMBIT errors and warnings therefore also
provide forced_throw and silent_forced_throw methods

as alternatives to raise. The forced_throw function raises

and logs the exception as usual, but always throws it

onwards, regardless of whether or not the exception is

deemed fatal. The silent version does the same, but does

no logging.

As throwing exceptions across OpenMP boundaries

constitutes undefined behaviour, GAMBIT exceptions

cannot be employed as usual from within nested module

functions. To get around this problem, GAMBIT also

includes global threadsafe deferred exception objects

piped_invalid_point, piped_errors and piped_warnings.

By calling request from these objects within a nested

module function, an exception can be queued up for rais-

ing by the nested function’s loop manager at the next op-

portunity. Developers of loop managers should therefore
make a habit of calling enquire (inside OpenMP blocks)

on the piped exception objects at regular intervals to

see if any piped exceptions have been requested, and/or

check (outside OpenMP blocks) to raise any queued ex-

ceptions.

10.4 Diagnostics

GAMBIT features extensive diagnostic tools, allowing

users to quickly check which backends, scanners, mod-

ules and models are available at any given time, as

well as which module and backend functions offer what

capabilities for use in a scan.

10.4.1 Modules diagnostic

gambit modules

GAMBIT lists the modules present and available in the

user’s current configuration, indicating how many func-

tions each module contains. Modules that are present

on the user’s system but have been excluded at configu-

ration time from the compilation of GAMBIT are also
listed, but are shown as ditched (see Sec. 11 for details

on the Ditch process).

10.4.2 Capabilities diagnostic

gambit capabilities

GAMBIT lists all capabilities published by module func-

tions, backend functions and backend variables, along

with the modules and/or backends in which functions

with each capability can be found.

10.4.3 Backends diagnostic

gambit backends

GAMBIT lists the backends for which it has frontend

interfaces, by backend name and version. An example

is shown in Fig. 7.

For each version of each backend, the diagnostic

shows the path to the shared library containing the

backend, the number of functions and variables pub-

lished to GAMBIT by the frontend interface, the number

of classes provided by the backend, and the number of
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Fig. 7: Example output of the backends diagnostic mode, showing the statuses and locations of different backend libraries configured
for use with GAMBIT.

different constructors it provides. The diagnostic also

gives the overall status of the shared library of each

backend. If the library has been located and loaded

successfully, the status is OK; if it cannot be loaded or

there was an error when loading it, the status is shown

as absent/broken; if there was a problem finding the

necessary symbols for any of the member functions of

any of the classes provided by the backend, the status

is shown as bad types.

In the case of a BOSSed library, any status other

than OK causes GAMBIT to disable all module func-

tions that are declared to need classes from that back-

end. Refer to the discussion of the rollcall declaration

NEEDS_CLASSES_FROM in Sec. 4.5 for details.

Note that unlike constructor problems, symbol

lookup errors for non-constructor backend functions
or variables do not prevent a backend from presenting

status OK overall. The status of individual functions and
variables in a backend backend_name can be probed using

the free-form diagnostic gambit backend_name. Symbol

errors from non-constructor backend functions and vari-

ables cause the individual functions/variables themselves
to be disabled, but not the entire backend.

10.4.4 Models diagnostic

gambit models

GAMBIT lists the contents of the model database, giving

the name of each model, its parent (if any), and the

dimensionality of its parameter space. This diagnostic
also produces the necessary files to generate a graph of

the model hierarchy (e.g. Fig. 2).

10.4.5 Scanners diagnostic

gambit scanners

GAMBIT lists the names and versions of different pa-

rameter samplers for which it has interfaces defined in

ScannerBit, and gives a status report on its efforts to
load each of their shared libraries.

10.4.6 Test-functions diagnostic

gambit test-functions

GAMBIT lists the names and versions of different ob-

jective test functions known to ScannerBit, and gives a

status report on its efforts to load each of their shared

libraries.

10.4.7 Priors diagnostic

gambit priors

GAMBIT lists its known prior transformations for param-

eter sampling, giving a brief description of each along

with the input file options that it accepts.
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10.4.8 Free-form diagnostics

Further information can be found about essentially any

component of GAMBIT by simply typing

gambit component

where component is a capability or the name of a module,

backend, scanner plugin, test function plugin or model.

The nature of the information subsequently provided de-

pends on the type of component under investigation, but

usually includes a short description, a status report and

listings of the component’s relationship to other compo-
nents. Modules come with a list of the functions they

contain, including function names, capabilities, types,

dependencies and backend requirements. Backends come

with similar information, as well as the individual status

of each backend function. Scanners and test functions

come with status reports, header and link info, and de-

tails of their accepted options. Models report detailed

information about their family tree and the identities of
their parameters. Asking about a capability generates a
list of all module and backend functions able to compute

that quantity.

10.5 Type handling

Dependency resolution works by matching module func-

tion capabilities and types to dependencies, and backend

function capabilities and types to backend requirements.

The types involved can be C++ intrinsic types, GAMBIT

intrinsic types, or types associated specifically with a

GAMBIT module, model or backend.

Types associated with specific backends are automat-

ically made available to all GAMBIT modules and fron-

tend routines, as all module functions can in principle

have a backend requirement filled from any backend. In

contrast, module types are used exclusively by functions

associated with that module, and are not available to

functions outside the module. The same is true of model

types and their accessibility outside model-associated

functions.

Adding a new type is relatively straightforward.

General utility types that will be used throughout

GAMBIT, and types with mixed backend, module

and/or model character, should be declared in a

new header, and that header included from Utils/

include/gambit/Utils/shared_types.hpp.

Backend types associated with backend x should

be declared in a new header Backends/include/

gambit/Backends/backend_types/x_types.hpp. This header

will then be automatically included in Backends/

include/gambit/Backends/backend_types_rollcall.hpp by

the GAMBIT build system (Sec. 11).

Types associated with model y should be declared in

Models/include/gambit/Models/models/y.hpp, which will
then also be picked up and included by the build

system, this time in Models/include/gambit/Models/

model_types_rollcall.hpp.

Types for module z should be placed in a new header

z /include/gambit/z /z _types.hpp, which must then be

included from z /include/gambit/z /z _rollcall.hpp. The

build system will automatically include the new header
in Elements/include/gambit/Elements/module_types_roll-

call.hpp.

The above discussion applies not only to new
types, but also to typedefs associated with different

components of GAMBIT. One challenge in performing

dependency resolution is that types are matched

entirely as strings at runtime, meaning that the

dependency resolver cannot recognise typedefs a

priori. To allow it to understand typedefs and treat

two types as equivalent for dependency resolution
purposes, GAMBIT features a type equivalency database

config/resolution_type_equivalency_classes.yaml. En-

tries in this file are equivalency classes of different types,
such that the dependency resolver considers each type

within an equivalency class to be identical to all the

others in the same class.

10.6 Random numbers

Random numbers in GAMBIT are provided via a thread-

safe wrapper to the random number generators of the
C++11 STL <random>. Whether inside or outside an

OpenMP block, single uniform random variates can be

obtained by calling

double myran = Random::draw();

GAMBIT seeds and maintains a separate random number

generator for each thread, so the resulting deviates are

uncorrelated across threads. The seed for each generator

is the sum of the system clock time and the thread

index.

The underlying random number generator used by

Random::draw() can be configured from the KeyValues

section of the input file, as

KeyValues:

rng: chosen_rng_engine

where chosen_rng_engine can be any of the recog-

nised C++ random engines: default_random_engine,

minstd_rand, minstd_rand0, mt19937, mt19937_64,

ranlux24_base, ranlux48_base, ranlux24, ranlux48 or

knuth_b.24 It can also be simply default, which selects

24See http://www.cplusplus.com/reference/random/ for details.

http://www.cplusplus.com/reference/random/
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the GAMBIT default generator; in GAMBIT 1.0.0 this is

the 64-bit Mersenne Twister mt19937_64.

10.7 Component databases and documentation

Although this paper serves as a user and design guide

to GAMBIT, as do Refs. [108–112] for each module,

GAMBIT also features two additional documentation

systems.

The first is a standard Doxygen documentation

system, which gives basic information about classes,

functions, variables, namespaces and macros de-

fined in GAMBIT. The documentation can be gener-

ated with make docs, and is also available online at

http://gambit.hepforge.org.

The second is a set of descriptive databases, which

document individual models, capabilities, scanners, ob-

jective test functions and priors. These are the descrip-
tions that are brought up by the GAMBIT free-form

diagnostic (cf. Sec. 10.4.8) when querying individual

components with e.g.

gambit DarkBit

gambit NUHM1

gambit MultiNest

gambit SingletDM_spectrum

These can be edited or added to by modifying the text

files

config/models.dat

config/capabilities.dat

config/scanners.dat

config/objectives.dat

config/priors.dat

These files are in fact written in YAML, albeit much

simpler YAML than the input file. When adding a new
model, scanner, test function or prior, or a module

function with a capability that does not already exist in

GAMBIT, it is good practice to also add a description

of it to one of these files. If any component in GAMBIT

is missing a description in these databases, a warning is

raised whenever gambit is invoked.

10.8 Signal handling and resuming a scan

A GAMBIT scan can be terminated prematurely by

sending it an appropriate POSIX signal, either SIGINT,

SIGTERM, SIGUSR1, or SIGUSR2. Upon receiving one

of these signals, GAMBIT will attempt to shut down

cleanly, preserving output files and all information re-
quired for resuming the scan. The preservation of infor-

mation required to resume scanning with a particular

scan algorithm is the responsibility of ScannerBit, and

more specifically each individual scanner plugin. This is

described in detail in the ScannerBit paper [112].

To resume a scan, one simply re-launches GAMBIT

using the same YAML file that was used to launch the

original scan (making sure that the -r flag is not present

in the argument list; if -r is present it will cause the

scan to restart, deleting existing output). For example,

a prematurely terminated scan that was launched using

the YAML file myrun.yaml can be resumed simply by

launching GAMBIT as:

gambit -f myrun.yaml

where -f indicates the input file to use (cf. Sec. 6.1).

10.8.1 Shutdown behaviour

There are two possible responses that GAMBIT might

make when told to halt a run using a system (POSIX)

signal. Which one it chooses depends on whether or

not the scanner plugin in use can be instructed to stop

by setting a quit flag. A scanner’s ability to interpret

a quit flag is automatically inferred by GAMBIT, on

the basis of whether or not the scanner plugin calls

like_ptr::disable_external_shutdown() in its constructor
(see Appendix D of Ref. [112]).

First we discuss the case where the scanner can

understand a quit flag. In this instance each GAMBIT

MPI process will, upon receiving a shutdown signal, take

the following actions:

1. Allow the current likelihood evaluation to complete
as normal.

2. Broadcast a stop command via MPI to all other pro-

cesses in the job. This triggers this same shutdown

procedure in all other processes, and is necessary

in case not all processes receive the original POSIX

signal.

3. Finalise all printer output.
4. Set the quit flag for the scanner plugin.

5. Pass control back to the scanner plugin.

At this point the GAMBIT core system has completed

its shutdown tasks, and assumes that the scanner plugin

will do the same. The plugin should then complete its

own shutdown tasks and return control to GAMBIT,

which will then shut down MPI and exit the program.

The second case is where the scanner plugin has no

way to recognise a quit flag. This is a less-than-ideal

situation, as it makes performing a clean shutdown much

more difficult, and indeed it is not possible to guarantee

that shutdown will succeed in 100% of cases. However,

some third-party scanning algorithms do not provide

any mechanism to signal a premature end to a scan, so

we have designed the shutdown system to work around

this restriction.

http://gambit.hepforge.org
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In this case the shutdown procedure will operate as

follows:

1. Allow the current likelihood evaluation to complete

as normal.
2. Broadcast a stop command via MPI to all other

processes in the job.

3. Enter a custom MPI barrier, and wait for for all
other processes to signal that they have also entered

the barrier .

4. If the synchronisation in 3 succeeds, skip to step 7.
5. If the synchronisation does not succeed within a

set time interval, disable all future printer output

and return control to the scanner plugin (which
cannot be told to stop), and await the next likelihood

evaluation request.
6. Upon being requested to evaluate another likelihood,

immediately invalidate the model point and return

to step 3.

7. Finalise all printer output .

8. Terminate the program.

The repeated synchronisation attempts are required be-

cause the scanner plugin may also be using MPI; because

GAMBIT has no control over how MPI is used in third-

party scanning algorithms, there is a high probability

that a deadlock will occur between our synchronisa-

tion attempt and a blocking MPI command (from e.g.

MPI_Barrier) in the third-party code. We must therefore

abandon our synchronisation attempt if takes too long,

and return control to the scanning algorithm to allow

deadlocks to resolve. However, more blocking calls can

easily be initiated in some other process before we at-

tempt to synchronise again, so we have to repeatedly

attempt to find a window between these calls in which

we can gain control over all MPI processes simultane-

ously. Once this succeeds, we can cleanly finalise the

output, shut down MPI, and terminate the program.

It is possible that the synchronisation attempts never

succeed. Because of this possibility, GAMBIT will only

attempt the procedure a fixed number of times before

giving up. In this case, each process will attempt to

finalise its output and stop independently. In many cases

this will succeed and there will be no problem. However,

if a process has been left in a blocking call by a sampling

algorithm, the process will fail to terminate, and will

hang until killed by the operating system. This also

has the potential to corrupt the printer output for that

process. This is particularly true in the case of HDF5

output, as HDF5 files are highly vulnerable to corruption

if not closed properly. This can result in data loss, and

make a scan impossible to resume. Processes can also

hang when running under certain MPI implementations

if MPI is not finalised correctly, which cannot be done

when processes are left to terminate independently.

We remind the reader that this second procedure is

not the ideal case. The shutdown should always work

smoothly if a quit flag can be set for the scanner plugin,

so for large scans that produce valuable data we recom-

mend using scanner plugins that have this feature (e.g.

Diver; see [112] for details).

11 Configuration and automatic component reg-

istration

GAMBIT uses the open-source cross-platform build sys-

tem CMake25 to configure and build the package. The

configuration step identifies the system architecture,

available compilers, libraries and GAMBIT components

present on a user’s system, and creates appropriate
makefiles. CMake and GAMBIT support in-source and

out-of-source builds, but we recommend the latter for

ease of organisation. The canonical way to configure and

make GAMBIT is therefore

mkdir build

cd build

cmake ..

make

The build system also incorporates a series of Python

harvester scripts for code generation. These are used

at both configuration and compile time to automati-

cally detect modules, models, backends, printers, scan-

ners, priors, test functions and associated types present

in a user’s personal GAMBIT configuration. The har-
vesters automatically write the header, configuration

and CMake files required to register the various com-

ponents in GAMBIT, and include them in the build.

In this way, users wishing to add a GAMBIT compo-

nent need only write the source/header files containing

the component-specific content they wish to add, and

place them in the appropriate folder, relying on the har-
vester scripts to generate the necessary boilerplate code

required to incorporate the component into GAMBIT.

Compilation of GAMBIT module standalone executa-

bles is also handled by the same build system, but these
are dealt with in Sec. 12.1.

11.1 Adding new models, modules, backends and other

components to GAMBIT

Here we give a quick reference guide to the new files

needed when adding new components, along with any

notable modifications needed to existing files. Note that

adding any new files to GAMBIT (or moving existing

ones) necessitates re-running CMake before rebuilding.

25www.cmake.org

www.cmake.org
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modules Add a rollcall header MyBit/include/gambit

/MyBit/MyBit_rollcall.hpp and source files in My-

Bit/include. See Sec. 3.1 for more details.

models Add a model declaration header Models/inclu-

de/gambit/Models/models/my_model.hpp. If needed,

add translation function source files to
Models/src/models. See Sec. 5.1 for more de-

tails. Adding a new model with no parent typically

also requires either adding new module functions

or verifying that existing ones are safe to use with

the new model, and declaring them as such in their
rollcall headers. See Sec. 3.1 for more details.

backends We strongly encourage backend authors to
go through the following simple steps, to provide

official versions of the resulting GAMBIT interface

files within the regular releases of their software.

Add a frontend header Backends/include/gambit/

Backends/frontends/backend_name_backend_

version.hpp. Add the default location of the

backend’s shared library to config/backend

_locations.yaml.default. If needed, add back-
end convenience and/or initialisation func-

tion source files in Backends/src/frontends.

If needed, add a backend type header in

Backends/include/gambit/Backends/backend_types/

backend_name_types.hpp. If you want GAMBIT to
manage the compilation of the backend, add an

entry in cmake/backends.cmake (see Sec. 11.2).

If only adding the latest version of an ex-

isting backend, then the new frontend header,

any new frontend source files, the new entry in

config/backend_locations.yaml.default and any new

entry in cmake/backends.cmake can usually just be
copied from the previous versions and adapted. Be

sure to update any #include statements in the copied
source files to include the new frontend header rather

than the previous one. Any new backend types, or

modifications to old backend types, are generally

best dealt with by adding the new and revised types

to the existing backend types header, and declaring

any revised types with entirely new names, in order

to avoid breaking the frontend interface to previous

versions of the backend.

printers Add a printer declaration header

Printers/include/gambit/Printers/printers/my_

printer.hpp. If needed, add source files in

Printers/src/printers/my_printer. See Sec. 9

for more details.
scanners Add a scanner plugin declaration header

ScannerBit/include/gambit/ScannerBit/scanners/

scanner_name/scanner_name.hpp. Add any additional

headers required to the same directory. If needed,

add source files to ScannerBit/src/scanners/scanner_

name. See Ref. [112] for more details. If you want

GAMBIT to manage the compilation of the scanner,

add an entry in cmake/scanners.cmake (see Sec. 11.2).

priors Add a prior declaration header in

ScannerBit/include/gambit/ScannerBit/priors. If

needed, add source files in ScannerBit/src/priors.

See Ref. [112] for more details.

objective test functions Add source files to

ScannerBit/src/objectives/test_functions. See Ref.

[112] for more details.

types Exactly what to do depends on which compo-

nent(s) the type is associated with; see the above
entries and Secs. 4.4 and 10.5 for more information.

When adding any of these components, developers

should also add a description of the new component

to the relevant component database (see Sec. 10.7).

11.2 Building backends and scanners

Although not strictly necessary for running GAM-

BIT, we also provide helpful preconfigured methods

within the configuration and build system for down-

loading, configuring, patching (where necessary) and

compiling essentially all of the backends and scan-

ners for which GAMBIT has frontend or scanner plu-

gin interfaces. Although it is straightforward to just

manually download and compile backends and scan-

ners as usual, and then enter their shared library lo-

cations in custom config/backend_locations.yaml and

config/scanner_locations.yaml files, using the automatic

installers in the GAMBIT build system ensures that

GAMBIT and all backends and scanners employ con-

sistent compiler and library settings. As with the C++

configuration of GAMBIT itself, for the compilation of

backends written in C or Fortran, CMake automatically

searches for the necessary compilers and libraries. Codes

written in Python and other languages can only be back-
ended by GAMBIT 1.0.0 if they ship with a C API;

supporting ‘native language’ backending of such codes

is a high priority for future versions.

This system provides a make target for each installed

version of each scanner and backend, along with a cor-

responding make clean-name target (where name is the

name of the backend or scanner), which calls distclean

or similar in the backend source. Each scanner and

backend also gets a target make nuke-name, which com-

pletely erases all downloaded and installed content for

the component in question. The make scanners target in-

stalls and builds the latest versions of all registered

external scanning algorithms, and the make backends

target does the same for backends. All scanners or

backends can be cleaned or nuked in one command



61

with the make targets clean-scanners, nuke-scanners,

clean-backends or nuke-backends. For the true nihilist,

there is also nuke-all.

Adding a new backend or scanner to the GAMBIT

automatic build management system is fairly straight-

forward. One adds a new ‘external project’ entry in

either cmake/backends.cmake or cmake/scanners.cmake, us-

ing some of the built-in macros that can be seen demon-

strated in those files, for setting up the clean targets

and indicating if a given backend requires BOSSing. The

minimum information required for a functional entry in

either of these files is: the URL from which the package

can be downloaded, the MD5 checksum of the download
(obtainable for any file via cmake -E md5sum filename), and

basic configure and build commands for the package. If

required, specific build flags can be easily added to what-

ever GAMBIT passes to the backend. Custom patches

can also be applied. If a backend should be BOSSed

as part of the build process, a BOSS configuration file

must be placed in the Backends/scripts/BOSS/configs di-

rectory, as described in Sec. 4.5. The configuration file

should be named according to the backend name and

safe version, e.g. MyBackend_1_2.py.

One important vagary of the build system for scan-

ners: for GAMBIT to properly register a scanner as built

and available, it is necessary to re-run cmake after mak-

ing the external scanner, and then rebuild GAMBIT. The

most efficient way to get GAMBIT started from scratch

with e.g. MultiNest [183] or Diver [112] is therefore

mkdir build

cd build

cmake ..

make scanners

cmake ..

make

This particular requirement has its roots in the two-

step shared library strategy that ScannerBit uses to

dynamically load its plugins [112]. This will probably

disappear in future versions.

11.3 Miscellaneous build targets

make get-pippi retrieves the latest development version

of the analysis and plotting tool pippi [182] from
GitHub26, and places it in the GAMBIT root direc-

tory.

make docs builds the GAMBIT doxygen documentation.

make clean removes all compiled and automatically-

generated source and header files for GAMBIT itself,

but leaves backends and scanners untouched.

26http://github.com/patscott/pippi

make distclean does the same as clean, but also cleans

the GAMBIT doxygen documentation, clears out the

GAMBIT scratch directory, and removes all down-

loaded, installed or compiled backend and scanner

content.

11.4 Configuration options

Here we list the most useful commandline switches for

passing to CMake when configuring GAMBIT, by

cmake -D OPTION_NAME = value

Often none of these is required, but they can be helpful

for hinting or forcing CMake to use specific versions of

compilers or libraries, or for simply disabling compo-

nents or features of GAMBIT at the build stage.

11.4.1 CMake standard variables

CMAKE_BUILD_TYPE Sets the build type. Possible val-
ues are Debug, Release, Release_O3, MinSizeRel,

RelWithDebInfo and None. The default is None, which

results in the fastest build time, but no debug sym-

bols and the slowest execution. Release includes opti-
misation seetings designed to result in the fastest run

time; build time is correspondingly longer. Release_O3

is a GAMBIT-specific build type that differs from

Release in that it passes -O3 rather than -O2 to the

compiler.27

CMAKE_CXX_COMPILER Full path to the C++ compiler.

Alternatively you can specify the environment vari-

able CXX before invoking cmake.

CMAKE_C_COMPILER Full path to the C compiler. Alter-

natively you can specify the environment variable CC

before invoking cmake.

CMAKE_Fortran_COMPILER Full path to the Fortran

compiler. Alternatively you can specify the envi-
ronment variable FC before invoking cmake.

CMAKE_CXX_FLAGS Extra flags to use when compiling

C++ source files.
CMAKE_C_FLAGS Extra flags to use when compiling C

source files.

CMAKE_Fortran_FLAGS Extra flags to use when compil-

ing Fortran source files.

11.4.2 CMake library and GAMBIT-specific variables

EIGEN3_INCLUDE_DIR The full path to a local instal-
lation of Eigen. Note that Eigen can be installed

27In this sense, Release_O3 in GAMBIT is actually closer to
the traditional CMake definition of Release. It is not clear
that Release_O3 offers any significant advantage over Release,
however, and -O3 may cause instability in some backends. Use
this option with caution.

http://github.com/patscott/pippi
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automatically from many standard repositories, so a

local installation may not be necessary.
MPI If MPI=OFF, MPI is manually disabled even if CMake

successfully locates MPI libraries. Defaults to ON.

MPI_INCLUDE The full include path of the MPI distri-

bution to be used (e.g. in case it is not detected
automatically).

MPI_LIBRARY The full path to the MPI library file(s)
to link against (e.g. in case they are not detected

automatically).

LAPACK_LINKLIBS The full path to the LAPACK li-
brary file(s) to link against (e.g. in case they are not

detected automatically).
PYTHIA_OPT If PYTHIA_OPT=OFF and the Intel compiler is

in use, turn off cross-file interprocedural optimisation

when compiling the BOSSed Pythia backend (some

systems do not have enough memory to perform this

optimisation step). Defaults to ON.

Werror If True, the build system treats all warnings as

errors, and halts the build.

(D)itch Manually selects GAMBIT components to ex-

clude from the build. Practically anything can be

ditched with this command, from modules to models,

backends, printers and scanners. The value should

be set to a semi-colon separated list of the begin-

nings of component names to match for ditching. For

example,

cmake -Ditch = "Dark;FeynHiggs_2_11_";

would ditch the module DarkBit, all versions of the

backend DarkSUSY, and versions 2.11.* of the Feyn-

Higgs backend. Note that ditching a GAMBIT com-

ponent does not ‘clean’ any compiled code, so it

will not e.g. remove backend shared libraries that
have already been compiled. It will however exclude

all interfaces to the ditched components the next

time GAMBIT is built, making it completely indif-
ferent to the presence or absence of any compiled or

uncompiled code associated with those components.

12 Examples, releases and support

12.1 Minimal examples

GAMBIT ships with a number of different exam-

ples. These include two minimal example mod-
ules (ExampleBit_A and ExampleBit_B) and some

minimal backend examples in C (LibFirst) and

Fortran (LibFortran and LibFarrayTest). A minimal

toy model (NormalDist) can be found declared in

Models/include/gambit/Models/models/demo.hpp. This file

also contains a fully self-contained hierarchy of ex-
ample models illustrating all the concepts of Sec. 5

(note that these are commented out by default, to

avoid cluttering the model hierarchy). There is also
a matching pair of example YAML files that use these

modules and backends to run rudimentary scans of

NormalDist (yaml_files/spartan.yaml) or the CMSSM

(yaml_files/spartan_CMSSM.yaml). These two files each

contain some simple additional entries, commented out

by default, that can be used for experimenting with
different printers and scanners. Most of the features

and options outlined in this paper can be found demon-

strated in one or another of these example components
or scans.

The minimal spartan example also include a cor-

responding pip file (yaml_files/spartan.pip) for plot-

ting the hdf5 results of yaml_files/spartan.yaml with

pippi [182]. (This file will need to be altered if

yaml_files/spartan.yaml is altered from its default.)

For more complete and realistic examples, users

should refer to the full YAML files corresponding to the
MSSM and scalar singlet scans described in Refs. [119–

121], which also ship with GAMBIT and can be found

in the yaml_files directory. These are SingletDM.yaml,
CMSSM.yaml, NUHM1.yaml, NUHM2.yaml and MSSM7.yaml.

There are also a number of module-specific
example YAML files to be found in the

yaml_files folder: WC.yaml and FlavBit_CMSSM.yaml

(for FlavBit), ColliderBit_CMSSM.yaml and

ColliderBit_ExternalModel.yaml (for Collid-

erBit), DecayBit_MSSM20.yaml (for DecayBit),

PrecisionBit_MSSM20.yaml (for PrecisionBit), miss-

ing (for SpecBit), missing (for DarkBit), and missing

(for ScannerBit).

The full GAMBIT distribution also includes a series of

example driver programs that use the different modules

as standalone libraries, without the rest of GAMBIT.

Using GAMBIT modules in this manner requires some

extra work due to the absence of the dependency resolver
and related GAMBIT core components, but allows direct

manual control of the functions in a given module, using

only a minimal set of GAMBIT components. In certain

cases, using GAMBIT modules as standalone libraries

can be a lightweight and even more flexible alternative

to employing the full GAMBIT machinery.

The simplest standalone example is ExampleBit_A_

standalone, found in ExampleBit_A/examples/ExampleBit_A

_standalone.cpp. Here the driver program carries out
breezy versions of many of the tasks performed by

GAMBIT in a full-blown scan. It first sets up some files

to print log information to, and chooses which model
to investigate. It identifies which module functions in
ExampleBit_A it wants to run, then sets their inter-

nal options and connects their pipes to other functions

within ExampleBit_A, and to relevant backends. It de-
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clares and defines an additional QUICK_FUNCTION (cf. Sec.

3.1.5) directly in the same file, to fill a missing depen-
dency. It then chooses what parameter values to run

through the resulting pipeline, gathers the results and

prints them to stdout. Authors of standalone programs

have the possibility to intervene in any of these steps,
providing the necessary inputs from whatever source

they like, or using the outputs directly in whichever

manner they prefer.

For many models, the biggest challenge associ-

ated with using a module in standalone mode will

be fulfilling dependencies on a GAMBIT Spectrum ob-

ject, as these objects are typically created exclusively
by SpecBit in a regular GAMBIT scan. For stan-

dalone purposes, each model with a Spectrum special-
isation in SpecBit is expected to also have a corre-

spondingly stripped-down simple spectrum defined

in Models/include/gambit/Models/SimpleSpectra. The sim-

ple spectra are essentially mass container objects, devoid
of any interface to an actual spectrum generator, which
can be used in standalone executables in place of a true

GAMBIT Spectrum. The GAMBIT Spectrum class and its
simple spectrum variants are discussed in more detail

in Ref. [111].

12.2 Releases

GAMBIT releases are assigned version numbers of the

form major.minor.revision. Each version is available

from the GAMBIT webpage: http://gambit.hepforge.org.

The code can be downloaded either directly as a tarball,

or accessed through a git repository, newly forked from

the development branch at each minor version update.

As a convenience, for each release we also provide

downloadable tarballs of each module, bundled with the

minimal number of GAMBIT components required to
use it in standalone mode. For physics modules, these

components are the models, backend interfaces, logs

and all other utilities except printers. The required
components for ScannerBit are the printers, logs and a

smaller subset of the utilities.

12.3 Support

Data used in GAMBIT observable and likelihood func-

tions are generally available within regular releases of
GAMBIT or relevant backends. If in any future cases

this is not possible for some reason, we will make them

available from the main GAMBIT webpage.28 Output

samples from scans discussed in GAMBIT results papers

28http://gambit.hepforge.org

(such as Refs. [119–121]) are also available from the

main GAMBIT webpage.

General support information and relevant links are

collected in the Support section of the GAMBIT web-
page.29 This includes the doxygen documentation for

the latest GAMBIT release, a known issues page, and

an FAQ dealing mostly with common configuration,
compilation and backend questions.

GAMBIT will be supported with regular version up-

dates and revisions. In general bug fixes will be applied

in revision increments, and new features mostly in minor

version increments. New major version increments will

be reserved for substantial new features. After releasing

a new major version, we will continue to support the last

minor version of the superseded major version with bug

fix updates (typically backported from the new major).

We welcome and encourage bug reports on GAMBIT.

These should be submitted via the TRAC ticket system

on the GAMBIT webpage.30 To prevent spam, bug re-

porters will need to first sign up for an account with
HEPforge.31

We also welcome enquiries from authors of existing

or future backend codes about GAMBIT compatibility;

we are willing to work with you to help optimise inter-

operability of your code with GAMBIT.

Users are also very welcome to suggest contributed

code for release in a future version of GAMBIT, par-

ticularly new models, observables, likelihood functions,

printers, scanners and backend interfaces. These sugges-

tions will undergo a careful code review before being

integrated into the main codebase. Submitters are ex-

pected to pay attention to the coding style of adjacent

routines.

13 Summary

GAMBIT is a powerful, general, flexible and extensible

tool for phenomenological and statistical analysis of par-

ticle theories Beyond the Standard Model. It includes

modules specialised for spectrum and decay calculations,

collider, flavour, DM and precision physics, a hierarchi-

cal model database of popular BSM theories, flexible
interfaces to many of the most popular existing phe-

nomenology codes, extensive statistical and parameter

scanning options, and an automatic system for con-

necting different calculations to their required inputs,

outputs and models. Here we have outlined the main

features of the GAMBIT package itself; accompanying

papers lay out the details of the individual modules

29http://gambit.hepforge.org/support
30http://gambit.hepforge.org/trac/report
31https://www.hepforge.org/register

http://gambit.hepforge.org
http://gambit.hepforge.org
http://gambit.hepforge.org/support
http://gambit.hepforge.org/trac/report
http://www.hepforge.org/register
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[108–112] and present first BSM results [119–121]. The

package is fully open source, and can be downloaded

from gambit.hepforge.org.
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Appendix A: Quick start guide

To configure and build GAMBIT on a machine with n

logical cores, retrieve the git repository or the tarball

and unpack it, then

cd gambit

mkdir build

cd build

cmake ..

make -jn scanners

cmake ..

make -jn gambit

To build all backends supported for automatic download:

make -jn backends

You can also build individual backends with

make -jn backend_name

and clean them with

make clean-backend_name.

To see which backends and scanners have been installed

correctly, do

gambit backends

and

gambit scanners

To run gambit using the included example YAML files

spartan.yaml or MSSM7.yaml, do

gambit -f yaml_files/spartan.yaml

gambit -f yaml_files/MSSM7.yaml

To make a standalone example using any one of the

modules:

make module_name_standalone

and run the resulting executable module_name

_standalone.

For more details on the configuration and build op-

tions, please see Secs. 11.2–11.4.

Appendix B: Supported compilers and library

dependencies

GAMBIT builds and runs under Linux and Mac OS X;

the architecture is automatically detected by the build
system.

GAMBIT is written in C++ and requires a compiler

that supports a minimal subset of the ISO C++11 stan-

dard. For compiling Fortran backends, a Fortran compiler

is also required. GAMBIT supports GNU32 and Intel33

C/C++ and Fortran compilers. The Clang34 C/C++ com-
piler is not supported due to its lack of historical support

for OpenMP. When newer versions supporting OpenMP

become the default in OS X, we will add support for
clang in GAMBIT.

The following prerequisite libraries and packages

must be installed to configure and to build GAMBIT:

– gcc/gfortran 4.7.1 or greater, or icc/ifort 12.1.0 or

greater

– Python 2.7 or greater (Python 3 is not supported)

– Python modules yaml, os, re, datetime, sys, getopt,

shutil and itertools. Also h5py if using the hdf5 printer

with pippi.

– Boost35 1.41 or greater
– GNU Scientific Library (GSL)36 1.10 or greater

Two additional linear algebra libraries are also currently

required, but will become optional in future releases

(where FlexibleSUSY will become a full backend, rather

than shipping in the GAMBIT contrib directory):

– Eigen37 3.1.0 or greater: required only if using Flexi-

bleSUSY from SpecBit or GM2Calc from PrecisionBit

32https://gcc.gnu.org/
33https://software.intel.com/en-us/intel-compilers
34http://clang.llvm.org/
35http://www.boost.org/
36http://www.gnu.org/software/gsl/
37http://eigen.tuxfamily.org

http://gambit.hepforge.org
https://gcc.gnu.org/
https://software.intel.com/en-us/intel-compilers
http://clang.llvm.org/
http://www.boost.org/
http://www.gnu.org/software/gsl/
http://eigen.tuxfamily.org


65

– LAPACK38: required only if using FlexibleSUSY from

SpecBit or MultiNest from ScannerBit

The following are optional libraries and packages:

– MPI: required only if parallelised sampling is desired

– axel39: if available, will be used to speed up down-

loads of backends and scanners wherever possible

– graphviz40: required only if model hierarchy and de-

pendency tree plots are desired
– HDF541: required only if using the hdf5 printer

– ROOT42 5.*: required if using Delphes from Collider-

Bit, or GreAT from ScannerBit

If any optional package is missing, the build system

automatically -Ditches the corresponding component or

feature relying on the missing package.

Users should note that whilst GAMBIT itself compiles

and runs with a wide range of compiler versions, some

backend and scanner codes are not compatible with

certain newer compilers. A continually-evolving list of

compiler versions tested to date with different backends

can be found at http://gambit.hepforge.org/compilers.

Whilst we obviously cannot assume responsibility for the

portability of codes maintained by other members of the

community, we are actively working with the authors of

the different codes to help improve this situation.

Appendix C: Standard Model definitions

The parameters of the StandardModel_SLHA2 model

are:

CKM_A (A): Wolfenstein parameter defined in MS scheme

at scale mZ . Converted into VCKM entries using the

9th-order expansions of Ref. [32].

CKM_etabar (η̄): Wolfenstein parameter defined in MS

scheme at scale mZ . Converted into VCKM entries

using the 9th-order expansions of Ref. [32].
CKM_lambda (λ): Wolfenstein parameter defined in MS

scheme at scale mZ . Converted into VCKM entries

using the 9th-order expansions of Ref. [32].

CKM_rhobar (ρ̄): Wolfenstein parameter defined in MS

scheme at scale mZ . Converted into VCKM entries

using the 9th-order expansions of Ref. [32].

GF (GF): Fermi coupling, in units of GeV−2.

alpha1 (α1): First Majorana CP-violating phase of the

PMNS matrix, in radians.

alpha2 (α2): Second Majorana CP-violating phase of

the PMNS matrix, in radians.

38http://www.netlib.org/lapack/
39http://axel.alioth.debian.org/
40http://www.graphviz.org/
41https://www.hdfgroup.org/HDF5/
42https://root.cern.ch/

alphaS (αs(mZ)MS): Strong coupling in MS scheme at

scale mZ .

alphainv (α−1
EM(mZ)MS): Inverse electromagetic cou-

pling in 5-flavour MS scheme at scale mZ .

delta13 (δ13): Majorana CP-violating phase of the

PMNS matrix, in radians.

mBmB (mb(mb)MS): MS mass of the b quark at scale mb,

in GeV.

mCmC (mc(mc)MS): MS mass of the c quark at scale mc,

in GeV.

mD (md(2 GeV)MS): MS mass of the d quark at scale of

2 GeV, in GeV.

mE (me): Pole mass of the electron, in GeV.
mMu (mµ): Pole mass of the muon, in GeV.

mNu1 (mν̃1
): Pole mass of first left-handed neutrino mass

eigenstate, in GeV.

mNu2 (mν̃2
): Pole mass of second left-handed neutrino

mass eigenstate, in GeV.

mNu3 (mν̃3): Pole mass of third left-handed neutrino
mass eigenstate, in GeV.

mS (ms(2 GeV)MS): MS mass of the s quark at scale of

2 GeV, in GeV.

mT (mt): Pole mass of the t quark, in GeV.

mTau (mτ ): Pole mass of the τ lepton, in GeV.

mU (mu(2 GeV)MS): MS mass of the u quark at scale

of 2 GeV, in GeV.

mZ (mZ): Pole mass of the Z boson, in GeV.
theta12 (θ12): Solar neutrino mixing angle of the PMNS

matrix, in radians.

theta23 (θ23): Atmospheric neutrino mixing angle of the

PMNS matrix, in radians.
theta12 (θ13): Reactor neutrino mixing angle of the

PMNS matrix, in radians.

Appendix D: Glossary

Here we explain some terms that have specific technical

definitions in GAMBIT.

backend An external code containing useful functions

(or variables) that one might wish to call (or read-

/write) from a module function.

backend convenience function A function con-

structed purely from calls to backend functions

and/or using backend variables from a single

backend, wrapped by the backend’s frontend in

such a way as to appear to GAMBIT as just another

function in that backend. It calculates a specific

quantity indicated by its capability. Its capability

and call signature are defined in the backend’s

frontend header.

backend function A function contained in a back-

end. It calculates a specific quantity indicated by

http://gambit.hepforge.org/compilers
http://www.netlib.org/lapack/
http://axel.alioth.debian.org/
http://www.graphviz.org/
https://www.hdfgroup.org/HDF5/
https://root.cern.ch/
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its capability. Its capability and call signature are

defined in the backend’s frontend header.
backend initialisation function A function that au-

tomatically runs for each parameter combination, be-

fore any functions or variables from a given backend

are used. It is defined as part of the backend’s fron-

tend interface. Although they are each associated

with a specific backend, backend initialisation func-

tions are actually technically module functions

belonging to a system-defined module called Backen-

dIniBit.

backend requirement A declaration that a given

module function needs to be able to call a back-

end function or use a backend variable, identi-

fied according to its capability and type(s). Back-

end requirements are declared in module functions’

entries in rollcall headers.

backend variable A global variable contained in a

backend. It corresponds to a specific quantity indi-

cated by its capability. Its capability and type are

defined in the backend’s frontend header.
BOSS The Backend-On-a-Stick script, used for pre-

processing C++ backend code to allow GAMBIT to

dynamically load classes from it.

capability A name describing the actual quantity that

is calculated by a module or backend function. This

is one possible place for units to be noted; the other

is in the documented description of the capability

(see Sec. 10.7).

child model A model that descends from a parent

model, implying that any point in the parame-

ter space of the child model can be expressed as
a physically-equivalent point in the parent model’s
parameter space.

conditional dependency A dependency that only

applies under specific circumstance, such as when a

particular model or backend is in use.

context integer An integer assigned to a particu-

lar particle definition in the GAMBIT particle

database, in order to distinguish it from another

similar particle having the same PDG code.
dependency A declaration that a given module func-

tion needs to be able to access the result of another

module function, identified according to its capabil-

ity and type. Dependencies are declared in module

functions’ entries in rollcall headers.
dependency resolution The process by which GAM-

BIT determines the module functions, backend

functions and backend variables needed and al-

lowed for a given scan, connects them to each others’

dependencies and backend requirements, and

determines the order in which they must be called.

dependency resolver The component of the GAMBIT

Core that performs dependency resolution.
dependency tree A result of dependency resolu-

tion; a directed acyclic graph of module functions

connected by resolved dependencies. See Fig. 5 for

an example.
friend model A model into which points from another

model can be translated, even though the friend

model is not a direct ancestor of the other model.

frontend The interface between GAMBIT and a given

backend, consisting of a frontend header plus
optional source files and type headers.

frontend header The C++ header in which the fron-

tend to a given backend is declared.

harvester script One of a set of Python scripts that

runs during GAMBIT configuration, and harvests in-

formation about the modules, models, backends,

printers, scanners, priors, test functions and associ-

ated types present in the local installation of GAM-

BIT.

likelihood container The interface between Scanner-

Bit and the graph of module functions created by

the dependency resolver. It returns the total com-

bined likelihood for any given set of model parameter

values.

loop manager A type of module function, able to
run nested module functions in parallel using

OpenMP, from within its own function body.
model A GAMBIT model is defined as a collection

of named parameters, intended for sampling by a

scanning algorithm according to some prior. The

scanner and prior are both chosen at runtime.

model group A set of models defined for easy refer-
ence when setting rules about what combinations

of models are required for using a given module

function. A model group is declared within the dec-

laration of a module function in a rollcall header.

module A subset of GAMBIT functions following a

common theme, able to be compiled into a stan-
dalone library. Although module often gets used

as shorthand for physics module, this term tech-

nically also includes the GAMBIT scanning module

ScannerBit.

module function A function contained in a physics

module. It calculates a specific quantity indicated

by its capability and type, as declared in the mod-

ule’s rollcall header. It takes only one argument,

by reference (the quantity to be calculated), and has

a void return type.

printer The main object handling GAMBIT output.

Multiple versions of this object exist (and new ones

can be written), for handling output to different
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formats. Users select which printer they want to use

via the master initialisation file (Sec. 6.6)
purpose A tag attached to a request made by a user

in the ObsLikes section of their YAML file. The tag

is used by the scanner and likelihood container

to select which module functions to include in the

combined likelihood and use for directing the scan.

nested module function A module function that

must be run by a loop manager rather than directly

by GAMBIT itself — usually in parallel inside an

OpenMP block managed by the loop manager.

parent model A model from which a child model

descends, implying that any point in the parameter

space of the child model can be interpreted as a point

in (some subspace of) the parent parameter space.
particle database An internal database in GAMBIT

containing the names and PDG codes of all particles

recognised by GAMBIT.

physics module Any module other than ScannerBit,

containing a collection of module functions follow-

ing a common physics theme.
pipe A pointer to another function or variable created

for allowing a specific module function to exchange

information with other parts of the code. The pointer

is set at runtime by the dependency resolver.

quantity This term is often used as short-hand for the

combination of a capability with a certain type.

rollcall header The C++ header in which a given

physics module and its module functions are

declared.

rule A directive given in the input YAML file that

specifies options for one or more module functions

and/or constraints on how the functions’ dependen-

cies or backend requirements may be resolved

by the dependency resolver.
safe version A backend version number, but with all

periods replaced by underscores (so as to be usable

in automatically-generated namespaces, variables
names, etc).

scanner plugin An interface in ScannerBit to an ex-

ternal code for parameter sampling, i.e. a scanner.
simple spectrum A minimal GAMBITSpectrum object,

designed to simply act as a container for pole masses
and other spectrum data. Unlike a fully-fledged

Spectrum object, it specifically does not provide RGE

functionality or an interface to a spectrum genera-
tor. Designed to facilitate basic standalone use of

modules.
test function plugin An interface in ScannerBit to a

test function, which may be used for testing purposes

as the objective function for a scan, in place of the

output from the likelihood container.

type A general fundamental or derived C++ type, often

referring to the type of the capability of a module

function.
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Abstract In Ref. [1] we introduced the global-fitting
framework GAMBIT. In this addendum, we describe
a new minor version increment of this package. GAM-

BIT 1.1 includes full support for Mathematica backends,

which we describe in some detail here. As an example,
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we backend SUSYHD [2], which calculates the mass of
the Higgs boson in the MSSM from effective field theory.
We also describe updated likelihoods in PrecisionBit and
DarkBit, and updated decay data included in DecayBit.
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1 Using Mathematica backends in GAMBIT

For decades, Wolfram Mathematica1 has been the sym-

bolic computing framework of choice for many physicists.
GAMBIT users can now access both public and private

Mathematica packages from within GAMBIT modules.
This new feature provides a seamless interface to Math-

ematica, indistinguishable from the existing GAMBIT

backend interfaces to codes written in C, C++ and For-

tran.

Mathematica is proprietary software. It is the respon-

sibility of the user to acquire a license in order to use the
Mathematica framework. The number of Mathematica

Kernel instances and subprocesses that can be launched
per Mathematica license is limited, and can be found

by evaluating the variables $MaxLicenseProcesses and

$MaxLicenseSubprocesses (typically 8 and 16 respectively
for a standard Mathematica license).

This addendum describes our implementation of the
Mathematica interface. Sec. 1.1 describes the mechanism

used to communicate with the Mathematica Kernel from
GAMBIT. In Secs. 1.2–1.4 we explain the different as-
pects of the implementation, consisting of configuration

(1.2), registration of backend functions and variables

(1.3), and updates to the GAMBIT diagnostics to accom-
modate Mathematica backends (1.4). In Sec. 1.5, we give

a realistic example of a Mathematica backend interfaced

to GAMBIT, namely SUSYHD [2], which calculates the
mass of the Higgs boson using methods from effective

field theory (EFT).

1.1 The Wolfram Symbolic Transfer Protocol

The Wolfram Symbolic Transfer Protocol (WSTP2), is
the communication standard used by Mathematica to
communicate with external programs. WSTP provides
a two-way communication system, allowing the user to
both call external codes from within Mathematica, and

to call Mathematica routines from external programs

written in many languages (C, C++, Java, etc). GAMBIT

1.1 uses the communication pathway between Mathe-

matica and C++. This allows GAMBIT users to directly

call Mathematica functions and variables from GAMBIT

modules, in the same way as functions and variables are
accessed from C, C++ and Fortran backends in GAMBIT

1.0.

The GAMBIT-Mathematica interface uses the WSTP

messaging functions to launch and establish a link to
a Mathematica Kernel session, and to send and receive

1http://www.wolfram.com/mathematica/
2More information on WSTP can be found at
http://reference.wolfram.com/language/.

information from that Kernel. Almost all the messaging
functions that we employ use a WSTP link object, of type

WSLINK, as a handle for communicating with the Kernel.
One retrieves such a handle by opening a link to the

Kernel with the messaging functions WSOpenArgcArgv or
WSOpenString. The most important messaging functions
for our purposes are

WSPutFunction(WSlink, function_name, n_args);

WSPutString(WSlink, string_name);

WSPutSymbol(WSlink, symbol_name);

WSPutInteger(WSlink, integer_number);

WSPutReal32(WSlink, float_number);

WSPutReal64(WSlink, double_precision_number);

WSGetString(WSlink, &string_variable);

WSGetInteger(WSlink, &integer_variable);

WSGetReal32(WSlink, &float_variable);

WSGetReal64(WSlink, &double_precision_variable);

where WSlink is an object of type WSLINK. The first argu-
ment in each of these must be a C++ object with the

appropriate type, e.g. for symbols and functions this is
a C++ string, and the argument n_args corresponds to

the number of arguments of the Mathematica function

function_name.

To interpret data received from the WSGet functions,
one must also receive the packets sent by the Kernel.
We use WSNextPacket(WSlink) to find the next packet

head, WSNewPacket(WSlink) to skip the rest of the current

packet, and WSError(WSlink) to check for errors during
packet reception.

All these messaging functions live in the header
wstp.h, native to the Mathematica installation, and will

be used by GAMBIT for different purposes, as described
below.

1.2 Preparing and configuring Mathematica backends

1.2.1 Configuration

At cmake time, GAMBIT searches for an installation of
Mathematica on the user’s system, locating the instal-

lation directory and defining several cmake variables,

including the paths to the Mathematica header files and
executables. The GAMBIT cmake system also searches

for the libuuid library, required by WSTP. It writes a
new header file containing a series of variables relating
to the system’s Mathematica configuration, including
the preprocessor macro HAVE_MATHEMATICA, which is later

used to enable or disable all code associated with Math-

ematica backends, according to whether or not the user
has Mathematica installed. In order to manually switch

off Mathematica support (from GAMBIT 1.1.2 onwards),
one may run the cmake command as
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cmake -Ditch=Mathematica ..

Mathematica backends are obtained and config-

ured in a similar manner to other backends, by
adding relevant entries to cmake/backends.cmake and

config/backend_locations.yaml.default, and then run-
ning make backend_name. Mathematica backends require
neither a configuration nor a build step, only a download

link and an installation directory.

1.2.2 Frontend header

As described in Sec. 4 of Ref. [1], GAMBIT loads back-

ends at runtime as dynamic libraries, regardless of
whether they are written in C, C++ or Fortran, using
the POSIX-standard dl library. The macro LOAD_LIBRARY,

used in the corresponding frontend header in GAMBIT,
activates the backend library and loads its symbols.

GAMBIT communicates with Mathematica backends
in a fundamentally different way to backends written

in compiled languages. To redirect compilation flow in

the GAMBIT backend system to use the preprocessor
directives relevant for Mathematica backends, we define

the new macro BACKENDLANG. This specifies the language

of the backend in question, and can take the values CC,
CXX, FORTRAN or MATHEMATICA. For example, in GAMBIT

1.1, the frontend header for version 1.2 of a C++ backend

called backend_name would begin with

#define BACKENDNAME backend_name

#define BACKENDLANG CXX

#define VERSION 1.2

#define SAFE_VERSION 1_2

LOAD_LIBRARY

1.2.3 Backend types

In analogy with the definition of new types and typedefs

given for Fortran backends in Sec. 4.4 of Ref. [1], here
we provide a list of new types defined in GAMBIT 1.1

for use with Mathematica backends. These have clear

correspondences with equivalent types in C and C++

types, and should be adopted whenever one is working
with Mathematica backends. These are:

MVoid

MInteger

MReal

MBool

MChar

MString

MList<TYPE>

where TYPE can take any of the other defined types as its
template argument. All these types are just convenient

type redefinitions of native C++ types and thus can be
used in exactly the same manner.

1.2.4 Link to the Kernel

Prior to loading the backend library, the connection
with the Mathematica Kernel must be established. For

this, the macro LOAD_LIBRARY initializes a WSTP envi-
ronment with a call to WSInitialize, which returns a
handle to the WSTP environment of type WSENV. After

retrieving this handle, GAMBIT opens a new WSTP con-
nection using the function WSOpenString, which launches
the Mathematica Kernel and finishes the intialization
phase of the connection. These functions are employed

in the following way:

WSenv = WSInitialize();

WSlink = WSOpenString(WSenv, WSTPflags, &WSerrno);

The variable WSerrno captures any error that might
have ocurred during the establishment of the link and

WSTPflags is a string containing flags that point to the
Kernel executable and give the order to initiate the link,

e.g. WSTPflags = "-linkname math -mathlink" for Linux
systems.

If the link is successfully established, the pointer

WSlink is set to point to the new link between the main
program and the Kernel. This handle is used in every
subsequent communication with the Kernel.

1.2.5 Importing the package

After defining the relevant macros and backend types,

loading the Mathematica environment and Kernel, the
final task of the LOAD_LIBRARY macro is to import the
backend package into the Mathematica Kernel. This is

achieved by using the pointer to the WSTP link WSlink

via the following load sequence:

WSPutFunction(WSlink, "Once", 1);

WSPutFunction(WSlink, "Get", 1);

WSPutString(WSlink, path);

which is equivalent to the call Get[path] within a note-
book session.

Note that before we load the package, we call the

Mathematica function Once, which makes sure that the
following function will be executed only once in a Ker-

nel session. Here path is a string containing the path
to the .m file of the backend package; the actual value

used is taken from the default GAMBIT backend lo-
cation file config/backend_locations.yaml.default or a

user-supplied override.

When loading a package in Mathematica the Get func-
tion will return information regarding its success. The
exact return value will always be package dependent, so

is difficult to interpret in general from the GAMBIT in-
terface. Therefore we use the standard library functions
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of C++ to check if the package and all required func-
tions and variables exist. This is done via the GAMBIT

diagnostic system (see 1.4).

1.3 Backend functions and variables

The backend system in GAMBIT, as described in Sec.

4 of Ref. [1], provides a set of macros for registering
functions and variables from backends. In a nutshell,
GAMBIT extracts a pointer to the function/variable
living in the shared library of the backend, and wraps it
into a functor object to be handled by the dependency
resolver.

When dealing with backends written in Mathematica,
the above procedure must be modified, as there is no

shared library from which to extract the pointer to the
function or variable. Instead, we must interface with the
functions and variables via the Mathematica Kernel. The

general strategy for doing this is shown in Figure 1.

1.3.1 Backend functions

Backend functions in GAMBIT are defined with the

macro BE_FUNCTION. This macro creates a pointer to the
function in the namespace of the backend, and assigns it

a name and capability within GAMBIT of the frontend
author’s choosing. In order to communicate with the

Mathematica Kernel and provide the same sort of handle
to the dependency resolver for Mathematica backends,

we must define a wrapper function around message
calls to the Kernel, in such a way as to have the wrapper
function operate like a regular C/C++ backend function.

We achieve this by redirecting the macro BE_FUNCTION

for backends written in Mathematica, according to the

value of BACKENDLANG. The version of BE_FUNCTION that
gets used for Mathematica backends therefore constructs

a wrapper function around each Mathematica function
that the user wishes to access from within GAMBIT. The
wrapper function handles the submission and receipt

of all messages to and from the Kernel relating to the

function. This includes all function arguments, and the
eventual return value of the function. The sequence of
messages is:

WSPutFunction(WSlink, symbol_name, n);

WSPutVariable(WSlink, arg_1);

WSPutVariable(WSlink, arg_2);

...

WSPutVariable(WSlink, arg_n);

WSGetVariable(WSlink, &val);

where symbol_name is the name of the function within the

Mathematica package, n is the number of arguments it
accepts, arg_1, arg_2, etc are the arguments themselves,

and val is the return value. Here WSPutVariable and
WSGetVariable are overloaded functions, which expand
to different type-specific setter and getter functions

intrinsic to WSTP (mentioned in Sec. 1.1).

There is an important subtlety regarding the names
of functions in Mathematica backends. Mathematica per-
mits non-alphanumeric characters in function names.

Many of the backends that are interesting for GAMBIT

include functions with such names. However, function
names in GAMBIT are treated as regular strings, so there
is no easy way to communicate the actual name of the

function to the Kernel. To circumvent this issue, names
of Mathematica backend functions should be declared
to GAMBIT with all special characters written in terms

of their “full names”, e.g. α = \[Alpha], but making
sure to escape the slash “\” so that C++ can parse it.
To illustrate this, we show the signature used for the

function ∆MHiggs from the backend SUSYHD [2], which
calculates uncertainties on the Higgs mass:

BE_FUNCTION(DeltaMHiggs, MReal,

(const MList<MReal>&), "\\[CapitalDelta]MHiggs",

"SUSYHD_DeltaMHiggs")

where the first argument is the name of the function
within GAMBIT with its return type and signature as
the second and third arguments. The last two arguments
of the BE_FUNCTION macro are the symbol associated to

the backend function, the Mathematica function in our

case, and the capability that the function provides.

The generic function call is modified in

the case that the symbol name contains non-
alphanumeric characters. The symbol name (for
example "\\[CapitalDelta]MHiggs") must be sent as
a string to the Kernel, preceded by a message that

transforms it into a valid Mathematica expression. This
expression matches the string version of the name to
the name of the actual backend function, including the

correct non-alphanumeric characters. The sequence of
messages is

WSPutFunction(WSlink, "Apply", 2);

WSPutFunction(WSlink, "ToExpression",1);

WSPutString(WSlink, symbol_name);

WSPutFunction(WSlink, "List", n_args);

WSPutVariable(WSlink, arg_1);

WSPutVariable(WSlink, arg_2);

...

WSPutVariable(WSlink, arg_n);

WSGetVariable(WSlink, &val);

which is equivalent to WSPutFunction(WSlink,

symbol_name, n_args), in the case that the symbol_name

contains only alpha-numeric characters.
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Frontend

G
A M B I T

Kernel

BE_FUNCTION(my_function,...)

BE_VARIABLE(my_variable,...)

Wrapper function

TYPE my_function(args..)

{

WSPutFunction(my_function, ...);

...

return = WSGetTYPE(...);

}

Overloaded operators

CLASS mathematica_variable<T>;

operator=(T my_variable)

{

WSPutTYPE(my_variable);

}

operator()

{

my_variable = WSGetTYPE(...);

}

Backend

my_function[args]:= ...;

my_variable = ...;

Fig. 1: Diagrammatic representation of the communication link between GAMBIT and the Mathematica Kernel, showing the
wrappers for backend functions and the variable classes for backend variables.

1.3.2 Backend variables

Backend variables in GAMBIT are registered with the
preprocessor macro BE_VARIABLE. For backends written
in C, C++ or Fortran, this macro retrieves a pointer
to the variable from the shared library. Through this

pointer, module functions can extract and modify values
of global variables in backends as needed. However, such

an interface cannot be constructed if the backend is

written in Mathematica. The WSTP messaging system
can only access variables from the Kernel by value, so it
is not possible to obtain a pointer via which GAMBIT

can modify the value inside the Kernel.

To work around this limitation, the GAM-

BIT 1.1 backend system creates a templated class
mathematica_variable<TYPE>, with a private member vari-

able of type TYPE. The templated class acts as a wrapper
for the required calls to the Mathematica Kernel. As
with backend functions, the macro BE_VARIABLE is rede-

fined for Mathematica backends. This macro creates an
instance of the class mathematica_variable<TYPE>, with
TYPE equal to the type of the variable in the Kernel (see

Section 1.2.3). Like backend functions, backend vari-
able names are sent to the Kernel as a string preceded

by the ToExpression function, instead of simply sending
the symbol name via WSPutSymbol. This allows access to

variables with special characters in their names.

As we show schematically in Figure 1, the
mathematica_variable<TYPE> class allows variables in the
Kernel to be seamlessly read, modified and implicitly

cast to variables of type TYPE, allowing them to be
used directly in C++ expressions. These functionali-

ties are achieved by overloading two operators that

act on the mathematica_variable<TYPE> class. The first of

these is the assignment operator mathematica_variable&

operator=(const TYPE &), enabling modification of the
variables in the Kernel by regular assignment expres-

sions in module functions. The other is the cast operator
operator TYPE const(), which converts an object of type

mathematica_variable<TYPE> into its member variable of

type TYPE, allowing the variable to be used in all C++

expressions where TYPE would be permitted.

1.4 Diagnostics

GAMBIT already ships with extensive diagnostic tools,

providing the user with information about the status
of backends, modules, capabilities, scanners and more.
We have added a few additional diagnostic checks for

Mathematica backends in GAMBIT 1.1.
The first of these simply assesses the status of a

Mathematica backend, as typically viewed when using
the gambit backends diagnostic. GAMBIT 1.1 adds an
additional possible status in this readout, triggered in
the case that a specific backend requires Mathematica but
no acceptable version of it has been found in the system.

When backends are loaded at runtime, they each register
in the Backends::backendInfo() object (described in Sec.

4.6 of Ref. [1]) whether or not they require Mathematica,
in the new BackendInfo member variable

std::map<str, bool> needsMathematica;

At runtime, this information is checked against the ac-
tual presence (or absence) of Mathematica, and the
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status Mathematica absent is displayed if it is needed
but not found.

GAMBIT will also inform the user of the status of
each individual function and global variable in a backend.
For Mathematica backends, we achieve this by calling
the Mathematica function NameQ. This function takes the

symbol name (whether a function or a variable) as a
string argument, and returns a boolean result indicating
if the symbol is currently present in the Kernel. The

diagnostic system then assigns a numerical flag to the
status of the function or variable:

1: This function is available, but the backend

version does not match your request.

0: This function is not compatible with any

model you are scanning.

-1: The backend that provides this function is

missing.

-2: The backend is present, but the function is

absent or broken.

-5: The backend requires Mathematica, but

Mathematica is absent.

1.5 Higgs mass calculations with SUSYHD

GAMBIT 1.0 offers three options for calculating the
mass of the Higgs boson: FlexibleSUSY [3], SPheno [4, 5]

and FeynHiggs [6–11]. The first two are fixed order DR

calculations of the Higgs pole mass. The third is an on-
shell calculation that can be performed at fixed order,
or can include some resummed logarithmic corrections

to give a hybrid EFT / fixed order calculation [10–12].3

Here we provide a different approach to computing the
Higgs mass, for any MSSM model4, via the Mathematica

package SUSYHD [2].

SUSYHD uses the pure EFT calculation, which re-

sums logarithms through the matching and running
procedure, using three-loop Standard Model (SM) renor-
malisation group equations and two-loop matching, pro-

viding a more precise result than fixed-order calcula-
tions when MSUSY ≫ mt. SUSYHD is the first pure
EFT Higgs calculation in GAMBIT, and the calculation
remains state-of-the-art. This therefore represents an
important new option for calculating the Higgs mass.

This calculation is most appropriate when MSUSY ≫ mt

because the pure EFT approach neglects terms of or-

der O(v2
0/M2

SUSY) (where v0 is the SM Higgs vacuum
expectation value), which can be important at the TeV
scale and below.

3Although both FlexibleSUSY [13] and SPheno [14] also include
the option of employing a hybrid DR calculation, implementing
the algorithm in Ref. [13], these options are not yet included
in GAMBIT. They will be added in further updates, as will the
pure EFT FlexibleSUSY calculation, HSSUSY.
4See Sec. 5.4 of [1] for a list of MSSM models in GAMBIT.

SUSYHD includes three main functions: MHiggs,
∆MHiggs and SetSMparameters with the following signa-

tures

MHiggs[shortList_]

∆MHiggs[shortList_]

SetSMparameters[QMTorgt_,Qα3MZ_]

The first two calculate the mass of the lightest Higgs
boson and its theoretical uncertainty in the minimal
supersymmetric SM (MSSM), starting from a list of

DR masses at scale MSUSY. The third function sets
the values of the SM parameters to be used in the
calculation.

We use these functions by declaring them to GAMBIT

as usual in a frontend header. This SUSYHD frontend
header contains the declarations

BE_FUNCTION(MHiggs, MReal,

(const MList<MReal>&), "MHiggs",

"SUSYHD_MHiggs")

BE_FUNCTION(DeltaMHiggs, MReal,

(const MList<MReal>&), "\\[CapitalDelta]MHiggs",

"SUSYHD_DeltaMHiggs")

BE_FUNCTION(SetSMparameters, MVoid,

(const MReal&, const MReal&), "SetSMparameters",

"SUSYHD_SetSMparameters")

To use SUSYHD from SpecBit to compute the Higgs
mass and uncertainty, we define a new module func-

tion SHD_HiggsMass, which provides the capability prec_mh.

The declaration of this function in the rollcall header

for SpecBit is:

#define FUNCTION SHD_HiggsMass

START_FUNCTION(triplet<double>)

DEPENDENCY(unimproved_MSSM_spectrum, Spectrum)

BACKEND_REQ(SUSYHD_MHiggs, (), MReal,

(const MList<MReal>&))

BACKEND_REQ(SUSYHD_DeltaMHiggs, (), MReal,

(const MList<MReal>&))

ALLOW_MODELS(MSSM63atQ, MSSM63atMGUT)

#undef FUNCTION

2 SpecBit, DecayBit and PrecisionBit updates

GAMBIT 1.1 also includes a simultaneous version update
to SpecBit, DecayBit and PrecisionBit [15]. In this sec-

tion we briefly discuss the changes made to the module
functions and structure of the code.

PrecisionBit 1.1 features updated likelihood functions
for the first and second generation quark masses, the
strong and electromagnetic couplings, the anomalous

magnetic moment of the muon, and ∆ρ (the departure
from unity of the ratio of the Fermi couplings associated
with W and Z bosons). DecayBit 1.1 contains updates

to all SM particle widths, branching fractions and un-
certainties. These updates bring the data contained in
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Capability Function (Return Type):
Brief Description

Dependencies Backend

requirements

unimproved_MSSM get_CMSSM_spectrum_FS(Spectrum):
Renamed from get_CMSSM_spectrum. Make an MSSM
spectrum object with FlexibleSUSY using CMSSM
boundary conditions.

SMINPUTS FlexibleSUSY
_spectrum

get_MSSMatMGUT_spectrum_FS(Spectrum):
Renamed from get_MSSMatMGUT_spectrum. Make an
MSSM spectrum object with FlexibleSUSY using soft
breaking masses input at the GUT scale.

SMINPUTS FlexibleSUSY

get_MSSMatQ_spectrum_FS (Spectrum):
Renamed from get_MSSMatQ_spectrum. Make an
MSSM spectrum object with FlexibleSUSY from soft
breaking masses input at (user-defined) scale Q.

SMINPUTS FlexibleSUSY

FH_HiggsMasses FH_AllHiggsMasses (fh_HiggsMassObs):
Renamed from FH_HiggsMasses; capabiliity reas-
signed from prec_HiggsMasses. Higgs masses and
mixings with theoretical uncertainties, as computed by
FeynHiggs.

– FeynHiggs

prec_mh FH_HiggsMass (triplet<double>):
Mass of the most SM-like neutral Higgs boson and as-
sociated uncertainty, as computed by FeynHiggs.

FH_HiggsMasses –
unimproved_MSSM_spectrum

SHD_HiggsMass (triplet<double>):
Mass of the most SM-like neutral Higgs boson and as-
sociated uncertainty, as computed by SUSYHD.

unimproved_MSSM_spectrum SUSYHD

prec_HeavyHiggsMasses FH_HeavyHiggsMasses
(std::map<int,triplet<double>>):
Masses of the three non-SM Higgs bosons and associ-
ated uncertainties in a model with two Higgs doublets,
as computed by FeynHiggs.

FH_HiggsMasses –
unimproved_MSSM_spectrum

Table 1: New or modified module functions of note in SpecBit 1.1. Functions that use FlexibleSUSY to generate an
unimproved_MSSM_spectrum have been appropriately renamed, a new precision SM-like Higgs mass calculator using SUSYHD has
been added, and the precision Higgs mass calculation with FeynHiggs has been split into separate functions for the SM-like Higgs
and the other three MSSM Higgs bosons.

Capability Function (Return Type):
Brief Description

Dependencies Backend

requirements

MSSM_spectrum make_MSSM_precision_spectrum_H(Spectrum):
Function to provide an updated MSSM spectrum with precision
mass for the most SM-like Higgs boson.

unimproved_MSSM_spectrum –
prec_mh

make_MSSM_precision_spectrum_H_W(Spectrum):
Function to provide an updated MSSM spectrum with precision
masses for the W boson and the most SM-like Higgs boson.

unimproved_MSSM_spectrum –
prec_mw
prec_mh

make_MSSM_precision_spectrum_4H_W(Spectrum):
Function to provide an updated MSSM spectrum with precision
masses for the W boson and all four Higgs bosons.

unimproved_MSSM_spectrum –
prec_mw
prec_mh
prec_HeavyHiggsMasses

Table 2: New or modified module functions of note in PrecisionBit 1.1. Precision spectra can now be computed using precision
values for 1) the W mass only (as in PrecisionBit 1.0; not shown), 2) the SM-like Higgs mass only, 3) the W mass and the SM-like
Higgs, or 4) the W mass and the masses of all four MSSM Higgs bosons. In the latter case, the precision value for the SM-like Higgs
mass can be taken from a different source to the precision masses of the other three Higgs bosons.

PrecisionBit and DecayBit up to date with the central
values and uncertainties of the 2017 Particle Data Book

[16].

The module functions of SpecBit and PrecisionBit

have undergone some rearrangement and expansion in
order to better accommodate alternative spectrum gen-
erators and precision calculators. The updated functions
are detailed in Tables 1 and 2.

Functions get_CMSSM_spectrum, get_MSSMatQ_spectrum

and get_MSSMatMGUT_spectrum of SpecBit 1.0 have

been renamed to get_CMSSM_spectrum_FS, get_MSSMatQ_

spectrum_FS and get_MSSMatMGUT_spectrum_FS in SpecBit

1.1. This is to explicitly reflect the fact that they make
use of FlexibleSUSY for spectrum generation, in contrast

to other equivalent functions that use e.g. SPheno (or,
in the future, other spectrum generators).

As described in Sec. 4.2.3 of Ref. [15], the Spectrum

object computed by SpecBit using a spectrum genera-
tor (FlexibleSUSY, SPheno, etc) can be supplemented

with more precise calculations of the masses of the W
and Higgs bosons. Initial spectrum generation and sub-
sequent precision mass calculations all take place in

SpecBit, but PrecisionBit is responsible for combining
them to make the final ‘precision Spectrum’ object.
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The computation of the precision mass of the most
SM-like Higgs boson in SpecBit is now separated from

the computation of the precision masses of the three
other MSSM Higgs bosons (Table 1). For the SM-like

Higgs (capability prec_mh), we now provide two mod-
ule functions: FH_HiggsMass and SHD_HiggsMass, which
provide the prediction from FeynHiggs and SUSYHD,

respectively. The precision calculation of the masses
of the three other MSSM Higgs bosons (capability
prec_HeavyHiggsMasses) is now provided by the function

FH_HeavyHiggsMasses, which makes use of results from
FeynHiggs.

The precision spectrum functions in PrecisionBit now

allow the mass of the SM-like Higgs boson to be im-

proved independently of the masses of the other three
MSSM Higgs bosons (Table 2). This makes it possi-
ble to use e.g. SUSYHD for the mass of the SM-like

Higgs boson, but FeynHiggs, FlexibleSUSY or SPheno

for the other Higgses. Each of the precision spectrum
functions in PrecisionBit now also recognises a YAML

option allow_fallback_to_unimproved_masses, which spec-
ifies the preferred behaviour when one or more of the

requested precision mass calculations returns an invalid
value (zero, a negative mass or not-a-number). With
this option set to false (the default), the parameter

combination will be flagged as invalid; if it is set to true,
failures will instead cause the original masses from the

spectrum generator to be retained for the parameter
point under investigation. This can be useful for e.g. de-
faulting to the Higgs mass from FlexibleSUSY or SPheno

for models with Lagrangian mass parameters below the
top mass, where the expansion used in SUSYHD breaks
down and the backend returns zero for the Higgs mass.

GAMBIT 1.1 also marks the removal of any explicit
module function for indicating the PDG code of the most
SM-like Higgs boson. This functionality is now provided

instead by the internal function SMlike_higgs_PDG_code,
which takes a high-scale SubSpectrum object as input, and
can be called from any module function by including
the header gambit/Elements/smlike_higgs.hpp.

3 Updated DarkBit likelihoods

DarkBit 1.1 includes an interface to DDCalc 1.1,
along with corresponding likelihood functions for the
XENON1T [17] and 2017 PICO-60 [18] experiments.
GAMBIT 1.1 also offers an additional option for turning

on one-loop corrections to direct detection cross-sections
computed with DarkSUSY (loop; enabled by default),
and switches the default behaviour of the micrOMEGAs

option internal_decays to false, causing decay widths
and branching fractions to be passed from DecayBit by

default. More details can be found in the DarkBit paper
[19].
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